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1
Introduction

The primary goal of a search engine is to facilitate user navigation through the immense
and diverse amount of information available in online repositories and ensure that users
can successfully find the information they seek [130]. In order to fulfill the user’s
information needs, search engines need to efficiently and effectively locate information
that is meant to be relevant to the user (in terms of satisfying the user’s information need)
and then present it to them. Millions of users interact with various search engines daily
for their information needs [13, 69]. The process begins with the user specifying their
information need through a query, which triggers a search for information resources
that are likely to be relevant to the user’s request. The retrieved information is then
presented to the user through the search engine result pages.

One of the main tasks performed by a search engine, and a classic information
retrieval (IR) problem, is ad-hoc retrieval [108]. Given a query and a document col-
lection, the search engine returns a ranked list of documents so that the most relevant
documents are ranked higher compared to the less relevant ones [129]. A query typically
contains a handful of terms, while documents may range from a few terms to passages
of text to an entire book, depending on the underlying collection of textual data. Over
the past few years, the IR community has put extensive efforts into developing neural
retrievers for ad-hoc retrieval [108]. These retrievers employ shallow or deep neural
networks to effectively retrieve relevant search results in response to a given query.
Neural retrievers have brought significant improvements and have managed to alleviate
several limitations of the traditional retrieval approaches [73, 82, 108, 127]. Some
of the traditional approaches to ad-hoc retrieval are presented below alongside their
drawbacks.

Traditional approaches to ad-hoc retrieval, such as BM25 [128] and TF-IDF [132],
are lexical-based and rely on exact term matching between the query and the documents.
Due to their effectiveness and high efficiency, such approaches have become widely
adopted in search engines and remain competitive against more advanced techniques
until today. However, there is often a discrepancy between the terms used in a user’s
query and the terms present in relevant documents [41]. A major limitation of these
lexical-based approaches is that relevance is computed based on the frequency of the
query terms occurring in the document and, therefore, that they cannot capture semantic
relationships between queries and documents [87].

To bridge the semantic gap, other classic retrieval approaches used topic modeling
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1. Introduction

methods (e.g., based on LDA [170] and pLSA [62]) for document representation by a
finite number of latent topics [4, 170]. Unlike lexical-based approaches, the relevance
to a query of a document is not determined by the frequency of the query terms in
the document but rather by the frequency of query terms in the latent topics and the
likelihood that those respective topics generate the document under consideration.
However, topic models for retrieval are not explicitly trained to learn to rank documents
but instead are trained to capture the underlying thematic structure within a collection
of documents. Consequently, many studies have found topic models to be ineffective
for ad-hoc retrieval [see, e.g., 3, 180].

On the other end of the spectrum, learning-to-rank (LTR) trains non-neural and
neural models with ranking objectives over features that are usually hand-crafted [14,
93]. In this framework, each query-document pair is encoded into a feature vector,
and the (ranking) model is trained to map the vector to a real-valued score such that a
rank-based metric is maximized. Therefore, the neural network is used only for query-
document matching. LTR approaches may rely on the assumption that certain features,
which cannot be obtained solely from the query and document content, are available.
An example is the trustworthiness of a website. These manually engineered features
are domain-specific and do not necessarily generalize well to new domains [16, 48].
Additionally, defining, extracting, and validating these features can be time-consuming
[155]. An important shortcoming of LTR is that it cannot scale to millions of documents
due to the computational cost associated with computing the features and that standard
document indexing structures do not always support these features [31]. For this reason,
LTR is usually employed in a multi-stage retrieval manner to re-rank small sets of
documents retrieved by another (more efficient) system, e.g., BM25 [128].

Neural retrieval [82, 107, 136] addresses many of the shortcomings of the afore-
mentioned methods. In neural retrieval the models do not rely on hand-crafted features;
instead, they take the raw text1 of the query and document as input and learn repre-
sentations for that text (i.e., embeddings). The models can be divided into two main
categories:

• First-stage retrievers: A key aspect of first-stage neural retrievers (for simplicity,
we will refer to them as neural retrievers) is that they learn separate latent repre-
sentations for a query and a document. Rather than using the neural network for
matching, neural retrievers use it to learn effective, separate latent representations
for a query and a document, bridging the vocabulary gap between the two. At
the same time, they employ a simple similarity metric for matching (e.g., cosine
or dot product). One critical attribute of neural retrievers that allows for their
deployment to real-world applications, which requires searching over millions of
documents, is their indexability. Documents can be encoded and indexed offline,
while at query time, high-scoring documents with respect to a query can be found
using efficient maximum inner product search (MIPS) [70]. Figure 1.1a depicts
the architecture of neural retrievers and how retrieval works at query time.

1We refer to textual queries and documents without loss of generality. Neural retrievers are not limited to
text; they can support various modalities such as image and audio. Additionally, they can facilitate retrieval
between the same modalities (e.g., text query and document) and different modalities (e.g., spoken query and
text document).
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• Re-rankers: Neural re-rankers concatenate the query with the document and pass
it as input to a neural network that outputs a relevance score. Such models can
typically achieve higher performance than neural retrievers [94]. However, due
to their architecture, they are inherently non-indexable. At retrieval time, given
a query, all the query-document pairs need to pass through the neural re-ranker
to compute their relevance. Due to the prohibitive retrieval-time latency, neural
re-rankers are used only for ranking small sets of documents [115].

In this thesis, we focus on (first-stage) neural retrievers. The effective and efficient
training of neural retrievers, as well as the indexing and searching of dense numerical
vectors has been enabled due to the availability of (i) large-scale labeled datasets (MS-
MARCO [113], NaturalQuestions [78], HotpotQA [179] etc.), (ii) large pre-trained
language models for semantic matching (e.g., BERT [32]), (iii) powerful computational
resources that have made training large-scale neural models feasible, and (iv) better
techniques to support indexing and efficient MIPS (e.g., FAISS [70]). Recently, the field
of neural retrieval witnessed a revolutionary innovation with the introduction of pre-
trained language models and training setups (i.e., loss functions such as InfoNCE [116]
and learning paradigms including batch contrastive learning and knowledge distillation)
that allow neural retrievers to learn effective query and document encoders only by
fine-tuning on query-document pairs (i.e., no need to pre-train the retriever with an
inverse cloze task) [73]. Neural retrievers use pre-trained language models as encoders
and employ training paradigms such as supervised batch contrastive learning, forcing
the model to increase its predicted similarity between the relevant query-document pairs
and decrease its predicted similarity of the irrelevant ones. Such retrievers are commonly
known as dense retrievers. As a result of their high performance [73, 127, 188], dense
retrievers have become the new paradigm in ad-hoc retrieval.

At this point it is important to discuss some of the desiderata of search engines.
Search engines must be able to deal with user queries that are common, unpopular, or
have never been seen before, and with queries that are error-free or contain errors, e.g.,
typographical errors in textual queries and background noise in spoken queries. Queries
with errors, similar to unpopular queries that have not been encountered before, are
generally not included in the data used to train the underlying retrieval model. Therefore,
when such queries are encountered during inference, they produce out-of-distribution
inputs for the retriever. Furthermore, search engines must be able to adapt to new
domains (e.g., emerging markets). To this extent, the underlying retriever must handle
out-of-domain queries, e.g., queries on topics, genres, styles, or languages different
from the ones used during training. Even though neural retrievers have shown great
effectiveness in in-distribution and in-domain queries, recent studies have unveiled that
they do not consistently demonstrate such robustness characteristics “out of the box”
when it comes to out-of-distribution and out-of-domain queries [154, 196].

In addition, search engines need to operate effectively in resource-constrained envi-
ronments to ensure accessibility and scalability [17, 100, 152]. Training and inference
of effective neural retrievers also come at a cost in terms of ever-growing computa-
tional and data resources required for training these increasingly complex models [45].
Obtaining large-scale supervised datasets for training can have a significant financial
cost since it requires human annotation [86, 145, 146]. In addition, computational
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query document

Query Encoder Document Encoder
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query
 embedding

document
embedding

(a) Neural retriever architecture.

MIPS

Dense Index

documents

Document Encoder

. . . 

query

Query Encoder

Retrieved documents

(b) Index and search for neural retrieval.

Figure 1.1: In neural retrieval, neural encoders are used to embed a query and a
document into separate dense vectors. A simple similarity metric is computed over
the two vectors to estimate the relevance between the query and document (left figure).
All the available documents are encoded into an index of dense vectors offline, and
the retrieval with respect to a query is implemented with efficient MIPS over the index
(right figure).

resources require substantial financial investment for their acquisition, operation, and
maintenance [88, 148]. The training and inference of neural models also have significant
energy costs and carbon footprints [134]. Therefore, data and computational efficiency
during training and inference are essential [111, 131]. Hence, the desired properties of
the underlying retrieval system include robustness and effectiveness in out-of-domain,
out-of-distribution, and low-resource settings.

That said, in order to fulfill the user’s expectations and address the increasing com-
plexity of their queries, modern search engines need to (i) provide access to unstructured
knowledge sources, e.g., textual documents, social media posts, and images as well as
structured knowledge sources, e.g., knowledge graphs containing real-world entities-
such as objects, events, situations or concepts—and the relationships between them, (ii)
further provide question answering functionalities to enhance the search engine result
page with direct answers to the given queries, and finally (iii) support multiple means
via which the users can express their queries e.g., text, voice, and image.

In this thesis, we focus on developing robust neural retrievers to support various
functionalities of modern search engines. In particular, we investigate how to improve
the robustness and effectiveness of neural retrievers in noisy and low-resource settings.
We first explore the impact that errors in a query have on the retrieval performance of
neural retrievers for ad-hoc retrieval and propose ways to robustify them. Then, we
explore the use of neural methods for multi-modal retrieval over spoken queries and
textual documents. Next, we examine the challenges of training an effective neural
retriever with limited computational resources to tackle complex user queries requiring
multi-hop retrieval. Lastly, we investigate how neural retrieval can be used to increase
relation prediction performance in KGQA over previously unseen domains.
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1.1 Research Outline and Questions
We scope the thesis around four research themes aimed at improving the robustness and
effectiveness of neural retrievers in noisy and low-resource settings for their application
in search engines: (i) improving the robustness of neural retrievers against typos
(Chapters 2, 3, and 4), (ii) improving the robustness of speech-based search with neural
retrieval (Chapters 5 and 6), (iii) improving the efficiency of training neural retrievers on
low resources for multi-hop retrieval (Chapter 7), and (iv) improving domain adaptation
in KGQA with neural retrieval (Chapter 8).

1.1.1 Improving the robustness of neural retrievers against typos
It is of vital importance that a search engine does not assume error-free queries. Users
can introduce typographical errors, commonly known as typos, while submitting queries
to a search engine. These typos may result from keyboard errors caused by the spatial
proximity of the keys or misplaced fingers, phonetic typing errors due to close pronunci-
ation of words, and misspellings. Hence, the underlying retrieval system must be robust
against queries with typos. Even though dense retrievers are highly effective on typo-
free queries, preliminary studies have shown a dramatic drop in retrieval performance
when dealing with typoed queries. We aim to answer the following research question:

RQ1 Can we robustify dense retrievers against queries with typos?

We propose an alternative training setup for the dense retriever, which aims to learn
better representations from noisy text. Our approach combines data augmentation with
contrastive learning, aiming to maximize the agreement between differently augmented
views of the same object, namely, the original typo-free query and its typoed variation.
Our results show that our approach not only improves robustness against typos but also
performs better than separately applying data augmentation or contrastive learning.

Most work on robustifying dense retrievers relies on data augmentation during
training to generate synthetic typoed queries and additional robustifying subtasks to
align the original, typo-free query with its typoed variant. While multiple typoed
variants exist as positive samples per query, most existing methods rely on a single
positive sample and a set of negatives per anchor and employ contrastive learning to
tackle the robustifying subtask, thereby limiting the usage of the multiple positives. An
interesting question that arises is:

RQ2 Can we improve the robustness of dense retrievers with contrastive learning in a
way that accounts for multiple positives and negatives?

We first set to identify cases in typo-robust dense retrieval where the robustifying
subtasks take into consideration only a single positive sample and optimize a contrastive
loss, even though multiple ones are available. Next, we replace the contrastive loss with
its multi-positive alternative, which uses all available positives. Our results demonstrate
that employing multi-positive contrastive learning yields improvements in robustness
compared to contrastive learning with a single positive.

While learning better representations for noisy text is one possible direction for
improving robustness against typos, it is not the only one. Uncertainty estimation
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can also be considered as a viable option. Uncertainty-aware retrieval systems tend
to be more robust to noise and variability in the input data [24]. Furthermore, when
uncertainty estimates are provided alongside retrieval results, the transparency and
interpretability of the system’s decision-making process are improved. A limitation
of current approaches in dense retrieval is that learned representations cannot capture
or express uncertainty. The current paradigm in dense retrieval is to represent queries
and documents as low-dimensional real-valued vectors using pre-trained language
models as encoders and then compute query-document similarities as the dot product of
their respective vector representations. The multivariate representation learning (MRL)
framework proposed by Zamani and Bendersky [187] is the first method that works
in the direction of modeling uncertainty in dense retrieval. This framework represents
queries and documents as multivariate normal distributions rather than vectors and
computes query-document similarity as the negative KL divergence between these
distributions.

RQ3 Can MRL capture uncertainty in queries that contain typos?

Inspired by work in computer vision, where uncertainty-aware models assign higher
uncertainty to corrupted data and lower to clean [168], we argue that the MRL framework
should assign higher variance to the typoed queries than to typo-free ones. To answer this
research question, our study begins with the reproduction of the MRL framework since
neither the source code nor model checkpoints are released. We attempt to reproduce
MRL under memory constraints (e.g., an academic computational budget). In particular,
we focus on a memory-limited, single GPU setup. Even though we successfully trained
an effective dense retriever, we could not reproduce the results reported in the original
paper or uncover the reported trends against the baselines under a memory-limited
setup – that facilitates fair comparisons of MRL against its baselines. We believe that
the impressive results reported in the original paper are due to training with a large
batch size for many training steps. We unveil that the MRL cannot consistently capture
uncertainty since it assigns lower uncertainty to typoed queries than typo-free ones.

1.1.2 Improving the robustness of speech-based search with
neural retrieval

Multimodality has become increasingly important in modern search engines [35, 135,
189]. It enhances the user experience by creating a more immersive and engaging
environment and can further improve accessibility and inclusivity by accommodating
users with different needs. Nowadays, millions of users interact with search engines
via speech interfaces [137]. Voice interaction has become increasingly popular due to
its convenience, hands-free operation, natural user experience, and support for users
with visual and motor impairments for whom conventional text entry mechanisms (i.e.,
keyboards) are not applicable [121]. In our next study, we focus on speech-based search,
where queries are in spoken form and the documents are in textual form.

A straightforward approach that does not necessarily require retraining a retrieval
system to tackle spoken queries combines an automatic speech recognition (ASR)
system with a text retriever. In ASR-Retriever pipeline approaches, the spoken queries
are transcribed with an ASR model and then passed through the text retriever. The
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ASR system cannot always guarantee a perfect transcription, e.g., difficult accents,
background noise, and rare entities can lead to a corrupted transcription.

RQ4 Are dense retrievers robust against queries that contain transcription errors?

We showcase that state-of-the-art dense retrievers are not inherently robust against
queries with ASR errors. However, dense retrievers trained to be robust against typo-
graphical errors also show robustness against ASR noise. That said, we propose training
with transcriptions from synthetically generated spoken queries and find that it yields
the best improvements in robustness.

It is important to note that in an ASR-Retriever pipeline, ASR propagates its errors
to the downstream retriever. As a result, a higher word error rate from the ASR system
can negatively affect the overall performance of the pipeline. Additionally, training an
ASR model requires obtaining a large amount of annotated speech. This can negatively
impact the applicability of ASR-Retriever pipelines for low-resource language scenarios.
Therefore, bypassing the ASR system could alleviate some of the aforementioned
drawbacks. This is the focus of our next research question.

RQ5 How does a multimodal dense retriever perform in speech-based search?

We propose a multimodal dense retriever that does not require an ASR model and can
be trained end-to-end. Our method adapts the standard dense retriever architecture,
wherein the pre-trained language models are used as query and document encoders
(i.e., where query and document are in text form) by replacing the backbone language
model used to encode the queries with a self-supervised speech model. Our findings
suggest that, on shorter questions, our multimodal retriever is a promising alternative to
the ASR-Retriever pipeline. It obtains better retrieval performance than ASR-Retriever
pipelines in cases where the ASR system tends to mistranscribe crucial words in the
question or produce transcriptions with a high word error rate.

1.1.3 Improving the efficiency of training neural retrievers on low
resources for multi-hop retrieval

The advent of advanced search engines has been accompanied by the evolution of
users’ expectations, leading to more complex and nuanced information needs [1]. As
users express their information needs in complex queries, modern search engines must
be able to deal with such queries. Complex queries cannot be resolved with a single
document; they require multiple documents to provide adequate evidence collectively.
Thus, complex queries need multi-hop retrieval that involves iteratively retrieving
documents and reformulating the query in order to retrieve different documents at each
hop [80]. For instance, “Where was Barack Obama born?” and “Who was the defense
counsel of a German woman who underwent Catholic exorcism rites during the year
before her death?” are two examples of simple and complex queries, respectively.
Dense retrievers have achieved state-of-the-art performance on multi-hop retrieval
for complex queries [175]. However, multi-hop dense retrievers are computationally
intensive, requiring multiple GPUs to train an effective retriever. Their applicability to
low-resource scenarios has not been properly studied. We aim to answer this:
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RQ6 Can we train an effective dense retriever for multi-hop retrieval with limited
computing resources?

Instead of training an end-to-end multi-hop dense retriever, we propose a hybrid retrieval
approach, combining lexical and dense retrievers. Our results show that when trained
with limited resources, end-to-end multi-hop dense retrievers witness a dramatic drop
in performance, while our hybrid approach outperforms them. Further, our hybrid
approach remains highly competitive even against multi-hop dense retrievers trained on
significantly more resources.

1.1.4 Improving domain adaptation in KGQA with neural retrieval
Modern search engines are enhanced with question answering (QA) functionalities to
provide direct answers to users’ queries; in particular, the search engine result page
is enhanced with an answer box [77, 186]. Many queries refer to real-world entities,
and therefore, QA over knowledge graphs can be used to answer them. Due to the
dynamic nature of real-world information, KGs are also dynamic and designed to
adapt to new entities and relationships. As a result, QA systems that provide access to
KGs should be able to deal with queries that refer to previously unseen domains. Our
preliminary experiments show a dramatic drop in the KGQA systems’ performance
over queries from previously unseen domains. Our findings further indicate that this
decrease originates from relation prediction. Therefore, we set out to explore how to
improve the robustness of the relation prediction model for new domains:

RQ7 Can neural retrieval combined with data augmentation increase the relation
prediction robustness of a KGQA system over previously unseen domains?

In contrast to most work that treats relation prediction as a classification task, thereby
limiting the applicability to new domains with new entities and entity relations, we
follow a retrieval approach by using the textual label to represent the relation. This way
we can, in principle, represent any relation during inference time and hence, account
for new domains. To this end, we employ a neural retriever. To further increase its
robustness, we augment the training set with synthetically generated queries for the new
domains. Our results show that we can robustify relation prediction, and the overall
KGQA system, and outperform model-based approaches.

1.2 Main Contributions
In this section, an overview of the key contributions of this thesis is presented.

In this thesis we make the following algorithmic contributions:

1. A method that combines data augmentation with contrastive learning for improv-
ing the robustness of neural retrievers (Chapter 2).

2. A method that uses contrastive learning with multiple positives and negatives for
improving the robustness of neural retrievers (Chapter 3).
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3. A multimodal neural retriever for speech-based search (Chapter 6).

4. A hybrid method, combining lexical and neural models, for multi-hop retrieval
over complex queries (Chapter 7).

5. A framework for increasing the domain adaptation capabilities of KGQA systems,
based on robustifying the relation prediction with neural retrieval (Chapter 8).

We make the following empirical contributions:

6. An empirical comparison of a proposed typo-robust neural retrieval model vs.
other baselines, and an analysis of how different types of typos affect the retrieval
performance (Chapter 2).

7. An empirical comparison of a proposed method that adopts a multi-positive
contrastive loss vs. other baselines with single positive and multiple negatives,
and an analysis of the effectiveness of the former w.r.t. the number of positives
(Chapter 3).

8. A reproducibility study of the multivariate representation learning framework
for dense retrieval alongside an open-source implementation. A fair comparison
of the proposed framework against its competitors and an extensive ablation
study. An additional experimental setting for testing the model’s ability to capture
uncertainty on typoed queries (Chapter 4).

9. An empirical comparison of a neural retriever trained with data augmentation
on synthetic speech and other typo-robust neural baselines, and an extensive
analysis of the robustness over different accents, varying amounts of synthetic
data available during training, and synthetic vs. natural speech (Chapter 5).

10. An empirical comparison of an end-to-end trained multimodal neural retriever
vs. ASR-Retriever pipeline baselines. An analysis of the impact of ASR mistran-
scription of important words on ASR-Retriever pipelines, and an ablation study
concerning different training schemes (Chapter 6).

11. An empirical comparison of a hybrid retriever that combines lexical with dense
retrieval, against pure dense and pure lexical counterparts, and an analysis of the
impact that training on low resources has on the different methods (Chapter 7).

12. An empirical comparison of ways to generate synthetic queries for the new
domains. An empirical comparison of a data-centric domain adaptation approach
against a model-centric, and an empirical comparison of a proposed KGQA model
against state-of-the-art KGQA systems for the in-domain setting (Chapter 8).

The thesis contributes the following resources:

13. Challenging test sets for testing robustness against typos in ad-hoc retrieval;
queries contain synthetically created realistic typos on non-stop words and highly
discriminative utterances (Chapter 2).
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14. A large-scale dataset for speech-based search that contains approximately 400K
synthetically generated spoken queries (Chapter 5).

15. A distant-supervision-based tool for extracting keywords for entity relationships
in knowledge graphs (Chapter 8).

1.3 Thesis Overview

This thesis is organized into four parts, all of which focus on building robust neural
retrieval models to support the various functionalities of modern search engines. In the
first part, we study how to robustify dense retrievers against typos in the query for the
task of ad-hoc retrieval. In particular, in Chapter 2 and Chapter 3, we propose methods
for robustifying dense retrievers by learning better representations for the noisy text,
while in Chapter 4, we explore a dense retrieval model that can model uncertainty. In
the second part, we study how to support multimodal retrieval with neural retrievers.
In Chapter 5, we focus on the ASR-Retriever pipeline and try to robustify textual
dense retrievers against ASR noise. In contrast, in Chapter 6, we explore an end-to-
end multimodal dense retrieval approach. In the third part, Chapter 7, we study how
to build neural retrievers to support complex queries that require multi-hop retrieval
when limited computational resources are available. In the fourth part, we study how
to robustify KGQA systems on previously unseen domains with neural retrieval and
synthetic query generation. Finally, we conclude the thesis and discuss directions for
future work in Chapter 9.

1.4 Origins

Below, we list the publications that serve as the primary sources for each chapter.

Chapter 2 is based on the paper:

G. Sidiropoulos and E. Kanoulas. Analysing the robustness of dual encoders for
dense retrieval against misspellings. In SIGIR ’22: The 45th International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM,
2022 [139].

GS: Conceptualization, Investigation, Methodology, Data curation, Software,
Writing – original draft. EK: Conceptualization, Supervision, Funding acquisition,
Writing – review & editing.

Chapter 3 is based on the paper:

G. Sidiropoulos and E. Kanoulas. Improving the robustness of dense retrievers
against typos via multi-positive contrastive learning. In Advances in Information
Retrieval - 46th European Conference on Information Retrieval, ECIR, Proceed-
ings, Part III. Springer, 2024 [140].
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GS: Conceptualization, Investigation, Methodology, Software, Writing – original
draft. EK: Conceptualization, Supervision, Funding acquisition, Writing – review
& editing.

Chapter 4 is based on the paper:

G. Sidiropoulos, S. Bhargav, P. Eustratiadis, and E. Kanoulas. Multivariate
dense retrieval: A reproducibility study under a memory-limited setup. Under
submission [141].

GS: Conceptualization, Investigation, Validation, Software, Writing – original
draft. SB: Conceptualization, Investigation, Validation, Software, Writing –
original draft. PE: Conceptualization, Supervision, Writing – review & editing.
EK: Conceptualization, Supervision, Funding acquisition, Writing – review &
editing.

Chapter 5 is based on the paper:

G. Sidiropoulos, S. Vakulenko, and E. Kanoulas. On the impact of speech recog-
nition errors in passage retrieval for spoken question answering. In Proceedings
of the 31st ACM International Conference on Information & Knowledge Manage-
ment. ACM, 2022 [144].

GS: Conceptualization, Investigation, Methodology, Data curation, Software,
Writing – original draft. SV: Conceptualization. EK: Conceptualization, Supervi-
sion, Funding acquisition, Writing – review & editing.

Chapter 6 is based on the paper:

G. Sidiropoulos and E. Kanoulas. Multimodal dense passage retrieval for open-
domain spoken question answering. Under submission [138].

GS: Conceptualization, Investigation, Methodology, Software, Writing – original
draft. EK: Conceptualization, Supervision, Funding acquisition, Writing – review
& editing.

Chapter 7 is based on the paper:

G. Sidiropoulos, N. Voskarides, S. Vakulenko, and E. Kanoulas. Combining
lexical and dense retrieval for computationally efficient multi-hop question an-
swering. In Proceedings of the Second Workshop on Simple and Efficient Natural
Language Processing, SustaiNLP@EMNLP 2021. Association for Computational
Linguistics, 2021 [143].

GS: Conceptualization, Investigation, Methodology, Software, Writing – original
draft. NV: Conceptualization, Supervision, Writing – review & editing. SV:
Conceptualization, Supervision, Methodology, Software, Writing – review &
editing. EK: Conceptualization, Supervision, Funding acquisition, Writing –
review & editing.

11



1. Introduction

Chapter 8 is based on the paper:

G. Sidiropoulos, N. Voskarides, and E. Kanoulas. Knowledge graph simple
question answering for unseen domains. In Conference on Automated Knowledge
Base Construction, AKBC, 2020 [142].

GS: Conceptualization, Investigation, Methodology, Software, Writing – original
draft. NV: Conceptualization, Supervision, Writing – review & editing. EK:
Conceptualization, Supervision, Funding acquisition, Writing – review & editing.

The present thesis has benefited indirectly from insights gained through the following
publications:

• S. Bhargav, G. Sidiropoulos, and E. Kanoulas. ‘It’s on the tip of my tongue’:
A new dataset for known-item retrieval. In WSDM ’22: The Fifteenth ACM
International Conference on Web Search and Data Mining. ACM, 2022 [8].

• P. Jonk, V. de Vries, R. Wever, G. Sidiropoulos, and E. Kanoulas. Natural
language processing of aviation occurrence reports for safety management. In
Proceedings of the 32nd European Safety and Reliability Conference. RPS, 2022
[71].
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Part I

Improving the Robustness of
Neural Retrievers Against Typos
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2
Data Augmentation and Contrastive

Learning for Typo-robust Dense Retrieval

Search engines can not assume error-free queries. Common types of error that users
introduce to queries are typographical errors, often called typos, due to the spatial
proximity of the keys on a keyboard, phonetic typing errors due to close pronunciation
of words, and misspellings. As a result, the underlying retrieval system must be robust
against potential errors in the query. In the first part of the thesis, we focus on improving
the robustness of dense retrievers against typos. Even though dense retrievers achieve
high performance when dealing with typo-free queries, preliminary studies have shown
a dramatic drop in retrieval performance on queries that contain typos. In this first
chapter, we set to answer RQ1: Can we robustify dense retrievers against queries with
typos?

2.1 Introduction

With the advances in neural language modeling [32], learning dense representations
for text has become a vital component for many information retrieval (IR) tasks. In
passage ranking and open-domain question answering, dense retrieval has become a new
paradigm to retrieve relevant passages [73, 74, 94]. In contrast to traditional term-based
IR models (TF-IDF and BM25) that fail to capture beyond-lexical matching, dense
retrieval learns dense representations of questions and passages for semantic matching.

A typical approach for dense retrieval involves learning a dual-encoder for embed-
ding the questions and passages [73]. A dual-encoder model consists of two separate
neural networks optimized to score relevant (i.e., positive) question-passage pairs higher
than irrelevant (i.e., negative) ones. At inference time, the score of a question-passage
pair is computed as the inner product of the corresponding question and passage em-
beddings. Due to their high efficiency, dual-encoders are popular first-stage rankers in
large-scale settings (in contrast to cross-encoders that can achieve higher performance,
but they are not indexable and therefore are used as re-rankers [44, 143]). The whole

This chapter was published as G. Sidiropoulos and E. Kanoulas. Analysing the robustness of dual encoders
for dense retrieval against misspellings. In SIGIR ’22: The 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 2022.
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corpus can be encoded and indexed offline, while at inference time, high-scoring pas-
sages with respect to a question can be found using efficient maximum inner product
search [70].

So far, dense retrieval models have been evaluated on clean and curated datasets.
However, these models will encounter user-generated noisy questions when deployed
in real-life applications. Questions can include typos because of users mistyping
words, such as keyboard typos (additional/missing character and character substitution),
phonetic typing errors due to the close pronunciation, and misspellings. How these
typos affect the encoding of questions and whether dense dual-encoder retrieval models
are robust to them has not been studied yet.

Works on text classification have shown that deep neural language models such
as BERT are not robust against typos [122, 150], even though they apply WordPiece
tokenization. Ma et al. [96] and Zhuang and Zuccon [196] showed that typos can
confuse even advanced BERT-based cross-encoders for re-ranking [29, 44, 115] and
proposed data augmentation training for building typo-robust re-rankers. Additionally,
Ma et al. [96] showed that bringing closer in the latent space the representations of
the positive question-passage pairs of different questions while being far apart from
negative ones can increase robustness.

While the aforementioned works studied robustness for the case of re-ranking,
improving the robustness of dense retrieval for first-stage ranking has not been explored
in-depth yet. Intuitively, if typos cause an inferior first-stage ranking, that will already
negatively affect the performance of the re-ranker. Therefore, robustness for first-stage
ranking is crucial for the overall performance. To the best of our knowledge, the work
by Zhuang and Zuccon [196] is the only work that studied the first-stage ranking and
used data augmentation to improve the robustness of a BERT-based Siamese encoder.

In this chapter, we study in-depth the robustness of dense retrieval for the case of
dual-encoder architecture. We propose an approach that combines data augmentation
with contrastive learning for robustifying dual-encoders against questions with typos. In
detail, alongside augmenting questions with typos, we propose to use a contrastive loss
that brings the representation of a question close to its typoed variations in the latent
space while keeping it distant from other distinct questions. Here, a typoed variation of
a question is a typo-augmented view of the specific question. For example, given the
original question, “Where was Obama born?” a typoed variation can be “Where was
Obama bprn?”

We aim to answer RQ1, which we break down to the following research sub-
questions:

RQ1.1 Can data augmentation, contrastive learning, and their combination improve
the robustness of dense retrieval to typos?

RQ1.2 Do certain typoed words affect the robustness of the question encoding more
than others?

RQ1.3 Do the proposed method improve the robustness of the question encoding by
ways other than simply learning to ignore the typoed word?

Our main contributions are the following: (i) we propose an approach for robustify-
ing dense retrievers towards typos in user questions that combines data augmentation
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Table 2.1: Number of questions in each dataset, and the average length of question.

Train Dev Test Avg. question length

MS MARCO 502,939 6,980 6,837 5.94
Natural Questions 79,168 8,757 3,610 9.20

with contrastive learning and performs better than applying each component separately,
(ii) we perform a thorough analysis of the robustness of dense retrieval, and (iii) show
that typos in various words influence performance differently.1

2.2 Experimental Setup
In this section, we discuss the datasets, the metrics, and the robustness methods we
experiment with to answer our research questions.

2.2.1 Datasets
We conduct our experiments on two large-scale datasets, namely, MS MARCO passage
ranking [113] and Natural Questions [78]. In MS MARCO passage ranking, the goal is
to rank passages based on their relevance to a question (i.e., the probability of including
the answer). The data collection consists of 8.8 million passages; the questions were
selected from Bing search logs. Natural Questions is a large-scale dataset for open-
domain QA over Wikipedia, and its questions were selected from Google search logs.
Table 2.1 shows the statistics of the two datasets.

2.2.2 Metrics
To measure the retrieval performance on MS MARCO, we use the official metric MRR
(@10) alongside the commonly reported Recall (R) at top-k ranks [74, 124].2 Following
previous work on Natural Questions, we use answer recall (AR) at the top-k retrieved
passages [73, 124]. Answer recall measures whether at least one of the top-k retrieved
passages contains the ground-truth answer.

2.2.3 Methods
In this section, we present the three approaches we apply as extensions to the baseline
model in order to increase robustness. Below we describe the dual-encoder model we
use for our experiments:

• Dense Retriever (DR) is a dual-encoder BERT-based model used for scoring question-
passage pairs [73]. Given a question q, a relevant passage p

+ and a set of irrelevant
1https://github.com/GSidiropoulos/dense-retrieval-against-

misspellings
2Similar to previous work, we report the metrics on MSMARCO (Dev) since the correct answers for the

test set are not available to the public.
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• Data Augmentation (DR + Data augm.) is one of the traditional approaches for
robustifying neural models. By exposing DR to questions with and without typos, the
model learns to be invariant to typos. Similar to Zhuang and Zuccon [196], for each
original correctly written question, on training time, we draw an unbiased coin. If the
result is heads, we use the original question for training. If the result is tails, we use
one of its typoed variations.

• Contrastive learning (DR + CL) of representations works by maximizing the agree-
ment between differently augmented views of the same object. We propose a con-
trastive loss that compares the similarity between a question and its typoed variations
and other distinct questions. In contrast with data augmentation, which explicitly
trains on typoed question-passage pairs, here such pairs are seen implicitly only. In
detail, in addition to Equation 2.1, we introduce a loss that enforces that a question
q and its typoed variations q

+ are close together in the latent space, while being far
apart from other distinct questions {q

→
1 , q

→
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The final loss is a weighted average of the two losses:

L = w1 · L1 + w2 · L2. (2.3)

The weights w1 and w2 are hyper-parameters and therefore need to be defined. Giving
equal weights to the two losses is an effective and straightforward combination method
that we used in our experiments.

• Combination (DR + Data augm. + CL) method consists of data augmentation
combined with contrastive learning. Specifically, alongside augmenting questions
with typos we propose to use the contrastive loss of Equation 2.2 that brings the
representation of a question close to its typoed variations while keeping it distant
from other distinct questions. The final loss is a weighted average of the three losses:

L = w1 · L1 + w2 · L2 + w3 · L3, (2.4)

where L3 represents the data augmentation and is computed similarly to Equation 2.1
but for the typoed variation q

+ of the original question q. For our experiments, we
use an equal weighting setting for the weights w1,w2, and w3.
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2.2.4 Simulating typos
To assess the robustness of the proposed methods, a large-scale dataset for passage
retrieval with typoed questions is necessary. Unfortunately, such a dataset does not exist,
and therefore we build one by simulating typos over the original Natural Questions and
MS MARCO datasets. In detail, we simulate typos produced by humans by augmenting
the original questions in the dataset with synthetically generated typoed ones.

In order to simulate typos, we apply the following transformations that often occur
in human-generated questions [see, e.g., 9, 52, 196].

• Random: Inserts, deletes, swaps, or substitutes a random character, e.g., commit-
tee ↑ {copmmittee, commttee, comimttee, commitlee}.

• Keyboard: Swaps a random character with those close to each other on the
QWERTY keyboard, e.g., committee ↑ comnittee.

• Common misspellings: Replaces words with misspelled ones, defined in a dictio-
nary of common user-generated misspellings, e.g., committee ↑ comittee.

2.2.5 Implementation details
The DR model used in our experiments is trained using the in-batch negative setting
described in [73]. The question and passage BERT encoders are trained for 50K steps,
with a batch size of 48. The learning rate is set to 2e-5 using Adam, and the rate
of the linear scheduling with a warm-up is set to 0.1. Moreover, we use the same
hyper-parameters for the three robustifying methods described in Section 2.2.3, in order
to ensure a fair comparison.

For generating typos in the training phase as well as building the typo-robustness test
set, we use the open-source Aug library [9]. Each word in a question gets transformed
with a probability of 0.2, and the transformation type (Section 2.2.4) gets chosen at
random.

2.3 Results
In this section, we present our experimental results that answer our research questions.
We aim to answer RQ1.1 by comparing the retrieval performance of the methods we
consider (Section 2.2.3) for two settings: clean questions and questions with typos. In
Table 2.2, we observe that on clean questions, data augmentation as well as our two
proposed approaches, namely, contrastive learning and data augmentation combined
with contrastive learning, do not harm the performance. Moreover, all the approaches for
robustifying DR are performing significantly better than the original DR, on questions
with typos. That indicates that they successfully robustify the underlying dual-encoder
model. That said, our proposed data augmentation combined with contrastive learning
approach holds the best performance.

Following previous work, we randomly introduce typos to questions. However, we
want to investigate if the performance of the approaches we consider remains the same
irrespectively of the word in which the typo appears. To answer RQ1.2, we create two
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Table 2.2: Retrieval results for the settings of (i) clean questions (Original), and (ii)
questions with typos (Typos in Random Words). Statistical significance difference with
paired t-test (p < 0.05) DR=d; DR+ Data augm.=a; DR+CL=c.

Natural Questions (Test)

Original Typos in Random Words
AR@5 AR@20 AR@100 AR@5 AR@20 AR@100

DR 67.31 78.22 85.42 49.52 63.98 76.12
DR + Data augm. 66.45 79.03 85.56 60.69 73.76 83.37
DR + CL (ours) 66.31 77.42 85.45 55.51 69.27 80.52
DR + Data augm.
+ CL (ours) 67.47 78.83 85.67 62.13dac 74.87dac 83.26dc

MS MARCO (Dev)

Original Typos in Random Words
MRR@10 R@50 R@1000 MRR@10 R@50 R@1000

DR 28.11 73.46 93.36 15.11 46.47 74.02
DR + Data augm. 28.26 72.66 93.07 22.00 61.68 86.49
DR + CL (ours) 28.95 73.01 93.64 19.37 55.08 80.69
DR + Data augm.
+ CL (ours) 29.14 73.85 93.69 22.84dac 63.21dac 87.52dac

additional test settings for the case of questions with typos. Specifically, we create (i) a
setting where typos appear only in non-stopwords, and (ii) a setting where typos appear
only in utterances with a lexical match with the relevant passage.3 In detail, we consider
the overlapping consecutive words between the ground-truth passage and the question
(e.g., “Who was the president of the united states during wwi?”, and “Woodrow Wilson,
a leader of the Progressive Movement, was the 28th President of the United States
(1913-1921). After a policy of neutrality at the outbreak of World War I, he led America
into war.” mark the “president of the united states” as available utterance to introduce
typos). The highly discriminative utterances obtained through this heuristic are typically
entity mentions.

As we can see in Table 2.3 and by comparing the numbers with the results in Table
2.2, the effectiveness of the methods varies across the three settings. Particularly, ro-
bustness deteriorates when typos do not appear randomly. In detail, the most significant
losses occur when typos appear on discriminative utterances. Our proposed data aug-
mentation combined with contrastive learning approach remains the best-performing
one across all settings.

To better understand the discrepancy in robustness between the three settings of
questions with typos, we conduct the following analysis. For the setting where typos
randomly appear on questions, we study how the frequency on the training set of the
typoed words at test time affects robustness. As shown in Figure 2.1, there is a strong

3We build the new settings using the same probability for introducing typos (Section 2.2.5), and we do not
retrain the models on the new settings.
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Table 2.3: Retrieval results for the settings of (i) questions with typos in non-stopwords
(Typos in Non-stopwords), and (ii) questions with typos in highly discriminative utter-
ances (Typos in Discriminative Utterances). Statistical significance difference w/ paired
t-test (p < 0.05) DR=d; DR+Data augm.=a; DR+CL=c.

Natural Questions (Test)

Typos in Non-stopwords Typos in Discriminative Utterances
AR@5 AR@20 AR@100 AR@5 AR@20 AR@100

DR 40.60 55.48 68.72 38.89 53.37 68.00
DR + Data augm. 56.14 69.94 80.19 51.68 66.12 78.08
DR + CL (ours) 49.47 64.12 76.48 44.04 59.00 72.43
DR + Data augm.
+ CL (ours) 57.78dac 70.77dac 81.38dac 53.15dac 67.28dac 78.61dac

MS MARCO (Dev)

Typos in Non-stopwords Typos in Discriminative Utterances
MRR@10 R@50 R@1000 MRR@10 R@50 R@1000

DR 11.83 38.98 66.16 10.51 34.17 59.71
DR + Data augm. 18.51 54.82 81.92 16.51 49.06 77.47
DR + CL (ours) 15.44 46.69 73.27 12.44 39.17 66.69
DR + Data augm.
+ CL (ours) 19.47dac 56.22dac 83.61dac 17.58dac 50.81dac 79.51dac

connection between the frequency of the typoed words and the retrieval performance. As
the frequency of the typoed words decreases, the performance drops significantly. To this
extent, our proposed data augmentation combined with contrastive learning approach
remains the best performing one, with the performance gap increasing as the frequency
of the typoed word decreases. The results in Figure 2.1 can also explain why we observe
the highest losses in performance on the setting with typos in discriminative utterances.
In general, the discriminative utterances (entity mentions) diversity between the dataset
splits is higher compared to other words appearing in questions (e.g., interrogative,
linking words). For instance, given the question “When was Barack Obama born?”
at the train set, during test time, we are more likely to encounter a similar question
where the main entity changes, e.g., “When was Barack Obama born?” rather than a
paraphrase of the question keeping the same entity, e.g., “What is Obama’s birthday?”.

For RQ1.3, we consider a simple baseline where the typoed words are identified
and removed from the question before being fed to the original DR model. We compare
our best-performing approach against the aforementioned baseline. If our proposed
approach only learns to ignore words with typos, then we argue that the performance of
the baseline should be competitive to ours. In many cases, removing the typoed word
can be a valid approach since the importance of words in a question varies. For instance,
considering the question “Where was president Lincoln born?” we see that “Lincoln”
is crucial for the meaning of the question while “was” adds no information. With that
in mind, we study RQ1.3 with respect to the relative importance of the typoed words
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Figure 2.1: Retrieval performance (Average Recall@50) w.r.t. the frequency on the
training set, of the typoed words at test-time; on MS MARCO (Dev). Questions are
split into bins w.r.t. the frequency of their typoed words.
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Figure 2.2: Retrieval results w.r.t. the relevant importance of the typoed words; on MS
MARCO (Dev). Questions are split into bins w.r.t. the relevant importance of their
typoed words.

within the question.4
Our method does not simply learn to ignore words with typos since, as we can

see from Figure 2.2, it consistently outperforms the baseline. Furthermore, Figure 2.2
highlights that when the importance of typoed words (as measured using R@50) is
low, simply ignoring them is a highly competitive approach. On the other hand, as the
importance of the typoed words increases, the effectiveness of just ignoring these words
decreases dramatically, to the extent that keeping the typoed words performs better.
That can be attributed to the application of the WordPiece tokenizer (by the underlying
BERT model) that allows DR to recover from some typos, such as when the character
n-gram splits remain intact despite the typos. For instance original robustness and
typoed robustnessd will be split into [robust, ##ness] and [robust, ##ness, ##d]
respectively.

4We define a word’s relevant importance as the ratio of its IDF to the sum of the IDFs of every word in the
question.
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2.4 Conclusions
In this chapter, we provided insights into the robustness of dual-encoders for dense
retrieval when dealing with typos in user questions. We proposed an approach for
robustifying dual-encoders that combines data augmentation with contrastive learning.
Our experimental results showed that our proposed method not only improves robustness
but also performs better than separately applying data augmentation or contrastive
learning. Analysis of the methods we explored showed that typos in various words do
not influence performance equally. In particular, typos on words that are less frequent on
the training set and more important for a question are harder to address. Our proposed
technique remains the best-performing one in these settings, however, the performance
deteriorates significantly compared to a clean question.

There is a significant question that has arisen throughout our study: What could
a dual-encoder actually learn to fix the problem? The WordPiece tokenizer, applied
by BERT, allows models to recover from some typos. However, it would be ideal if
embeddings could be learned at the character n-gram level to allow recovery from
typical character substitution, deletion, etc. Furthermore, word-to-word interactions
during training (e.g., through a late interaction model [74]) could also allow implicitly to
learn the “correct spelling” of a typoed word during training. We leave these directions
as future work.

In this chapter, we proposed to robustify dense retrievers via data augmentation and
an additional robustifying subtask that aims to align the representations of the typo-free
question and its typoed variant. While we have multiple different typo-augmented views
of the same question, since we rely on synthetic noise generation, we only used a single
typoed variant per question at each step. In the next chapter, we argue that multiple
typoed variants can be used simultaneously to boost robustness further.
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3
Contrastive Learning with Multiple

Positives for Typo-robust Dense Retrieval

In the previous chapter–similar to other work on improving the robustness of dense
retrievers against typos–we combined (i) data augmentation to obtain typoed queries
during training time with (ii) additional robustifying subtasks that aim to align the
original, typo-free queries with their typoed variants. Even though multiple typoed
variants are available as positive samples per query, the aforementioned family of
methods assumes a single positive sample and a set of negative ones per anchor and
tackles the robustifying subtask with contrastive learning. Therefore, the approach from
the previous chapter makes insufficient use of the multiple positives (typoed queries). In
this chapter, we aim to answer RQ2: Can we improve the robustness of dense retrievers
with contrastive learning in a way that accounts for multiple positives and negatives?

3.1 Introduction
Dense retrieval has become the new paradigm in passage retrieval. It has demonstrated
higher effectiveness than traditional lexical-based methods due to its ability to tackle the
vocabulary mismatch problem [73]. Even though dense retrievers are highly effective
on typo-free queries, they can witness a dramatic performance decrease when dealing
with queries that contain typos [139, 144, 197]. Recent works on robustifying dense
retrievers against typos use data augmentation to obtain typoed versions of the original
queries at training time. Moreover, they introduce additional robustifying subtasks
to minimize the representation discrepancy between the original query and its typoed
variants.

Sidiropoulos and Kanoulas [139] applied an additional contrastive loss to enforce
the latent representations of the original, typo-free queries to be closer to their typoed
variants. Zhuang and Zuccon [197] used a self-teaching training strategy to minimize
the difference between the score distribution of the original query and its typoed variants.
Alternatively, Tasawong et al. [153] employed dual learning in combination with self-
teaching [197] and contrastively trained the dense retriever on the prime task of passage

This chapter was published as G. Sidiropoulos and E. Kanoulas. Improving the robustness of dense
retrievers against typos via multi-positive contrastive learning. In Advances in Information Retrieval - 46th
European Conference on Information Retrieval, ECIR, Proceedings, Part III. Springer, 2024.
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retrieval and the dual task of query retrieval (learns the query likelihood to retrieve
queries for passages).

Despite the improvements in robustness, existing typo-robust methods do not always
make optimal use of the available typoed queries. They address the robustifying subtasks
with contrastive learning, assuming a single positive sample (query) and a set of negative
ones per anchor (depending on the approach, the anchor can be either a query or a
passage). However, alongside the original query, its multiple typoed variants are
available. Hence, there is more than one positive sample per anchor. As a result, we
can use all the available positives simultaneously and apply multi-positive contrastive
learning instead (i.e., contrastive learning that supports multiple positives). For instance,
Tasawong et al. [153] compute the contrastive loss for the query retrieval subtask using
only the original, typo-free query as relevant for a given passage. Given a passage, we
argue that both the original query and its typoed variations can be considered as relevant
and adopt a multi-positive contrastive loss instead.

Literature on contrastive learning has shown that including multiple positives can
enhance the ability of the model to discriminate between signal and noise (negatives)
[75, 101]. Intuitively, multiple negatives focus on what makes the anchor and the
negatives dissimilar, while multiple positives focus on what makes the anchor and the
positives similar. To this end, contrasting among multiple positives and negatives can
bring an anchor and all its positives closer together in the latent space while keeping
them far from the negatives.

In this chapter, we revisit recent methods in typo-robust dense retrieval and unveil
that, in many cases, they do not sufficiently use the multiple positives that are available.
Specifically, when tackling the robustifying subtasks, they ignore that multiple positives
are available per anchor and consider contrastive learning with a single positive. In
contrast, we suggest using all the available positives and adopting a multi-positive
contrastive learning approach. We aim to answer the following research sub-questions
in order to tackle RQ2:

RQ2.1 Can our multi-positive contrastive learning approach increase the robustness of
dense retrievers that use contrastive learning with a single positive?

RQ2.2 Does our multi-positive contrastive learning variant outperform its single-
positive counterpart regardless of the number of positives?

Our experimental results on two datasets show that our proposed approach of employing
multi-positive contrastive learning yields improvements in robustness compared to
contrastive learning with a single positive.1

3.2 Methodology
Contrastive learning is a vital component for training an effective dense retriever.
Current typo-robust dense retrievers use contrastive learning with a single positive
sample and multiple negative ones for both the main task of passage retrieval and the
robustifying subtasks. In detail, given an anchor x, a positive sample x

+, and a set of
1https://github.com/GSidiropoulos/typo-robust-multi-positive-DR
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negative samples X
→, the contrastive prediction task aims to bring the positive sample

closer to the anchor than any other negative sample:

LCE(x, x
+
, X

→) = → log
e
f(x,x+)

ef(x,x
+) +

∑
x→↑X→

ef(x,x
→)

, (3.1)

where f is a similarity function (e.g., dot product).
However, in many cases, multiple positive samples are available per anchor and

can be used simultaneously to increase the discriminative performance of the model.
As opposed to the aforementioned contrastive loss that supports a single positive, we
propose employing a multi-positive contrastive loss to benefit from all the available
positives. Given an anchor x, multiple positive samples X

+, and multiple negatives
X

→, a multi-positive contrastive loss [75] is computed as:

LMCE(x, X
+
, X

→) = → 1

|X+|
∑

x+↑X+

log
e
f(x,x+)

ef(x,x
+) +

∑
x→↑X→

ef(x,x
→)

. (3.2)

This chapter aims to identify cases in typo-robust dense retrieval methods where the
robustifying subtasks consider only a single positive sample, even though multiple ones
are available, and optimize a contrastive loss. Next, we replace the contrastive loss with
its multi-positive alternative to benefit from all the available positives. Below we present
the typo-robust dense retrieval methods we build upon followed by our multi-positive
variants. We focus on dense retrievers that follow the dual-encoder architecture [73].
A traditional dense retriever, DR, is optimized only with the passage retrieval task.
Given a query q, a positive/relevant passage p

+, and a set of negative/irrelevant passages
P

→ = {p
→
i }Ni=1, the learning task trains the query and passage encoders via minimizing

the softmax cross-entropy: Lp
CE = LCE(q, p+, P

→). Positive query-passage pairs are
encouraged to have higher similarity scores and negative pairs to have lower scores.

3.2.1 Dense retriever with self-supervised contrastive learning
DR+CL alternates DR with an additional contrastive loss that maximizes the agreement
between differently augmented views of the same query [139]. This loss enforces that a
query q and its typoed variation q

↓, sampled from a set of available typoed variations
Q

↓ = {q
↓
i}Ki=1, are close together in the latent space and distant from other distinct

queries Q
→ = {q

→
i }Mi=1: Lt

CE = LCE(q, q↓, Q→). The final loss is computed as a
weighted summation, L = w1Lp

CE + w2Lt
CE .

DR+CLM is our multi-positive variant of DR+CL. Given a query q, instead of sampling
a different typoed variant q

↓ from a set Q
↓ at each update, we propose simultaneously em-

ploying all typoed variants. To do so, we replace Lt
CE with the following multi-positive

contrastive loss that accounts for multiple positives: Lt
MCE = LMCE(q, Q↓

, Q
→). The

final loss is: L = w1Lp
CE + w2Lt

MCE .

3.2.2 Dense retriever with dual learning
DR+DL trains a robust, dense retriever via a contrastive dual learning mechanism [90].
In contrast to classic DR, which is optimized for passage retrieval only (Lp

CE), DR+DL
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is optimized for the prime task of passage retrieval (i.e., learns to retrieve relevant
passages for queries) and the dual task of query retrieval (i.e., learns to retrieve relevant
queries for passages). Therefore, given a passage p, a positive query q

+, and a set
of negative queries Q

→ = {q
→
i }Mi=1, it further minimizes the loss for the dual task:

Lq
CE = LCE(p, q

+
, Q

→). The dual training loss is added to the prime training loss to
conduct contrastive dual learning and train the dense retriever. Specifically, the final
loss is computed as L = Lp

CE + wLq
CE , where w is used to weight the dual task loss.

DR+DLM is our multi-positive variant of DR+DL. Contrary to DR+DL, we propose
that for the query retrieval task, given a passage p, we can have a set of relevant queries
consisting of the typo-free query and its typoed variants, Q = {q

+
, q

↓
1, q

↓
2, . . . , q

↓
K}.

Thus, we replace the contrastive loss of Lq
CE with a multi-positive contrastive loss,

which can account for multiple relevant queries at the same time. We define the multi-
positive contrastive loss for the dual task as: Lq

MCE = LMCE(p, Q, Q
→). The final

loss is computed as L = Lp
CE + wLq

MCE .

3.2.3 Dense retriever with dual learning and self-teaching
DR+ST+DL trains a dense retriever with dual learning and self-teaching [153]. Similar
to DR+DL, it minimizes the Lp

CE and Lq
CE losses for the main task of passage retrieval

and the subtask of query retrieval, respectively. The additional self-teaching mechanism
distills knowledge from a typo-free query q into its typoed variants Q

↓ = {q
↓
i}Ki=1 by

forcing the model to match score distributions of misspelled queries to the score distribu-
tion of the typo-free query for both the passage retrieval and query retrieval task. This is
achieved by minimizing the KL-divergence losses: (i) Lp

KL = 1
K

∑K
k=1 LKL(s↓kp , sp),

where {s
↓1
p , s

↓2
p , . . . , s

↓K
p } and sp is the score distribution in a passage-to-queries direc-

tion (passage retrieval) for the typoed queries and the typo-free query, respectively,
and (ii) Lq

KL = 1
K

∑K
k=1 LKL(s↓kq , sq), where {s

↓1
q , s

↓2
q , . . . , s

↓K
q } and sq is the score

distribution in a query-to-passages direction (query retrieval) for the typoed queries and
the typo-free query, respectively. The final loss is computed as the weighted summation
of the four losses, L = (1 → ω)((1 → ε)Lp

CE + εLq
CE) + ω((1 → ϑ)Lp

KL + ϑLq
KL).

DR+ST+DLM is our multi-positive variant of DR+ST+DL. Even though DR+ST+DL
simultaneously uses all the available typo variations of a query in order to calculate the
KL divergence losses for the prime passage retrieval task and the dual query retrieval, it
uses only the typo-free query to compute the contrastive loss for query retrieval (Lq

CE).
To fully benefit from the multiple available typoed queries per typo-free query, we
replace the contrastive loss for query retrieval Lq

CE with a multi-positive variant that
supports samples with multiple positives Lq

MCE . The final loss is computed as the
weighted summation, L = (1→ω)((1→ε)Lp

CE+εLq
MCE)+ω((1→ϑ)Lp

KL+ϑLq
KL).

3.3 Experimental Setup

Query augmentation From the aforementioned methods, those employing queries
with typos in their training scheme are augmentation-based. During training, the typoed
queries are generated from the original, typo-free queries through a realistic typo
generator [112]. The typo generator applies the following transformations that often
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occur in human-generated queries: random character insertion, deletion and substitution,
swapping neighboring characters, and keyboard-based character swapping [52].

Datasets and evaluation We conduct our experiments on MS MARCO passage
ranking [113] and DL-Typo [197] on their typo-free and typoed versions. Both datasets
use the same underlying corpus of 8.8 million passages and ↓400K training queries
but differ in evaluation queries. DL-Typo provides 60 real-world queries with typos
alongside their manually corrected typo-free version. The development set of MS
MARCO consists of 6, 980 queries (the test set is not publicly available). Following
previous works [153, 197], we obtain typo variations for each typo-free query via a
synthetic typo generation model and repeat the typo generation process 10 times. To
measure the retrieval performance, we report the official metrics on each dataset. For
the evaluation on the typo version of MS MARCO, we report the metrics averaged for
each repeated experiment since typoed queries are generated 10 times for each original
query.

Implementation details We follow an in-batch negative training setting with 7 hard
negative passages per query and a batch size of 16 to train the dense retrievers.2 We
use AdamW optimizer with a 10→5 learning rate, linear scheduling with 10K warm-up
steps, and decay over the rest of the training steps. We train up to 150K steps. We
implement the query and passage encoders with BERT [32]. When applicable, we set
the query augmentation size to 40. For the remaining hyperparameters specific to each
method (e.g., weight w in DR+CL), we use the values initially proposed by the creators
of each method. We use the Tevatron toolkit [47] to train the models and the Ranx
library [6] to evaluate the retrieval performance. Finally, we use the typo generators
from the TextAttack toolkit [112] for all the methods we experiment with to augment
the training queries.

3.4 Results
To answer RQ2.1, we compare the retrieval performance of our multi-positive con-
trastive learning approaches against the original models. From Table 3.1, we see that
employing our multi-positive contrastive learning approach yields improvements in
robustness against typos upon the original methods that use contrastive learning with a
single positive.

As expected, the more dramatic improvement comes when applying multi-positive
contrastive learning on DR+DL since the original work only considers the typo-free
query as positive when computing the contrastive loss for query retrieval (see Section
3.2.2). In contrast, in our DR+DLM , we consider the typo-free query and all its available
typoed variants as positives and use a multi-positive contrastive loss for query retrieval.
We also see improvements when comparing DR+CL vs. our DR+CLM . In detail,
employing all available positives (typoed queries) at once and using multi-positive

2The original methods and our proposed counterparts employ the same number of original, typo-free
query-passage pairs per batch. However, our method leverages multiple typoed variants for each query;
therefore, the batch we need to fit in the GPU memory is larger.
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Table 3.1: Retrieval results for the settings of (i) clean queries (Clean), and (ii) queries
with typos (Typo). Multi-positive CL indicates the use of multi-positive contrastive
loss. Statistical significant gains (two-tailed paired t-test with Bonferroni correction,
p < 0.05) obtained from models with multi-positive contrastive loss (ours) over their
original version with standard contrastive loss are indicated by †.
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DR ✁ .331 .953 .140 .698 .677 .850 .555 .264 .395 .180
DR+DL ✁ .332 .953 .140 .698 .679 .826 .557 .269 .411 .186
DR+DLM ✂ .335 .958 .213† .866† .699 .864 .585 .347† .452 .259†

DR+CL ✁ .321 .957 .170 .787 .659 .797 .535 .284 .411 .207
DR+CLM ✂ .322 .956 .178† .811† .652 .847 .539 .290 .447 .215
DR+ST+DL ✁ .334 .951 .259 .893 .681 .868 .567 .412 .543 .315
DR+ST+DLM ✂ .335 .955 .261 .902† .687 .870 .579 .426† .583 .342†

contrastive loss outperforms sampling a different positive at each update and using a
single positive contrastive loss (see Section 3.2.1). The improvements are held even
when comparing our DR+DL+STM against DR+DL+ST, a model that already uses
multiple positives. As seen in Section 3.2.3, DR+DL+ST uses a contrastive loss with a
single positive for the query retrieval dual task (i.e., Lq

CE) while considering multiple
positives simultaneously to compute the KL-divergence losses (i.e., Lp

KL, Lq
KL).

At this point, we want to explore how the different numbers of positives affect our
multi-positive approach (RQ2.2). To do so, we compare our DR+DL+STM against
DR+DL+ST. In its training, the latter already employs multiple positives simultaneously
to compute the KL-divergence losses. However, our multi-positive approach fully
benefits from the multiple available positives by incorporating them when computing
the contrastive loss for query retrieval (Lq

CE ↑ Lq
MCE). Table 3.2 unveils that our multi-

positive variant consistently outperforms the original model for the different numbers of
typoed variants per query. In addition, our findings suggest that increasing K results in
improved performance, but only up to a certain threshold, beyond which the performance
stabilizes. Specifically, we observe no additional performance improvement beyond 30
augmentations. Furthermore, the most significant performance difference occurs when
augmentations are increased from 1 to 10; subsequent increases yield only marginal
gains.
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Table 3.2: Retrieval results for different query augmentation sizes (K). We report the
results in the format “R@1000 (MRR@10)” on MS MARCO with typos.

Multi-positive
contrastive loss

K

1 10 20 30 40

DR+ST+DL ✁ .884 (.251) .892 (.258) .894 (.258) .893 (.259) .893 (.259)
DR+ST+DLM ✂ .884 (.251) .898 (.260) .900 (.260) .902 (.261) .902 (.261)

3.5 Conclusions
In this chapter, we revisit recent studies in typo-robust dense retrieval and showcase
that they do not always make sufficient use of multiple positive samples. They assume a
single positive sample and multiple negatives per anchor and use contrastive learning for
the robustifying subtasks. In contrast, we propose to leverage all the available positives
and employ multi-positive contrastive learning. Experimentation on two datasets shows
that following a multi-positive contrastive learning approach yields improvements in
the robustness of the underlying dense retriever upon contrastive learning with a single
positive.

At this point, we list some of the limitations of our work that can serve as directions
for future research. As we saw in Table 4, increasing the number of augmentations
can improve performance. However, there is a trade-off between performance and
computation resources. The multiviewed batch (i.e., the augmented batch that contains
all the available typo-augmented views of the queries in the batch) used by methods that
use multiple positives is larger compared to the batch of the respective base method that
uses only a single positive. Future research could look into creating more efficient ways
to train while using multiple negatives simultaneously. Moreover, in this chapter, we
used BERT as the backbone of all the dense retrievers we experimented with. However,
recent work has shown that using CharacterBERT as the backbone improves robustness
against typos [197]. Future work can explore the combination of a dense retriever that
uses CharacterBERT and is trained with multi-positive contrastive learning.

In this chapter, similar to the previous Chapter 2, we set out to robustify dense
retrievers by learning better representations for the typoed text. In the next chapter, we
move on to study if uncertainty-aware dense retrievers are robust against typos.
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4
Modeling Uncertainty in Dense Retrieval

Chapters 2 and 3 focused on improving robustness against typos via learning better
representations for noisy text. However, this is not the only method for building robust
models. Alternatively, uncertainty estimation can also be considered. Uncertainty-aware
retrieval systems tend to be more robust to data distribution shifts.

The current paradigm in dense retrieval is to represent queries and passages as low-
dimensional real-valued vectors using neural language models, and then compute query-
passage similarity as the dot product of these vector representations. A limitation of
this approach is that these learned representations cannot capture or express uncertainty.
The multivariate representation learning (MRL) framework proposed by Zamani and
Bendersky [187] is the first method that works in the direction of modeling uncertainty
in dense retrieval. This framework represents queries and passages as multivariate
normal distributions, and computes query-passage similarity as the negative Kullback-
Leibler (KL) divergence between these distributions. Furthermore, MRL formulates KL
divergence as a dot product, allowing for efficient first-stage retrieval using standard
maximum inner product search. In this chapter, we aim to answer RQ3: Can MRL
capture uncertainty in queries that contain typos?

Owing to the source code and pre-trained models being unavailable in the work by
Zamani and Bendersky [187], answering RQ3 involves a reproducibility study of the
original work. We attempt to reproduce MRL on an academic computational budget
(i.e., under memory constraints). In particular, we aim to uncover the extent to which
the reported results and trends of the original work hold under a memory-limited, single
GPU setup.

4.1 Introduction

Dense retrieval has become the new paradigm in first-stage retrieval, largely replacing
lexical methods which cannot model semantic information as well as neural models.
Dense retrievers following the dual-encoder architecture [73] are popular first-stage
retrievers due to their performance and scalability. This paradigm uses pre-trained
neural language models to encode queries and passages as low-dimensional real-valued

This chapter was published as G. Sidiropoulos, S. Bhargav, P. Eustratiadis, and E. Kanoulas. Multivariate
dense retrieval: A reproducibility study under a memory-limited setup. Under submission.
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dense vectors, with relevance defined as their dot product. Passages are encoded offline
and stored in a dense index. At query time, retrieval can be done efficiently using
maximum inner product search (MIPS). However, representing queries and passages as
single vectors has an important limitation that has influenced the research landscape:
these representations do not model, capture, or express predictive uncertainty [160]. At
the same time, there are various sources of uncertainty arising both from the data and
the neural retrieval models:

• Query uncertainty. User queries may include misspellings, ambiguity, and incom-
plete or inaccurate information (e.g., false memories). Furthermore, in a realistic
setting, the retrieval system has minimal to no prior knowledge about the distribution
of the queries, except for possibly a few assumptions (e.g., the language they are in,
or common user mistakes).

• Passage uncertainty. Passages may present similar uncertainty-inducing artifacts to
queries, such as misspellings and ambiguity. Unlike queries, the retrieval model has
little prior knowledge of the passage collection as a whole, i.e., only of the documents
used during training.

• Relevance uncertainty. Relevance, or ranking uncertainty refers to the confidence
of the model in the estimated query-passage relevance. Such an estimator may be
anything between a deterministic function of query and passage uncertainty, e.g., the
model reproduced in this chapter, to a stochastic function of deterministic query and
passage representations, e.g., a Monte-Carlo dropout Bayesian estimator [25].

Uncertainty estimation remains largely unexplored for the case of first-stage dense
retrieval, despite it having received increased attention from the community in the case of
re-ranking [25, 39, 61, 166, 195]. Recently, Zamani and Bendersky [187] proposed the
multivariate representation learning (MRL) framework, the first approach that models
uncertainty in the context of dense retrieval. MRL uses predictive variance as a proxy for
uncertainty. Each query and passage is mapped to a multivariate Gaussian distribution
parameterized by a mean vector and a (diagonal) covariance matrix, where the mean
represents the predicted query or passage embedding, and the variance represents
the uncertainty of said embedding. However, different from existing approaches to
modelling uncertainty in IR that use Bayesian inference [25], variance in the MRL
framework does not express statistical variance, i.e., deviation from the mean, as much
as it expresses predicted risk. In essence, this is a trade-off between being theoretically
principled and computationally efficient. Admittedly, computational efficiency is of
the utmost importance in first-stage retrieval, where one has to manage collections of
potentially billions of passages.

Having represented queries and passages as multivariate normal distributions, the
authors of the original paper proceed to formulate a query-passage relevance scoring
function based on a simplified version of the Kullback–Leibler (KL) divergence. Further,
they express this function as a dot product between query and passage representations,
thereby allowing for efficient retrieval by means of standard MIPS (e.g., FAISS 70).
Finally, they report state-of-the-art retrieval performance and show that the predicted
covariance matrix can be used as a pre-retrieval query performance predictor.

34



4.1. Introduction

Even though the results reported in the original study showcase the effectiveness of
the proposed method, our study is motivated by several important questions that still
need to be explored. Many of these questions have the character of a reproducibility
question. First and foremost, the unavailability of the source code and model checkpoints
makes it difficult to verify the paper’s substantial claims. Second, in the original work, a
batch of 512 was used to train MRL, indicating that substantial computational resources
were available–in contrast, some of the baselines were trained with a batch size of 8
on a single GPU. Third, even though the model consists of various components and
several stages of knowledge distillation, the original work does not include an extensive
ablation study that explores the impact of each component on downstream performance.
Therefore, it is unclear to what degree the performance gains of the proposed method
stem from the multivariate representations of queries and passages. To this extent, it is
important to understand the representations learned by MRL. In this chapter, we aim to
answer RQ3. To do so, we break it down into the following research sub-questions:

RQ3.1 To what extent can the results and findings of the original paper be reproduced
under a memory-limited setup?

RQ3.2 Do the multivariate query and passage representations express uncertainty?

RQ3.3 What is the contribution of each MRL component to the downstream retrieval
performance?

RQ3.4 What is the impact of batch size in training MRL?

We summarize our contributions to the original work as follows:

Correction of a typographical/mathematical error We correct a mathematical error
in the original work, made early in the formulation of the method, in an attempt by the
authors to simplify the computation of KL divergence between two multivariate normal
distributions. This error propagated to the rest of the original paper’s mathematical
formulations. We suspect that this error is typographical and that it did not leak into
the technical implementation of the original authors’ experiments. In fact, we provide
experimental evidence that if the incorrect similarity scoring function is used instead of
our corrected version, it harms retrieval performance.

Reproducing retrieval and QPP experiments We reproduce the experimental setup
of the original paper, for the tasks of dense retrieval and pre-retrieval query performance
prediction (QPP). The original MRL model is trained with a batch size of 512, while
its primary competing approach uses a batch size of 8. We explore to what extent the
original work’s findings are reproducible when MRL is trained with a significantly
smaller batch size under a memory-limited setup that facilitates fair comparisons of
MRL against its baselines (i.e., both MRL and its baselines are trained with the same
batch size). To answer RQ3.1, we focus on reproducing the retrieval experiments of
the original work, in a memory-limited setup. We showcase that even though MRL can
still achieve state-of-the-art retrieval results, retrieval performance significantly drops
under a memory-limited setup. Moreover, we show that MRL does not outperform
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the baselines in a fair comparison. Finally, regarding RQ3.2, MRL yields inconsistent
results for the QPP experiments. Our analysis reveals that the variance vectors do not
consistently capture notions of uncertainty.

Ablation study on the model’s components The MRL framework is composed of
multiple components, including multivariate representations, knowledge distillation,
and model initialization from an already effective pre-trained dense retriever. To answer
RQ3.3, we conduct a thorough ablation study on the model’s components to unveil their
importance in training an effective retriever. We find that multivariate representations
do not boost the model’s performance, and the high effectiveness stems from the model
initialization and knowledge distillation from the re-ranker.

Ablation study on the batch size In the original paper, MRL performance is reported
only for training with a batch size of 512. Therefore, it remains to be seen how the
batch size affects performance. We conduct a thorough ablation study on the batch size
to unveil its effect on the retrieval performance of MRL (RQ3.4). We believe that the
impressive results reported in the original paper are due to training with a large batch
size for many training steps.

Proposed improvements upon the original MRL model We propose a simple
alteration to the original model, which results in a reduced hyperparameter search
space. In short, instead of a parametric softplus activation which ensures positive semi-
definiteness of the covariance matrix, we propose predicting the log-variance instead,
which obviates searching for the ω hyperparameter of the softplus function. We show
that the log-variance model either matches or outperforms the original softplus model.

4.2 Related Work
Uncertainty-aware retrieval Uncertainty estimation in neural information retrieval
(IR) has been explored in the past, although not in the context of dense (first-stage)
passage retrieval, which is the main novelty aspect of the MRL method. The work
of Cohen et al. [25] and Heuss et al. [61] focuses on risk-aware (second-stage) re-ranking.
Both approaches attempt to approximate Bayesian models that predict a distribution of
relevance scores rather than point estimates; the former uses Monte-Carlo dropout [42],
while the latter leverages Laplace approximation. The common denominator across
these Bayesian methods is that the predictive distribution p(y|ϖ, D) is approximated by
performing forward inference using multiple samples of ϖ. This is the main difference
between prior work and MRL: In MRL, predictive uncertainty is not framed as weight
uncertainty, and variance does not represent deviation from the mean prediction. Rather,
variance in MRL is a predicted value of a deterministic estimator.

Uncertainty for detecting out-of-distribution/corruptions While a variety of efforts
exist in the area of stochastic representations in image retrieval [21, 167], recent work
by Warburg et al. [169] showed that Bayesian image retrieval with Laplace approxima-
tion can achieve some desirable properties. They show that the uncertainty of prediction
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increases (almost monotonically) with the amount of corruption in the input. The
model’s predictive uncertainty further behaves as expected when making out-of-domain
predictions. These insights are valuable in text retrieval as well, where these desirable
properties have not yet been achieved effectively.

Knowledge distillation The MRL framework is surrounded by multiple layers of
knowledge/parameter distillation, which we summarize in this section. First, the selected
neural architecture employed in MRL is DistilBERT [133]; a distilled version of BERT
with 40% fewer parameters for 97% of its original performance. Furthermore, the
architecture has been distilled with balanced topic-aware sampling (TAS-B) [64], which
uses two teacher models to construct better training batches. Finally, MRL itself uses a
knowledge distillation loss inspired by CLDRD [188]. While the original paper does
not discuss how these sources of distilled knowledge affect downstream performance,
in Section 4.4 of this chapter we perform a thorough ablation study that examines them
one-by-one.

4.3 Methodology
The proposed MRL framework represents queries and passages as multivariate Gaussian
distributions. It does so by computing a mean vector µ and a diagonal covariance
matrix ! for a query q and passage d, using query and passage encoders fω and fε,
parameterized by ϖ and ϱ respectively,

(µQ, !Q) = fω(q), (4.1)

(µD, !D) = fε(d). (4.2)

It is also possible to have ϖ = ϱ, i.e., weight sharing, which the authors of the original
paper opt for. Dense retrieval models (e.g., DPR, 73) typically use the embedding of a
special token, the [CLS] token as the low-dimensional representation of queries and
documents. Given a piece of text, for instance, “Hello world”, pre-processing appends
the special [CLS] token to the start of the text, producing “[CLS] Hello world”,
and the output of the transformer model for the [CLS] token is used. Relevance is
a function of query and document representations, typically a dot product or cosine
similarity. MRL, however, produces two vectors per input, which motivates the choice in
the original study to use an additional special token, termed the [VAR] token, appended
after the [CLS]token, but before the text. For instance, “Hello world” is pre-processed
to “[CLS] [VAR] Hello world”. The output representation of the [CLS]token is
used to compute the mean, and the output representation of the [VAR] token is used to
compute the variance.

The relevance score between queries and passages is then defined as the negative
KL divergence between their distributional embeddings: Q ↓ N (µQ, !Q) and D ↓
N (µD, !D),

rel(q, d) = → KLD(Q | D). (4.3)

The minus sign is there to implement a “higher is better” type of scoring. To simplify
matters, we will disregard it in the upcoming derivations and re-introduce it at the very
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end. In this section, we detail the reproducibility study of the above framework. First,
we direct attention to a small mathematical error that was made early in the formulation
of the relevance scoring in the original paper, that propagated through the rest of the
mathematical derivations. We then discuss matters of model training. Whenever we
make a strong assumption due to the lack of implementation detail in the original paper,
or the lack of shared source code, it is explicitly mentioned.

4.3.1 KL divergence-based relevance scoring
In Eq. 4.4, we start by repeating the standard definition of KL divergence, as written in
Eq. 9 of the original paper:

KLD(Q | D) =
1

2

[
log

det !D

det !Q
→ k + tr{!→1

D !Q}

+ (µQ → µD)↭ !→1
D (µQ → µD)

]
,

(4.4)

where k denotes the dimensionality of the multivariate Gaussian embeddings. For
the purpose of relevance scoring, the authors proceed to further simplify Eq. 4.4 and
reformulate it as a document ranking function. They do so by eliminating document-
independent terms and constants, and by taking advantage of the fact that the covariance
matrices are diagonal. Let us follow their simplification steps by considering each term
separately. For the first term we have,

log
det !D

det !Q
= log det !D → log det !Q︸ ︷︷ ︸

constant w.r.t.
doc. ranking

= log det !D

= log
k∏

i=1

ϑ
2
iD =

k∑

i=1

log ϑ
2
iD .

(4.5)

The subsequent steps in the original paper contain an error in the simplification of the
second term. We include the original formulation in Appendix 4.A.1 for completeness.
We note that using the original formulation leads to drastically lower performance,
which makes it likely that this error is typographical i.e., it did not propagate to the
implementation (see Section 4.5.1 for more details). We provide the correct derivation
in Eq. 4.6 as follows:

tr{!→1
D !Q} =

k∑

i=1

ϑ
2
iQ

ϑ
2
iD

. (4.6)

Finally, for the third term we have,

(µQ → µD)↭ !→1
D (µQ → µD) =

k∑
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2
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2
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2
iD

+
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µ
2
iD

ϑ
2
iD

.

(4.7)
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Combining Eq. 4.5, 4.6 and 4.7 into Eq. 4.4, and removing constants, we arrive at the
intended derivation of the ranking function:

KLD(Q | D) =
k∑

i=1

log ϑ
2
iD +

k∑

i=1

ϑ
2
iQ

ϑ
2
iD

+
k∑
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µ
2
iQ

ϑ
2
iD

→
k∑

i=1

2µiQµiD

ϑ
2
iD

+
k∑

i=1

µ
2
iD

ϑ
2
iD

. (4.8)

Note that unlike Eq. 4.4, Eq. 4.8 is no longer the KL divergence. After all the simplifi-
cations, it is a KL divergence-based relevance scoring function for ranking documents
given a query. From this point forward, we continue with the work described in the
original paper, but we base it on our Eq. 4.8, which is the derivation of the relevance
scoring function that includes our correction.

The next step of this reproducibility study is to express Eq. 4.8 as a dot product
between query and passage vectors i.e., KLD(Q | D) = q

↭ · d, with the purpose of
reusing standard efficient inner product similarity search [70]. To do so, we isolate the
document-specific terms of Eq. 4.8 that can be pre-computed:

εD =
k∑

i=1

(
log ϑ

2
iD +

µ
2
iD

ϑ
2
iD

)
. (4.9)

In the original paper, the term εD is referred to as a “document prior”. Now we
can express the relevance score as a dot product between query and passage vector
representations:
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where ςq, ςd ↔ R1↔(3k+1). At this point, we remind the reader that following Eq. 4.3, the
relevance score is the negative of the KL divergence.

4.3.2 Listwise knowledge distillation
Knowledge distillation has become of great importance in boosting the effectiveness of
dense retrievers [63]. In detail, a highly effective cross-encoder re-ranker is used as a
teacher to transfer knowledge to a less effective but efficient first-stage dense retriever
student model. Consequently, the effectiveness of the dense retriever is increased while
it retains its efficiency. In the original work by Zamani and Bendersky [187], the authors
employ a listwise distillation loss function [188] to train their dense retriever (i.e.,
student model). For each query q and a set of passages Dq (later in this section we
provide details on how this set is constructed), the loss is computed as:

∑

d,d↑↑Dq

{y
t
q(d) > y

t
q(d

↓)}
∣∣∣

1

φq(d)
→ 1

φq(d↓)

∣∣∣ log(1 + e
Mω(q,d

↑)→Mω(q,d)), (4.12)

where φq(d) denotes the position of passage d in the ranked list produced by the dense
retrieval student model Mω and y

t
q(d) denotes the relevance judgment produced by the
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teacher model for the pair of query q and passage d; y
t
q(d) can be either a score or a

label. In the original work of Zamani and Bendersky [187], y
t
q(d) is the raw score from

the teacher model for a query-passage pair, and Dq is constructed as follows. Given
a query q, the passage set Dq is constructed with positive passages provided by the
dataset’s official relevance judgments. On the other hand, the negative passages are
sampled from the top-k passages retrieved with BM25 and the top-k passages retrieved
by the student dense retrieval model itself. Finally, the original work uses in-batch
negative training to reuse passages from other queries that are already in the batch.

4.4 Experimental Setup

4.4.1 Datasets and metrics
Our evaluation is performed on both in-domain (ID) and out-of-domain (OOD) data. In
the OOD setting, we perform zero-shot evaluation. All tasks are ad-hoc retrieval, with a
fixed set of documents. Statistics of the datasets are reported in Appendix 4.A.4. We
summarize the datasets and evaluation methodology below.

In Domain (ID) We train all models on the MS-MARCO [113] training set. Note
that we split the full training set into a training and validation set for hyperparameter
tuning as described in Section 4.4.4. There are three in-domain evaluation sets, all of
which are based on the MS-MARCO corpus. This includes the MS-MARCO Dev set,
the TREC-DL 2019 [27] and TREC-DL 2020 [28] datasets. Both TREC datasets are
densely labeled by humans. The evaluation metric for the Dev set is the mean reciprocal
rank (MRR) with a cut-off of 10, denoted as MRR@10. For the TREC subsets, we
use the standard evaluation metrics of normalized discounted cumulative gain at 10
(nDCG@10), and mean average precision (MAP).

Out of Domain (OOD) We evaluate the retrieval models’ generalization ability in
different domains via zero-shot passage retrieval experimentation. All retrieval models
are trained on the MS-MARCO training set and tested on previously unseen queries and
underlying corpus. We replicate the evaluation setup outlined in [187], with nDCG@10
as the primary metric. We evaluate the following OOD datasets in zero-shot setting: (i)
SciFact [164]: a scientific claim verification dataset where the task involves retrieving
abstracts that either refute or support a claim, (ii) FiQA [97]: a dataset that involves
retrieval of documents in the financial domain using natural language questions, (iii)
TREC-COVID [161]: a biomedical dataset of scientific articles about COVID-19, with
questions as the topics/queries, and (iv) CQADupStack [65]: a community question
answering (CQA) dataset, with the task of retrieving duplicate questions in a community
website (StackOverflow).

4.4.2 Baselines
We compare MRL against the following single-vector dense retrieval models:

• DPR [73]: is a traditional dense retriever that is trained with softmax cross-entropy.
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• TAS-B [64]: is an effective dense retriever that is trained by combining (i) knowledge
distillation from a re-ranker teacher model (i.e., cross-encoder) with (ii) a balanced
topic-aware sampling method. This method alternates the creation process of the
training batches by composing batches based on queries clustered in the same topic.
Furthermore, it selects passage w.r.t. the pairwise margin between positive and
negative passages in the batch so that the margin of positive-negative pairs is balanced
in the margin range.

• CLDRD [188]: is a state-of-the-art dense retriever that uses TAS-B as initialization
and is trained by combining curriculum learning with knowledge distillation; in
particular, it uses the listwise loss of Eq. 4.12. The student dense retriever is trained
via an iterative training process in which the difficulty of the training data, produced
by the re-ranking teacher model, increases with each iteration. Additional information
regarding the training setup of CLDRD can be found in the Appendix 4.A.3.

The motivation behind selecting these baselines is twofold: First, their inclusion in
the original study, and second, to enable fair comparisons in our subsequent ablation
study. For instance, MRL can be compared with CLDRD to assess the impact of the
multivariate representations, and a similar assessment can be made when MRL without
distillation is compared against DPR.

4.4.3 Query performance prediction
The QPP task [15, 56, 57] involves inferring the difficulty of a given query for a search
system without using relevance judgments. We replicate the pre-retrieval QPP setup in
[187], evaluating on the TREC-DL 19 and TREC-DL 20 datasets. That is, we retrieve
documents for a given query using a search system and evaluate it using nDCG@10
to obtain a ground-truth assessment of performance. Then, we use a QPP method to
predict the performance and evaluate it against the ground-truth assessment using three
correlation measures, Spearman’s correlation, Pearson correlation, and Kendall’s Tau.

The effectiveness of a QPP method is a function of the underlying retrieval system.
Since it was unclear from the original study which system was used to compute the
ground truth performance, we experiment with multiple search systems.

In addition to the model itself, we experiment with three retrieval models indepen-
dent of the MRL model, to measure how well the QPP method generalizes. We include
a traditional lexical retriever (BM25), a simple dense retriever (DPR), and an effective
dense retriever (TAS-B). We use the following baselines used in the original study:

• SCQ [193]: computes the similarity between a query and the corpus for each query
term based on the frequency of occurrence of the term in the corpus.

• VAR [15]: considers the variance or standard-deviation of the term weights of each
query term, based on the documents in which the term occurs.

• IDF [15]: is based on the inverse document frequency of each query term.

• PMI [55]: is a predictor that computes the pointwise mutual information, assigning
high scores for frequently co-occurring query terms. Given all possible query term
pairs, either the average or the maximum can be used as the predictor.
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For SCQ, VAR, and IDF, the scores are computed at the query term level and then
aggregated using either summing, averaging, or taking the maximum of each score. We
report each of these aggregations in the results.

QPP for MRL Zamani and Bendersky [187] mention that the norm of the variance
| !Q | is used to compute the predicted performance. We interpret this statement as
using a function of the covariance, and use the negative norm →| !Q |, because the
predicted variance should increase for queries that are difficult, rather than decrease.
For instance, a typographical error in the query makes it more difficult to address than
a “clean” query [139, 140], leading to lower performance compared to a clean query.
Similarly, an OOD query could also result in poorer performance on average compared
to an ID query. From the QPP perspective, a model should therefore assign lower
predicted performance for these types of queries, motivating our choice. In Section
4.5.2, we show that this intuition holds empirically.

4.4.4 Implementation details

We train MRL for 200K steps. In each step, we optimize the distillation loss (Eq. 4.12)
using a batch of queries, one positive passage per query, and 30 negative passages per
query; 5 of the negative passages are mined with BM25, and 25 are mined with the
student model. With that setup, we use a batch size of 15 queries–the maximum that
can fit in a 40GB A100 GPU, given the size of our model. We set the maximum length
for queries and passages to 32 and 256 tokens, respectively. We initialize the dense
retriever student model with the official TAS-B checkpoint, and we set as the teacher
model the ms-marco-MiniLM-L-6-v2 cross-encoder that is publicly available on
HuggingFace. We use an Adam optimizer with a learning rate of 5 ↗ 10→6, and linear
learning rate scheduling with warm-up for 10% of the training steps. The ω parameter
for softplus is set to 2.5. For MRL, the mean and variance are obtained by passing
the [CLS] token and a [VAR] token respectively through fully connected projection
layers. The MRL models reported use means and variances projected down to 383
(= 768

2 → 1).
Since MS-MARCO does not include a validation set, we split the training set into

a validation (6890 queries) and a training set. The parameters above were selected
after a hyperparameter search with the validation set performance used to pick the
best model. Refer to Appendix 4.A.5 for the full set of hyperparameters. We use the
Tevatron toolkit [46] to train the models and the pytrec eval library [159] to
evaluate the retrieval performance. Finally, our QPP baselines are based on an existing
implementation by Meng et al. [103].

4.5 Discussion

We organize the discussion section around retrieval experiments in Section 4.5.1, the
investigation of the variance vectors in Section 4.5.2, and the results of the ablation
study in Section 4.5.3.
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Table 4.1: Reproduction results of MRL on our memory-limited setup. The upper part
contains the reproduction results, while the lower part contains the results reported in
the original study.

Model MS MARCO TREC-DL’19 TREC-DL’20

MRR@10 MAP NDCG@10 MAP NDCG@10 MAP

R
ep

ro
du

ce
d DPR .312 .319 .649 .345 .625 .356

TAS-B .344 .351 .721 .396 .685 .430
CLDRD .378 .383 .727 .448 .670 .446
MRL .373 .378 .707 .462 .681 .461

R
ep

or
te

d TAS-B .344 .351 .717 .447 .685 .455
CLDRD .382 .386 .725 .453 .687 .465
MRL .393 .402 .738 .472 .701 .479

4.5.1 Reproducing the retrieval results

In this study, we work under a memory-limited setup–an academic computational
budget with constrained access to a single GPU. We start by testing whether we can
obtain the results reported in the original study under these memory constraints. We
report the results in Table 4.1 and Table 4.2, where DPR, CLDRD, and MRL are our
implementations of the original methods. We report results for TAS-B by using the
official pre-trained checkpoint, which also serves as CLDRD and MRL initialization.
This way, we can ensure a fair comparison between the different methods. We include
the original numbers in the lower group in Tables 4.1 and 4.2. At this point, we
want to underline that for MRL we use the corrected KL formulation we presented in
Section 4.3 for our experiments. Our decision to do so is grounded in the belief that
the original study’s authors also used this formulation in their implementation and that
the formulation with the mathematical error is a typographical mistake in their paper.
We arrived at this conclusion based on our preliminary experiments, which yielded a
dramatically low retrieval performance (i.e., MRR@10 was 0.229 for MS-MARCO)
when following the wrong formulation.

We first focus on testing whether we are able to replicate the results for CLDRD, the
main competitor of MRL. Our experimental results affirm the state-of-the-art retrieval
performance (for single-vector dense retrievers) of CLDRD. Furthermore, our findings
validate the original study regarding its ability to enhance the performance of TAS-B,
both in the ID (see Table 4.1) and OOD (see Table 4.2) scenarios. We consider this
a successful replication despite the slight discrepancy in the results. The reason for
not obtaining the exact same results can be attributed to different development toolkits,
hardware, implementation details not present in the original work, etc.

Regarding the reproduction of MRL, we were unable to yield the same results as
the original study. We observe a drop in performance across all reported metrics for
both the ID and OOD datasets. For instance, in the case of FiQA, our implementation
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Table 4.2: Reproduction results of MRL on our memory-limited setup for the zero-shot
retrieval settings. The upper part contains the reproduction results, while the lower part
contains the results reported in the original study.

Model SciFact FiQA TREC-COVID CQADupStack
NDCG@10 NDCG@10 NDCG@10 NDCG@10

R
ep

ro
du

ce
d DPR .474 .231 .600 .266

TAS-B .643 .301 .481 .313
CLDRD .627 .308 .608 .327
MRL .591 .291 .497 .327

R
ep

or
te

d TAS-B .643 .300 .481 .314
CLDRD .637 .348 .571 .327
MRL .683 .371 .668 .341

yielded an NDCG@10 of 0.308, which is lower than the original study’s reported value
of 0.371. Furthermore, we could not find the trends that were reported in the original
study. Specifically, the original study showed that MRL outperformed both TAS-B and
CLDRD in ID and OOD scenarios. In contrast, in our work, MRL achieves similar
performance to CLDRD on the ID datasets. A similar trend holds for the OOD dataset,
except for TREC-COVID, where CLDRD outperforms MRL with a substantially higher
score of 0.608 compared to 0.481 for MRL. Upon comparing MRL with TAS-B, it
is noted that MRL either matches or outperforms TAS-B in the ID datasets, except
for TREC-DL 20. However, in the OOD datasets, MRL surpasses TAS-B only for
TREC-COVID and CQADupStack.

We stress that our goal in this work is not to replicate MRL; an exact replication is
not possible since the original manuscript does not specify several design choices–the
best hyperparameters (i.e., learning rate, softplus ω, number of training steps), the
cross-encoder model that was used as a teacher, as well as the number of negative
passages per query in a batch. We aim to reproduce MRL under our memory-limited
setup, which facilitates fair comparisons against the baselines. From our experimental
results, we conclude that although MRL is a competitive approach in our setup, the
multivariate representations do not boost the retrieval performance. Furthermore, we
unveil that MRL cannot consistently outperform its competitors when evaluated under
fair comparisons. However, different from CLDRD, MRL produces a variance that can
be used in downstream tasks. We investigate the utility of this predicted variance in the
following section.

4.5.2 Analyzing the variance
We analyze the predicted variance in three experiments: query performance prediction
experiments (Section 4.5.2), experiments with typos, and retrieval experiments with
alternative encoding schemes in Section 4.5.2. The first is a replication of the QPP
experiments included in the original paper, while the latter two are additional analyses.
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Table 4.3: QPP results for MRL for four reference models. While MRL does perform
well for TREC-DL 20 for BM25, it fails to do so for TREC-DL 19. The opposite is
true for DPR. For both TAS-B and MRL reference models, MRL is more consistent but
fails to reach the reported performance (bottom row). Furthermore, as is evident from
Figures 4.1 and 4.2, MRL is outperformed by simple baselines in most comparisons.

TREC-DL 19 TREC-DL 20

S-↼ P-↼ K-↽ S-↼ P-↼ K-↽

M
R

L

BM25 -.029 -.034 -.014 .275 .296 .190
DPR .233 .171 .155 -.051 -.013 -.041

TAS-B .204 .196 .138 .177 .166 .117
MRL .171 .182 .134 .157 .185 .106

MRL (reported) - .271 .259 - .272 .298

Query performance prediction

The results for the QPP experiments are plotted in Figures 4.1 and 4.2. We also report
the MRL results separately in Table 4.3, which also includes the reported numbers in
[187]. As mentioned previously, we used four reference models because the original
study did not report which model was used, and also to see if MRL generalizes to
different reference models. We note that the original paper does not mention how the
norm is used in computing the predicted performance–in our experiments, we use the
negative norm (using the norm flips the signs of the correlation)–intuitively, a higher
uncertainty should result in lower performance (see Section 4.4.3).

From Table 4.3, we were unable to reproduce the numbers for MRL reported in
the original paper, with any of the reference models. While MRL achieves higher than
reported numbers for TREC-DL 20 with BM25, this result does not hold for TREC-DL
19, where there appears to be a random correlation. This trend is flipped with DPR as
the reference–MRL performs well for TREC-DL 19 but not TREC-DL 20. For TAS-B
and DPR, MRL is more consistent. However, the correlation obtained is lower than in
the original study. But, how does MRL compare with the baselines?

Figure 4.1 contains results for TREC-DL 19, with each subplot corresponding to the
three metrics we used. Comparing MRL (top row) with the other methods, we notice
that at least one baseline outperforms MRL for each metric regardless of the reference
model. In particular, at least one variant of the PMI baseline outperforms MRL. We
remind the reader that these baselines are simple, non-parametric methods that use
statistics derived from the corpora to compute the query difficulty.

For TREC-DL 20, the results are more encouraging. If the reference model is MRL
itself, we observe that MRL beats every other baseline for all three metrics. However,
this result does not generalize to the other three reference models, where similar trends
to TREC-DL 19 are observed, with at least one baseline (among PMI, VAR, IDF)
beating MRL. We observe similar trends for three reference models BM25, TAS-B, and
DPR, with MRL outperformed by at least one baseline.

In these experiments, we investigate the degree to which the MRL framework
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Figure 4.1: QPP results for TREC-DL 19 for four reference models (x-axis) and
several methods (y-axis). Each subplot corresponds to a different correlation metric:
Spearman’s (S-↼), Pearson’s (P-↼), and Kendall’s Tau (K-↽ ) correlations. MRL is
outperformed by simple baselines regardless of the reference model or metric.
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Figure 4.2: QPP results for TREC-DL 20. Simple lexical baselines outperform MRL
when the reference is BM25, TAS-B, or DPR. With MRL itself as the reference, MRL
achieves better performance, often by large margins.

captures the notion of uncertainty by measuring a proxy–query difficulty. Intuitively,
this suggests that for some datasets and reference models, higher uncertainty was indeed
assigned to difficult queries. However, the positive correlation is not consistent across
datasets. MRL fails to generalize to different reference models and datasets, achieving
random correlation in many settings. Furthermore, MRL is outperformed by simple
non-parametric baselines in most comparisons. The lack of consistent and strong
correlations suggests that MRL is unlikely to be a strong and consistent predictor of
query difficulty in our experimental setup. Motivated by these results, we explore what
the predicted variance captures in the next section.
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Figure 4.3: Uncertainty of clean and corrupted data: We plot the distributions of the
norm of the predicted variance of the clean and corrupted data on the left. MRL assigns
lower uncertainty to the corrupted data compared to the clean data. On the right, we
plot the distribution of | !clean | → | !corrupted |, which is mostly positive (i.e., right of the
red-dotted line). Contrary to expectations, MRL fails to assign higher uncertainty to
corrupted data.

Does MRL capture uncertainty?

We outline two additional experiments investigating the predicted variance beyond the
original paper: (a) contrasting the predicted variance of corrupted and clean data and
(b) experimenting with alternate encoding schemes.

Experiments with typographical errors Here, we consider an analog to the QPP
experiments above, but instead of retrieval difficulty, we examine if the model is
sensitive to data distribution shifts instead. Inspired by works in the vision domain (e.g.,
167, 169), we argue that a model should assign higher variance to corrupted or OOD
data compared to clean or ID data.

We experiment with the DL-Typo [197] dataset that contains 60 query pairs ac-
companied by relevance assessments. Each pair consists of a real user query with
typographical errors and its corresponding version where these errors have been cor-
rected. For instance, the corrupted query “what is acid reflex” and its typo-free version
“what is acid reflux”. Given these data, we compute the norms of the predicted variance
and plot their distributions. Suppose the model indeed models uncertainty accurately.
In that case, we expect (a) clean data should be assigned lower variance compared to
corrupted data, (b) the distributions of the clean and corrupted data are well separated,
and (c) the differences between the clean and corrupted data, i.e., | !clean | → | !corrupted |,
should be negative.

We plot these distributions in Figure 4.3. While we expected more variance to be
assigned to the corrupted data, the opposite is true. There is some separation observed
between the two distributions–the distribution of the corrupted data (“typo”) is to the
left of the clean data. The right plot underscores this result, as the | !clean | → | !corrupted |
distribution is mostly positive. This suggests that contrary to expectation, the model
predicts a higher variance for clean data. We expand on this analysis by examining the
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Table 4.4: Performance of different encoding schemes for the MRL model. The first
row uses the original equations proposed in the original paper, whereas the second row
includes our corrections. The retrieval performance is measured with MRR@10 for MS
MARCO and NDCG@10 for the rest of the datasets.

Encoding MS MARCO

TREC-D
L’1

9

TREC-D
L’2

0

SciF
act

FiQ
A

TREC-C
OVID

CQADup
Stac

k

Eq. 4.15 &
4.16 [187] .229 .525 .486 .096 .116 .215 .183

Eq. 4.10 &
4.11 (Ours) .373 .707 .681 .591 .291 .497 .327

Mean .279 .624 .557 .382 .168 .145 .187

role of the predicted variance in retrieval relevance.

Encoding MRL produces both a mean and variance for queries and documents. In
Table 4.1 and Table 4.2, we reported retrieval results using the encoding scheme which
enables retrieval using the KL divergence, i.e., documents are encoded and indexed
with Eq. 4.11 and queries with Eq. 4.10. If the variance only captures uncertainty, we
argue that the difference in retrieval performance when only the mean is used should
not be much lower than the performance obtained with this encoding scheme. However,
as Table 4.4 shows, this is not true. Comparing the encoding scheme (second row)
with using just the mean (third row), we see that performance drops sharply across all
datasets, especially for the OOD datasets.

The performance drop could be explained partly due to the way the models were
trained. Since the full KL loss (Eq. 4.4) was used in training the model, it may not
be equipped to perform retrieval using just the mean. However, intuitively, we expect
the mean to model relevance and variance to model uncertainty, which means that the
retrieval performance should not be drastically different when only the mean is used for
retrieval. The drastic drop suggests that the model may be instead using the predicted
variance vectors as a signal for relevance. This is the core difference between a method
such as MRL and a Bayesian method: variance in MRL is not statistical variance, i.e.,
it does not express deviation from the mean prediction. Instead, variance in MRL is a
deterministically estimated quantity that minimizes a distance objective.

In this section, we examined if the MRL model consistently predicts a notion
of variance that reflects a notion of uncertainty defined by either query difficulty or
sensitivity to data distribution shifts. We find that the QPP results are inconsistent, and
against initial expectations, the model assigns a higher uncertainty to corrupted data.
In addition, experiments with encoding using only the mean suggest that the variance
seems to model relevance since performance drops drastically when only the mean is
used for retrieval.
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4.5.3 Ablation study
Even though the MRL performance reported in the original paper was not reproduced
under our experimental setup, MRL remains a framework that can produce a highly
effective dense retriever even under memory constraints. MRL consists of several
components: multivariate representations, knowledge distillation, model initialization
from a pre-trained dense retriever, and a batch construction strategy. Thus, it needs to be
made clear how much each component impacts effectiveness. We expand on the original
paper’s findings by studying each component’s contribution to retrieval performance
through experimentation with various MRL variants.

Multivariate representations MRL represents queries and passages as multivariate
distributions and uses negative multivariate KL divergence to compute similarity. First
and foremost, we want to understand how much the multivariate representations con-
tribute to the overall effectiveness of the retriever. In order to test this, we conduct an
experiment where we substitute multivariate representations with vector representations
and compute similarity via the dot product. We find that multivariate representations do
not lead to a higher retrieval performance; in contrast, we observe a small decrease in
performance when used (see rows 1 and 2 in Table 4.5).

Model initialization Since MRL’s initialization point is a pre-trained, highly effective
dense retriever, namely TAS-B, it is important to examine the impact of its initialization
on its downstream performance. To test this, we use DistilBERT as the initialization
instead. When comparing row 1 against row 3 in Table 4.5, we see that it is possible to
train a competitive model with a DistilBERT initialization; however, it cannot achieve
state-of-the-art performance.

Loss function Besides training with knowledge distillation, MRL can be trained with
supervised contrastive learning by minimizing a softmax cross-entropy loss [73]. In row
4 of Table 4.5, we test this alternative and find that following a knowledge distillation
training scheme is crucial for training an effective retriever. This result is in line with
recent works in dense retrieval that have shown the superiority of knowledge distillation
training over supervised contrastive learning [64, 91].

Negatives from the student model The MRL framework uses the student model to
sample hard negatives (see Section 4.3.2). This can be achieved by using a recent check-
point from the student model and updating an ANN index of the corpus representation
used for negative sampling. The encodings of the documents in the corpus can be up-
dated multiple times during training, allowing us to sample new hard negatives from the
ANN index more than once. In our reproducibility work, we update the ANN index only
once. However, we also experiment with updating the ANN index multiple times (i.e.,
every 75k steps). In our preliminary experiments, updating and sampling from the ANN
index more than once does not significantly increase performance: MRR@10 = .374
for MS MARCO, NDCG@10 = .714 for TREC-DL’19, and NDCG@10 = .685 for
TREC-DL’20 (these scores can be compared against the first row in Table 4.5). We
believe this can be attributed to the usage of TAS-B as initialization for the student
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model, and as a result, high-quality hard negatives are available even from the first
update.

Training strategy CLDRD, which is the primary competing approach of MRL,
uses a different training setup when training with listwise knowledge distillation. In
particular, CLDRD constructs the training batch using the teacher model to produce
the data, the teacher’s relevance judgments have the form of pseudo-labels (w.r.t. the
controlling term {y

t
q(d) > y

t
q(d

↓)} in Eq. 4.12), it does not use in-batch negatives,
and it uses curriculum learning (see Section 4.4.2 and Appendix 4.A.3 for more details).
In contrast, MRL constructs the training batch via the ground-truth query relevance
judgments (i.e., qrel file) and negative mining, and the teacher’s relevance judgments
are the raw scores from the model. We proceed with using CLDRD’s training setup to
train MRL; we refer to this model variant as MRL-CLDRD. This approach ensures a
fair comparison with CLDRD and allows us to attribute any performance increase solely
to MRL’s multivariate representations. When we compare rows 1 and 5 in Table 4.5, we
observe that MRL can slightly benefit from incorporating the training setup of CLDRD.
Furthermore, by comparing rows 5 and 6, we notice that the multivariate representations
cause a slight decrease in performance, consistent with the previous result.

50



4.5. Discussion

Ta
bl

e
4.

5:
A

bl
at

io
n

st
ud

y
on

th
e

di
ff

er
en

tc
om

po
ne

nt
s

of
th

e
M

R
L

fr
am

ew
or

k.
Th

e
fir

st
pa

rt
of

th
e

ta
bl

e
ex

am
in

es
th

e
in

flu
en

ce
of

in
iti

al
iz

at
io

n
(i.

e.
,T

A
S-

B
),

lo
ss

fu
nc

tio
n

(i.
e.

,L
is

tw
is

e
K

D
),

an
d

m
ul

tiv
ar

ia
te

re
pr

es
en

ta
tio

ns
fo

rq
ue

rie
sa

nd
pa

ss
ag

es
on

M
R

L
pe

rf
or

m
an

ce
.

Th
e

se
co

nd
pa

rt
ex

pl
or

es
th

e
im

pa
ct

of
tra

in
in

g
M

R
L

us
in

g
th

e
cu

rr
ic

ul
um

le
ar

ni
ng

fr
am

ew
or

k
of

C
LD

R
D

on
pe

rf
or

m
an

ce
.

#
Va

ria
nt

M
S

M
A

R
C

O
TR

EC
-D

L’
19

TR
EC

-D
L’

20
Sc

iF
ac

t
Fi

Q
A

TR
EC

-C
O

V
ID

C
Q

A
D

up
St

ac
k

M
R

R
@

10
N

D
C

G
@

10
N

D
C

G
@

10
N

D
C

G
@

10
N

D
C

G
@

10
N

D
C

G
@

10
N

D
C

G
@

10

1

M
R

L M
ul

tiv
ar

ia
te

re
pr

es
en

ta
tio

n
TA

S-
B

Li
st

w
is

e
K

D
Te

ac
he

rr
aw

sc
or

es
Q

re
ls

&
N

eg
at

iv
e

M
in

in
g

.3
73

.7
07

.6
81

.5
91

.2
91

.4
97

.3
27

2
-M

ul
tiv

ar
ia

te
re

pr
es

en
ta

tio
n

+
Ve

ct
or

re
pr

es
en

ta
tio

n
.3

75
.7

19
.6

86
.6

37
.3

06
.6

18
.3

34

3
-T

A
S-

B
+

D
is

til
B

ER
T

.3
56

.6
93

.6
77

.5
67

.2
64

.5
36

.3
20

4
-L

is
tw

is
e

K
D

+
C

ro
ss

-e
nt

ro
py

.3
28

.6
29

.6
44

.4
98

.2
45

.4
73

.2
68

5

M
R

L-
C

LD
R

D
-T

ea
ch

er
ra

w
sc

or
es

-Q
re

ls
&

ne
ga

tiv
e

m
in

in
g

+
Te

ac
he

rc
on

st
ru

ct
s

th
e

ba
tc

h
+

Te
ac

he
rp

se
ud

ol
ab

el
s

.3
75

.7
21

.6
67

.6
05

.2
93

.5
10

.3
20

6

C
LD

R
D

-T
ea

ch
er

ra
w

sc
or

es
-Q

re
ls

&
ne

ga
tiv

e
m

in
in

g
-M

ul
tiv

ar
ia

te
re

pr
es

en
ta

tio
ns

+
Te

ac
he

rc
on

st
ru

ct
s

th
e

ba
tc

h
+

Te
ac

he
rp

se
ud

ol
ab

el
s

+
Ve

ct
or

re
pr

es
en

ta
tio

ns

.3
78

.7
27

.6
70

.6
27

.3
08

.6
08

.3
27

51



4. Modeling Uncertainty in Dense Retrieval

4.5.4 The effect of batch size on MRL performance

The main goal of our study is to create a fair comparison of MRL against the baselines
and explore to what extent the reported results of the original paper can still be achieved
under a limited computational resource setting (i.e., an academic computation budget).
Within our single GPU setting, we can train MRL with a batch size of 15. However,
the original MRL work used a batch size of 512. At this point, we want to explore
whether increasing the batch size can achieve the reported results of the original paper.
Therefore, we experiment with training MRL for bigger batch sizes. The perks of such
an experiment are two-fold: (i) we study the impact of batch size in the performance of
MRL, and (ii) we unveil to what extent the reported results of the original work are due
to the use of large batch size.

A batch larger than 15 does not fit into our available GPU. Fitting a batch of 512
would require approximately 34 A100 GPUs–something unfeasible to obtain with an
academic computation budget. Hence, we adopt a memory reduction method to resolve
the hardware bottleneck that is associated with training with batch-wise contrastive
learning with a large number of negatives (even though with in-batch negatives, we
can avoid encoding extra negatives, the loss of each sample is conditioned on every
sample in the batch and therefore it is required to fit the entire large batch into GPU
memory). Gao et al. [45] introduced a gradient caching technique (GradCache) that
allows the production of the exact same gradient update as training with a large batch
and experimentally showcased that it is possible to reproduce the state-of-the-art results
of a dense retriever trained with a large batch on multiple professional GPUs in a single
consumer-grade GPU.

We experiment with the following batch sizes: 15, 32, 64, 128, 256, and 512. We
train all the models for the same number of epochs since there is significant additional
training time due to GradCache’s computational overhead. We experiment with MRL
trained with in-batch negatives (as proposed in the original paper) and without in-batch
negatives. As Figures 4.4 and 4.5 show, changes in batch size have a smaller impact on
MRL when trained without in-batch negatives rather than with in-batch negatives. We
hypothesize that the negative trend we witness as the batch size increases is linked to an
increase in the number of (hard-negative, easy-negative) passage pairs contributing to
the loss–where hard-negatives are passages sampled from BM25 and the student model
while easy-negatives are the in-batch negatives. In detail, due to the use of in-batch
negatives, as the batch size increases, there is an increase in (positive, easy-negative)
passage pairs and an even greater increase in (hard-negative, easy-negative) pairs. The
latter demands the dense retriever to recover finer-grained distinctions between the
passages. Therefore, it is possible that as the batch increases and the number of such
pairs increases, the training steps should also increase so that the model can learn such
fine-grained differences.

To validate this, we set to train MRL with a batch size of 512 for longer to examine
whether that could lead to better performance. As we can see in Table 4.6, training for
longer can increase retrieval performance on all datasets. Thus, we hypothesize that the
reported results in the original paper might be an outcome of training with 512 for a long
time. Testing this hypothesis on our memory constraint environment, which consists of
a single GPU and employs GradCache to simulate training with a large batch, is not
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Figure 4.4: Impact of batch size on the MRL performance for ID datasets. IBN and No
IBN indicate training MRL with in-batch and no in-batch negatives, respectively.
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Figure 4.5: Impact of batch size on the MRL performance for OOD datasets. IBN and
No IBN indicate training MRL with in-batch and no in-batch negatives, respectively.

feasible; as we show in Table 4.6, training MRL with batch size 512 on a single GPU
with GradCache requires ↓8 days for 11K steps. At this point, we need to underline
that such a result would suggest that the trends presented in the original paper may have
been influenced by the fact that MRL was training with a significantly larger batch size
compared to its baselines (i.e., in the original work, MRL is trained with a 512 batch,
while CLDRD with a batch size of 8).

4.5.5 A simple extension to reduce the hyperparameter search
space

The MRL model produces a mean and a diagonal co-variance matrix/variance vector
given text input. Using the raw co-variance without ensuring that it is positive (and
semi-definite) would make the model produce invalid values for the variance e.g., a
negative variance. To ensure positivity, Zamani and Bendersky [187] pass the raw values
through a softplus activation function (Softplus(x) = 1

ϑ · log(1 + exp(ω · x))), which
ensures that the predicted variance is positive. The original study finds that retrieval
performance is robust to the hyperparameter ω in the softplus function. An alternative
to using the softplus function (that predicts a variance), is to predict the log-variance
without any activation function. That is, we assume that the values produced by the
encoder is the log-variance. As such, these values are exponentiated prior to use, e.g.,
when plugging them into Eq. 4.11 and Eq. 4.10. This alternate method renders tuning
the ω hyperparameter unnecessary. We term this variant “LogVar”, and validate this
approach through experimentation.

This experiment compares the MRL model trained using the softplus activation with
the LogVar variant. We stress that we do not expect improved performance; this is a
variant that functions similarly to the original model. The results, reported in Table
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4. Modeling Uncertainty in Dense Retrieval

Table 4.6: Retrieval results for MRL when trained with 512 batch size and for different
numbers of training steps. Training time is measured in hours. The retrieval performance
is measured with MRR@10 for MS MARCO and NDCG@10 for the rest of the datasets.

Step
s

Trai
nin

g tim
e (h)

MS MARCO

TREC-D
L’1

9

TREC-D
L’2

0

SciF
act

FiQ
A

TREC-C
OVID

CQADup
Stac

k

5880 79 .312 .680 .641 .365 .226 .407 .278
11760 162 .330 .693 .656 .517 .249 .457 .293

Table 4.7: MRL Variant: LogVar vs Softplus: LogVar performs similarly to Softplus
but requires no hyperparameter tuning. Based on a two-tailed paired t-test (p < 0.05),
there are no statistically significant differences between the models results. The retrieval
performance is measured with MRR@10 for MS MARCO and NDCG@10 for the rest
of the datasets.

Vari
an

t

MS MARCO

TREC-D
L’1

9

TREC-D
L’2

0

SciF
act

FiQ
A

TREC-C
OVID

CQADup
Stac

k

Softplus .373 .707 .681 .591 .291 .497 .327
LogVar .373 .709 .679 .590 .296 .471 .327

4.7, show that the LogVar model achieves similar performance across datasets and
metrics. We also conducted an ablation with different initializations as well as without
distillation and observed the same trend. In essence, the LogVar model provides similar
results to the Softplus model without requiring an additional hyperparameter.

4.5.6 Limitations of our study
Lack of details As mentioned previously, our reproducibility effort was hampered by
a lack of crucial details in the original paper, such as the composition of the batches
used while training the model, or which underlying cross-encoder was used as a teacher.
Therefore, it is unclear whether the impressive performance improvements reported in
the original paper are the result of some crucial implementation detail that was omitted.
However, we tried to mitigate this limitation through exhaustive experimentation. The
most promising part of that experimentation is presented in our ablation study, but it
still constitutes a fraction of all model configurations that we attempted in order to get
closer to the reported performance.

Batch size As mentioned in Section 4.5.4, we rely on GradCache [45] to support
training MRL with larger batches. As a result, training time when training with a
larger batch size does not decrease training time since we are still limited to a single
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GPU. In contrast, training time increases significantly due to GradCache’s overhead of
calculating and storing gradients of representations. Due to this limitation, we cannot
fully explore training MRL with a batch of 512 for longer (i.e., more training steps).

4.6 Conclusion

In this chapter, we reproduce the multivariate representation learning framework by
Zamani and Bendersky [187] in a memory-constrained environment. After addressing
a likely typographical error in the original paper’s derivations, we show that in a fair
comparison, MRL achieves similar performance to baseline models. Crucially, the
claim that MRL significantly outperforms baseline models in out-of-domain datasets
does not hold in our experimental setup. While MRL does not outperform baselines, we
maintain that it remains a competitive retrieval model. We also conduct an extensive
analysis of the predicted variance. Against our expectations, our analysis reveals that
the variance vectors do not consistently express uncertainty. To add to the results
of the original study, we conduct a thorough ablation study, investigating the impact
of the different components of the MRL framework: (i) multivariate representations,
(ii) distillation, and (iii) model initialization. Through this study, we conclude that
multivariate representations do not improve or harm performance significantly, and
knowledge distillation is the primary source of improvement. In addition, we show that
models trained with an increased batch size using gradient caching methods and without
increasing the number of training epochs are impacted negatively by the presence of
in-batch negatives.

While we are unable to reproduce the results from the original paper, we maintain
that the ideas in the original paper are very valuable to the community. Prior to this
paper, uncertainty was only used in ranking, not first-stage retrieval. Representing KL
divergence as a dot product allows for the incorporation of uncertainty in first-stage
retrieval. This implies that any model that produces a distribution for queries/passages
can be used in this framework, even if it was not trained with the objective function
outlined in the paper – this is a promising direction for future research. Future work
could further consider incorporating document uncertainty to the framework, e.g., for
post-retrieval QPP.

This chapter concludes the first part of the thesis, which focuses on improving the
robustness of neural retrievers against typos. Next, we address a different research
theme, namely improving the robustness of speech-based search with neural retrieval.

Appendix 4.A

4.A.1: Dot product formulation in the original paper

For completeness, we include the original dot product formulation of the KL divergence
below. Consider the term tr{!→1

D !Q}, the source of the error. Zamani and Bendersky
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[187] formulate this as:

tr{!→1
D !Q} =

∏k
i=1 ϑ

2
iQ∏k

i=1 ϑ
2
iD

. (4.13)

This differs from our version in Eq. 4.6. This error is propagated throughout the
next steps. The KL formulation becomes:

KLD(Q | D) =
k∑

i=1

log ϑ
2
iD +

∏k
i=1 ϑ

2
iQ∏k

i=1 ϑ
2
iD

+
k∑
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µ
2
iQ

ϑ
2
iD

→
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i=1

2µiQµiD

ϑ
2
iD

+
k∑
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µ
2
iD

ϑ
2
iD

.

(4.14)

The equivalent dot product formulation, after taking the negative of the equation
above gives us the original formulation (Eq. (14) in Zamani and Bendersky [187], with
signs flipped for ςd):

ςq =
[
1,

k∏

i=1

ϑ
2
iQ , µ

2
1Q , . . . , µ

2
kQ

, µ1Q , . . . , µkQ

]
, (4.15)

ςd =

[
εD,

1
∏k

i=1 ϑ
2
iD

,
1

ϑ
2
1D

, . . . ,
1

ϑ
2
kD

,
2µ1D

ϑ
2
1D

, . . . ,
2µkD

ϑ
2
kD

]
, (4.16)

where εD is equivalent in our formulation i.e., Eq. 4.9. Here, ςq, ςd ↔ R1↔(2k+1) and
q
↭ · d is equal to Eq. 4.14. Note that the final vector for ςd, the signs are flipped because

the similarity function is the negative KL divergence.

4.A.2: Dot product formulation of full KL divergence

We start from the unsimplified version of Eq. 4.8, that includes constants:

KLD(Q | D) =
1

2

[
k∑

i=1

log ϑ
2
iD →

k∑

i=1

log ϑ
2
iQ → k +

k∑

i=1

ϑ
2
iQ

ϑ
2
iD

+
k∑

i=1

µ
2
iQ

ϑ
2
iD

→
k∑

i=1

2µiQµiD

ϑ
2
iD

+
k∑

i=1

µ
2
iD

ϑ
2
iD

]
.

(4.17)

To formulate it as a dot product, we use the definition of the document prior, εD, from
Eq. 4.9, but further define εQ as:

εQ =
k∑

i=1

log ϑ
2
iQ . (4.18)
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Then we can extend the vector representations in Eq. 4.10 and Eq. 4.11 to include εQ:

ςq↓ =
[
1, εQ, ϑ

2
1Q , . . . , ϑ

2
kQ

, µ
2
1Q , . . . , µ

2
kQ

, µ1Q , . . . , µkQ

]
, (4.19)

ςd↓ =

[
εD, 1,
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, . . . ,
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, →2µ1D
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2
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]
, (4.20)

where ςq↓, ςd↓ ↔ R1↔(3k+2). Then,

KLD(Q | D) =
1

2


ςq↓

↭
· ςd↓ → k


, (4.21)

should precisely yield the KL divergence between the distributions of Q and D, as
defined in Eq. 4.4.

4.A.3: Training setup for CLDRD
One of the perks of training with knowledge distillation is that it can leverage the
incomplete relevance judgments that most large-scale retrieval datasets suffer from.
Hence, it can rely only on the teacher supervision signal, i.e., training data is generated
and scored by the teacher model without human assessments. Furthermore, combining
knowledge distillation with in-batch negative training can be impractical when the
teacher is a computationally expensive cross-encoder [91]. On the other end of the
spectrum, even though the exact relevance scores produced by the teacher model do not
impact the loss value (since the loss only considers the order of passages) they still play
an important role in controlling which query-passage pairs will contribute to the loss
(term {y

t
q(d) > y

t
q(d

↓)} in the loss). When the raw scores from the teacher model are
used, all pairs contribute to the loss, even when contrasting two irrelevant passages.

In contrast to the training setup used by Zamani and Bendersky [187] (see Section
4.3.2), the work by Zeng et al. [188]–the work that initially proposed the listwise
distillation loss used by Zamani and Bendersky [187] and the primary competing
approach of MRL–uses pseudo-labeling to create the batch and does not rely on in-batch
negatives. The authors use the following approach to compute the listwise distillation
loss:

• Given a query q, the passage set Dq is constructed with respect to the top-k
passages in the ranked list returned by the teacher model (reranking order). In
particular, the first K passages in the ranked list returned by the teacher model are
considered positive, the next K

↓ are considered hard negatives, and the remaining
K

↓↓ soft negatives.

• y
t
q(d) is a relevance label according to the group, passage d belongs to:

y
t
q(d) =






1
rtqd

iff d is positive

0 iff d is hard-negative
→1 iff d is soft-negative

where r
t
qd is the ranking position of the document d given the query q in the

teacher ranked list.
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Table 4.8: Statistics and Description of Evaluation Datasets. The average num-
ber of tokens for queries (“q”) and passages (“p”) was computed based on the
distilbert-base-uncased tokenizer.

Name Domain # q # p avg. q length avg. p length

ID

MS MARCO Dev Miscellaneous 6,890 8,841,823 9.01 76.97
TREC-DL 19 Miscellaneous 43 8,841,823 9.02 76.97
TREC-DL 20 Miscellaneous 54 8,841,823 9.22 76.97

O
O

D

Scifact Scientific Document Retrieval 300 5,183 22.84 315.65
FiQA Financial QA 648 57,638 15.59 177.11
TREC-COVID Biomedical document retrieval 50 171,332 18.04 224.78
CQADupStack Community QA retrieval 13,145 457,199 13.55 248.73

Table 4.9: Hyperparameter search space for the models we experiment with. Negatives
are presented in the following format:[#ANN negatives, #BM25 negatives]

Parameter Values

Learning rate 1 ↗ 10→4, 1 ↗ 10→5, 1 ↗ 10→6,
3 ↗ 10→6, 5 ↗ 10→6, 7 ↗ 10→6

ω 0.5, 1, 2.5, 7.5
Negatives [5, 25], [10, 20], [15, 15], [20, 10], [25, 5]

4.A.4: Datasets
In Table 4.8 we present the statistics of the datasets.

4.A.5: Hyperparameters
In Table 4.9 we detail our hyperparameter search space used throughout our experimen-
tal setup. For MRL we search w.r.t. learning rate, ω, and negatives. The best parameters
were: ω = 2.5, lr = 5 ↗ 10→6, 5 negative passages from BM25, and 25 negative
passages from the student model. For MRL-CLDRD we search w.r.t. learning rate and
ω. The best parameters were: ω = 2.5, and lr = [5 ↗ 10→6

, 1 ↗ 10→6
, 1 ↗ 10→6] for

the three curriculum iterations. For CLDRD the best learning rates for each of the three
curriculum iterations were [7 ↗ 10→6

, 3 ↗ 10→6
, 3 ↗ 10→6], while for DPR the best

learning rate was 7 ↗ 10→6.
Our academic computational budget allowed us to perform a hyperparameter search

only on the models in Tables 4.1 and 4.2 as well as the model using cross-entropy
without distillation in Table 4.5. However, we note that the model performance is quite
robust to the choice of hyperparameters in our initial experiments – mitigating this
limitation to an extent.
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Improving the Robustness of
Speech-based Search with

Neural Retrieval
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5
Dealing with Speech Recognition Errors

for Dense Retrieval

In the first part of this thesis, we focused on textual queries. However, in today’s
world, millions of users use speech interfaces to interact with search engines. Voice
interaction has become very popular because it is convenient, hands-free, provides a
natural user experience and supports users with visual/motor impairments who cannot
use conventional text entry mechanisms like a keyboard. Thus, millions of users are
voicing their queries instead of typing them.

In this part of the thesis, we focus on spoken queries. A straightforward retrieval
approach to tackle spoken queries combines an automatic speech recognition (ASR)
system with a text retriever. In such a pipeline approach, the spoken queries are
transcribed with an ASR model and then passed to the text retriever. However, the ASR
system may not always provide a perfect transcription. Difficult accents, background
noise, and rare entities can all contribute to a corrupted transcription. In this chapter, we
aim to answer RQ4: Are dense retrievers robust against queries that contain transcription
errors?

5.1 Introduction
Nowadays users interact with a wide range of commercial question answering (QA)
systems via speech interfaces. Millions of users are voicing their questions on virtual
voice assistants such as Amazon Alexa, Apple Siri, or Google Assistant through their
smart devices. Such voice assistants do not only increase the convenience with which
users can query them but can support users with visual and motor impairments for
which the use of conventional text entry mechanisms (keyboard) is not applicable [121].
Despite the popularity of voice assistants among users globally and the advancements in
spoken-language understanding [7, 40], there are surprisingly limited efforts in studying
spoken QA and its limitations.

The majority of research focuses on reading comprehension as a component of
spoken QA [38, 85, 126]. Previous works studied the case where the provided question

This chapter was published as G. Sidiropoulos, S. Vakulenko, and E. Kanoulas. On the impact of speech
recognition errors in passage retrieval for spoken question answering. In Proceedings of the 31st ACM
International Conference on Information & Knowledge Management. ACM, 2022.
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includes noise introduced by an automated speech recognition (ASR) system; audio is
converted to text before reading comprehension is performed. Ravichander et al. [126]
showed that ASR noise not only dramatically affects the performance of transformer-
based reading comprehension models but also that it is a more challenging type of noise
than the noise generated from keyboard mistyping or faulty machine translation. Faisal
et al. [38] showed that background differences in users, such as their accents, can affect
the performance of reading comprehension models differently.

Even though robustifying reading comprehension against ASR noise is essential
for extracting the answer to a question, as a subsequent step of passage retrieval, it is
bounded by the ability of the QA system to retrieve the relevant passages. A typical QA
pipeline consists of an efficient retriever that reduces the search space from millions
of passages to the top-k and a reader that extracts the answer. Dense passage retrieval
has become a new paradigm to retrieve relevant passages, setting the state-of-the-
art performance in several leaderboards [127, 154]. Inferior retrieval of the relevant
passages will negatively affect the performance of the overall system.

Typically, state-of-the-art dense retrieval models are evaluated on clean datasets with
noise-free questions [73, 127, 154]. However, questions posed to real-world QA systems
are prone to errors. Therefore, these models will encounter noisy questions when
deployed in real-world applications, affecting their performance. User-generated textual
questions can include typos such as keyboard typos due to fast typing, misspellings,
and phonetic typing errors (for words with close pronunciation). Recent works showed
that even state-of-the-art dense retrieval models are not robust against simple typos
[139, 196, 197]. Sidiropoulos and Kanoulas [139] showcased the dense retrievers’ lack
of robustness to typos in the question and proposed a combination of data augmentation
with a contrastive loss to robustify the model; see Chapters 2 and 3. Zhuang and
Zuccon [197] increased the robustness of dense retrievers against typos by replacing the
WordPiece tokenizer, which is extremely sensitive to typos, with the Character-CNN
module and further combined it with a knowledge distillation method.

On the other end of the spectrum, spoken questions voiced by users are also vulner-
able to errors due to the ASR systems that convert them to text. How the presence of
ASR noise in questions affects retrieval models has not been studied yet. In this chapter,
we address the need for evaluating passage retrieval for spoken QA. To the best of our
knowledge, this is the first work in this direction.

Since there is no available dataset for passage retrieval where questions have ASR
noise, we simulate ASR noise by automatically transcribing synthetically voiced ques-
tions. We then compare the robustness of lexical and dense retrievers by evaluating
them against questions with and without ASR noise. Preliminary results showed that
neither lexical nor dense models are effective against questions with ASR noise leading
to a significant drop in retrieval performance. We find that using data augmentation with
ASR noise to train a dense retriever is a promising approach for increasing robustness
against ASR noise. However, the generation of such synthetic data is time-consuming
and limited to the languages/accents supported by the text-to-speech system. We explore
if typo augmentation (faster and not bound to specific accents/languages) can alleviate
these limitations. Our experimental results show that typo robust dense retrievers can
increase robustness against ASR noise to some extent; however, ASR data augmentation
remains a significantly more effective approach. Since users can have different local
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accents, we experiment with multiple accents of the same language and unveil that users’
accents play an important role in retrieval performance. Finally, to study a real-world
scenario with voice variation and non-native speakers voicing questions, we also build
a new test set where the questions have natural ASR noise. This set consists of 700
questions voiced by human annotators.

To tackle RQ4 we aim to answer the following research sub-questions:

RQ4.1 What is the impact on the performance of lexical and dense retrievers when
questions have ASR errors?

RQ4.2 Are typo-robust dense retrieval approaches also robust against ASR noise? How
competitive are they against dense retrieval trained via data augmentation with
ASR noise?

RQ4.3 Do certain accents affect the effectiveness of the retriever more than others?

RQ4.4 Does natural ASR noise affect the robustness of dense retrievers more than
synthetic ASR noise?

Our main contributions can be summarized as follows: (i) we provide two large-scale
datasets where questions have synthetic ASR noise to facilitate research (evaluation
and training of new models) on passage retrieval for spoken QA, (ii) we create a new,
challenging test set that contains 700 questions with natural ASR noise, (iii) we show
how lexical and dense retrievers are not robust against ASR noise and propose data
augmentation for robustifying the latter, and (iv) we study how performance varies with
respect to different accents and synthetic vs. natural spoken questions.1

5.2 Experimental Setup

5.2.1 Datasets and evaluation metrics

For our experiments, we focus on two large-scale datasets, namely, MS MARCO
passage ranking [113] and Natural Questions (NQ) [78]. In MS MARCO the objective
is to rank passages based on their relevance to a question. The questions were compiled
from Bing search logs, while the underlying corpus consists of 8.8 million passages.
NQ is an open-domain QA dataset where questions were sampled from Google search
logs and can be answered over Wikipedia.

For MS MARCO, to measure the retrieval performance, we use the official metric
MRR@10 alongside Recall (R). We report the metrics on the development set, MS-
MARCO (Dev), since the ground-truths for the test set are not available to the public.
Similar to previous works on NQ, we report answer recall (AR) at the top-k retrieved
passages. Answer recall evaluates whether the ground-truth answer string appears
among the top retrieved passages.

1https://github.com/GSidiropoulos/passage_retrieval_for_spoken_qa
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Table 5.1: WER for transcribed synthetic and natural spoken questions. For synthetic,
we report on the whole NQ (test) while for the natural on a 700-question subset of NQ
(test).

Synthetic
en-US en-AU en-IN

NQ 20.70 21.01 24.77
Natural

A1 A2 A3 A4 avg

NQ 38.82 38.16 44.01 35.28 39.60

5.2.2 Simulating ASR noise
To study the impact of speech recognition errors in passage retrieval for spoken QA,
we need a large dataset of questions with ASR noise. There is no such dataset publicly
available and hence in this work we build one. Following previous works [38, 85, 126],
to simulate ASR noise, we follow a pipeline that consists of speech generation by a
text-to-speech system and transcription of the generated speech by a speech-to-text
system. We obtain the spoken version of the original questions via Google TTS and
their transcriptions using wav2vec 2.0 [5]. We use English as the system language. In
particular, for U.S. English (en-US), the word error rate (WER) is 20.70 and 34.26
for NQ and MS MARCO, respectively. However, as users can have different local
accents, we experiment with other English variations supported by Google TTS, such
as Australian English (en-AU) and Indian English (en-IN). We report their word error
rate scores in Table 5.1. Common errors in the transcribed questions include incorrect
splits and phonetical spelling of relatively rare words such as entity mentions.

5.2.3 Natural ASR noise
To simulate a natural real-world setting, we manually construct a dataset with natural
ASR noise. In order to create a dataset with natural ASR noise we use the SANTLR
[89] speech annotation toolkit. Specifically, we use SANTLR to record spoken versions
of the question from four human annotators. Subsequently, we transcribe the obtained
recordings using wav2vec 2.0 (similar to Section 5.2.2). We obtain audio recordings
(in English) for spoken versions of 700 questions from the NQ dataset, voiced by four
human annotators. The annotators are instructed to (i) read the prompt question, (ii)
ensure that they can pronounce every word appearing in the question or move to the next
one, and (iii) finally record. The annotators consist of a French female (A1), a Greek
male (A2), an Indian male (A3), and a Russian female (A4), with the first three voicing
200 unique questions each and the last voicing 100 unique questions. All annotators
are using English in their everyday life. We use a mixture of accents originating from
non-native English speakers to resemble a real-world scenario. Voice assistants do not
support the majority of the world’s languages [40]. Therefore, many users have to voice
their questions in a language different from their native one. WER scores can be found
in Table 5.1. Similar to synthetic noise, the most common errors include incorrect splits
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and the phonetical spelling of entity mentions. However, these errors are significantly
more prominent in the case of natural noise.

5.2.4 Models
BM25 BM25 is a standard retrieval model based on best match; there is lexical overlap
between the query and every retrieved passage. We use the Anserini IR toolkit [177] to
compute BM25 scores.

DR A typical dense retriever [73] is a dual-encoder BERT-based model used for
scoring question-passage pairs. Given a question q, a positive (i.e., relevant) passage p

+

and a set of negative (i.e., irrelevant) passages {p
→
1 , p

→
2 , . . . , p

→
n }, the model learns to

rank the positive question-passage pair higher than the negative ones. The two separate
encoders of the model are fine-tuned via the minimization of the softmax cross-entropy:

LCE = → log
e
s(q,p+)

es(q,p
+) +

∑
p→ es(q,p

→)
. (5.1)

During inference time, the similarity of a question-passage pair is calculated as the
inner product of the respective question embedding and passage embedding. The whole
corpus is encoded into an index of passage vectors offline, and retrieval with respect to
a question is implemented with efficient maximum inner product search [70] over the
index. We follow the dual-encoder architecture rather than a cross-encoder one (that
jointly encodes question and passage) due to its high efficiency as a first-stage ranker in
large-scale settings. While the latter can achieve higher performance, the former makes
the whole corpus indexable.

DR+Data augm. A dense retriever with data augmentation that builds on the standard
practice for improving the robustness of neural models by augmenting the training data
with noisy data. We explore two cases of data augmentation, namely, augmentation
with synthetic keyboard noise and augmentation with synthetic ASR noise. For the
former, we augment each question on the training set with keyboard noise following
the approach presented in [139], while for the latter, we augment with ASR noise as
shown in Section 5.2.2. In contrast with ASR noise, keyboard noise will rarely alter
the original word into a different correctly spelled word. For example, the question
“who is the owner of reading football club” can be transformed to “who is the owner of
retting football club” if augmented with ASR noise and to “who is the ownrr of reading
football club” if augmented with keyboard noise; “retting” is a correctly spelled word,
while “ownrr” is not.

DR+CharacterBERT+ST The dense retriever with CharacterBERT and self-teaching
[197] is the current state-of-the-art dense retrieval approach for dealing with typos. It
builds on DR by altering the backbone BERT encoder with CharacterBERT and further
uses an effective training method that distills knowledge from questions without typos
into the questions with typos, known as self-teaching. Specifically, the goal of the latter
is to minimize the difference between the similarity score distribution from the question
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Table 5.2: Retrieval results for the settings of (i) clean questions (Original) and (ii)
questions with synthetic ASR noise (ASR); synthetic voice with a U.S. English accent.
Statistical significance difference determined with a paired t-test (p < 0.05) BM25=b,
DR=d; DR with typo data augm.=t; DR+CharBERT+ST=c. Note that we use the
pretrained DR+CharBERT+ST from the original paper.

Noise
NQ (Test)

Original ASR

AR@5 AR@20 AR@100 AR@5 AR@20 AR@100

BM25 - 40.94 57.81 70.83 23.32 36.98 52.49
DR - 66.26 77.75 85.26 41.91 54.65 67.03
DR+Data augm. Typos 67.47 78.75 85.40 46.75 60.72 71.55
DR+CharBERT+ST [197] Typos - - - - - -
DR+Data augm. ASR 66.67 78.00 85.45 54.84bdtc 67.89bdtc 78.50bdtc

Noise
MS MARCO (Dev)

Original ASR

R@50 R@1000 MRR@10 R@50 R@1000 MRR@10

BM25 - 59.11 85.61 18.67 24.71 45.34 6.97
DR - 74.58 94.19 28.69 35.31 56.83 12.13
DR+Data augm. Typos 75.17 94.54 29.10 46.75 64.57 13.02
DR+CharBERT+ST [197] Typos 77.55 94.95 32.51 45.45 68.20 16.35
DR+Data augm. ASR 73.47 93.96 29.14 54.48bdtc 81.25bdtc 18.43bdtc

with the typo and the score distribution from the question without the typo. This is
achieved by minimizing the KL-divergence:

LKL = s̃(q↓, p) · log
s̃(q↓, p)

s̃(q, p)
, (5.2)

where q
↓ represents the typoed question and s̃ the softmax normalized similarity score.

The final loss is the sum of the LKL (5.2) and LCE (5.1) losses.

5.2.5 Implementation details
The DR model we use in our experiments is trained using the in-batch negative setting
described in [73]. The question and passage BERT encoders are trained using Adam
with a learning rate of 2e-5 and linear scheduling with warm-up rate of 0.1 for (i) 40
epochs with a batch size of 64 for the case of NQ and (ii) 10 epochs with a batch size of
84 for MS MARCO. Moreover, we use the same hyper-parameters when training DR
with data augmentation. For DR+characterBERT+ST, we use the pre-trained model as
provided by the authors of [197]. The audio input is sampled at 16Khz to be compatible
with the transcription model we use (wav2vec).

5.3 Results
In this section, we present our experimental results to answer our research questions. To
answer RQ4.1, we compare the retrieval performance of a lexical retriever (BM25) and
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Table 5.3: Retrieval results for DR trained with ASR data augmentation (questions
augmented with U.S. English synthetic ASR noise).

# Additional training
questions with ASR noise AR@5 AR@20 AR@100

40K 54.84 67.89 78.50
4K 48.69 61.96 73.35
400 44.29 57.28 69.27

0 41.91 54.65 67.03

a dense retriever (DR) for the settings of clean questions and questions with synthetic
ASR noise. As we can see from the first two rows in Table 5.2, DR significantly
outperforms BM25 across both settings (original and ASR). On the other hand, when
questions have ASR noise, there is a dramatic drop in performance for both BM25
(MRR@10 drops 62.66% and AR@5 43.03%) and DR (MRR@10 drops 57.72% and
AR@5 36.74%). This drop indicates the lack of robustness of lexical and dense models
against ASR noise.

Data augmentation with typos and self-teaching for knowledge distillation from
questions without typos into the questions with typos are two training schemes for
robustifying DR. For RQ4.2, we examine how these two perform compared to DR
with standard training on clean questions on the ASR noise scenario. For rows using
“Typos” as noise in Table 5.2, we notice that the models can increase robustness against
ASR noise, to some extent, even though the typos are not originating from the same
distribution as the ASR noise during inference. That said, as was expected, DR holds
the best results when augmenting the training set with ASR noise.

Furthermore, we investigate how the retrieval performance varies depending on the
number of available questions with ASR noise used to augment the training set. Table
5.3 shows the results. We observe a significant increase in performance even in the low
data regime, with 400 noisy questions. Intuitively, there is consistent improvement in
performance as the additional data increase.

At this point, we have seen that DR with ASR data augmentation is an effective
approach for dealing with spoken questions. For RQ4.3, we want to study the impact
of different English accents during inference. To do so, we use the DR model which
is augmented with synthetic ASR noise from U.S. English and test it against different
spoken accents such as Australian English (en-AU) and Indian English (en-IN). The
results in Table 5.4 show that different accents have different impacts on performance.
Specifically, we observe a small drop in performance for Australian English while the
drop is more prominent for Indian English. This is strongly related to the fact that
U.S. English is phonetically more similar to Australian English than to Indian English
[43, 92, 156].

We underline that using synthetic ASR noise in the respective English variation for
augmenting the training set could help boost performance. However, this is not a viable
solution if we take into account that (i) such an approach would require training a new
system for every new variation and to the extreme for each individual, and (ii) there is a
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Table 5.4: Retrieval results for DR trained with ASR data augmentation (augmented
with U.S. English synthetic ASR noise) and tested against synthetic ASR for various
accents.

Data augm. Test AR@5 AR@20 AR@100

en-US en-US 54.84 67.89 78.50
en-US en-AU 53.54 66.70 76.92
en-US en-IN 46.37 60.27 71.85

Table 5.5: Retrieval results for DR against questions with ASR noise from (i) synthetic
voice with a U.S. English accent (Synthetic), and (ii) natural voice with a mixture of
French, Greek, Indian and Russian accents (Natural). We use the same subset of 700
questions to ensure a fair comparison.

Data
augm.

ASR Synthetic ASR Natural

AR@5 AR@20 AR@100 AR@5 AR@20 AR@100

- 38.88 53.65 65.85 16.64 28.55 42.46
Typos 46.91 59.82 71.87 24.82 35.86 50.50
ASR 55.38 67.43 77.76 29.98 42.32 55.66

limitation in the available synthetic voice accents.
In a real-world scenario, alongside voice variation, accents can greatly vary de-

pending on the origin of the user; since non-native English speakers are voicing their
questions in English when interacting with voice assistants. To showcase the real-world
utility of dense retrieval (RQ4.4), we evaluate DR and its data augmented variations
on our natural ASR noise dataset (see Section 5.2.3). As we can see in Table 5.5, even
though both synthetic and natural ASR noise decrease the retrieval performance, natural
ASR noise appears to be a significantly more challenging setting. Despite the fact that
the distribution of synthetically generated ASR noise and keyboard noise differs from
that of natural ASR, we notice that DR combined with data augmentation achieves
better results than DR alone. We find that DR with synthetic ASR data augmentation
outperforms its typo counterpart. Unfortunately, synthetic ASR and typo noise are
inefficient while they do not generalize well to natural ASR noise.

5.4 Conclusions
In this chapter, we study the impact of speech recognition errors in passage retrieval for
spoken QA, following an ASR-Retriever pipeline approach (i.e., the spoken question
is passed through an ASR system and its transcription is fed to a text retriever). We
showcase that the effectiveness of lexical and dense retrievers drops dramatically when
dealing with transcribed spoken questions. Moreover, we explore how typo-robust
dense retrieval approaches perform against questions with ASR noise. Even though they
can increase robustness compared to standard training on clean questions only, dense
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retrieval trained via data augmentation with ASR noise is a more effective approach.
Finally, we compare the effect of synthetic vs. natural ASR noise and find that the
latter is a significantly more challenging setting. Unfortunately, data augmentation with
synthetic ASR noise does not generalize well to the natural ASR scenario.

One important shortcoming of the ASR-Retriever pipeline is that the ASR model
will propagate its errors on the retriever. Hence, the retrieval performance is limited
by the quality of the transcriptions. Furthermore, ASR-Retriever pipelines require that
there is enough annotated speech data to train an effective ASR model. For future
work, we plan to build on our insights and develop more sophisticated approaches for
robustifying dense retrievers against ASR noise. Also, we aim to investigate ways to
produce noise that can closely resemble natural ASR noise.

In this chapter, we studied speech-based search from an ASR-Retriever pipeline
point of view. In the following chapter, our focus shifts to eliminating the need for ASR
and enabling end-to-end training.
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6
Multimodal Dense Retrieval for Spoken

Queries

In the previous chapter, we adopted a pipeline approach consisting of an automatic
speech recognition (ASR) model that transcribes the spoken question before feeding
it to a dense text retriever. Such ASR and Retriever pipelines have several limitations.
The need for an ASR model limits the applicability to low-resource languages and
specialized domains with no annotated speech data. Furthermore, the ASR model
propagates its errors to the retriever. In contrast, an ASR-free, end-to-end trained
multimodal retriever that can work directly on spoken queries might be able to alleviate
some of the aforementioned shortcomings. In this chapter, we aim at answering RQ5:
How does a multimodal dense retriever perform in speech-based search?

6.1 Introduction

Voice assistants are convenient, easy to use, and can support users with visual and
motor impairments that cannot use conventional text entry devices. Voice assistants
such as Amazon Alexa, Apple Siri, and Google Assistant are used daily by everyday
users. As a result, nowadays, users interact with a wide range of commercial Question
Answering (QA) systems via such speech interfaces. In other words, millions of users
are voicing their questions on virtual voice assistants instead of typing them. That has
led to the emergence of speech-based open-domain QA, a QA task on open-domain
textual datasets where questions are in speech form.

Most of the research in speech-based open-domain QA focuses on reading com-
prehension as a component of the commonly adopted retriever and reader framework
[38, 126]. However, for effective answer extraction, we need an effective retriever that
reduces the search space from millions of passages to the top-k most relevant; the per-
formance of passage retrieval bounds that of reading comprehension. Hence, studying
passage retrieval in speech-based open-domain QA is crucial. Despite the attention
that passage retrieval for traditional open-domain QA receives from the community
[194], there are surprisingly few efforts in studying passage retrieval for speech-based

This chapter was published as G. Sidiropoulos and E. Kanoulas. Multimodal dense passage retrieval for
open-domain spoken question answering. Under submission.
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open-domain QA.
Recently, Sidiropoulos et al. [144] studied passage retrieval for speech-based open-

domain QA. In particular, following a pipeline approach consisting of an automatic
speech recognition (ASR) model for transcribing the spoken question and a dense
retriever1 for text retrieval (ASR-Retriever), they investigated the effectiveness of dense
retrievers on questions with ASR mistranscriptions. In their work, they build on the
assumption that the clean textual version of the spoken question is available at training,
and the ASR mistranscriptions appear only at inference. That said, such an approach
is not directly applicable in a real-world scenario where only the spoken questions are
available during training. In a real-world scenario, following an ASR-Retriever pipeline
would require either (i) using the ASR model to produce the training questions or (ii)
training on a different dataset where questions in text form are available.

The ASR-Retriever pipeline has several limitations. First and foremost, it does not
support training in an end-to-end manner. As a direct consequence, ASR propagates
its errors to the downstream retriever; the higher the word error rate from ASR, the
higher the negative impact on the performance of the retriever. ASR models suffer
from mistranscribing long-tail named entities and domain-specific words [68, 99, 165].
The former is of great importance when working on questions because corrupting the
main entity of a question can dramatically affect retrieval [144]. For example, when
the question “what is the meaning of the name sinead?” is transcribed as “what is
the meaning of the name chinade?”, then the retrieval will be centered around the
wrong entity “chinade”. Additionally, training an ASR model requires obtaining a
large amount of annotated speech which is not always available (think for example of
low-resource languages). Finally, during query time, feeding the spoken question to the
transformer-based ASR model to obtain its transcription before performing retrieval
results in high query latency.

In contrast to the ASR-Retriever pipeline, we propose a multimodal dual-encoder
dense retriever that does not require an ASR model and can be trained end-to-end. Our
method adapts the dual-encoder architecture used for dense retrieval in traditional open-
domain QA (i.e., where both question and passage are in text form) [73] by replacing the
backbone language model used to encode the questions with a self-supervised speech
model (Figure 6.1). To the best of our knowledge, this is the first multimodal dual-
encoder approach for speech-based open-domain QA. Furthermore, in this chapter, we
benchmark passage retrieval for the speech-based open-domain QA using ASR-Retriever
pipeline approaches, where the spoken questions are transcribed with an ASR model
and then used for training the dense text retrievers.

To answer RQ5 we break it down into four research suq-questions:

RQ5.1 How does our ASR-free, end-to-end trained multimodal dense retriever perform
compared to its ASR-Retriever pipeline counterparts?

RQ5.2 Can our ASR-free retriever alleviate the limitations of ASR-Retriever pipelines
when it comes to ASR mistranscribing important words in a question?

1Dense text retrievers use transformers to encode the question and passage into a single vector each and
further use the similarity of these vectors to indicate the relevance between the question and passage.
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HuBERT BERT

spoken question: q textual passage: p

Figure 6.1: Overview of our multimodal dense retriever.

RQ5.3 How does our ASR-free retriever perform against ASR-Retriever when the latter
has to deal with previously unseen ASR mistranscription?

RQ5.4 What is the most effective training scheme for learning a multimodal dense
retriever?

We make the following contributions:

• We benchmark the speech-based open-domain QA task with stronger baselines.
In detail, we train the retriever in the ASR-Retriever pipeline on spoken question
transcriptions and not clean textual questions as in Sidiropoulos et al. [144].

• We propose an ASR-free, end-to-end trained multimodal dense retriever that can
work on speech, and we demonstrate a setup for effective training.

• Experimental results show that our retriever is a promising alternative to ASR-
Retriever pipelines and competitive on shorter questions.

• We demonstrate through thorough analysis the robustness of our approach com-
pared to the ASR-Retriever pipeline, where the retrieval performance of the latter
is strongly related to the ASR error; consequently, it varies significantly under
different situations. We unveil that pipelines witness a dramatic drop in their
retrieval performance (i) as the word error rate of the ASR model increases,
(ii) when important words in the spoken question are mistranscribed, and (iii)
on mistranscriptions that were not encountered during training. Our ASR-free
retriever can alleviate these problems and yield better results.2

2We plan to release the code and pre-trained models for replicating all the experiments upon acceptance of
the paper underlying this chapter.
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6.2 Related Work

Passage retrieval is a key task in traditional open-domain QA and speech-based open-
domain QA. Following the retriever and reader framework, the retriever reduces the
search space for effective answer extraction and provides the support context that users
can use to verify the answer. Traditional open-domain QA has seen significant advance-
ments with the introduction of dense retrievers [73, 124, 194] that have demonstrated
higher effectiveness than bag-of-words methods.

Despite their effectiveness, dense retrievers can still perform poorly in the presence
of noise. Zhuang and Zuccon [196] investigated the robustness of dense retrievers
against questions with typos. Their work suggested that dense retrievers perform poorly
on questions that have typos, and to this end, they proposed a typo-aware training
strategy (data augmentation) to alleviate this problem. Sidiropoulos and Kanoulas [139]
built upon this and further proposed to combine data augmentation with a contrastive
loss to bring closer the representations of a question and its typoed variants. Zhuang
and Zuccon [197] showed that replacing the backbone BERT encoders of the dense
retriever with CharacterBERT can increase robustness against typos. They further
improved robustness via a novel self-teaching training strategy that distills knowledge
from questions without typos into typoed questions.

Recently, Sidiropoulos et al. [144] studied the robustness of dense retrievers under
ASR noise (see Chapter 5). By employing a pipeline approach with an ASR system and
a dense retriever for text retrieval, they showed that dense retrievers, trained only on
clean questions, are not robust against ASR noise. They further suggested that training
the retriever to be robust against typos can increase the robustness against ASR noise.
To the best of our knowledge, this is the first work that studies passage retrieval for
speech-based open-domain QA.

On the other end of the spectrum, recent works in speech-based QA explored reading
comprehension as a component of the retriever and reader framework. Ravichander et al.
[126] showed that mistranscription from the ASR model leads to a huge performance
degradation in the transformer-based reading comprehension models while Faisal et al.
[38] suggested that background differences in the users (e.g., accents) have different
impacts on the performance of reading comprehension models.

At this point, we want to highlight the differences between speech-based open-
domain QA and spoken QA [85, 183] since there can be misconceptions due to the
similarity in their names. Spoken QA is a searching through speech task where given
a text question and a spoken document the goal is to find the answer from this single
spoken document. Therefore, this is a fundamentally different problem from the problem
we consider in this work.

6.3 Methodology

6.3.1 Problem definition
Let p ↔ C denote a passage in text form within a passage collection C in the scale
of millions and q a question in speech form. In passage retrieval for speech-based

74



6.3. Methodology

open-domain QA, given q and C, the task is to retrieve a set of relevant passages
P = {p1, p2, . . . , pn}, where pi ↔ C and can answer q.

6.3.2 Multimodal dense retriever
In passage retrieval for speech-based open-domain QA, the ASR-Retriever pipelines that
were used so far suffer from propagating ASR errors to the retriever. Such approaches
are not trained end-to-end; thus, the quality of the ASR transcriptions bounds the
retrieval performance. Furthermore, the requirement for an ASR model limits the
applicability of such pipelines to scenarios where annotated speech is available for
training the ASR model. To alleviate the above-mentioned problems, we propose
an ASR-free multimodal dense retriever that can support speech, and can be trained
end-to-end.

Specifically, we modify the dual-encoder architecture for dense text retrieval in
traditional open-domain QA [73] to account for spoken questions. We replace the BERT-
based question encoder with HuBERT [66] and leave the BERT-based passage encoder
as is. HuBERT is a self-supervised model for speech representation learning, which
uses a BERT-like masked prediction loss. It uses offline clustering to provide target
labels for masked language model pre-training. Figure 6.1 illustrates the architecture of
our ASR-free, multimodal dense retriever. Suppose a pair of question q, in speech form,
and a passage p, in text form. The speech and language encoders produce the output
representations:

HuBERT (q) = (q1, ..., qn), BERT (p) = (p1, ...,pm). (6.1)

We use the first token embedding output from the speech and language modules to
encode questions and passages into a single vector each:

ςq = q1, ςp = p1. (6.2)

The relevance between a question and a passage is computed as the dot product of their
vectors:

s(q, p) = ςq
T · ςp. (6.3)

We train our model so that relevant passages to the question (i.e., passages that include
the answer) have a higher similarity score than the irrelevant passages. We followed
the original dual-encoder training setting from Karpukhin et al. [73] where, given a
question q, a relevant passage p

+ and a set of irrelevant passages {p
→
1 , p

→
2 , . . . , p

→
n }, the

model is fine-tuned via the minimization of the softmax cross-entropy:

LCE = → log
e
s(q,p+)

es(q,p
+) +

∑
p→ es(q,p

→)
. (6.4)

The inference phase of our multimodal dense retriever remains the same as in traditional
dual-encoders for dense text retrieval. Specifically, we compute the similarity of a
question-passage pair as the inner product of the respective question embedding and
passage embedding. At query time, only the question needs to be encoded. We build
a dense index of passage vectors (offline) by encoding the whole corpus and storing
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it in an index structure that supports efficient retrieval of the relevant passages via
approximate nearest neighbor search [70]. At this point, we want to highlight that we
choose a dual-encoder architecture because it has shown high efficiency as a first-stage
ranker in large-scale settings. On the contrary, even though cross-encoder architectures
can achieve higher performance due to jointly encoding questions and passages, they
are not indexable and hence are re-rankers.

6.4 Experimental Setup

6.4.1 Baselines and implementation

We compare our proposed multimodal method against pipeline approaches that consist
of (i) an ASR model for transcribing the spoken question and (ii) a retriever. In detail,
similar to Sidiropoulos et al. [144] we use wav2vec 2.0 [5] pretrained and fine-tuned on
960 hours of annotated speech data [118] as the ASR model. Concerning the retrievers,
we experiment with popular lexical and dense retrievers. We further experiment with
dense retrievers explicitly trained to improve robustness against questions with typos
since they improve robustness against ASR noise as well [144].

We need to underline that contrary to Sidiropoulos et al. [144], who assumed that
the clean textual version of the spoken question is provided for training the retrievers,
we follow a real-world scenario where only spoken questions are available; thus, we
need to transcribe them for training the retrievers. Our experimental results showed that
we build stronger baselines by training on the transcriptions of spoken questions. In
particular, we experiment with the following retrievers:

• BM25 is a traditional retriever based on term-matching. Question and retrieved
passages have lexical overlap.

• Dense Retriever (DR) is used for scoring question-passage pairs and consists of
two separate neural networks (dual-encoder), each representing a question and a
passage. Given a question, a positive passage, and a set of negative passages, the
learning task trains the two encoders by minimizing a loss function, typically softmax
cross-entropy, to encourage positive question-passage pairs to have smaller distances
than the negative ones. To train the DR model, we use the training scheme and
hyperparameters described in [73] with a batch size of 64 which is the largest we can
fit in our GPU setup.

• Dense retriever with data augmentation (DR+Augm.) alternates the training
scheme of classic dense retrieval via the addition of data augmentation. Recently,
there were works that explored a data augmentation approach for robustifying dense
retrievers against typoed questions [139, 196]. Specifically, during the training phase
of the dense retriever, an unbiased coin is drawn for each question that appears. If
tails, the unchanged question is used for training. Otherwise, the question is injected
with typos. Typos are sampled uniformly from one of the available typo generators
(e.g., random insertion/deletion/substitution, neighbor swapping).
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The DR+Augm. model we use in our experiments is trained following the training
process described in [139]. The hyperparameters of the dense retriever remain the
same as in the DR case.

• Dense retriever with CharacterBERT and self-teaching (CharacterBERT-DR+ST)
[197] extends DR+Augm. by (i) incorporating CharacterBERT, which drops the Word-
Piece tokenizer and replaces it with a CharacterCNN module, and (ii) by adding a
loss that distills knowledge from questions without typos into the questions with
typos. The distillation loss forces the retrieval model to generate similar rankings for
the original question and its typoed variations. That is achieved by minimizing the
KL-divergence:

LKL = s̃(q↓, p) · log
s̃(q↓, p)

s̃(q, p)
, (6.5)

where q and q
↓ represent the original question and its typoed variant, respectively

while s̃ is the softmax normalized similarity score. The LKL loss (Equation 6.5) is
combined with the supervised softmax cross-entropy loss LCE to form the final loss:

LST = LKL + LCE . (6.6)

For training CharacterBERT-DR+ST, we follow the original work by Zhuang and
Zuccon [197].

6.4.2 Datasets and evaluation
We conduct our experiments on the spoken versions of MSMARCO passage ranking
[113], and Natural Questions [78] introduced by Sidiropoulos et al. [144]. In the
Spoken-MSMARCO and Spoken-NQ, the question is in spoken form, while the passage
is in the form of text. For the former dataset, the underlying corpus consists of 8.8
million passages, ↓400K training samples, and 6, 980 development samples, with an
average sample duration of 3sec (↓6 words). Spoken-NQ facilitates 58, 880 training,
6, 515 development, and 3, 610 test samples with an average sample duration of 3.86sec

(↓9 words). Questions can be answered over Wikipedia. Concerning the pipeline
approaches that employ ASR for the transcription of the spoken questions, the WER for
Spoken-NQ (test) is 20.10% and for Spoken-MSMARCO (dev) it is 32.87%.

To measure the retrieval effectiveness of the models on Spoken-MSMARCO, we
use the official metric of the original MSMARCO dataset, namely, Mean Reciprocal
Rank (MRR@10) and the commonly reported Recall (R@50, R@1000). Similar to the
original MSMARCO, we report the metrics on the development set, since the ground-
truths for the test set are not publicly available. Following previous works on NQ and
Spoken-NQ, we use answer recall at the top-k (AR@20, AR@100) retrieved passages.
Answer recall measures whether at least one of the top-k retrieved passages contains
the ground-truth answer string, then AR@k = 1 otherwise AR@k = 0.

6.4.3 Implementation details
We train our multimodal dense retriever using the in-batch negative setting described in
[73]; with one hard negative passage per question and a batch size of 64, the largest batch
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Table 6.1: Retrieval results on Spoken-NQ and Spoken-MSMARCO. End2end “✁”
accounts for ASR-Retriever pipeline approaches that can not be trained in an end-to-end
manner. Training Questions “ASR” indicates that the transcriptions of spoken questions
are used.

Training
Questions End2end Spoken-NQ (test) Spoken-MSMARCO (dev)

AR@20 AR@100 R@50 R@1000 MRR@10

BM25 - ✁ 36.98 52.49 24.71 45.34 6.97
DR ASR ✁ 68.36 78.53 52.06 79.35 17.74
DR+Augm. ASR & Typos ✁ 69.77 80.05 52.97 80.56 17.87
CharacterBERT-DR+ST ASR & Typos ✁ 68.22 80.3 53.88 78.95 20.53
Multimodal DR (Ours) Speech ✂ 57.25 70.11 51.37 81.34 15.77

we could fit in our GPU setup. The question and the passage encoders are implemented
by HuBERT-Base [66] and BERT-Base [32] networks, respectively. We take the first
embedding from the two output representations of each sequence to represent their
corresponding speech and text sequences. Additionally, our experimental results showed
that having different learning rates for the question and passage encoders leads to more
effective training. Specifically, we set the learning rate to 2e-4 for the question encoder
and 2e-5 for the passage encoder. To this end, we train with the Adam optimizer and
linear scheduling with 0.1 warm-up for up to 80 epochs for the small Spoken-NQ dataset
and 10 for the larger Spoken-MSMARCO dataset.

To end up with the abovementioned parameters, we searched learning rates ranging
from 2e-6 to 2e-4 (for cases where question and passage encoders share the same
learning rate or have different ones) and explored HuBERT-Base and Wav2Vec2-Base
question encoders. We also experiment with warming up the question embedding
space before training our retriever, following the sequence-level alignment approach
described by Chung et al. [22]. However, we did not see any improvements. We chose
the best hyperparameters with respect to the best average rank in the development split
of Spoken-NQ [73].

6.5 Results & Discussion

6.5.1 Main results
To answer RQ5.1, we compare the retrieval performance of our multimodal dense
retriever against the ASR-Retriever pipelines we described in Section 5.2.4. From
Table 6.1 we note that our model is highly competitive on the Spoken-MSMARCO
dataset, while the pipeline approaches perform significantly better on the Spoken-NQ
dataset. This discrepancy is twofold. First, our multimodal dense retriever performs
better on shorter questions. We conjecture that the low performance of our model on
longer questions is due to encoding the spoken question into a single vector which
might not be enough to capture the necessary information as the length of the question
increases. Second, the higher the word error rate the higher the negative impact on the
ASR-Retriever pipelines. Spoken-MSMARCO has shorter questions and a higher word
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Figure 6.2: Retrieval performance w.r.t. the WER of questions; on Spoken-MSMARCO
(dev). Each bin with a non-zero WER has ↓1300 samples, while the one with a zero
WER has ↓1600 samples. We also report the average question length, in tokens, per
bin.

error rate than Spoken-NQ (Section 8.5.1).
In Figure 6.2, we verify our aforementioned claims. Figure 6.2 reports the retrieval

performance of the ASR-Retriever pipelines concerning the different word error rates of
the ASR model and where our ASR-free method stands. Pipelines show strong results
when no corrupted words are in the transcriptions (WER is 0). However, there is a
significant drop in the retrieval performance of all the pipeline approaches as the word
error rate increases. On the other hand, our ASR-free, multimodal dense retriever is
significantly more stable across the different settings. At the same time, we see an
increase in the performance of our approach as the length of the question decreases
(see the average length under each bin in Figure 6.2). We conclude that adopting our
multimodal dense retriever as the word error rate of the ASR model increases yields
better results.

Despite the strong performance that ASR-Retriever pipelines achieve, there are
several limitations we need to highlight. In Table 6.2, we compare our model to ASR-
Retriever pipelines in terms of query time, the need for annotated speech data, and
parameters. A major constraint for pipelines is the requirement in annotated speech
for training an ASR model. In the real world, such data are not always in abundance.
Annotated speech can be hard to obtain when dealing with low-resource languages or
specialized domains such as the medical domain, where a general-purpose ASR system
will underperform. In such scenarios, the applicability of ASR-Retriever pipelines is
limited. In contrast, our approach is ASR-free, hence, does not need annotated speech.
Regarding query time, as shown in Table 6.2, the query time of our model is substantially
shorter than that of the ASR-Retriever. Passing the spoken question through an ASR
model to obtain its transcription introduces additional overhead.

In our work, we are interested in the cases where ASR generates transcriptions with
a higher word error rate; therefore, we conduct extensive analyses focusing on such
cases.
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Table 6.2: Comparison of our Multimodal DR and ASR-Retriever pipeline w.r.t. needs
in annotated speech data, the number of model parameters, and query time.

Annotated
Speech

ASR
#params

Retriever
#params Time

DR+Augm. 960h 95M 220M 45.3ms
CharacterBert-DR+ST 960h 95M 210M 42.5ms
Multimodal DR (Ours) - - 200M 21.9ms

Table 6.3: Retrieval performance on Spoken-MSMARCO (dev) for the cases where at
inference time (i) the question has a mistranscription that the model encountered during
training (Seen), or (ii) has a mistranscription that the model never encountered during
training (Unseen). Unseen covers 1,883 samples, while Seen 3,437.

Training
Questions End2end Unseen Seen

MRR@10 R@50 R@1000 MRR@10 R@50 R@1000

DR ASR ✁ 13.45 40.29 67.29 16.69 50.32 79.55
DR+Augm. ASR & Typos ✁ 13.41 41.08 69.63 17.18 51.75 80.83
CharacterBERT-DR+ST ASR & Typos ✁ 15.15 40.86 67.27 19.75 52.32 78.62

Multimodal DR (Ours) Speech ✂ 18.52 54.26 82.11 15.47 50.64 81.58

6.5.2 Analysis

Our multimodal dense retriever is ASR-free. Thus, there are no ASR errors that can
propagate to the retriever. In contrast, in the ASR-Retriever pipeline, the transcribed
question that arrives as input to the retriever will often contain mistranscribed words.
Nevertheless, not every word in a question is of equal importance. Let us take as
examples the following two transcriptions: “what channel is young sheldon on” ↑
“what channel is young shelternon” and “who took the first steps on the moon in
1969” ↑ “he took the first steps on the moon in nineteen sixty nine”. Concerning the
former, the corruption can lead the retrieval far from the main entity “young sheldon”,
while in the latter case, the error will have a limited impact on the retrieval. We
claim that mistranscribing an important word can hurt retrieval performance more than
mistranscribing less important ones. To verify our claim, we explore how the importance
of the mistranscribed word impacts the retrieval performance of pipelines and how it
compares against our ASR-free multimodal dense retriever (RQ5.2).

For our experiments, we define the relevant importance of a word in a question as the
ratio of its IDF to the sum of the IDFs of every word in the question [139]. Figure 6.3
shows that as the importance of the mistranscribed word increases, there is a dramatic
drop in the retrieval performance of the ASR-Retriever pipelines. At the same time, as
more significant words are corrupted due to the failure of the ASR model, following our
ASR-free multimodal dense retriever method is a promising alternative.

Our ASR-free multimodal dense retriever is trained on spoken questions. In contrast,
in an ASR-Retriever pipeline, the retrieval model is trained on ASR transcriptions.
As a result, the retriever encounters ASR mistranscription during training, similar to
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Figure 6.3: Retrieval results w.r.t. the relevant importance of the mistranscribed words;
on Spoken-MSMARCO (dev). For questions with multiple mistranscribed words, we
use the word with the highest relevant importance to assign the question to a bin. Bins
have ↓1000 samples.

Table 6.4: Retrieval results on Spoken-MSMARCO (dev) for the setting where the
dense retrievers of ASR-Retriever are not explicitly trained on ASR corrupted words.

Training
Questions End2end R@1000 MRR@10

BM25 - ✁ 45.34 6.97
DR Clean ✁ 56.83 11.36
DR+Augm. Clean & Typos ✁ 64.57 13.02
CharacterBERT-DR+ST Clean & Typos ✁ 66.94 15.75

Multimodal DR (Ours) Speech ✂ 81.34 15.77

the ones it encounters during inference. However, a mistranscription of a particular
word is strongly connected to its context. For instance, we can have the following two
mistranscriptions for the word “exxon”: “when did standard oil of new jersey become
exxon” ↑ “when did standard oil of new jersey become exon” and “where are exxon’s
refineries located” ↑ “where a rexons refineries located”.

For RQ5.3, we study the effectiveness of our ASR-free multimodal dense retriever
against ASR-Retriever pipelines when the latter encounters previously unseen ASR mis-
transcribed words. We explore cases where a particular corrupted word during inference
time was not part of the training set. In Table 6.3 we compare the retrieval performance
for the cases of (i) previously seen and (ii) previously unseen ASR corrupted words.

Table 6.3 unveils that a big part of the strong performance we observe on the ASR-
Retriever pipelines stems from the fact that retrievers are trained on the exact same
mistranscriptions they encounter during inference. There is a decrease of more than 10
points in Recall for all pipelines when they deal with corruption due to ASR that was
not part of the training set. Additionally, our multimodal dense retriever significantly
outperforms all the pipelines under the unseen scenario.
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Table 6.5: Comparison of different training schemes on Spoken-NQ. We indicate the
learning rate of the question and passage encoder as q and p, respectively.

Pooling Learning Rate AR@20 AR@100

first p: 2e-5, q: 2e-5 50.77 64.48
first p: 2e-5, q: 2e-4 57.25 70.11
mean p: 2e-5, q: 2e-4 56.59 69.97
max p: 2e-5, q: 2e-4 53.57 67.45

Inspired by the results in Table 6.3, we set to study an extreme case of unseen
ASR noise. In particular, we study how much the retrieval performance of pipeline
approaches deteriorates when their dense retrievers are not explicitly trained on ASR
noise (transcriptions). To do so, we train from scratch all the dense retrievers on clean
questions instead of transcriptions. We report the results in Table 6.4. By comparing the
retrieval models when they are explicitly aware of ASR corrupted words during training
(as shown in Table 6.1) vs. when they are not (Table 6.4), we see a dramatic drop in
Recall of more than 12 points for all ASR-Retriever pipelines; and as high as 23 points
in the case of DR. From Table 6.4, we can further conclude that for the extreme case
where the ASR-Retriever pipeline is not trained on ASR noise, following our multimodal
dense retriever approach is necessary.

6.5.3 Ablation study on model training
To better understand how different model training schemes affect retrieval performance
(RQ5.4), we perform an ablation on our multimodal dense retriever and discuss our
findings below.

Learning Rate In traditional dense text retrieval, the same learning rate is used to
update all the weights in the retriever [73, 124]. However, in our multimodal dense
retrieval setup, the HuBERT (question encoder) and BERT (passage encoder) models
are pre-trained independently to allow the usage of available large-scale unsupervised
data. Therefore, there can be disparities between the two modalities that can hurt
performance. To alleviate this problem we follow an alternative setting where the two
encoders have different learning rates. In particular, since the language model contains
more information than the speech model, we increase the learning rate of the passage
encoder by a factor of 10. Comparing the values in the first block of Table 6.5, we
find that the choice of learning rate is important for effectively training our multimodal
dense retriever.

Pooling The next ablation involves different pooling methods for encoding the spoken
question into a single vector. Following previous works on dense retrieval, we use
the [CLS] token embedding output from BERT to encode the text passage [73]. In
contrast, this decision is not that straightforward in the case of the spoken question.
The HuBERT speech transformer we use for encoding the spoken questions does not
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have a next-sentence prediction pre-training task as in BERT. Thus, there is no [CLS]
token available. We assess different pooling strategies for encoding the spoken question,
namely, max and mean pooling or taking the first embedding of the sequence as a
pooling strategy. As we can see in Table 6.5, using the first token embedding output
from HuBERT to represent the speech utterance leads to the best results.

For our ablation study, we reported results on the test split of Spoken-NQ (Table
6.5). However, we want to clarify that the decision for our best multimodal retriever
was based on the development set, as discussed in Section 5.2.5.

6.6 Conclusions

In this chapter, we thoroughly analyzed the behavior of ASR-Retriever pipelines for
passage retrieval for speech-based open-domain QA, showing their limitations, and we
further introduced the first end-to-end trained, ASR-free multimodal dense retriever in
order to tackle these limitations. Our experimental results showed that our multimodal
dense retriever is a promising alternative to the ASR-Retriever pipelines on shorter
questions and under higher word error rate scenarios. Furthermore, we unveiled that
ASR-Retriever pipelines show a dramatic performance decrease as the word error
rate of the ASR model increases, when important words in the spoken question are
mistranscribed, and when dealing with mistranscriptions that have not been encountered
during training. We showcased that our ASR-free multimodal dense retriever can
overcome the aforementioned issues. To conclude, despite the limited performance of
our proposed method on longer questions, we believe that our thorough analysis can
spur community interest in passage retrieval for speech-based open-domain QA.

6.7 Limitations

In this chapter, all the models are trained using the hard negatives provided by the
original datasets or mined from BM25 [73] and by employing the base versions of the
speech and language transformer models (see Section 6.4.3). Therefore, we leave the
application of more complex hard negatives mining techniques, such as mining from
the dense index of a previous checkpoint of the dense retriever itself [174], and larger
models (e.g., BERT-Large and HuBERT-Large) to future work.

As we saw in Section 6.5.1, our multimodal dense retriever showed promising
results against its ASR-Retriever counterparts on shorter questions under high word
error rate scenarios. We conjecture that the limited performance of our approach on long
questions is due to encoding all the information from the speech signal in a single vector,
and we leave exploring a multi-vector retrieval approach as future work. ASR-Retriever
pipelines can produce significantly better results compared to our method for cases
where the ASR model can perform high-quality transcriptions with low word error rate.
We did not experiment with more advanced ASR models, such as the recently proposed
Whisper [125], since such models not only require an abundance of annotated speech
(i.e., 680, 000 hours) but also our goal in this chapter was to provide alternatives for
cases with higher word error rates in the transcriptions.
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This chapter concludes the second part of the thesis, which focuses on improving
the robustness of speech-based search with neural retrieval and aims to support multi-
modality in search engines. In Chapter 7, we move to a different research theme and
explore how to improve the efficiency of training neural retrievers on low resources for
multi-hop retrieval, thereby helping search engines deal with complex queries.
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7
Computationally Efficient Hybrid

Retrieval for Answering Complex Queries

The information needs of real users do not only take the form of simple queries where
the answer is explicit in a single document. Real users may have complex information
needs, which they express as complex queries, necessitating multi-hop retrieval to
aggregate information from multiple documents to infer the answer. Dense retrieval
has been successfully applied to complex queries. However, training an effective dense
retriever for multi-hop retrieval is computationally expensive. To address this challenge,
we set out to answer RQ6: Can we train an effective dense retriever for multi-hop
retrieval with limited computing resources?

In the scope of this chapter, we use “retrieval for multi-hop QA” and “retrieval for
multi-hop queries” as an alias for “multi-hop retrieval.”

7.1 Introduction
The second Strategic Workshop on Information Retrieval (IR) prioritized moving beyond
simple document ranking towards more realistic settings required to address complex
information needs [1]. While supporting complex information needs by decomposing
them into independent facets, subtopics or sub-tasks has already received a lot of
attention within the IR community [33, 72], the task of multi-hop (complex) question
answering (QA) remains largely overlooked from an IR point of view.

Multi-hop QA requires retrieval and reasoning over multiple pieces of informa-
tion [179]. For instance, consider the multi-hop question: “Where is the multinational
company founded by Robert Smith headquartered?” To answer this question we first
need to retrieve the passage about Robert Smith in order to find the name of the company
he founded (General Mills), and subsequently retrieve the passage about General Mills,
which contains the answer to the question (Golden Valley, Minnesota). Even though
multi-hop QA requires multiple retrieval hops, it is fundamentally different from session
search [83, 176] and conversational search [30, 158, 163], since in multi-hop QA the

This chapter was published as G. Sidiropoulos, N. Voskarides, S. Vakulenko, and E. Kanoulas. Combining
lexical and dense retrieval for computationally efficient multi-hop question answering. In Proceedings of
the Second Workshop on Simple and Efficient Natural Language Processing, SustaiNLP@EMNLP 2021.
Association for Computational Linguistics, 2021.

87



7. Computationally Efficient Hybrid Retrieval for Answering Complex Queries

information need of the user is expressed in a single question, thus not requiring multiple
turns of interaction.

QA systems typically consist of (i) a retriever that identifies the passage/document
in the underlying collection that contains the answer to the user’s question, and (ii) a
reader that extracts or generates the answer from the identified passage [19]. Given
that often the answer cannot be found in the top-ranked passage, inference follows a
standard beam-search procedure, where top-k passages are retrieved and the reader
scores are computed for all k passages [82]. However, readers are very sensitive to
noise in the top-k passages, thus making the performance of the retriever critical for the
performance of QA systems [178]. This is further amplified in multi-hop QA, where
multiple retrieval hops are performed; potential retrieval errors get propagated across
hops and thus severely harm QA performance.

The majority of current approaches to multi-hop QA use either traditional IR
methods (TF-IDF, BM25) [123] or graph-based methods for the retriever [2, 114].
However, those approaches have serious limitations. The former approaches require
high lexical overlap between questions and relevant passages, while the latter rely on
an interlinked underlying corpus, which is not always available. Recently, Xiong et al.
[175] introduced a dense multi-hop passage retrieval model that constructs a new query
representation based on the question and previously retrieved passages and subsequently
uses the new representation to retrieve the next set of relevant passages. This model
achieved state-of-the-art results without relying on an interlinked underlying corpus.

Even though dense retrieval models achieve state-of-the-art results on multi-hop
QA, they are computationally intensive, requiring multiple GPUs to train. Existing work
only reports results for the cases where such resources are available. It is not clear how
feasible it is to train such models in a low-resource setting. In this chapter, we focus on
developing an efficient retriever for multi-hop QA that can be trained effectively in a
low computational resource setting. We break down RQ6 into the following research
sub-questions:

RQ6.1 How does the performance of dense retrieval compare to lexical and hybrid
approaches?

RQ6.2 How does the performance degrade in low computational resource settings?

RQ6.3 How do different passage retrieval approaches perform across hops?

Our main contributions are the following: (i) we propose a hybrid (lexical and
dense) retrieval model that is competitive against its fully dense competitors while
requiring eight times less computational power, (ii) we perform a thorough analysis of
the performance of dense passage retrieval models on the task of multi-hop QA, and (iii)
we conduct a qualitative analysis to get further insights on the working of the models.1

1Our trained models and data are available at https://github.com/GSidiropoulos/hybrid_
retrieval_for_efficient_qa.
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7.2 Task Description
Let p ↔ C denote a passage within a passage collection C, and q a multi-hop question.
Given q and C the task is to retrieve a set of relevant passages P = {p1, p2, . . . , pn},
where pi ↔ C. In the multi-hop scenario we consider here, not all relevant passages
can be retrieved using the input question q alone. This is due to the fact that there is a
low lexical overlap or semantic relationship between question q and one or more of the
relevant passages in P . In this case, information from one of the relevant passages pi is
needed to retrieve another relevant passage pj , where pj may be lexically/semantically
different from question q.

7.3 Related Work
The majority of open-domain QA methods use a pipeline approach that consists of a
retriever and a reader component [2, 19, 34, 73, 81, 105, 114, 123]. While there has
been a lot of attention on improving the reader component [34, 105], we focus on related
work on the retriever part, as it is more relevant to our work in this chapter.

In the case of simple open-domain QA (single-hop) the retriever uses traditional
term-based IR methods [19], often in combination with additional reranking steps
[81]. Differently, recent dense passage retrieval methods use dense question and
passage representations to capture the semantic similarity between question and relevant
passages [73]. The aforementioned approaches often fail in multi-hop QA since more
than one passages must be retrieved, with one (or more) of them having little lexical or
semantic similarity to the question. In multi-hop QA, many works follow graph-based
approaches, constructing a document graph that employs hyperlinks in the underlying
corpus, either explicitly through a Wikipedia-like hyperlink structure or implicitly
via entity linking [2, 114]. However, these methods are limited by the availability of
hyperlinks and the entity linking performance. On the other hand, iterative passage
retrieval approaches with multiple rounds of term-based retrieval are limited by the
lexical retrieval per se [123]. Recently, dense passage retrieval methods were introduced
to multi-hop QA [175] questions and previously retrieved passages encoded to retrieve
the next relevant set of passages. Nonetheless, in many cases, they do not properly
exploit the lexical overlap between questions and passages [73].

7.4 Method
In this section we discuss the preliminaries and then introduce our hybrid retrieval
approach.

7.4.1 Preliminaries
Rerank Multi-stage ranking architectures can provide a balance between model
complexity and search latency by subsequent stages that re-rank the set of candidates
that is passed. The initial retrieval stage uses traditional lexical methods over the whole
corpus C. In detail, it produces a candidate set C0 by treating the given question q as a
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“bag of words” and ranking the passages using a standard inverted index. The next stage
is a re-ranking stage that estimates the relevance of each candidate passage pi ↔ C0 to
the question q. For this purpose, it employs a pointwise re-ranker, which is a BERT
model used as a binary relevance classifier.

Dense Passage Retrieval In contrast to term-based retrieval that matches sparse
vectors, dense retrieval matches dense vector representations. It uses encoders (e.g.,
BERT) to map q and p into dense vectors EQ(q) and EP (p), respectively, and computes
their similarity:

sim(q, p) = EQ(q)TEP (p).

At training time, given a question q, a relevant passage p
+, and a set of irrelevant

passages {p
→
1 , p

→
2 , . . . , p

→
m}, the model learns to rank p

+ higher via the optimization of
the negative log-likelihood of the relevant passage. At inference time, passages can be
efficiently retrieved via approximate nearest neighbor search over the maximum inner
product with the question.

7.4.2 Hybrid retrieval
Our system solves the multi-hop QA problem in an iterative fashion. In detail, the
retrieval of a passage at hop t is conditioned on the previously retrieved passages (up to
t → 1) and the given question:

P (P|q) =
n∏

t=1

(qt|q, pt1 , . . . , pt→1).

For the retrieval of the passage at t = 1 we condition only on q and we rely on the
abovementioned Rerank system. For the subsequent retrieval steps, we rely on DPR. We
build a new representation for the question based on the previously retrieved passages
and the initial question and use this new representation to retrieve passages. Specifically,
we concatenate the question and the previously retrieved passages and feed them to
DPR.

7.5 Experimental Setup
In this section, we describe the dataset used in our experiments, the metrics we use to
answer our research questions and the models we compare against.

7.5.1 Dataset
For our experiments we focus on the HotpotQA dataset and particularly the full-wiki
setting [179]. HotpotQA is a large-scale 2-hop QA dataset where in contrast with
other multi-hop QA datasets [151], questions are not limited to knowledge graphs,
but instead answers to questions must be found in the context of the entire Wikipedia.
Questions in HotpotQA fall into one of the following categories: bridge or comparison.
In bridge questions, the bridge entity that connects the two relevant passages is missing,
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Table 7.1: Dataset statistics.

Split Type # Samples %

Train Bridge 72,991 80.7
Comparison 17,456 19.3
All 90,447 100.0

Dev Bridge 5,918 79.9
Comparison 1,487 20.1
All 7,405 100.0

while in comparison questions the main two entities (of the two relevant passages) are
both mentioned and compared. For instance, “When did the show that Skeet Ulrich is
currently starring in premiere?” is a bridge question where the bridge entity “Riverdale
(2017 TV series)” is missing. On the other hand, “Which has smaller flowers, Campsis
or Kalmiopsis?” is a comparison question. Table 7.1 provides the dataset statistics.
We use the train split for training our supervised models and report results on the
development set.

7.5.2 Metrics
Following previous work [175, 179], we report passage Exact Match (EM) to measure
the overall retrieval performance. Exact Match is a metric that evaluates whether both of
the ground-truth passages for each question are included in the retrieved passages (then
EM = 1 otherwise EM = 0). Note that metrics such as EM and F1 w.r.t. a question’s
answer (Ans) and supporting facts on sentence-level (Sup) do not fit in our experimental
setup since we focus on the retrieval part of the pipeline and not on the reading. We
also report on Recall (R) and Mean Reciprocal Rank (MRR) for the per-hop retrieval
evaluation.

7.5.3 Models
In this section, we describe the models we experiment with.

Single-hop models

Given a question, single-hop models retrieve a ranked list of passages. Thus, they
are not aware of the multi-hop nature of the task. We experiment with the following
single-hop models:

• BM25 is a standard lexical retrieval model. We use the default Anserini parame-
ters [177].

• Rerank is a standard two-stage retrieve-and-rerank model that first retrieves passages
with BM25 and then uses BERT to rerank the top-k passages [115]. The BERT (base)
classifier was trained with a point-wise loss [115]. It was fine-tuned on the train split
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of HotpotQA for 2 epochs. Training took 5 hours with batch size of 8 using a single
12GB GPU. We experimented with k = 100 and k = 1000, and found that k = 100
results in a better reranking performance at the top positions.

• DPR is a dense passage retrieval model for simple questions [73]. Given a question q,
a relevant passage p

+ and a set of irrelevant passages {p
→
1 , p

→
2 , . . . , p

→
m}, the model

learns to rank p
+ higher via the optimization of the negative log-likelihood of the

relevant passage. To train DPR on HotpotQA, a multi-hop QA dataset, we follow the
procedure described in [175]. This model was trained for 25 epochs (↓2 days) on a
single 12GB GPU, using a RoBERTa-based encoder.

Multi-hop models

These models are aware of the multi-hop nature of the task. They recursively retrieve
new information at each hop by conditioning the question on information retrieved on
previous hops [175]. In practice, at each hop t the question q and the passage retrieved
in the previous hop pt→1 get encoded as the new query qt = h(q, pt→1), where h(·) is
the question encoder, to retrieve the next relevant passage; when t = 1 then we have just
the question. Differently from single-hop models, at inference time, given a question,
beam search is used to obtain the top-k passage pair candidates. The candidates to beam
search at each hop are generated by a similarity function using the query representation
at hop t, and the beams are scored by the sum of the individual similarity scores. We
experiment with the following multi-hop models:

• MDR is a state-of-the-art dense retriever for multi-hop questions [175]. It extends
DPR in an iterative fashion by encoding the question and passages retrieved in
previous hops as the new query to retrieve the next relevant passages. This model
was trained for 25 epochs (↓3 days) on a single 12GB GPU, using a RoBERTa-based
encoder, without the memory bank mechanism [172]. The memory bank mechanism
is dropped since it is very expensive to compute and its contribution to retrieval
performance is limited.

• MDR (full) is MDR with the additional memory bank mechanism, trained for 50
epochs on 8↗32GB GPUs by Xiong et al. [175].

• Rerank + DPR2 is a hybrid model we propose in this chapter. Specifically, for the
first hop we rely on the BERT-based re-ranking model described in Section 7.5.3
(Rerank), while for the second hop we train a DPR only on second hop questions
(DPR2). To train the latter, we build a variation of HotpotQA where the question
gets concatenated with the ground truth passage of the first hop, and the second hop
ground truth passage is the only relevant passage to be retrieved. DPR2 was trained
for 25 epochs (↓1 day) on a single 12GB GPU, using a RoBERTa-based encoder.

7.6 Results
In this section, we present our experimental results that answer our research questions.
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Table 7.2: Overall retrieval performance. In the first group we show single-hop models,
while in the second group we show multi-hop models.

Model EM@2 EM@10 EM@20

BM25 0.127 0.320 0.395
Rerank 0.314 0.476 0.517
DPR 0.116 0.275 0.336

MDR 0.440 0.581 0.619
Rerank+DPR2 0.599 0.732 0.762
MDR (full) 0.677 0.772 0.793

7.6.1 Overall performance

Here we aim to answer RQ6.1 by comparing the retrieval performance of the models
we consider. In Table 7.2, we observe that the single-hop models perform much worse
than the multi-hop models. This is expected since single-hop models are not aware of
the multi-hop nature of the task.

As for the multi-hop models, we observe that MDR (full) achieves the best per-
formance at the higher positions in the ranking. It is important to underline here that
MDR (full) uses considerably more resources than Rerank+DPR2 and MDR. The latter
two use relatively limited computational resources and a comparison between them is
more fair than comparing against MDR (full) (see Section 7.5.3).2 We observe that
our Rerank+DPR2 outperforms MDR on all metrics while it is also competitive against
MDR (full), especially w.r.t. EM@10 and EM@20. This is due to the fact that often
questions and their relevant passages are not only semantically related, but also have
high lexical overlap. This is also highlighted by Karpukhin et al. [73], who reported
that dense retrieval has performance issues when the question has high lexical overlap
with the passages.

7.6.2 Performance for limited resources

In this section, we answer RQ6.2 by comparing the retrieval performance of MDR and
DPR as provided in [175], against the same models trained with limited computational
resources.

In Table 7.3 we see that performance drops significantly as we limit resources for
both DPR and MDR. This is a result of the training scheme that is used in [73] and [175].
More specifically, DPR and MDR rely on using in-batch negatives both for decreasing
the training time (positive passages of a question are reused as negative passages for the
rest of the questions in the batch, instead of having to sample new ones beforehand), and
for improving accuracy (bigger batch size will produce more in-batch negatives, thus
increasing the number of training samples). When we have limited resources, training

2Even though the memory bank mechanism is omitted from MDR, the comparison of Rerank+DPR2 and
MDR remains fair since this particular mechanism can also be potentially applied to Rerank+DPR2 (in the
DPR part).
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Table 7.3: Analysis of how computational resources affect the performance of MDR
and DPR. The MDR (full) configuration is provided by [175]. A different beam size
can slightly change the results from what was originally reported. MDR and DPR, both
trained on 8 GPUs, are not available and therefore we report the results as they were
reported in [175].

Model Encoder # GPU # Epochs Batch # Gradient
acc. steps EM@2 EM@10 EM@20

MDR (full) RoBERTa 8 ↗ 32GB 50 150 1 0.677 0.772 0.793

MDR RoBERTa 8 ↗ 32GB 50 150 1 0.637 0.742 0.772
RoBERTa 4 ↗ 24GB 50 28 1 0.606 0.711 0.735
RoBERTa 4 ↗ 24GB 25 28 1 0.550 0.668 0.698
RoBERTa 4 ↗ 24GB 20 28 1 0.537 0.659 0.687
RoBERTa 1 ↗ 12GB 25 4 32 0.440 0.581 0.619
BERT 1 ↗ 12GB 25 4 32 0.421 0.560 0.597

DPR RoBERTa 8 ↗ 32GB 50 256 1 0.252 0.454 0.521
RoBERTa 4 ↗ 24GB 25 128 1 0.223 0.427 0.487
RoBERTa 1 ↗ 12GB 25 8 32 0.116 0.275 0.336

time gets significantly longer (since we use fewer GPUs), and therefore we have to
compromise for fewer training epochs while the batch size is restricted by the GPU
memory size. For instance, training for 50 epochs takes ↓1 day on 8↗32GB GPUs,
while it takes ↓6 days on a single 12GB GPU.

In addition, when comparing MDR trained on 4↗24GB GPUs against MDR trained
on a single 12GB GPU, for 25 epochs each, we observe that even though we can
simulate bigger batch sizes by using gradient accumulation,3 we do not observe an
increase in performance. This is a consequence of the fact that the number of in-batch
negatives is limited by the real batch size. Note that we also observe a similar trend for
DPR.

In summary, computational resources are of vital importance for multi-hop dense
retrieval models. Hence, in the case where only limited resources are available, following
a hybrid (lexical and dense) approach such as our proposed Rerank+DPR2 seems to be
a good choice. As we showed in Tables 7.2 and 7.3, Rerank+DPR2 (trained on a single
GPU) performs similarly to MDR trained on 4 GPUs and is competitive against MDR
trained on 8 GPUs.

3Gradient accumulation is a mechanism that accumulates the gradients and the losses over consecutive
batches for a specific number of steps (without updating the parameters), and then updates the parameters
based on the cumulative gradient [109].
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7.6. Results

7.6.3 Performance per hop
Previous work reports retrieval performance only at the end of the retrieval pipeline [114,
175]. However, since we are dealing with questions that require multi-hop reasoning, it
is important to get insights into how the models under comparison behave at each hop.

In this section, we aim to answer RQ6.3 by comparing the models based on their
performance per hop. We follow Xiong et al. [175] to derive an order for the passages:
the passage that includes the answer is considered to be the second passage. In order
to measure the performance on the first hop, we take as input the question only and
measure the model’s ability to retrieve the two relevant passages. Specifically for MDR,
which is a multi-hop model, we stop on the first iteration, before the use of beam
search. In order to measure the performance on the second hop (independently of the
performance of the first hop), we take as input both the question and the ground-truth
passage of the first hop and measure the model’s ability to retrieve the passage of the
second hop.

First hop performance

Table 7.6 shows the first-hop performance of Rerank, DPR, and MDR. Rerank, which
uses BM25 for the initial retrieval step, outperforms both MDR and DPR, which are
purely dense models. This validates what we found in Section 7.6.1: lexical matching
is important for this task. This is because questions may have large lexical overlap
with either both relevant passages in the case of comparison questions or at least one
passage in the case of bridge question (since the bridge entity is missing from the
question). Table 7.6 also highlights that many samples in HotpotQA may not require
multi-hop retrieval, since both passages can often be retrieved using the original question
only: both relevant passages can be retrieved using the original question at top-10 for
the majority of the comparison questions by the MDR model (EM@10 = 0.825)
and for almost half of the bridge questions by the Rerank model (EM@10 = 0.418).
The main reason behind this phenomenon are the lexical biases introduced by human
annotators during the construction of the HotpotQA dataset. Specifically, annotators
had to generate a question after being given two passages. The question had to be
answerable by gathering evidence only from these two passages. Therefore, in many
cases, there is a perhaps unrealistically high lexical overlap between the question and
the passages. This can be avoided in the future by following an information-seeking
approach where annotators generate a question for which they do not know the answer
beforehand [23].

In Table 7.6 we also report performance for bridge and comparison questions
separately. We can clearly see a dramatic decrease in performance for the case of
bridge questions, compared to comparison questions, for all three models. The high
performance of all the models for comparison questions is due to the fact that there is
high lexical overlap and a strong semantic relationship between the question and both
relevant passages. In contrast, for bridge questions where one of the relevant passages
is both lexically and semantically distant from the initial question, we observe lower
performance; especially for EM.
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7.6. Results

Table 7.7: Performance on the 2nd hop. In this experiment, R = EM since there is
only one relevant passage to retrieve in the 2nd hop.

All Bridge Comparison

Model R@2 R@10 MRR R@2 R@10 MRR R@2 R@10 MRR

Rerank 0.555 0.583 0.548 0.615 0.649 0.606 0.317 0.319 0.315
DPR2 0.817 0.899 0.792 0.783 0.876 0.753 0.956 0.991 0.948
MDR 0.770 0.844 0.761 0.718 0.805 0.709 0.975 0.997 0.970

Second-hop performance

In Table 7.7 we see that DPR2 outperforms MDR for the second hop. This is an outcome
of training the former as a single-hop retriever but for the second hop; as mentioned in
Section 7.5.3, given a question concatenated with the first relevant passage, the goal
is to retrieve the second relevant passage. In contrast, MDR is trained for multi-hop
retrieval. This shows that MDR still has room for improvement when it comes to
retrieving the second relevant passage given the first relevant passage. Finally, Rerank
shows the worst results, mainly because of the poor performance of BM25 when given
the concatenation of a question and a passage as the query. Further analysis showed
that one of the main reasons behind the low performance of Rerank on the comparison
questions in the second hop is the low recall of the initial retrieval step (R@1000 for
BM25 is only 0.604).

7.6.4 Error analysis
We perform a qualitative analysis to gain further insights into where the models succeed
or fail. We compare specific cases where our hybrid model (Rerank+DPR2) retrieves
both relevant passages successfully while MDR fails and vice versa. For our analysis
we focus on bridge questions since comparison questions are more straightforward to
retrieve.

Table 7.4 shows two typical examples of questions for which Rerank+DPR2 retrieves
both relevant passages at the top positions while MDR fails to do so. When there is
a high lexical overlap between the question and a relevant passage, our hybrid model
can capture this exact n-gram match and improve the performance. In contrast, fully
dense models seem incapable of capturing this. In particular, this lexical overlap can be
between the question and both relevant passages for the case of comparison questions
or between the question and the first relevant passage for bridge questions.

In bridge questions, if the lexical overlap is between the question and the second
passage then our hybrid model favors passages in which this phrase appears, and
therefore it retrieves an irrelevant first passage; leading to an irrelevant second passage
as well. MDR on the other hand manages to retrieve both relevant passages at the top
positions. Those are the cases where the lexical overlap is used in the given question in
order to disambiguate the final answer. Examples can be found in Table 7.5.

In the first example, “Golden Globe Award” is used in the given question in order to
disambiguate the final answer, since in the film “Little Fugitive” there is more than one
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actor involved. Therefore, “Golden Globe Award” must be used to assist the retrieval of
the second passage. Since Rerank+DPR2 builds on top of BM25, it favors passages in
which this phrase appears, and therefore it retrieves an irrelevant first passage leading to
an irrelevant second passage as well. On the other hand, MDR manages to retrieve both
relevant passages at the top positions. Similarly, for the second example, “American
professional poker player” is used to specify the actor that starred in the “Extraction”
movie, hence supporting the retrieval of the second relevant passage.

7.7 Conclusion
In this chapter, we provided insights into the performance of state-of-the-art dense
passage retrieval for multi-hop questions. We showed that Rerank+DPR2 (a hybrid
model we proposed that combines sparse and dense retrieval) outperforms MDR (the
state-of-the-art multi-hop dense passage retrieval model) in the low resource setting,
and it is competitive with MDR in the setting where MDR uses considerably more
computational resources. In addition, we provided insights into how single-hop and
multi-hop models perform in the first and second hop separately. In the first hop, we
found that models that rely on lexical matching for the initial retrieval step outperform
purely dense models. In the second hop, we found that MDR is outperformed by DPR
when the latter is trained to only retrieve the relevant passage in the second hop only
(DPR2). Finally, we highlighted that the performance of fully dense retrieval models is
hurt when using limited computational resources.

For future work, we plan to build on our insights to improve the performance of
multi-hop models by combining the strengths of lexical and dense retrieval. Also,
we aim to develop less computationally expensive multi-hop retrieval models. DPR,
MDR, and our hybrid approach (for the second hop) all use batch-wise contrastive loss.
Consequently, these models could benefit from a larger batch size with more in-batch
negatives. Thus, in resource-constrained environments, it may be advantageous not to
rely on batch-wise contrastive loss during training; which can potentially lead to better
performance when training with small batches compared to a batch-wise contrastive loss.
Future research could explore methods to accomplish this, for instance, by employing
knowledge distillation and a pairwise loss function like Margin-MSE [63]. Finally, as
we notice from our analysis of the per-hop performance, the retrievers’ performance
varies depending on the type of question. Therefore, a future direction could explore
how to build retrieval models that are robust across different question types.

In this chapter, we studied multi-hop retrieval under a low computational resource
scenario, intending to help search engines handle complex queries. Next, in Chapter 8,
we address a different research theme: improving domain adaptation in KGQA with
neural retrieval to assist search engines in accessing structured knowledge.

7.8 Reflections
Since the research we presented in this chapter was conducted, several advancements
have been made in the domain, both in terms of efficient training of dense retrievers and
the application of dense retrievers in multi-hop retrieval.
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Previous work on representation learning has demonstrated that learning high-quality
representations benefits from training with a batch contrastive loss and a large number
of negatives [18, 73, 75]. In practice, in-batch negative training is a time-efficient way to
reuse the negative examples already in the batch rather than creating new ones. However,
this method still conditions the loss of each example on all batch examples and requires
fitting the entire large batch into GPU memory. Gao et al. [45] proposed a gradient
caching technique that removes in-batch data dependency in encoder optimization. The
proposed method produced the same gradient update as training with a large batch.
The authors successfully applied their method to train an effective dense retriever for
traditional ad-hoc retrieval (i.e., single-hop). That said, this approach can be applied to
multi-hop retrieval in order to efficiently learn an effective, fully dense retriever under a
limited computational resource setup.

Inspired by the advances in pre-trained large language models, recent work in
multi-hop retrieval has proposed to formulate the problem in a fully generative way.
In particular, Lee et al. [80] proposed an encoder-decoder model that performs multi-
hop retrieval by simply generating the entire text sequences of the retrieval targets
(e.g., document). In contrast to the fully dense retrieval approaches [175] where the
documents and the questions interact in the L2 or inner product space (i.e., the document
and the question encoders map the documents and the questions to a common space
and perform a nearest neighbor search), in generative multi-hop retrieval, they interact
in the language model’s parametric space.
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Part IV

Improving Domain Adaptation
in KGQA with Neural Retrieval
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8
Improving Relation Prediction with
Synthetic Data and Neural Retrieval

In the last part of this thesis, we study how search engines can utilize knowledge graphs
(KGs) in order to answer queries. We set our study in the context of question answering
(QA) over KGs. In particular, we focus on a setting where new domains (i.e., subgraphs)
covering unseen–and rather different to existing domains–relations and entities are
added to the KG. For these new domains, there are no available query-answer pairs
during training time.

QA systems over KGs commonly take the form of a pipeline consisting of entity
mention detection, entity candidate generation, relation prediction, and answer selec-
tion. Preliminary experiments suggested that relation prediction does not scale to new
domains out-of-the-box. Therefore, in this chapter, we aim to answer RQ7: Can neural
retrieval combined with data augmentation increase the robustness of relation prediction
in a KGQA system over previously unseen domains?

8.1 Introduction
Large-scale structured knowledge graphs (KGs) such as Freebase [10] and Wiki-
data [119] store real-world facts in the form of subject–relation–object triples. KGs
are being increasingly used in a variety of tasks that aim to improve user experi-
ence [12]. One of the most prominent tasks is knowledge graph simple question
answering (KGSQA), which aims to answer natural language questions by retrieving
KG facts [181]. In practice, many questions can be interpreted by a single fact in the
KG. This has motivated the KGSQA task [11, 110, 120], which is the focus of this
chapter. In KGSQA, given a simple question, e.g., “who directed the godfather?”, the
system should interpret the question and arrive at a single KG fact that answers it: (The
Godfather (film), film.film.directed by, Francis Ford Coppola).

KGSQA systems are trained on manually annotated datasets that consist of question-
fact pairs. In practice, the applicability of such systems in the real-world is limited by
two factors: (i) modern KGs store millions of facts that cover thousands of different

This chapter was published as G. Sidiropoulos, N. Voskarides, and E. Kanoulas. Knowledge graph simple
question answering for unseen domains. In Conference on Automated Knowledge Base Construction, AKBC,
2020.
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relations, but KGSQA training datasets can only cover a small subset of the existing
relations in the KG [37], and (ii) KGs are dynamic, i.e., they are updated with new
domains that cover new relations [119]. Solving (i) and (ii) by exhaustively gathering
question-fact pair annotations would be prohibitively laborious, therefore we need to
rely on automatic methods.

Motivated by the above, in this chapter, we study the KGSQA task in a setting
where we are interested in answering questions about a new, unseen domain that covers
relations, for which we have instances in the KG, but we have not seen any question-fact
pair during training. We model this as a domain adaptation task [98, 117] and propose a
data-centric domain adaptation framework to address it. Data-centric domain adaptation
approaches focus on transforming or augmenting the training data, instead of designing
specialized architectures and training objectives as model-centric domain adaptation
approaches do [20]. Our framework consists of: (a) a KGSQA system that can handle
the unseen domain, and (b) a novel method that generates training data for the unseen
test domain.

The KGSQA system we introduce performs mention detection, entity candidate
generation, and relation prediction on the question, and finally selects the fact that
answers the question from the KG. Our preliminary experiments showcased that even
though mention detection, entity candidate generation, and answer selection generalize
well on new domains, relation prediction does not. To improve the performance of
relation prediction on questions that cover relations of the unseen domain, we (i)
treat relation prediction as a retrieval task and employ a neural retriever model and
(ii) automatically generate synthetic questions from KG facts (i.e., knowledge graph
question generation – QG) of the unseen domain to use for training. The resulting
synthetic question-fact pairs are used to train the KGSQA system for the unseen domain.
We find that the effectiveness of QG for KGSQA can be restricted not only by the
quality of the generated questions, but also by the lexical variety of the questions. This is
because users ask questions underlying the same relation using different lexicalizations
(e.g. “who is the author of X”, “who wrote X”). To address this, we use distant
supervision to extract a set of keywords for each relation of the unseen domain and
incorporate those in the question generation method.

We break down RQ7 into three research sub-questions. In particular, we aim to
answer:

RQ7.1 How does our method for generating synthetic training data for the unseen
domain perform on RP compared to a set of baseline methods?

RQ7.2 How does our full method perform on KGSQA for unseen domains compared
to state-of-the-art zero-shot data-centric methods?

RQ7.3 How does our data-centric domain adaptation method compare to a state-of-the-
art model-centric method on RP?

Our main contributions are the following: (i) we introduce a new setting for the
KGSQA task, over new, previously unseen domains, (ii) we propose a data-centric
domain adaptation framework for KGSQA that is applicable to unseen domains, and
(iii) we use distant supervision to extract a set of keywords that express each relation

106



8.2. Problem Statement

of the unseen domain and incorporate them in QG to generate questions with a larger
variety of relation lexicalizations. We experimentally evaluate our proposed method on
a large-scale KGSQA dataset that we adjust for this task and show that our proposed
method consistently improves performance over zero-shot baselines and is robust across
domains.1

8.2 Problem Statement
Let E denote the set of entities and R the set of relations. A KG K is a set of facts
(es, r, eo), where es, eo ↔ E are the subject and object entities respectively, and r ↔ R

is the relation between them. Each relation r has a unique textual label rl and falls
under a single domain D. For instance, music.album.release type and music.artist.genre
fall under the Music domain. Simple questions mention a single entity and express a
single relation. For instance, the question “who directed the godfather?” mentions the
entity “The Godfather” and expresses the relation film.film.directed by. Given a simple
question q that consists of a sequence of tokens t1, t2, . . . , tT , the KGSQA task is to
retrieve a fact (ês, r̂, êo), where (ês, r̂) accurately interprets q (i.e., ês is mentioned in q

and r̂ is expressed in q) while êo provides the answer to q.
In our setting, we aim to build a KGSQA system that can perform well on a

previously unseen domain. A domain is “unseen” when facts that cover relations of
that domain do exist in K, but gold-standard question-fact pairs of that domain do not
appear in the training data. This setting is an instance of domain adaptation, where a
model is trained on data S , drawn according to a source distribution, and tested on data
T coming from a different target distribution. Domain adaptation over KG domains is
more challenging compared to domain adaptation over single KG relations [171, 184],
because it is less likely for relations with similar lexicalizations to appear in the training
set.

8.3 KGSQA System
In this section, we detail our KGSQA system. In Section 8.4, we will describe how
we generate synthetic training data to make this system applicable to unseen domains.
Following the current state-of-the-art on KGSQA [120], we split the task into four
sub-tasks, namely, entity mention detection (MD), entity candidate generation (CG),
relation prediction (RP), and answer selection (AS). The skeleton of our KGSQA
system generally follows previous work, and we modify the MD and RP architectures.

Mention Detection (MD)
Given the question q, MD outputs a single entity mention m in q, where m is a sub-
sequence of tokens in q. We model this problem as sequence tagging, where given a
sequence of tokens, the task is to assign an output class for each token [67, 79]. In our

1Our code is available at https://github.com/GSidiropoulos/kgsqa_for_unseen_
domains.
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case, the output classes are entity (E) and context (C). For instance, the correct output
for the question “who directed the godfather?” is “[C C E E]”. We use a BiLSTM with
residual connections (R-BiLSTM) [58], since it outperformed vanilla RNN, BiRNN,
and a CRF on top of a BiRNN [120] in preliminary experiments.

Candidate Generation (CG)
Given the mention m extracted from the previous step, CG maps m to a set of candidate
entities CS ↘ E. For instance, CG maps the mention “the godfather” to the entities {
The Godfather(film), The Godfather(book). . . }. The CG method we use was proposed
in Türe and Jojic [157].

Briefly, the method pre-builds an inverted index I from n-grams of mentions to
entities, and it looks-up the n-grams of m in I to obtain CS . We pre-built an inverted
index, I , that maps all n-grams (n ↔ {1, 2, 3, . . . , ≃}) of an entity name to the entities
that share the specific name (partially or not), each accompanied by a tf-idf score. Tf-idf
is used to determine the importance of the n-gram to the entity name; the latter acts as
the document while the former as the term. We then produce all the corresponding n-
grams of the mention m obtained from ED, and then search for them in I . Starting from
the highest order n-gram we retrieve entities and append them to the entity candidate
set CS , favoring those with the highest score. If we find an exact match for an entity, we
do not further consider lower-order n-grams, backing off otherwise. Additionally, and
different from [157], we stop searching for entities if the unique entity names within
CS are equal to the length of the mention.

Relation Prediction (RP)
Given the question q and the set of entities Cs extracted in the previous step, RP outputs
a single relation r̂ ↔ R that is expressed in q. Previous work models RP as a large-scale
multi-label classification task where the set of output classes is fixed [120]. In our
domain adaptation scenario, however, we want to be able to predict relations that we
have not seen during training. Therefore, we model RP as a relation retrieval task,
as in [184], and use the textual label rl to represent the relation r (instead of using a
categorical variable). This way we can in principle represent any relation r ↔ R during
inference time. Our architecture is a simpler version of the one presented in the work
by Yu et al. [184], in which the authors formulate a relation both as a sequence and a
categorical variable and use more complex sequence encoders. Below we describe the
architecture we use for RP and how we perform training and inference.

We follow a neural retrieval approach with a dual-encoder architecture consisting
of a question encoder and a relation encoder. The neural encoder EncQ(·) maps any
question to a low-dimensional real-valued vector, and similarly, EncR(·) maps any
relation to a low-dimensional real-valued vector. The similarity between a question and
a relation is computed using a similarity metric on the respective vectors.

Encoding To increase the model’s generalization ability beyond specific entity names,
we first replace the previously detected entity mention m in q with a placeholder
token, for example “who directed SBJ”. To represent a relation r, we use its label rl
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Figure 8.1: Training overview of relation prediction.

(e.g., film.film.directed by). The question and the relation neural encoders encode the
question q and the relation r:

ω(q) = EncQ(q), (8.1)

ω(r) = EncR(rl). (8.2)

Since questions and relations significantly differ grammatically and syntactically, the
two encoders do not share any parameters. In particular, we use two independent
LSTM-based encoders.

At this point, we provide additional information on how the question and relation
representations are obtained. Each question term is mapped to a word embedding, and
subsequently, the word embeddings are fed to an LSTM; embeddings are initialized
with pre-trained word2vec embeddings [104]. The final hidden state of the LSTM ω(q)

is used as the representation of the question. Similarly, for relation, we encode rl with
an LSTM to obtain ω(r).

Training We train our retriever using standard pairwise learning to rank. The rank-
ing function f is calculated as f(q, r) = cos (ω(q)

,ω(r)), where cos(·) is the cosine
similarity. The loss is defined as follows:

L(ϖ) =
∑

r

∑

r↑↑R↑

max(0, µ → f(q, r) + f(q, r↓)), (8.3)

where ϖ are the parameters of the model, µ is a hyperparameter, and R
↓ is the set of

sampled negative relations for a question q. Figure 8.1, visualizes the training process.

Sampling negatives We design a specialized negative sampling method to select R
↓.

With probability P
→
R we uniformly draw a sample from R

→ = {r
↓|r↓ ↔ R ⇐ r

↓ ⇒= r},
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the set of all available relations except the positive relation r. With probability 1 → P
→
R

we draw a random sample from R̂
→ = {r

↓|r↓ ↔ D+
R ⇐ r

↓ ⇒= r}, the set of relations that
are in the same domain as the positive relation r. This way, we expose the model to
conditions it will encounter during inference.

Inference At inference time, given a question q and a set of relations, we score all
question-relation pairs (q, r) with f and select the relation r̂ with the highest score.
Unfortunately, computing a score with respect to all possible relations in R leads to poor
performance when there is no linguistic signal to disambiguate the choice. In order to ad-
dress this issue, we constrain the set of the potential output relations Rc to be the union of
the relations expressed in the facts in which the entities in CS participate [120]. Formally,
we define the target relation classes to be Rc = {r ↔ R|(es, r, eo) ↔ K ⇐ es ↔ CS}.
For example, given the question “who directed the godfather”, the potential relations
are { film.film.directed by, book.written work.author, . . . }. Using the aforementioned
constraint we can safely ignore relations like tv.tv series episode.director by taking into
account that The Godfather does not appear in any tv-related facts.

Answer Selection (AS)

Given the set of entities CS obtained from CG, and the top-ranked relation r̂ obtained
from RP, AS selects a single fact (ês, r̂, êo), where êo answers the question q. The
set of candidate answers may contain more than one fact (e↓s, r̂, e

↓
o), where ⇑e

↓
s ↔ CS .

Since there is no explicit signal on which we can rely to disambiguate the choice of
subject, all the potential answers are equally probable. Therefore, we use a heuristic
based on popularity, introduced by Mohammed et al. [110]: we choose ês to be the
entity that appears the most in the facts in K either as a subject or as an object. Having
ês and r̂ we can retrieve the fact (ês, r̂, êo). For our running example (“who directed the
godfather”), given film.film.directed by (from RP) and entities { The Godfather(film),
The Godfather(book). . . } (from CG) we can select the fact (The Godfather (film),
film.film.directed by, Francis Ford Coppola).

8.4 KGSQA to Unseen Domains Using Question Gen-
eration

Even though all the components of the aforementioned KGSQA system were designed
to work with unseen domains, preliminary experiments demonstrated that RP does not
generalize well to questions originating from unseen domains. This is expected since
RP is a large-scale problem with thousands of relations, making it challenging to model
less frequent or even unknown relations that are expressed with new lexicalizations
[37].

We therefore focus on improving RP for questions originating from unseen domains.
Inspired by the recent success of data-centric domain adaptation in neural machine
translation [20], we perform synthetic question generation from KG facts of the unseen
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domain to generate question-fact pairs for training the RP component (see Section 8.3).2
In the remainder of this section, we briefly describe the base question generation (QG)
model we build upon and how we augment the model to more effectively use textual
evidence and thus better generalize to relations of the unseen domain.

8.4.1 Base model for question generation
Given a fact (es, r, eo) from the target domain, QG aims to generate a synthetic question
q̂. During training, only question-fact pairs from the known domains are used. Our
base model is the state-of-the-art encoder-decoder architecture for QG [37]. It takes as
input the fact (es, r, eo) alongside a set of textual contexts C = {cs, cr, co} on the fact.
Those textual contexts are obtained as follows: cs and co are the types of entities es

and eo respectively, whereas cr is a lexicalization of the relation r obtained by simple
pattern mining on Wikipedia sentences that contain instances of r. For instance, given
the fact (The Queen Is Dead, music.album.genre, Alternative Rock), the textual contexts
are: cs = {“album”}, cr = {“album by”} and co = {“genre”}.

The encoder maps es, r and eo to randomly initialized embeddings and concatenates
those to encode the whole fact. Also, it encodes the text in cs, cr and co separately using
RNN encoders. The decoder is a separate RNN that takes the representation of the fact
and the RNN hidden states of the textual contexts to generate the output question q̂. It
relies on two attention modules: one over the encoded fact and one over the encoded
textual contexts. The decoder generates tokens not only from the output vocabulary but
also from the input (using a copy mechanism) to deal with unseen input tokens.

8.4.2 Using richer textual contexts for question generation
The role of the textual contexts C in the aforementioned base model is critical since it
enables the model to provide new words/phrases that would have been unknown to the
model otherwise [37]. Even though the base model generally generates high-quality
questions, in our task (KGSQA), we aim to generate a larger range of lexicalizations for
a single relation during training in order to generalize better at test time. This is because
users with the same intent may phrase their questions using different lexicalizations
(e.g., “who is the author of X”, “who wrote X”). Thus, in this section, we focus on how
to provide the model with a diverse set of lexicalizations for a relation r instead of a
single one as in the base model, in order to be able to generate a more diverse set of
questions in terms of relation lexicalizations. More precisely, given a relation r, we
extract k keywords that will constitute the relation’s textual context cr. To this end, we
first extract a set of candidate sentences Sr that express a specific relation r between
different pairs of entities. Second, we extract keywords from the set Sr, rank them, and
select the top-k keywords that constitute the set cr. We detail each of these steps below.

Extracting sentences Given a set of facts Fr of relation r between different pairs of
entities, we aim to extract a set of sentences Sr, where each sentence s ↔ Sr expresses

2Note that Dong et al. [36] also performed QG for improving the overall KGSQA performance. However,
their model is not applicable to our domain adaptation scenario since it relies on modifying existing questions
and all domains were predefined.
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Table 8.1: Examples of textual contexts extracted by our keyword extraction approach.

Relation Textual Context

music.artist.label records, artists, album, released, label, signed, band
film.film.directed by film, director, directed, films, short, directing, producer
people.deceased person.place of death died, death, deaths, born, age, people, male, actors

a single fact (es, r, eo) in Fr [162]. For this, for each fact (es, r, eo) in Fr, we need to
(a) extract a set of candidate sentences S that might express (es, r, eo) and (b) select the
sentence that best expresses the relation. For (a), we collect the set of sentences S using
distant supervision, similarly to [106]: S consists of sentences that mention eo in the
Wikipedia article of es and sentences that mention es in the Wikipedia article of eo. For
(b), we score each sentence s ↔ S w.r.t. the label rl of the relation r using the cosine
similarity cos(e(s), e(rl)), where cos(·) is the cosine similarity and e(x) is calculated
as e(x) = (1/|x|)

∑
t↑x wt, where wt is the embedding of word t. Finally, we take the

sentence s
↓ with the highest score and add it to the set Sr.

Extracting keywords After extracting the set of sentences Sr, we aim to extract the
set of keywords cr. For this, we treat Sr as a single document and score each word t

that appears in Sr using tf-idf, score(t) = tf(t, Sr) · idf(t, SR), where SR is the union
of all Sr↑ , r

↓ ↔ R. The top-k scoring words constitute the set of keywords cr. Table 8.1
depicts example keywords generated by the procedure described above.

The keyword extraction approach described above is conceptually simple yet we later
show that it significantly improves upon the base model when applied to KGSQA.

8.5 Experimental Setup
In this section, we discuss how we design the experiments to answer our research
questions.

8.5.1 Dataset and metrics
Dataset In our experiments we use the SimpleQuestions dataset, which is an estab-
lished benchmark for studying KGSQA [11]. The dataset consists of 108,442 questions
written in natural language by human annotators, paired with the ground truth fact
that answers the question. The ground truth facts originate from Freebase [10]. The
dataset covers 89,066 unique entities, 1,837 unique relations and 82 unique domains. In
our setup, we leave one domain out to simulate a new, previously unseen domain, and
train on the rest. We choose six challenging domains as target domains: Film, Book,
Location, Astronomy, Education and Fictional Universe; the first three are among the
largest domains and the last three are medium-sized. The aforementioned domains
are challenging because they have very low overlap in terms of relation lexicalization
w.r.t. the rest of the domains used as source domains. The training data consists of the
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question-fact pairs that appear in the source domains, augmented with synthetically
generated data of the target/unseen domain. In practice, we replace all questions from
the target domain that initially appear in the full training set with their corresponding
synthetically generated questions.3 As a source of text documents for the textual context
collection (see Section 8.4.2), we use Wikipedia articles augmented with dense entity
links provided by DAWT [147].

Evaluation metrics We run the experiments three times and report the median (only
marginal and not significant differences were found among different runs) [110]. In
contrast to the classic KGSQA where the task is to retrieve a single entity, it is standard
practice when using the SimpleQuestions dataset to treat the problem as question
interpretation [120]. More specifically, the objective is to rewrite the natural language
question in the form of a subject-relation pair. We evaluate our overall approach in
terms of top-1 accuracy, i.e., whether the retrieved subject-relation pair matches the
ground truth. We measure accuracy both at a macro- (domains) and at a micro-level
(samples). Statistical significance is determined using a paired two-sided t-test.

8.5.2 Baselines
Question generation baselines To answer RQ7.1, we examine the impact–in RP
performance–of different methods for generating synthetic questions. To test the dif-
ferent methods in a fair setting, we keep the KGSQA system unchanged and alter the
way of generating synthetic questions. We compare the RP performance on the unseen
domain given the following ways of generating synthetic data of the unseen domain:

• No synthetic data: there are no questions for the unseen domain.

• Wiki-raw-sentences: uses the raw Wikipedia sentence that expresses the ground
truth fact that answers the question (automatically extracted using the procedure
in Section 8.4.2).

• QG: the state-of-the-art QG method proposed by Elsahar et al. [37] (see Section
8.4.1).

Relation prediction baselines To answer RQ7.2, we replace our RP component with
two state-of-the-art RP models:

• BiLSTM: follows a traditional approach for RP, treating the problem as a classifi-
cation task and employing a BiLSTM to classify relations [120].

• HR-BiLSTM: treats RP as a retrieval problem and follows a neural retriever ap-
proach where the encoder is a hierarchical residual BiLSTM (HR-BiLSTM) [184];
furthermore, it is specifically designed to deal with unseen or less frequently seen
relations.

3One may hypothesize that since entities can appear in multiple domains (e.g. actors who are also singers),
question generation becomes an unrealistically simple task. However, this is not the case because in our
dataset, the entity overlap between seen and unseen domains is only 4.6%.
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Model-centric baseline To answer RQ7.3, we compare the performance of our data-
centric model on RP against a state-of-the-art model-centric zero-shot approach [171]:
the HR-BiLSTM proposed by Yu et al. [184] with an adversarial adapter combined and
a reconstruction loss. The adapter uses embeddings trained on Freebase and Wikipedia
by JointNRE [54] and learns representations for both seen and unseen relations.

8.5.3 Implementation details
As mentioned in Section 8.3, we employ an R-BiLSTM for MD. Our MD model consists
of 2 hidden layers, 600 hidden units, 0.4 dropout rate, frozen embeddings, and a learning
rate of 10→3. We train for 50 epochs. For RP we use an LSTM-based neural retriever
(see Section 8.3). In detail, we use a 1-layer LSTM for the question and the relation
encoders; consisting of 400 hidden units, a frozen embedding layer, and a learning rate
of 10→3. We train for 10 epochs. During training, we sample 10 negative questions per
question using the procedure described in Section 8.3. We initialize word embeddings
with pre-trained Google News 300-dimensional embeddings [104]. We use the Adam
optimizer [76]. We use a batch size of 300 and 200 for MD and RP, respectively.

For the QG model [37] and the model-centric RP [171] model we compare against,
we use the hyperparameters as presented in their work. Note that for both our method
and the baselines, the hyperparameters were tuned on the validation split of the Simple-
Questions dataset. We keep the parameters fixed for both our method and the baselines
for all source-target domain setups. We set the number of keywords for each relation
k = 10 (Section 8.4.2).

8.6 Results and Discussion
In this section we present and discuss our experimental results. All models under
comparison have all their components fixed, except RP. Therefore, any improvement
observed is due to RP.

Effect of synthetic data on RP (RQ7.1) Here we compare the RP performance of our
method for generating synthetic training data with a set of baselines. For this experiment,
the RP component of the KGSQA system remains unchanged and we only alter the
data it is trained with. Table 8.2 shows the results. We observe that our QG method is
the best-performing one. It significantly outperforms the baseline QG method, which
confirms that our method for generating rich textual contexts for relations (Section 8.4.2)
is beneficial for KGSQA. As expected, using the raw Wikipedia sentence that expresses
the ground truth fact that answers the question as synthetic questions (i.e., Wiki-raw-
sentences) performs better than when not using training data from the target domain at
all but performs much worse than the QG methods. This is expected since Wikipedia
sentences are very different both syntactically and grammatically from the real questions
that the KGSQA system encounters during test time. Next, we investigate how RP
performance varies depending on the number of the target domain questions used to
augment the training set. Figure 8.2 shows the results. First, we observe that, in the low
data regime (less than 100 questions), the gap in performance between training with
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Table 8.2: Relation Prediction accuracy w.r.t. different ways of generating synthetic
training data for the unseen domain. ↭ indicates a significant increase in performance
compared to the top performing baseline (p < 0.01).

Synthetic
training data

Macro-avg.
Accuracy (%)

Micro-avg.
Accuracy (%)

- 30.21 29.06
Wiki-raw-sentences 37.89 36.51
QG [37] 67.52 69.78
QG (Ours) 69.86↫ 70.95 ↫

0 100 200 300 400 500 600 700 800

Number of training questions for each target domain.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ac

ro
-a

vg
.

A
cc

u
ra

cy

Gold all

Gold

Synthetic all

Synthetic

Figure 8.2: RP macro-accuracy when varying the number of target domain questions
used to augment the training set. Gold refers to the gold standard questions and synthetic
refers to the automatically generated questions. Gold all (Synthetic all) refers to the full
set of training gold (synthetic) questions. The training set size of the smallest domain is
800, thus we report performance up to that point.

gold or synthetic questions is small. This is encouraging for applying our framework
on domains in the long tail. As the number of questions increases, the performance for
both gold and synthetic increase, however the gap between them increases, which is
expected.

Overall KGSQA performance for data-centric methods (RQ7.2) Next, we compare
our full framework to variations that use state-of-the-art RP models. Table 8.3 shows
the results. We observe that our full method (second to last row) improves over all
the baselines and significantly outperforms the best-performing baseline. As expected,
we see that even though our full method has strong generalization ability for unseen
domains, there is a gap in performance when using the automatically generated synthetic
questions (second to last row) or the human-generated questions (last row). This gap
suggests that QG has room for improvement.

Next, we test the systems under comparison in terms of generalization ability across
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Figure 8.3: End-to-end accuracy on the KGSQA task per domain.
Table 8.3: End-to-end accuracy on the KGSQA task. ↫ indicates a significant increase
in performance compared to the top-performing baseline (p < 0.01).

Synthetic
training data

Relation
Prediction (RP)

Macro-avg.
Accuracy (%)

Micro-avg.
Accuracy (%)

QG [37]
BiLSTM [120] 55.49 55.11
HR-BiLSTM [184] 60.20 62.77
Ours 63.90 65.18

QG (Ours) Ours 66.49↫ 66.64↫

Gold Questions Ours 84.56 82.87

domains. Figure 8.3 shows the results. First, we observe that our method achieves an
accuracy of at least 60% for all domains, which shows that it is robust across domains.
Also, it outperforms the baselines in all but one domain. In order to gain further insights,
we sampled success and failure cases from the test set. We found that the errors in the
failure cases generally originate from the fact that the model relies on lexicalizations
that are frequent in the seen domains. We show such cases in Table 8.4. Furthermore,
our analysis showed that one way of improving QG is to improve keyword extraction
by collecting a larger set of relevant sentences that express a single relation, possibly
by looking into other sources of text (e.g., news articles). In Table 8.5, the automatic
evaluation results for the synthetic questions generated by our QG model against those
generated by [37] further strengthen our claim. As can be seen from the table, our
model outperforms the baseline, indicating that using a larger set of relevant sentences
for a single relation, can be beneficial to the generated questions.
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Table 8.5: Automatic evaluation of question generation w.r.t. BLEU.

BLEU-1 BLEU-2 BLEU-3 BLEU-4

QG [37] 44.04 28.63 16.50 9.13
QG (Ours) 44.27 29.55 17.73 10.16

Comparison to a model-centric method (RQ7.3) Here, we compare our data-centric
method for domain adaptation to a state-of-the-art model-centric method on RP [171].
In order to perform a fair comparison when testing for RP, we follow their setup (see
Section 5.1 in [171]) and for this particular experiment, we assume that MD and CG
produce the correct output. Our method outperforms their method both on macro-
accuracy (75.54% vs. 75.02%), and micro-accuracy (77.08% vs. 72.17%). Note that
we use randomly initialized embeddings whereas in the work by Wu et al. [171] the
authors use JointNRE relation embeddings trained on Wikipedia and Freebase, which
provides an advantage to their method. Also, note that their method (model-centric) is
orthogonal to ours (data-centric), and therefore, an interesting future work direction
would be to explore how to combine the two methods to improve performance further.

Qualitative error analysis In order to gain insights on how each part of the pipeline
affects the final prediction, we perform an empirical error analysis. We sample 60
examples for which our system provided a wrong answer (10 for each target domain)
and investigate what led to the wrong prediction. Out of these examples, 43 mistakes
were due to RP, 6 due to ED, 5 due to CG, and 6 due to AS. For RP, 22 mistakes
were assigned to conceptually similar relations within the target domain, 15 to similar
relations outside the target domain, and the rest to a common relation outside the target
domain. For ED, 4 mistakes were due to predicting an extra token as part of the entity
mention and 2 were due to missing a token from the entity mention. For CG, 2 mistakes
were mistakes because the gold entity was not part of the mention candidates and 1
was due to an error in the human annotation; the early termination proposed in [157],
is responsible for the remaining mistakes. This analysis confirms that RP remains the
most challenging part of KGSQA. Within RP, the challenge seems to be that there are
relations for which there is a high lexical similarity between the corresponding questions
and also between the relations per se.

KGSQA performance on seen domains Finally, even though the focus of this chapter
is to perform KGSQA on unseen domains and thus we do not aim to improve state-
of-the-art on seen domains, we also test our KGSQA system on the standard split of
the SimpleQuestions dataset. Our model achieves a top-1 accuracy of 77.0%, which is
ranked third among the state-of-the-art methods while having a simpler method than
the two top-performing ones [51, 120]. We provide a thorough comparison w.r.t. the
state-of-the-art on seen domains in Table 8.6.4

4Note that Zhao et al. [192] reported an accuracy of 85.44%. However, they calculate accuracy w.r.t.
the correctness of the object entity, which is not standard when testing on the SimpleQuestions dataset (see
Section 8.5.1). When we calculate accuracy that way, Petrochuk and Zettlemoyer [120] achieves an accuracy
of 91.50% and our method achieves 87.31%.
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Table 8.6: Top-1 KGSQA accuracy on seen domains.

Model Accuracy (%)

Random guess [11] 4.9
Memory NN [11] 62.7
Attn. LSTM [59] 70.9
GRU [95] 71.2
BiGRU-CRF & BiGRU [110] 74.9
CNN & Attn. CNN & BiLSTM-CRF [182] 76.4
HR-BiLSTM & CNN & BiLSTM-CRF [184] 77.0
Ours 77.0
BiLSTM-CRF & BiLSTM [120] 78.1
Solr & TSHCNN [51] 80.0

8.7 Related Work

Methods on the standard KGSQA task are split into those following a pipeline approach–
MD, CG, RP & AS [110, 120, 157] or an end-to-end approach [51, 95]. In our work, we
follow the former approach for solving KGSQA on unseen domains, since we found that
all the components except RP are relatively robust for unseen domains. We leave the
exploration of end-to-end approaches for our task for future work. More related to our
setting, Yu et al. [184] and Wu et al. [171] tackle RP for KGSQA on unseen relations
(instead of whole domains). Both are model-centric domain adaptation approaches,
while ours is data-centric. We experimentally showed that we outperformed both in
the KGSQA setting on unseen domains. Combining model-centric and data-centric
approaches for our task would be an interesting future work direction.

More broadly, our work is also related to cross-domain semantic parsing [60, 149,
185, 190]. In contrast to the aforementioned line of work that maps questions to
executable logical forms, we focus on questions that can be answered with a single KG
fact.

8.8 Conclusion

In this chapter, we proposed a data-centric domain adaptation framework for KGSQA
that is applicable to unseen domains. We put most of our efforts into robustifying
the RP component for questions originating from the unseen domain with the least
generalization ability. To this extent, we proposed an RP method that combines (i)
neural retrieval with (ii) data augmentation–to generate synthetic training data for the
unseen domains. Concerning the generation of synthetic questions, we further proposed
a keyword extraction method that, when integrated into our QG model, allows it to
generate questions with various lexicalizations for the same underlying relation, thus
better resembling the variety of real user questions. Our experimental results on the
SimpleQuestions dataset show that our proposed framework significantly outperforms
state-of-the-art zero-shot baselines, and is robust across different domains.
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For our data-centric RP approach, we mainly focused on generating better synthetic
questions. Although our simple neural retriever for RP can perform well in new domains,
our method would greatly benefit from using a more advanced model. Therefore, a
potential future direction is to explore a combination of model-centric and data-centric
approaches for robust RP. On the other end of the spectrum, the variety of lexicalizations
in the synthetic questions is essential for training a model that can be more robust on
questions from the new domains. We found that there is room for further improving
QG, particularly for KGSQA, which is a promising direction for future work.

In this chapter, we focused on improving domain adaptation in KGQA—with
neural retrieval and data augmentation—to assist search engines in accessing structured
knowledge. This was the final research chapter of the thesis. In the next chapter, we
will summarize our main findings and formulate directions for future work.

8.9 Reflections

Since the research we presented in this chapter was conducted, major changes in the
fields of NLP and IR have directly or indirectly impacted our work. In this section, we
discuss advances regarding the sub-tasks of relation prediction and question generation,
as well as the task of zero-shot KGQA.

In this chapter, we followed an LSTM-based approach for relation prediction.
However, nowadays, with the advances in pre-trained large language models (e.g.,
BERT [32]) and training methodologies (e.g., batch contrastive learning and knowledge
distillation), there is a plethora of effective first-stage neural retrieval and neural re-
ranking models [64, 73, 74]. These models could be used for relation prediction and
(potentially) lead to better results.

Similarly, the base model we use for question generation is an RNN-based encoder-
decoder model with attention and delexicalization [37]. In recent years, pre-trained
language models have increasingly been successfully applied to generate questions
from KGs [49, 53, 173]. For instance, Han et al. [53] adapted BART [84] for question
generation from RDF input and achieved higher-quality synthetic questions (in terms
of BLEU score). Furthermore, recent works on question generation have explicitly
focused on improving the lexicalization variety in the generated questions [50].

Finally, over the past years, KGQA frameworks designed explicitly to generalize
to unseen domains have been proposed. An example is the work by Mckenna and Sen
[102]. The authors proposed an end-to-end KGQA model–which follows an encoder-
decoder architecture and uses differentiable KG [26]–that can handle new relations and
entities at test time without retraining.

Appendix 8.A

In this chapter, we used deep neural networks, such as LSTMs, as the backbone of
our models. However, we can use more advanced models such as BERT. We tried
to investigate if using BERT could result in performance gains. To do so, we ran a
preliminary experiment where we replaced the relation prediction (RP) module–the
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Table 8.7: Comparison of relation prediction accuracy using our LSTM-based neural
retriever vs. a BERT-based ranker.

Setting Model Macro-avg.
Accuracy (%)

Micro-avg.
Accuracy (%)

zero-shot Ours 30.21 29.06
BERT 47.62 45.29

synthetic Ours 69.86 70.95
BERT 59.08 59.57

gold Ours 87.85 88.76
BERT 81.92 84.90

most important component of the pipeline–with a BERT-based ranker. The input to
BERT is the question and the relation separated by [SEP] (e.g. [CLS] who wrote pulp
fiction [SEP] film film written by [SEP]), and we predict a binary label using a linear
layer on top of the [CLS] token.

We explored what we could achieve with a BERT architecture in three setups: (i)
adding no new training data for the target domain (zero-shot), (ii) using our QG method
to generate training data for the target domain (synthetic), and (ii) using gold standard
training data from the target domain (gold). We report the results in Table 8.7.

We found that BERT performs best on new, unseen data when no gold or synthetic
data is provided, showing a ↓17% improvement over our model. We also observe that
when synthetic or gold data is provided the BERT performance improves compared
to the zero-shot scenario. Interestingly, its performance is worse than our model’s
(LSTM-based) performance when synthetic or gold data are used. We hypothesize that
this is because BERT needs a larger amount of data for fine-tuning. On the other hand,
our model does not generalize as well without gold or synthetic data, but it can quickly
adapt to new domains when provided with such data. It is worth noting that adding
synthetic data from the target domain has a positive impact on both models (BERT and
ours).
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9
Conclusions

In this thesis, we focused on developing robust neural retrievers. The study is structured
around four main research themes, namely: (i) improving the robustness of neural
retrievers against typos, (ii) improving the robustness of speech-based search with neural
retrieval, (iii) improving the efficiency of training neural retrievers on low resources
for multi-hop retrieval, and (iv) improving domain adaptation in KGQA with neural
retrieval. In this chapter, we summarize our main findings concerning the research
questions from Chapter 1 and suggest future directions.

9.1 Main Findings

9.1.1 Improving the robustness of neural retrievers against typos
RQ1 Can we robustify dense retrievers against queries with typos?

To answer this question, we proposed an alternative training setup for the dense retriever,
which aims to learn better representations from noisy text. Our approach combined data
augmentation with an additional robustifying subtask (alongside the main retrieval task)
to align the original, typo-free queries with their typoed variants. In more detail, we
used synthetically generated queries with realistic typos and employed an additional
contrastive loss function that forces the representation of the original typo-free query
and its typoed variation to be close and far from other unique queries. Our experimental
results showed that our approach improves robustness against typos and performs better
than separately applying data augmentation or contrastive learning. Further analysis
showcased that typos can have different impacts on the retrieval performance depending
on the word they appear in, e.g., typos in highly discriminative utterances as the main
entity in a query can have a catastrophic effect while a typo in a stopword may only
have a small effect. Moreover, we demonstrated that our model does not simply learn
to ignore the words that contain typos but instead learns useful representations from
noisy text. However, we showed that learning such representations requires frequently
encountering the particular noisy text during the training phase.

During training, the typoed variations of queries are obtained from a realistic typo
generator. Therefore, it is possible to have more than one typoed variation per query,
which can be used as positive samples. However, most existing methods, including
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ours, rely on a single positive sample and a set of negatives per anchor. To this end,
they employ classic contrastive learning for the robustifying subtasks, which accounts
for single a positive and multiple negatives, thereby limiting the usage of the multiple
positives. This finding gave rise to the following research question:

RQ2 Can we improve the robustness of dense retrievers with contrastive learning in a
way that accounts for multiple positives and negatives?

To answer this research question, we revisited recent methods in typo-robust dense
retrieval, where the robustifying subtasks were tackled via contrastive learning with
a single positive and multiple negatives. In more detail, we suggested to use all the
available positives simultaneously by adopting a multi-positive contrastive learning
approach. Our experimental results showed that multi-positive contrastive learning
can further strengthen robustness over conventional contrastive learning with a single
positive. Moreover, we found that our multi-positive variant consistently outperformed
the original model for the different numbers of typoed variants per query.

Besides learning better representations for noisy text, robustness can originate from
uncertainty-aware retrieval models. The recent MRL framework proposed by Zamani
and Bendersky [187] was the first method to work toward modeling uncertainty in dense
retrieval. It represents queries and documents as multivariate normal distributions rather
than vectors and computes query-document similarity as the negative KL divergence
between these distributions. This led us to the next research question:

RQ3 Can MRL capture uncertainty in queries that contain typos?

To answer this research question, we had to reproduce the MRL framework since
there was no publicly available code or pre-trained model. We unveiled that the MRL
framework cannot capture uncertainty in queries with typos. In particular, MRL assigned
higher uncertainty to the typo-free queries than typoed ones. Furthermore, even though
we showed that MRL can be used to train an effective retriever, most of the findings
of the original paper cannot be confirmed. Finally, through our extensive ablation
study, we found that the high retrieval performance of MRL does not originate from the
multivariate representations but from other components of the framework.

9.1.2 Improving the robustness of speech-based search with
neural retrieval

RQ4 Are dense retrievers robust against queries that contain transcription errors?

To answer this research question, we built a large-scale dataset for speech-based search
consisting of ↓400K synthetically generated queries. We assumed an ASR-Retriever
pipeline and tested the performance of various classic and state-of-the-art typo-robust
dense retrieval models on ASR transcribed queries. Our experimental results showed a
dramatic decrease in performance for the classic dense retrievers, while the typo-robust
models showed signs of robustness against ASR noise. To further increase the robustness
of dense retrievers, we proposed training them on transcriptions from synthetically
generated queries, which yielded the best results. Our analysis demonstrated that
different accents have different impacts on performance. Finally, we created a new test
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set with queries voiced by human users. Using their transcriptions, we demonstrated
that the retrieval performance can further degrade when dealing with natural ASR noise
instead of synthetic ASR noise.

RQ5 How does a multimodal dense retriever perform in speech-based search?

To answer this research question, we proposed an end-to-end trained, ASR-free, multi-
modal dense retriever. Our model is constructed based on the classic dense retriever
architecture for textual queries and documents, with the introduction of a self-supervised
speech model as the query encoder. Our experimental results showed that our retriever
is a promising alternative to ASR-Retriever pipelines and competitive on shorter queries.
Our analysis revealed the improved robustness of our approach compared to the ASR-
Retriever pipeline. We found that the latter’s performance is highly dependent on the
ASR errors, which can cause significant variations in different scenarios. We observed
that pipelines experience a drastic decrease in their retrieval performance in three sce-
narios: (i) when the ASR model’s word error rate increases, (ii) when important words
in the spoken question are mistranscribed, and (iii) when there are mistranscriptions
that were not encountered during training. Our ASR-free retriever can overcome these
issues and provide better results.

9.1.3 Improving the efficiency of training neural retrievers on low
resources for multi-hop retrieval

RQ6 Can we train an effective dense retriever for multi-hop retrieval with limited
computing resources?

We proposed a hybrid retriever that combines lexical and dense retrieval approaches
to answer this research question. In detail, our model consisted of a neural reranker
over BM25 retrieved documents for tackling the first hop and a neural retriever for
the second hop. Our experimental results showed that end-to-end trained fully dense
retrievers experience a significant decrease in performance when trained on limited
resources. To this end, we confirmed that our hybrid approach can be trained effectively
on limited resources and outperform its fully dense counterparts. In addition, it remained
highly competitive with the fully dense retrieval models when the latter were trained on
substantially more computational resources.

9.1.4 Improving domain adaptation in KGQA with neural retrieval
RQ7 Can neural retrieval combined with data augmentation increase the relation

prediction robustness of a KGQA system over previously unseen domains?

To answer this research question, we formalized the relation prediction task as a retrieval
task and used a neural retriever as the underlying model, contrary to most works that
treat the problem as classification. This decision allowed for our model to be applicable
to previously unseen domains. To further enhance its robustness, we incorporated
synthetically generated queries during training to cover relations from the new domains.
To generate such queries, we adapted an existing query generation framework by adding
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keyword extraction; we used distant supervision to extract a set of keywords that express
each relation of the unseen domain and incorporated those into the question generation
method. Our experimental results confirmed the effectiveness of our proposed data-
centric framework over pure zero-shot baselines. Further analysis showed that our
proposed keyword extraction method, integrated into the query generation model, led to
generating queries of various lexicalizations for the same underlying relation, thus better
resembling the variety of real user queries. Finally, experimentation on the in-domain
setting showcased that our entire KGQA system was competitive against state-of-the-art
methods.

We now reflect on the main question we asked in Chapter 1, namely, how to improve
the robustness and effectiveness of neural retrievers in noisy and low-resource settings.
In the first part of this thesis (Chapters 2, 3 and 4), focusing on typoed queries in
ad-hoc retrieval, we proposed dense retrieval models that increase robustness against
typos by learning better representations for noisy text, and we further examined the
typo-robustness of existing uncertainty-aware dense retrieval models. In the second
part of this thesis (Chapters 5 and 6), focusing on speech-based search, we examined
how dense retrieval models perform–under an ASR-Retriever pipeline scenario–in the
presence of ASR transcription errors in the query and proposed a multimodal dense
retriever, thereby alleviating some of the limitations of the ASR-Retriever systems.
In the third part of this thesis, focusing on answering complex queries under limited
computational resources, we proposed a computationally efficient hybrid retriever that
combines lexical and dense retrieval and can outperform its fully dense counterparts
under limited resources. In the fourth part of this thesis, focusing on relation prediction
for KGQA over previously unseen domains, we treated relation prediction as a retrieval
task and proposed to use a neural retriever in combination with data augmentation
to augment the training set with synthetically generated queries for the new domains,
ultimately increasing the overall robustness of the KGQA system on queries originating
from the new domains.

9.2 Future Directions
In this section, we discuss the limitations of our study and suggest directions for future
work to overcome these limitations and further expand our research.

9.2.1 Improving the robustness of neural retrievers against typos
Typos in entities In Chapters 2 and 3, we introduced dense retrieval models that can
be robust against typos by learning better representations for noisy text. Besides their
increased performance on queries with typos, we showcased a trend similar to classic
dense retrievers (i.e., retrievers not trained explicitly to be robust against typos) on
queries with typos on important vs. non-important words, with the models performing
significantly better in the latter case. An interesting future direction could involve
improving the robustness of dense retrievers when entities are corrupted. Given that
dense retrievers have been successfully applied to entity retrieval (in NER) [191], a
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potential approach could entail integrating the entity retrieval task while training the
typo-robust retriever.

Typos in documents Even though our work (Chapters 2, 3, and 4) focused on the
query side, typos can also exist in the documents. Despite the community’s focus
on improving dense retrievers to handle typos in queries, there are fewer studies on
document noise. Therefore, another potential future direction could be to assess the
extent to which our proposed approaches are applicable in scenarios involving document
noise. Noise appearing in a query can differ from noise in the corpus. For instance,
considering the scenario of enabling search in historical documents, optical character
recognition (OCR) systems convert physical documents–such as handwritten or printed
text–into digital format, allowing users to search these documents. Despite the high
quality of state-of-the-art OCR systems, their output is not always correct due to the
low resolution of the scanned document, unusual fonts, watermarking, and background
noise. As a result, the digitized documents can contain noise. That said, the extent to
which methods that address typographical errors in queries can also handle OCR errors
in the corpus remains to be seen.

Using LLMs The recent advances in generative large language models (LLMs) have
resulted in significant performance improvements in various NLP and IR tasks, in many
cases fundamentally transforming the way these tasks are performed. Future research
could explore how to use LLMs to build more robust against typos in retrieval systems.
This exploration may involve employing zero-shot or few-shot learning with LLMs in
several ways, such as (i) to generate more realistic or challenging typos, (ii) to use them
as preprocessing steps to clean the query before passing it through the retriever, or even
(iii) to create a number of possible corrections for a given typoed query followed by
multiple retrieval steps and aggregation of the results.

9.2.2 Improving the robustness of speech-based search with
neural retrieval

Multi-vector retrieval In Chapter 6, our multimodal dense retriever demonstrated
promising performance compared to its ASR-Retriever counterparts, mainly (i) when the
latter faced a high word error rate from the ASR model and (ii) on shorter queries. We
speculate that our approach’s limited performance on long queries could be attributed
to encoding all the information from the speech signal in a single vector. Further
investigation into a multi-vector retrieval approach is a potential area for future work.

State-of-the-art ASR The ASR-Retriever pipelines can deliver significantly better
results compared to our multimodal method in cases where the ASR model can provide
high-quality transcriptions with a low word error rate. Using state-of-the-art ASR
models, such as the recently proposed multilingual Whisper [125], can help mitigate
ASR errors, particularly in English. However, search is not restricted to the English
language and general knowledge queries. Therefore, it is essential to evaluate the
effectiveness of scenarios involving low-resource languages, where annotated speech is
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scarce, or domain-specific search cases such as medical or legal search. We leave this
for future work.

9.2.3 Improving the efficiency of training neural retrievers on low
resources for multi-hop retrieval

Embedding bottleneck Typically, dense retrieval approaches to multi-hop retrieval
treat the problem as iterative document retrieval. In particular, at each hop, they
reformulate the query representation to account for previous retrieval results so that
it can retrieve different documents, usually by concatenating the query and the top-k
retrieved documents. However, such an approach is limited since as the number of hops
increases, the reformulated query gets longer, and it gradually becomes incapable of
containing all the information in a query vector. Overcoming this limitation is a crucial
direction for future work.

9.2.4 Improving domain adaptation in KGQA with neural retrieval
Improving the underlying retriever In Chapter 8, we treated the relation prediction
task as a retrieval problem and employed a neural retriever with LSTM-based encoders.
In preliminary experiments, we found that replacing the encoders with BERT yielded
better results in a pure zero-shot setting but did not outperform LSTM-based when
synthetic queries from the unseen domains were available during training. A possible
future direction can be exploring the reasons for witnessing such a result more in-depth
and trying to apply state-of-the-art dense retrievers or cross-encoders to the relation
prediction task.

Improving query generation In Chapter 8, we showed that the effectiveness of our
proposed KGSQA can be restricted by the quality of the synthetically generated queries.
With the recent advancements in LLMs, it would be interesting to explore to what extent
LLMs could be used to create queries for the new domains.
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Summary

Over the past years, the emergence of neural retrievers has brought significant advance-
ments in various IR tasks. Search engines have used such models in an attempt to bridge
the semantic gap between queries and the corpus. In this thesis, we focus on developing
robust and effective neural retrievers to support various functionalities of modern search
engines. In detail, to fulfill the user information needs, modern search engines need
to: (i) be able to deal with queries regardless of their complexity (i.e., single-hop or
multi-hop queries) and frequency (popular, uncommon, or previously unseen), (ii) not
be sensitive to errors that might appear on the query (e.g., typos, ASR errors, etc.), (iii)
access unstructured and structured knowledge sources, (iv) have QA functionalities to
provide direct answers to the given queries, and finally (v) support multiple means via
which the users can interact with the system (e.g., keyboard, voice, etc.).

In the first part, we study how to increase the robustness of dense retrievers when the
query contains typos for the task of ad-hoc retrieval. While dense retrievers achieve high
retrieval performance on typo-free queries, previous studies have shown a significant
decrease when dealing with typoed queries. In our first study, in order to increase
robustness, we propose an alternative training setup for the dense retriever that com-
bines data augmentation with contrastive learning, aiming to maximize the agreement
between the original typo-free query and its typoed variation. Even though our method
increases robustness, the contrastive loss–that is employed–assumes a single positive
sample and a set of negative ones per anchor, hence not fully utilizing the multiple
positives (e.g., multiple synthetic typoed queries). This leads us to our second study,
in which we propose to enhance existing typo-robust dense retrievers by incorporating
contrastive learning that accounts for multiple positives and negatives. Besides learning
better representations for the noisy text, uncertainty estimation can also be used for
robustness. The multivariate representation learning framework proposed by Zamani
and Bendersky [187] is the first method to work in the direction of modeling uncertainty
in dense retrieval. Thus, in our third and last study, we explore whether the multivariate
representation learning framework can capture uncertainty in queries containing typos.

In the second part of this thesis, we move to a different research theme and study
how to improve the robustness of speech-based search with neural retrieval. Here, the
queries are voiced, and the documents are in textual form. Our first study centers on
ASR-Retriever pipeline approaches, where the spoken queries are transcribed using an
ASR model and then passed through the text retriever. Specifically, we aim to assess the
robustness of dense retrievers when dealing with queries that contain transcription errors.
We demonstrate that current state-of-the-art dense retrievers are not inherently robust
on queries with ASR errors. To address this, we propose training with transcriptions
from synthetically generated spoken queries to increase robustness. Two prominent
shortcomings of ASR-retriever pipelines are that the ASR propagates its errors to the
downstream retriever ASR-Retriever pipelines and that training an effective ASR model
requires a large amount of annotated speech. This leads us to our second study, where
we explore how to alleviate such limitations of the ASR-retriever pipelines. We propose
a multimodal, ASR-free dense retriever that can work directly on the spoken query.

In the third part of this thesis, we focus on complex queries (also known as multi-hop
queries) that cannot be resolved in a single document. Such queries require multi-
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hop retrieval to gather multiple documents to provide adequate evidence collectively.
Specifically, we study the effectiveness of dense retrievers for multi-hop retrieval on
limited computing resources. We showcase the performance of a decrease in limited
resources and propose a computationally efficient hybrid retriever that combines lexical
and dense retrieval.

In this thesis’s fourth and last part, we focus on a new research topic: improving
domain adaptation in KGQA with neural retrieval. We focus on a scenario where
new domains (i.e., subgraphs) covering unseen relations and entities are added to the
KG–where there are no available query-answer pairs during training time–and the
KGQA system follows a pipeline approach consisting of entity mention detection, entity
candidate generation, relation prediction, and answer selection. We focus on relation
prediction since we identified it does not scale to new domains and we set to increase its
robustness over previously unseen domains. We start by formulating relation prediction
as a retrieval problem using the textual label to represent the relation–contrary to most
works that treat it as classification–allowing us to represent any relation during inference
time. Furthermore, we propose to use a neural retriever in combination with data
augmentation to augment the training set with synthetically generated queries for the
new domains.

142



Samenvatting

In de afgelopen jaren heeft de opkomst van neural retrievers aanzienlijke vooruitgang
gebracht in verschillende IR-taken. Zoekmachines hebben dergelijke modellen gebruikt
om de semantische kloof tussen zoekopdrachten en het tekstcorpus te overbruggen.
In deze scriptie richten we ons op het ontwikkelen van robuuste en effectieve neural
retrievers om diverse functionaliteiten van moderne zoekmachines te ondersteunen. Om
te voldoen aan de informatiebehoeften van gebruikers moeten moderne zoekmachine:
(i) in staat zijn om te gaan met zoekopdrachten ongeacht hun complexiteit (d.w.z.
single-hop of multi-hop zoekopdrachten) en frequentie (populair, ongebruikelijk of
nog nooit eerder gezien), (ii) niet gevoelig zijn voor fouten die in de zoekopdracht
kunnen voorkomen (bijv. typfouten, fouten op basis van automatische spraakherkenning,
enz.), (iii) toegang hebben tot ongestructureerde en gestructureerde kennisbronnen, (iv)
vraag- en anntwoordfunctionaliteiten hebben om directe antwoorden op de gegeven
zoekopdrachten te bieden, en tenslotte (v) meerdere middelen ondersteunen waarmee
gebruikers met het systeem kunnen communiceren (bijv. toetsenbord, spraak, enz.).

In het eerste deel onderzoeken we hoe we de robuustheid van dense retrievers kun-
nen vergroten wanneer de zoekopdracht typefouten bevat voor de taak van een ad-hoc
retrieval. Hoewel dense retrievers hoge prestaties behalen bij typefoutvrije zoekop-
drachten, hebben eerdere studies een significante afname aangetoond bij het omgaan
met zoekopdrachten met typefouten. In onze eerste studie stellen we een alternatieve
trainingsopzet voor de dense retriever voor om de robuustheid te vergroten, gegevensver-
groting combineert met contrastive learning met als doel de overeenstemming tussen
de originele typefoutvrije zoekopdracht en de versie met typefouten te maximaliseren.
Hoewel onze methode de robuustheid vergroot, gaat het contrastive loss—dat wordt
toegepast—uit van een enkele positieve sample en een set negatieve samples per anchor,
waardoor de meerdere positieve samples (bijv. meerdere synthetische zoekopdrachten
met typefouten) niet volledig worden benut. Dit brengt ons bij onze tweede studie,
waarin we voorstellen om bestaande typefout-robuuste dense retrievers te verbeteren
door contrastive learning toe te passen dat rekening houdt met meerdere positieve en
negatieve samples. Naast het leren van betere representaties voor de ruisgevoelige tekst,
kan onzekerheidsschatting ook worden gebruikt om de robuustheid te vergroten. Het
multivariate representation learning (MRL) framework, voorgesteld door Zamani and
Bendersky [187], is de eerste methode die zich richt op het modelleren van onzeker-
heid in dense retrieval. Daarom onderzoeken we in onze derde en laatste studie of
het MRL-framework onzekerheid kan vastleggen in zoekopdrachten die typefouten
bevatten.

In het tweede deel van deze scriptie richten we ons op een ander onderzoeksthema
en bestuderen we hoe we de robuustheid van spraakgestuurde zoekopdrachten met
neural retrieval kunnen verbeteren. Hier worden de zoekopdrachten uitgesproken,
terwijl de documenten in tekstuele vorm zijn. Onze eerste studie richt zich op automa-
tische spraakherkenning (ASR) en ASR-Retriever-pijplijnen, waarbij de gesproken
zoekopdrachten worden getranscribeerd met een ASR-model en vervolgens door de
text retriever worden gehaald. Specifiek willen we de robuustheid van dense retrievers
beoordelen voor zoekopdrachten die transcriptiefouten bevatten. We tonen aan dat de
huidige state-of-the-art dense retrievers niet inherent robuust zijn bij zoekopdrachten
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met ASR-fouten. Om dit aan te pakken stellen we voor om te trainen met transcripties
van synthetisch gegenereerde gesproken zoekopdrachten om de robuustheid te vergroten.
Twee belangrijke tekortkomingen van ASR-Retriever-pijplijnen zijn dat de ASR fouten
doorgeeft aan de downstream-retriever en dat het trainen van een effectief ASR-model
een grote hoeveelheid geannoteerde spraak vereist. Dit brengt ons bij onze tweede
studie, waarin we onderzoeken hoe we dergelijke beperkingen van de ASR-Retriever-
pijplijnen kunnen oplossen. We stellen een multimodal, ASR-vrije dense retriever voor
die rechtstreeks op de gesproken zoekopdracht kan werken.

In het derde deel van deze scriptie richten we ons op complexe zoekopdrachten
(ook bekend als multi-hop zoekopdrachten) die niet met één enkel document kunnen
worden opgelost. Dergelijke zoekopdrachten vereisen multi-hop retrieval om meerdere
documenten te verzamelen die gezamenlijk voldoende bewijs kunnen leveren. Specifiek
bestuderen we de effectiviteit van dense retrievers voor multi-hop retrieval met beperkte
computerbronnen. We laten zien hoe de prestaties afnemen bij beperkte bronnen en
stellen een computationeel efficiënte hybrid retriever voor die lexical en dense retrieval
combineert.

In het vierde en laatste deel van deze scriptie richten we ons op een nieuw onder-
zoeksthema: het verbeteren van domeinaanpassing in kennisgrafen vraag-antwoord
(KGVA) met neural retrieval. We concentreren ons op een scenario waarin nieuwe
domeinen (d.w.z. subgrafen) met nog niet eerder geobeserveerde relaties en entiteiten
worden toegevoegd aan de KG—waarbij er tijdens de training geen beschikbare vraag-
antwoordparen zijn—en het KGVA-systeem is een pijplijn die bestaat uit het detecteren
van entiteitsvermeldingen, het genereren van entiteitskandidaten, relatievoorspelling en
antwoordselectie. We richten ons op relatievoorspelling, omdat we hebben vastgesteld
dat deze niet goed schaalt naar nieuwe domeinen en we streven ernaar de robuustheid er-
van te vergroten voor eerder ongeziene domeinen. We beginnen met het formuleren van
relatievoorspelling als een retrievalprobleem waarbij we het tekstuele label gebruiken
om de relatie te vertegenwoordigen—in tegenstelling tot de meeste werken die het
behandelen als classificatie—waardoor we elke relatie kunnen representeren tijdens
de inferentietijd. Bovendien stellen we voor om een neural retriever te gebruiken in
combinatie met gegevensvergroting om de trainingsset uit te breiden met synthetisch
gegenereerde zoekopdrachten voor de nieuwe domeinen.
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