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ABSTRACT
Entity ranking, i.e., successfully positioning a relevant entity at the
top of the ranking for a given query, is inherently difficult due to
the potential mismatch between the entity’s description in a knowl-
edge base, and the way people refer to the entity when searching
for it. To counter this issue we propose a method for construct-
ing dynamic collective entity representations. We collect entity
descriptions from a variety of sources and combine them into a
single entity representation by learning to weight the content from
different sources that are associated with an entity for optimal re-
trieval effectiveness. Our method is able to add new descriptions in
real time and learn the best representation as time evolves so as to
capture the dynamics of how people search entities. Incorporating
dynamic description sources into dynamic collective entity repre-
sentations improves retrieval effectiveness by 7% over a state-of-
the-art learning to rank baseline. Periodic retraining of the ranker
enables higher ranking effectiveness for dynamic collective entity
representations.
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1. INTRODUCTION
Many queries issued to general web search engines are related to

entities [20]. Entity ranking, where the goal is to position a rele-
vant entity at the top of the ranking for a given query, is therefore
becoming an ever more important task [4, 5, 10–12]. In this paper
we focus on the scenario in which a searcher enters a query that
can be satisfied by returning an entity from a knowledge base (e.g.,
Wikipedia). Note that this is not the same task as entity linking,
where the goal is to identify to which entities a searcher refers in
her query.

Entity ranking is inherently difficult due to the potential mis-
match between the entity’s description in a knowledge base and the
way people refer to the same entity when searching for it. When we
look at how entities are described, two aspects, context and time,
are of particular interest and pose challenges to any solution to en-
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tity ranking. Here we explain both aspects.

Context dependency: Consider the entity Germany. A history
student could expect this entity to show up when searching
for entities related to World War II. In contrast, a sports fan
searching for World Cup 2014 soccer results is also expecting
to find the same entity. The challenge then becomes how to
capture these different contexts for one single entity.

Time dependency: Entities are not static in how they are perceived.
Consider Ferguson, Missouri, which had a fairly stan-
dard city description before the shooting of Michael Brown
happened in August 2014. After this event, the entity de-
scription of Ferguson changed substantially, reflecting peo-
ple’s interest in the event, its aftermath and impact on the
city.

We propose a method that addresses both challenges raised above.
First, we use the collective intelligence as offered by a wide range
of entity “description sources” (e.g., tweets and tags that mention
entities), and we combine these into a “collective entity representa-
tion,” i.e., a representation that encapsulates different ways of how
people refer to or talk about the entity. Consider the example in
Figure 1 in which a tweet offers a very different way to refer to
the entity Anthropornis than the original knowledge base de-
scription does. Second, our method takes care of the time depen-
dency by incorporating dynamic entity description sources, which
in turn affect the entity descriptions in near real time. Dynamics is
part of our method in two ways: (i) we leverage dynamic descrip-
tion sources to expand entity representations, and (ii) we learn how
to combine the different entity descriptions for optimal retrieval at
specific time intervals. The resulting dynamic collective entity rep-
resentations capture both the different contexts of an entity and its
changes over time. We refer to the collection of descriptions from
different sources that are associated with an entity as the entity’s
representation. Our method is meant to construct the optimal rep-
resentation for retrieval, by assigning weights to the descriptions
from different sources.

Collecting terms associated with documents and adding them to
the document (document expansion) is in itself not a novel idea.
Previous work has shown that it improves retrieval effectiveness in
a variety of retrieval tasks; see Section 2. However, while infor-
mation retrieval on the open web is inherently dynamic, document
expansion for search has mainly been studied in static, context-
independent settings, in which expansion terms from one source
are aggregated and added to the collection before indexing [21, 26,
27, 39]. In contrast, our method leverages different dynamic de-
scription sources (e.g, queries, social media, web pages), and in
this way uses collective intelligence to bridge the gap between the
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Figure 1: Entity description of Anthropornis in Wikipedia
and a tweet with an alternative description of the same entity.

terms used in a knowledge base’s entity descriptions and the terms
that people use to refer to entities.

To achieve this, we represent entities as fielded documents [24],
where each field contains content that comes from a single descrip-
tion source. In a dynamic setting such as our entity ranking setting,
where new entity descriptions come in as a stream, learning weights
for the various fields in batch is not optimal. Ideally, the ranker con-
tinuously updates its ranking model to successfully rank the entities
and incorporate newly incoming descriptions. Hence, constructing
a dynamic entity representation for optimal retrieval effectiveness
boils down to dynamically learning to optimally weight the entity’s
fields that hold content from the different description sources. To
this end we exploit implicit user feedback (i.e., clicks) to retrain our
model and continually adjust the weights associated to the entity’s
fields, much like online learning to rank [16].

Our dynamic collective entity representations generate one ad-
ditional challenge, which is related to the heterogeneity that exists
among entities and among description sources. Popular head en-
tities are likely to receive a larger number of external descriptions
than tail entities. At the same time the description sources differ
along several dimensions (e.g., volume, quality, novelty). Given
this heterogeneity, linearly combining retrieval scores (as is com-
monly done in structured retrieval models) proves to be suboptimal.
We therefore extend our method to include features that enable the
ranker to distinguish between different types of entities and stages
of entity representations.

We address these three research questions:
RQ1 Does entity ranking effectiveness increase by using dynamic

collective entity representations? We compare a baseline en-
tity ranking method based on the information in the knowl-
edge base only to our method that incorporates additional
description sources (web anchors, queries, tags, and tweets).

RQ2 Does entity ranking effectiveness increase when employing
additional field and entity importance features? We answer
this question by incorporating field and entity importance
features to our knowledge base-only baseline ranker and our
proposed method, and compare their performance.

RQ3 Does entity ranking effectiveness increase when we continu-
ously learn the optimal way to combine the content from dif-
ferent description sources? We compare a static entity rank-
ing baseline that is trained once at the start, to our proposed
method that is retrained at regular intervals.

The main contribution of this paper is a novel approach to con-
structing dynamic collective entity representations, which takes into
account the temporal and contextual dependencies of entity de-

scriptions. We show that dynamic collective entity representations
better capture how people search for entities than their original
knowledge base descriptions. In addition, we show how field im-
portance features better inform the ranker, thus increasing retrieval
effectiveness. Furthermore, we show how continuously updating
the ranker enables higher ranking effectiveness. Finally, we per-
form extensive analyses of our results and show that incorporating
dynamic signals into the dynamic collective entity representation
enables a better matching of users’ queries to entities.

2. RELATED WORK
Related work comes in three flavors: entity ranking, document

expansion and fielded or structured information retrieval.

2.1 Entity ranking
Recent years have shown an increase in entity ranking research.

Main causes for this were the introductions of the INEX Entity
Ranking track [10–12] and the TREC Entity track [4, 5]. Exploiting
content and structure of knowledge bases is common practice in en-
tity ranking, for example by including anchor texts and inter-entity
links [33], category structure [3, 32], entity types [18], or internal
link structure [38]. More recently, researchers have also started to
focus on using query logs for entity ranking. Billerbeck et al. [8]
use query logs of a web search engine to build click and sessions
graphs and walk the graph to answer entity queries. Mottin et al.
[29] use query logs to train an entity ranking system using different
sets of features. Unlike us, the authors assume a static setting (i.e.,
no online learning) and do not take into account external sources
for entity representation. Hong et al. [17] follow a similar line of
thought and enrich their knowledge base using linked web pages
and queries from a query log. Again, the authors assume a static
setting in which web pages and queries are added to the knowledge
base before any ranking experiments are performed. One of the few
initial attempts to bring in time in entity ranking is a position pa-
per by Balog and Nørvåg [2], who propose temporally-aware entity
retrieval, in which temporal information from knowledge bases is
required.

2.2 Document expansion
Singhal and Pereira [34] are one of the first to use document

expansion in a (speech) retrieval setting, motivated by the vocabu-
lary mismatch introduced by errors made by automatic speech tran-
scription. Ever since, using external sources for expanding docu-
ment representations has been a popular approach to improve re-
trieval effectiveness. In particular, it was shown that anchors can
improve ad-hoc web search [14, 26, 39, 40].

Kemp and Ramamohanarao [19] state that document transfor-
mation using search history, i.e., adding queries that lead to the
document to be clicked, brings documents closer to queries and
hence improves retrieval effectiveness. Similarly, Xue et al. [41]
study the use of click-through data by adding queries to clicked
document representations. In this case, the click-through data in-
cludes a score that is derived from the number of clicks the query
yields for a single document. Gao et al. [15] follow a similar ap-
proach, but add smoothing to click-through data to counter sparsity
issues. Amitay et al. [1] study the effectiveness of query refor-
mulations for document expansion by appending all queries in a
reformulation session to the top-k returned documents for the last
query. Scholer et al. [32] propose a method to either add additional
terms from associated queries to documents or replace the original
content with these associated queries, all with the goal of providing
more accurate document representations.

Looking at other sources for expansion, Bao et al. [6] improve



web search using social annotations (tags). They use the anno-
tations both as additional content as well as popularity measure.
Lee and Croft [21] explore the use of social anchors (i.e., content
of social media posts linking to a document) to improve ad hoc
search. Noll and Meinel [30] investigate of a variety of “metadata”
sources, including anchors, social annotations, and search queries.
They show that social annotations are concise references to entities
and outperform anchors in several retrieval tasks. Efron et al. [13]
show that document expansion can be beneficial when searching
for very short documents (tweets).

2.3 Fielded retrieval
A common approach to incorporate the document expansions

into a document is to create fielded documents [31, 42]. Based
on fielded documents, a variety of retrieval methods have been pro-
posed. Robertson et al. [31] introduce BM25F, the fielded version
of BM25, which linearly combines query term frequencies over dif-
ferent field types. Broder et al. [9] propose an extension to BM25F,
taking into account term dependencies. Svore and Burges [35]
use a machine learning approach for learning BM25 over multiple
fields, the original document fields (e.g., title and body) and so-
called “popularity” fields (e.g., anchors, query-clicks). Macdonald
et al. [24] compare the linear combination of term frequencies be-
fore computing retrieval scores to directly using retrieval scores in
the learning to rank setting and show that it is hard to determine a
clear winner.

What sets our work apart from the aforementioned work is that we
deal with dynamic fields with continually changing content, and
study continually adapting entity representations and rankers. Our
method is required to reweigh fields continuously to reflect changes
in the fields’ content. Continually (re-)tuning parameters of fielded
retrieval methods such as BM25F when documents in the index
change is exceedingly expensive, rendering these methods unsuit-
able for this scenario.

3. DYNAMIC COLLECTIVE ENTITY
REPRESENTATIONS

3.1 Problem statement
The problem of entity ranking is: given a query q and a knowl-

edge base KB populated with entities e ∈ E, find the best match-
ing e that satisfies q. Both e and q are represented in some (indi-
vidual or joint) feature space that captures a range of dimensions,
which characterize them individually (e.g., content, quality) and
jointly (e.g., relationships through click logs).

The problem itself is a standard information retrieval problem,
where the system needs to bridge the gap between the vocabulary
used in queries and documents. This is a long-standing but still
open problem that has been tackled from many perspectives. One is
to design better similarity functions, another is to develop methods
for enhancing the feature spaces. Our method shares characteristics
with both perspectives, as we will now explain.

3.2 Approach
Our approach to the entity ranking problem consists of two inter-

leaved steps. First, we use external description sources (described
in §3.3) to expand entity representations and reduce the vocabu-
lary gap between queries and entities. We do so by representing
entities as fielded documents, where each field corresponds to con-
tent that comes from one description source. Second, we train a
classification-based entity ranker, that employs different types of

Table 1: Summary of the nine description sources we con-
sider: Knowledge Base entity descriptions (KB), KB anchors,
KB redirects, KB category titles, KB inter-hyperlinks, queries,
web anchors, tweets, and tags from Delicious.

Data source Size Period Affected entities

Static expansion sources
KB 4,898,356 August 2014 –
KB anchors 15,485,915 August 2014 4,361,608
KB redirects 6,256,912 August 2014 N/A
KB categories 1,100,723 August 2014 N/A
KB inter-links 28,825,849 August 2014 4,322,703

Dynamic expansion sources
Queries 47,002 May 2006 18,724
Web anchors 9,818,004 2012 876,063
Twitter 52,631 2011–2014 38,269
Delicious 4,429,692 2003–2011 289,015

features to learn to weight and combine the content from each field
of the entity for optimal retrieval (§3.4).

External description sources may continually update and change
the content in the entity’s fields, through user feedback (i.e., clicks)
following an issued query, or when users generate content on exter-
nal description sources that is linked to a KB entity (e.g., Twitter,
Delicious). Consequently, the feature values that represent the en-
tities change, which may invalidate previously learned optimal fea-
ture weights and asks for continuously updating the ranking model.

3.3 Description sources
To construct dynamic collective entity representations we use

two types of description sources: (i) a knowledge base (KB ) from
which we extract the initial entity representations, and (ii) a set of
external description sources that we use to expand the aforemen-
tioned entity representation.

We differentiate between external description sources that are
non-timestamped (static) and ones that are timestamped (dynamic).
Non-timestamped sources are those where no time information is
available, and sources that are not inherently dynamic, e.g., web
archives and aggregates over archives like web anchors. Times-
tamped external description sources are sources whose content is
associated with a timestamp, and where the nature of the source is
inherently dynamic or time-dependent, e.g., tweets or query logs.
We describe each type of external description source below, the
number of total descriptions, and affected entities, and we provide
a summary in Table 1.

Knowledge base. The knowledge base that we use as our ini-
tial index of entities, and which we use to construct the initial
entity representations, is a snapshot of Wikipedia from August 3,
2014 with 14,753,852 pages. We filter out non-entity pages (“spe-
cial” pages such as category, file, and discussion pages), yielding
4,898,356 unique entities.

Static description sources.
Knowledge base. Knowledge base entities have rich metadata that
can be leveraged for improving retrieval [3, 32, 33]. We consider
four types of metadata to construct the KB entity representations:
(i) anchor text of inter-knowledge base hyperlinks, (ii) redirects,
(iii) category titles, and (iv) titles of entities that are linked from
and to each entity. Editorial conventions and Wikipedia’s quality
control ensures these expansions to be of high quality.

Web anchors. Moving away from the knowledge base itself, the



web provides rich information on how people refer to entities lead-
ing to tangible improvements in retrieval [39]. We extract anchor
texts of links to Wikipedia pages from the Google Wikilinks cor-
pus.1 We collect 9,818,004 anchor texts for 876,063 entities. Web
anchors differ from KB anchors as they can be of lower quality (due
to absence of editorial conventions) but also of much larger volume.
While in theory web anchors could be associated with timestamps,
in a typical scenario they are aggregated over large archives, where
extracting timestamps for diverse web-pages is non-trivial.

Dynamic description sources.
Twitter. Mishne and Lin [27] show how leveraging terms from
tweets that do not exist in the pages linked to from tweets can im-
prove retrieval effectiveness of those pages. We follow a similar ap-
proach and mine all English tweets that contain links to Wikipedia
pages that represent the entities in our KB. These are extracted from
an archive of Twitter’s sample stream, spanning four years (2011–
2014), resulting in 52,631 tweets for 38,269 entities.

Delicious. Social tags are concise references to entities and have
shown to outperform anchors in several retrieval tasks [30]. We
extract tags associated with Wikipedia pages from SocialBM03112

resulting in 4,429,692 timestamped tags for 289,015 entities.

Queries. We use a publicly available query log from MSN sampled
between May 1 and May 31, 2006, consisting of 15M queries and
their metadata: timestamps and URLs of clicked documents. We
keep only queries that result in clicks on Wikipedia pages that exist
in our snapshot of Wikipedia, resulting in 47,002 queries associ-
ated with 18,724 uniquely clicked entities. We hold out 30% of the
queries for development (e.g., parameter tuning, feature engineer-
ing; 14,101 queries) and use 70% (32,901 queries) for testing. Our
use of queries is twofold: (i) queries are used as input to evaluate
the performance of our system, and also (ii) as external descrip-
tion source, to expand the entity description with the terms from a
query that yield a click on an entity. While this dual role of queries
may promote head entities that are often searched, we note that
“headness” of entities differs across description sources, and even
tail entities may benefit from external descriptions (as illustrated by
the Anthropornis example in Fig. 1).

3.4 Adaptive entity ranking
The second step in our method is to employ a supervised entity

ranker that learns to weight the fields that hold content from the dif-
ferent description sources for optimal retrieval effectiveness. Two
challenges arise in constructing collective dynamic entity represen-
tations.

Heterogeneity. External description sources exhibit different dy-
namics in terms of volume and quality of content [22], and dif-
ferences in number and type of entities to which they link (see,
e.g., Table 1). This heterogeneity causes issues both within entities,
since different description sources contribute different amounts and
types of content to the entity’s fields, and between entities, since
popular entities may receive overall more content from external de-
scription sources than tail entities.

Dynamicness. Dynamic external description sources cause the en-
tity’s descriptions to change in near real-time. Consequently, a
static ranking model cannot capture the evolving and continually
changing index that follows from our dynamic scenario, hence we
employ an adaptive ranking model that is continuously updated.

1https://code.google.com/p/wiki-links/
2http://www.zubiaga.org/datasets/socialbm0311/

4. MODEL
In the following section we describe our supervised ranking ap-

proach, by first explaining the entity representation, the set of fea-
tures we employ for learning an optimal representation for retrieval,
and finally the supervised method.

4.1 Entity Representation
To deal with dynamic entity representations, which are com-

posed of content from different external description sources, we
model entities as fielded documents:

e = {fe

title, f
e

text, f
e

anchors, . . . , f
e

query}. (1)

Where f
e

corresponds to the field term vector that represents e’s
content from a single source (denoted in subscript). We refer to
this collection of field term vectors as the entity’s representation.

The fields with content from dynamic description sources may
change over time. We refer to the process of adding an external
description source’s term vector to the entity’s corresponding field
term vector as an update. To model these dynamically changing
fields, we discretize time (i.e., T = {t1, t2, t3, . . . , tn}), and define
updating fields as:

f
e

query(ti) = f
e

query(ti−1) +

{
q, if eclicked
0, otherwise

(2)

f
e

tweets(ti) = f
e

tweets(ti−1) + tweete (3)

f
e

tags(ti) = f
e

tags(ti−1) + tage. (4)

In equation 2, q represents the term vector of query q that is summed
element-wise to e’s query field term vector (f

e

query) at time ti, if e
is clicked by a user that issues q. In equation 3, tweete represents
the field term vector of a tweet that contains a link to the Wikipedia
page of e, which also gets added element-wise to the corresponding
field (f

e

tweets). Finally, in equation 4, tage is the term vector of a
tag that a user assigns to the Wikipedia page of e.

To estimate e’s relevance to a query q given the above-described
representation one could e.g., linearly combine retrieval scores be-
tween q’s term vector q and each f ∈ e. However, due to the het-
erogeneity that exists both between the different fields that make
up the entity representation, and between different entities (de-
scribed in §3.4), linearly combining similarity scores may be sub-
optimal [31], and hence we employ a supervised single-field weight-
ing model [24]. Here, each field’s contribution towards the final
score is individually weighted, through learned field weights from
implicit user feedback.

4.2 Features
To learn the optimal entity representation for retrieval, we em-

ploy three types of features that express field and entity importance:
first, field similarity features are computed per field and boil down
to query–field similarity scores. Next, field importance features,
likewise computed per field aim to inform the ranker of the sta-
tus of the field at that point in time (i.e., to favor fields with more
and novel content). Finally, we employ entity importance features,
which operate on the entity level and aim to favor recently updated
entities.

4.2.1 Field similarity
The first set of features model the similarity between a query

and a field, which we denote as φsim. For query–field similarity,

https://code.google.com/p/wiki-links/
http://www.zubiaga.org/datasets/socialbm0311/


we compute TF×IDF cosine similarity. We define

φsim(q, f , ti) =
∑
w∈q

n(w, f(ti)) · log
|Cti |

|{f(ti) ∈ Cti : w ∈ f(ti)}|
,

(5)

where w corresponds to a query term, n(w, f(ti)) is the frequency
of term w in field f at time ti. Cti is the collection of fields at time
ti, and | · | indicates set cardinality. More elaborate similarity func-
tions can be used, e.g., BM25(F), however, we choose a parameter-
less similarity function that requires no tuning. This allows us to
directly compare the contribution of the different expansion fields
without having additional factors play a role, such as length nor-
malization parameters, which affect different fields in non-trivial
ways.

4.2.2 Field importance
The next set of features is also computed per field, φp is meant

to capture a field’s importance at time ti:

φp(f(ti), e) = S(f(ti), e). (6)

We instantiate four different field importance features. First, we
consider two ways to compute a field’s length, either in terms (7)
or in characters (8):

φp1(f(ti), e) = |f(ti)| (7)

φp2(f(ti), e) =
∑

w∈f(ti)

|w| (8)

The third field importance scoring function captures a field’s nov-
elty at time ti, to favor fields that have been updated with previously
unseen, newly associated terms to the entity (i.e., terms that were
not in the original entity representation at t0):

φp3(f(ti), e) = |{w ∈ f(ti) : w /∈ f(t0)}|. (9)

The fourth field importance scoring function expresses whether a
field has undergone an update at time ti:

φp4(f, ti, e) =

i∑
j=0

+ =

{
1, if update(f(tj))

0, otherwise,
(10)

where update(f(tj)) is a Boolean function indicating whether field
f was updated at time j, i.e., we sum from t0 through ti and accu-
mulate updates to the fields.

4.2.3 Entity importance
The feature φI models the entity’s importance. We compute the

time since the entity last received an update to favor recently up-
dated entities:

φI(e, ti) = ti −max
f∈e

timef , (11)

Here, ti is the current time, and timef is the update time of field
f . maxf corresponds to the timestamp of the entity’s field that was
most recently updated.

4.3 Machine learning
Given the features explained in the previous section, we em-

ploy a supervised ranker to learn the optimal feature weights for
retrieval;

Ω = (ωe, ωftitle
, ωp1title , ωp2title , . . . , ωftext

, ωp1text , . . .)

Here, Ω corresponds to the weight vector, which is composed of

individual weights (ω) for each of the field features (similarity and
importance) and the entity importance feature.

To find the optimal Ω, we train a classification-based re-ranking
model, and learn from user interactions (i.e., clicks). The model
employs the features detailed in the previous section, and the clas-
sification’s confidence score is used as a ranking signal. As input,
the ranker receives a feature vector (x), extracted for each entity-
query pair. The associated label y is positive (1) for the entities that
were clicked by a user who issued query q. We define x as

x = {φsim1 , φp11 , φp21 , φp31 , φp41 , . . . ,

φsim|e| , φp1|e| , φp2|e| , φp3|e| , φp4|e| , φI} (12)

Where |e| corresponds to the number of fields that make up the
entity representation (f ∈ e).

See Algorithm 1 for an overview of our machine learning method
in pseudo-code. As input, our supervised classifier is given a set
of 〈q, e, L〉-tuples (see l.4). These tuples consist of a query (q), a
candidate entity (e), and a (binary) label (L): positive (1) or nega-
tive (0). Given an incoming query, we first perform top-k retrieval
(see §5.2 for details) to yield our initial set of candidate entities:
Ecandidate (l.8). For each entity, we extract the features which
are detailed in Section 4.2 (l.12) and have the classification-based
ranker R output a confidence score for e belonging to the positive
class, which is used to rank the candidate entities (l.13). Labels are
acquired through user interactions, i.e., entities that are in the set of
candidate entities and clicked after issuing a query are labeled as
positive instances (l.16–22), used to retrain R (l.24). Finally, after
each query, we allow entities to be updated by dynamic description
sources: tweets and tags (l.26), we provide more details in §5.1.

Algorithm 1 Pseudo-algorithm for learning optimal ΩT .
Require: Ranker R, Knowledge Base KB, Entities E
1: E ←− {e1, e2, . . . , e|KB|}
2: e←− {f title, fanchors, . . . , f text}
3:
4: L = {〈q1, e1, {0, 1}〉, 〈q1, e2, {0, 1}〉, . . . , 〈qn, em, {0, 1}〉}
5: R←− Train(L)
6:
7: while q do
8: Ecandidate ←−Top-k retrieval(q)
9: Eranked ←− []

10:
11: for e ∈ Ecandidate do
12: φe ←− Extract features(e)
13: Eranked ←− Classify(R,φe)
14: end for
15:
16: eclicked ←− Observe click(q, E)
17: if eclicked ∈ Ecandidate then
18: L ←− L ∪ {〈q, eclicked, 1〉}
19: eclicked ←− eclicked ∪ {textq}
20: else
21: L ←− L ∪ {〈q, eclicked, 0〉}
22: end if
23:
24: R←− Train(L)
25: for e ∈ E do
26: e←− e ∪{fe,tweet1

, fe,tag1
, . . . , fe,tweeti

, fe,tagj
}

27: end for
28: end while



5. EXPERIMENTAL SETUP
In this section we start by describing our experiments and how

they allow us to answer the research questions raised in Section 1,
and then, we present our machine learning setting and describe our
evaluation methodology.

Experiment 1. To answer our first research question, does entity
ranking effectiveness increase using dynamic collective entity rep-
resentations?, we compare our proposed dynamic collective entity
ranking method to a baseline that only incorporates KB fields for
entity ranking: KBER (Knowledge Base Entity Representations).
We restrict both the baseline and our Dynamic Collective Entity
Representation (DCER) method to the set of field similarity features
(§4.2.1), which we denote as KBERsim and DCERsim. This allows
us to provide clear insights into the contribution of the fields’ con-
tent in ranking effectiveness. In addition, we perform an ablation
study and compare the similarity-baseline to several approaches
that incorporate content from a single external description source
(denoted KB+sourcesim).

Experiment 2. We address RQ2, does entity ranking effectiveness
increase when employing field and entity features, by comparing
the KBERsim baseline that only incorporates field similarity fea-
tures, to the KBER baseline that incorporates the entity and field
importance features, and to our DCER method.

Experiment 3. Finally, to answer our third research question, does
entity ranking effectiveness increase when we continuously learn
the optimal entity representations? We compare our proposed en-
tity ranking system DCER to its non-adaptive counterpart (DCERna),
that we do not periodically retrain. Contrasting the performance
of this non-adaptive system with our adaptive system allows us to
tease apart the effects of adding more training data, and the effect
of the additional content that comes from dynamic external descrip-
tion sources. Here too, we include an ablation study, and compare
to non-adaptive approaches that incorporate content from a single
external description source (denoted KB+sourcena).

Baselines. Due to our focus on dynamic entity representations and
adaptive rankers, running our method on datasets from seemingly
related evaluation campaigns such as those in TREC and INEX
is not feasible. We are constrained by the size of datasets, i.e.,
we need datasets that are sufficiently large (thousands of queries)
and time-stamped, which excludes the aforementioned evaluation
campaigns, and hence direct comparison to results obtained there.
Furthermore, employing existing fielded retrieval methods such as
BM25F as baselines is not feasible either, as they are exceedingly
expensive to retrain online, as discussed in Section 2.

For these reasons we consider the following supervised baselines
in our experiments; KBERsim is an online learning classification-
based entity ranker, that employs field similarity features on entity
representations composed of KB description sources (i.e., title, text,
categories, anchors, redirects and links fields). KBER is the same
baseline system, extended with the full set of features (described in
§4.2). Finally, DCERna is a non-adaptive baseline: it incorporates
all external description sources, and all features as our proposed
DCER method, but does not periodically retrain.

5.1 Data alignment
In our experiments we update the fields that jointly represent an

entity with external descriptions that come in a streaming manner,
from a range of heterogeneous external description sources. This
assumes that all data sources run in parallel in terms of time. In a
real-world setting this assumption may not always hold as systems

need to integrate historical data sources that span different time pe-
riods and are of different size for bootstrapping. We simulate this
scenario by choosing data sources that do not originate from the
same time period nor span the same amount of time (see also Ta-
ble 1). To remedy this, we introduce a method for time-aligning all
data sources (which range from 2009 to 2014) to the timeline of the
query log (which dates from 2006). We apply a source-time trans-
formation to mitigate the dependence of content popularity on time
and when it was created [36, 37]. Each query is treated as a time
unit, and we distribute the expansions from the different sources
over the queries, as opposed to obeying the misaligned timestamps
from the query log and expansion sources.

To illustrate: given n queries and a total of k items for a given
expansion source, after each query we update the entity representa-
tions with n

k
expansions of that particular expansion source. In our

dataset we have 32,901 queries, 52,631 tweets, and 4,429,692 tags.
After each query we distribute 1 query, 2 tweets, and 135 tags over
the entities in the index. Mapping real time to source time evenly
spreads the content of each data source within the timespan of the
query log. This smooths out bursts but retains the same distribution
of content over entities (in terms of, e.g., entity popularity). The di-
minishing effect on burstiness is desirable in the case of misaligned
corpora, as bursts are informative of news events, which would not
co-occur in the different data sources. Although our re-aligned cor-
pora cannot match the quality of real parallel corpora, our method
offers a robust lower bound to understand the utility of collective
dynamic entity representations of our method. We reiterate that the
goal of this paper is to study the effect of dynamic entity represen-
tations, and adapting rankers, not to leverage temporal features.

5.2 Machine learning
We apply machine learning for learning how to weight the differ-

ent fields that make up an entity representation for optimal retrieval
effectiveness. In response to a query, we first generate an initial
set of candidate entities by retrieving the top-k entities to limit the
required computational resources for extracting all features for all
documents in the collection [23]. Our top-k retrieval method in-
volves ranking all entities using our similarity function (described
in §4.2.1), where we collapse the fielded entity representation into
a single document.3 We choose Random Forests as our machine
learning algorithm because it has proven robust in a range of di-
verse tasks (e.g., [28]), and can produce confidence scores that we
employ as ranking signal. In our experiments, we set the number of
trees to 500 and the number of features each decision tree considers
for the best split to

√
|Ω|.

5.3 Evaluation
For evaluating our method’s adaptivity and performance over

time, we create a set of incremental time-based train/test splits
as in [7]. We first split the query log into K chunks of size N :
{C1, C2, C3, . . . , CK}. We then allocate the first chunk (C1) for
training the classifier and start iteratively evaluating each succeed-
ing query. Once the second chunk of queries (C2) has been eval-
uated, we expand the training set with it and retrain the classifier.
We then continue evaluating the next chunk of queries (C3). This
procedure is repeated, continually expanding the training set and
retraining the classifier with N queries (we set N=500 in our ex-
periments). In this scenario, users’ clicks are treated as ground truth
and the classifier’s goal is to rank clicked entities at position 1. We
do not distinguish between clicks (e.g., satisfied clicks and non-

3We set k = 20 as it has shown a fair tradeoff between high recall
(80.1% on our development set) and low computational expense.



Table 2: Performance of field similarity-based entity ranking
methods using KB entity representations (KBERsim) and dy-
namic collective entity representations (DCERsim) in terms of
MAP and P@1. Significance tested against KBERsim. Oracle
marks upper bound performance given our top-k scenario.

Run MAP P@1

KBERsim 0.5579 0.4967
DCERsim 0.5971N 0.5573N

Oracle 0.6653 0.6653

satisfied clicks), and we leave more advanced user models, e.g.,
which incorporate skips, as future work.

To show the robustness of our method we apply five-fold cross-
validation over each run, i.e., we generate five alternatively ordered
query logs by shuffling the queries. We keep the order of the dy-
namic description sources fixed to avoid conflating the effect of
queries’ order with that of the description sources.

Since we are interested in how our method behaves over time,
we plot the MAP at each query over the five-folds, as opposed to
averaging the scores over all chunks across folds (as in [7]) and
losing this temporal dimension. In addition to reporting MAP,
we report on P@1, as there is only a single relevant entity per
query in our experimental setup. We test for statistical signifi-
cance using a two-tailed paired t-test. Significant differences are
marked N for α = 0.01.

6. RESULTS AND ANALYSIS
We report on the experimental results for each of our three ex-

periments, in turn, and provide an analysis of the results to better
understand the behavior of our method.

6.1 Dynamic collective entity representations
In our first experiment, we explore the impact of the description

sources we use for constructing dynamic collective entity repre-
sentations. We compare the KBERsim baseline, which incorporates
field similarity on KB descriptions, to our DCERsim method, which
incorporates field similarity features on all description sources (web
anchors, tweets, tags, and queries). Table 2 shows the performance
in terms of MAP and P@1 of the baseline (KBERsim) and DCERsim

after observing all queries in our dataset. We include an oracle run
as a performance upper bound given our top-k retrieval scenario.

The results show that the dynamic collective entity representa-
tions manage to significantly outperform the KB entity representa-
tions for both metrics, and that DCERsim presents the correct entity
at the top of the ranking for over 55% of the queries.

Next, we look into the impact on performance of individual de-
scription sources for our dynamic collective entity representations.
We add each source individually to the KBERsim baseline. Fig-
ure 2 shows how each individual description source contributes
to more effective ranking, with KB+tags narrowly outperforming
KB+web as the best single source. Combining all sources into one,
yields the best results, outperforming KB+tags by more than 3%.
We observe that after about 18,000 queries, KB+tags overtakes
the (static) KB+web method, suggesting that newly incoming tags
yield higher ranking effectiveness. All runs show an upward trend
and seem to level out around the 30,000th query. This pattern is
seen across ranking methods, which indicates that the upward trend
can be attributed to the addition of more training data (queries).

Table 3 lists the results of all methods along with the improve-
ment rate (relative improvement when going from 10,000 to all

Figure 2: Impact on performance of individual description
sources. MAP on the y-axis, number of queries on the x-axis.
The line represents MAP, averaged over 5-folds. Standard de-
viation is shown as a shade around the line. This plot is best
viewed in color.

Table 3: Comparison of relative improvement between runs
with different field similarity features. We report on MAP and
P@1 at query 10,000 and the last query. Rate corresponds to
the percentage of improvement between the 10,000th and final
query. Significance tested against KBERsim.

Run MAP
(10k)

MAP
(end)

Rate P@1
(10k)

P@1
(end)

Rate

KBERsim 0.5274 0.5579 +5.8% 0.4648 0.4967 +6.9%
KB+Websim 0.5485 0.5787N +5.5% 0.4965 0.5282N +6.4%

KB+Tagssim 0.5455 0.5804N +6.4% 0.4930 0.5317N +7.8%
KB+Tweetssim 0.5290 0.5612N +6.1% 0.4673 0.5021N +7.5%
KB+Queriessim 0.5379 0.5750N +6.9% 0.4813 0.5242N +8.9%

DCERsim 0.5620 0.5971N +6.2% 0.5178 0.5573N +7.6%

queries). The runs that incorporate dynamic description sources
(i.e., KB+tags, KB+tweets, and KB+queries) show the high-
est relative improvements (at 6.4%, 6.1% and 6.9% respectively).
Interestingly, for P@1, the KB+queriesmethod yields a substan-
tial relative improvement (+8.9%), indicating that the added queries
provide a strong signal for ranking the clicked entities at the top.

The comparatively lower learning rates of methods that incorpo-
rate only static description sources (KBERsim and KB+web yield
relative improvements of +5.8% and +5.5%, respectively), suggest
that the entity content from dynamic description sources effectively
contributes to higher ranking performance as the entity represen-
tations change and the ranker is able to reach a new optimum.
DCERsim, the method that incorporates all available description
sources, shows a comparatively lower relative improvement, which
is likely due to it hitting a ceiling, and not much relative improve-
ment can be gained.



6.1.1 Feature weights over time
A unique property in our scenario is that, over time, more train-

ing data is added to the system, and more descriptions from dy-
namic sources come in, both of which are expected to improve sys-
tem’s performance. To better understand our system’s behavior, we
look into the learned feature weights for both a static system and
our dynamic one at each retraining interval. Figure 3 shows the
weights for six static fields (categories, title, anchors, links, text,
redirects) and three dynamic fields (queries, tweets, tags).

Figure 3: Feature weights over time: y-axis shows (relative)
feature weights, x-axis shows each chunk of 500 queries where
the ranker is retrained. Starting from top left in a clock-wise
direction we show the following runs: KBERsim (baseline),
KB+Queries, KB+Tags, KB+Tweets. The black line shows the
dynamic description source’s weight. This plot is best viewed
in color.

The KBERsim baseline shows little change in the feature weights
as more training data is added. The anchors’ weight increases
slightly, while the text and categories fields’ weights steadily de-
cline over time. The latter two features show a steadily decreasing
standard deviation, indicating that the ranker becomes more confi-
dent in the assigned weights.

For KB+queries it is apparent that the queries field weight
increases substantially as both the ranking method receives more
training data and the entity representations receive more content
from the queries description source. At the same time, anchors,
redirects, and title field weights, which were assigned consistently
high weights in KBERsim, seem to pay for the increase of the im-
portance of queries. Text, category, and links show similar patterns
to the baseline run; steadily declining weights, converging in terms
of a decreasing standard deviation.

The KB+tags run shows a similar pattern as KB+queries:
we observe an increase over time of the weight assigned to the
field that holds content from the tag description source, at the cost
of original KB fields, resulting in improved ranking effectiveness.
Looking at KB+tweets, however, we observe a different pattern.
The tweets field starts out with a very low weight, and although
the weight steadily increases, it remains low. The ranker here, too,

becomes more confident on this source’s weight, with the standard
deviation dissolving over time. Looking at the higher performance
of KB+tweets in comparison to the KBERsim baseline, together
with the field’s weight increasing over time, we can conclude that
the tweets that are added to the entity representations over time
provide added value.

6.2 Modeling field importance
In our second experiment, we turn to the contribution of the ad-

ditional field and entity importance features. Table 4 lists the re-
sults of the best performing run with only field similarity features
(DCERsim), the KBER baseline that incorporates the full set of fea-
tures, and our proposed DCER method which likewise incorporates
the full set of features.

Table 4: Comparison of relative improvement between the
KBER baseline with field importance features for KB fields, and
our DCER method with these features for all fields. We also
show the best performing run without field and entity impor-
tance features. Significance tested against KBER.

Run MAP
(10k)

MAP
(end)

Rate P@1
(10k)

P@1
(end)

Rate

Oracle – 0.6653 – – 0.6653 –
DCERsim 0.5620 0.5971 +6.2% 0.5178 0.5573 +7.6%

KBER 0.5853 0.6129 +4.7% 0.5559 0.5831 +4.9%
DCER 0.5923 0.6200N +4.7% 0.5655 0.5925N +4.8%

The results show that modeling field and entity importance sig-
nificantly improves effectiveness of both the KBERsim baseline and
the DCERsim runs. After running through the entire dataset, the
performance of DCER approaches that of the oracle run which also
explains why the differences between the two approaches here is
rather small: we are very close to the maximum achievable score.

Figure 4 shows the performance of the two approaches over time.
The pattern is similar to the one in Section 6.1: both lines show a
steady increase, while DCER maintains to be the best performing.

6.3 Ranker adaptivity
In our third experiment, we compare our adaptive ranker (DCER),

which is continuously retrained, to a non-adaptive baseline (DCERna),
which is only trained once at the start and is not retrained.

Table 5: Comparing relative improvement between runs with
and without an adaptive ranker. Statistical significance tested
against their non-adaptive counterparts.

Run Adaptive MAP P@1

KBERna no 0.5198 0.4392
KBER yes 0.5579N 0.4967N

DCERna no 0.5872 0.5408
DCER yes 0.5971N 0.5573N

Results in Table 5 show that incrementally re-training the ranker
is beneficial to entity ranking effectiveness. For both KBER and
DCER we see a substantial improvement when moving from one
single batch training to continuously retraining the ranker. To better
understand this behavior, we plot in Figure 5 the performance of all
runs we consider over time and at the same time; Table 6 provides
the detailed scores. Broadly speaking we observe similar patterns
between adaptive and non-adaptive methods, and we identify three
interesting points. First, for the non-adaptive methods, the abso-
lute performance is substantially lower across the board. Second,



Figure 4: Runs with field similarity, field importance, and en-
tity importance features. MAP on the y-axis, number of queries
on the x-axis. The line represents MAP, averaged over 5-folds.
Standard deviation is shown as a shade around the line. This
plot is best viewed in color.

for the adaptive methods, the standard deviation (as shown in Fig-
ures 2 and 5) is substantially lower, which indicates that retraining
increases the ranking method’s confidence in optimally combining
the different descriptions for the entity representation. Third, the
learning rates in the adaptive setting are substantially higher, reaf-
firming our observation that learning a single global feature weight
vector is not optimal.

Table 6: Comparing relative improvement between non-
adaptive runs. Significance tested against KBERna.

Run MAP
(10k)

MAP
(end)

Rate P@1
(10k)

P@1
(end)

Rate

KBERna 0.5040 0.5198 +3.1% 0.4286 0.4392 +2.5%
KB+Webna 0.5318 0.5493N +3.3% 0.4698 0.4829N +2.8%

KB+Tagsna 0.5298 0.5546N +4.7% 0.4671 0.4904N +5.0%
KB+Tweetsna 0.5074 0.5269N +3.8% 0.4334 0.4490N +3.6%
KB+Queriesna 0.5275 0.5650N +7.1% 0.4659 0.5090N +9.2%

DCERna 0.5548 0.5872N +5.8% 0.5063 0.5408N +6.8%

Table 6 shows that the difference in learning rates between meth-
ods that only incorporate static description sources (KBER, KB+web)
and methods that incorporate dynamic sources is pronounced, in
particular for the tags and queries sources. This indicates that even
with fixed feature weights, the content that comes in from the dy-
namic description sources yields an improvement in entity ranking
effectiveness. Finally, the methods that only incorporate static de-
scription sources also show lower learning rates than their adaptive
counterparts, which indicates that retraining and adapting feature
weights is desirable even with static entity representations.

Figure 5: Individual description sources with nonadaptive
ranker. MAP on the y-axis, number of queries on the x-axis.
The line represents MAP, averaged over 5-folds. Standard de-
viation is shown as a shade around the line. This plot is best
viewed in color.

7. CONCLUSIONS
In this paper we have presented a method for constructing dy-

namic collective entity representations by leveraging collective in-
telligence to improve entity ranking. Our results demonstrate that
incorporating dynamic description sources into dynamic collective
entity representations enables a better matching of users’ queries
to entities. Furthermore, we show how continuously updating the
ranker leads to improved ranking effectiveness in dynamic collec-
tive entity representations.

Our study of the impact of dynamic collective entity representa-
tions was performed in a controlled scenario, where we collect and
leverage different data sources. One restriction of working with
these freely available resources is that it proves hard to find aligned
and sizeable datasets. In particular, the temporal misalignment be-
tween different corpora prevents the analysis of temporal patterns
that may span across sources (e.g., queries and tweets showing sim-
ilar activity around entities when news events unfold). In part, these
restrictions can be circumvented, e.g., increasing the (compara-
tively) low number of tweets by enriching them through e.g., entity
linking methods [25], where entities identified in tweets could be
expanded. Additional challenges and opportunities may arise when
increasing the scale of the data collections. Opportunities may lie in
exploiting session or user information for more effective use of user
interaction signals. Challenges include so-called “swamping” [31]
or “document vector saturation” [19], i.e., entity drift that is more
prone to happen when the size of the data collections increase.
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