
CorpusBrain++: A Continual Generative Pre-Training
Framework for Knowledge-Intensive Language Tasks

JIAFENG GUO, CHANGJIANG ZHOU, RUQING ZHANG, and JIANGUI CHEN, Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy of
Sciences, Beijing, China
MAARTEN DE RIJKE, University of Amsterdam, Amsterdam, The Netherlands
YIXING FAN and XUEQI CHENG, Institute of Computing Technology, Chinese Academy of Sciences,
Beijing, China and University of Chinese Academy of Sciences, Beijing, China

Knowledge-intensive language tasks (KILTs) typically require retrieving relevant documents from trustworthy
corpora, e.g., Wikipedia, to produce specific answers. Very recently, a pre-trained generative retrieval model for
KILTs, named CorpusBrain, was proposed and reached new state-of-the-art retrieval performance. However,
most research on KILTs, including CorpusBrain, has predominantly focused on a static document collection,
overlooking the dynamic nature of real-world scenarios, where new documents are continuously being
incorporated into the source corpus. To address this gap, it is crucial to explore the capability of retrieval
models to effectively handle the dynamic retrieval scenario inherent in KILTs.

In this work, we first introduce the continual document learning (CDL) task for KILTs and build a novel
benchmark dataset named KILT++ based on the original KILT dataset for evaluation. Then, we conduct a
comprehensive study of the use of pre-trained CorpusBrain on KILT++. Unlike the promising results in the
stationary scenario, CorpusBrain is prone to catastrophic forgetting in the dynamic scenario, hence hampering
retrieval performance. To alleviate this issue, we propose CorpusBrain++, a continual generative pre-training
framework that enhances the original model along two key dimensions: (i) We employ a backbone-adapter

Research conducted when Ruqing Zhang was at the University of Amsterdam.
This work was funded by the Strategic Priority Research Program of the CAS under Grants No. XDB0680102, the National
Natural Science Foundation of China (NSFC) under Grants No. 62472408, 62372431 and 62441229, the National Key Research
and Development Program of China under Grants No. 2023YFA1011602, the Youth Innovation Promotion Association CAS
under Grants No. 2021100, the Lenovo-CAS Joint Lab Youth Scientist Project, and the Strategic Priority Research Program
of the CAS under Grants No. XDB0680301. This work was also (partially) funded by the Dutch Research Council (NWO),
under project numbers 024.004.022, NWA.1389.20.183, and KICH3.LTP.20.006, and the European Union’s Horizon Europe
program under grant agreement No. 101070212. All content represents the opinion of the authors, which is not necessarily
shared or endorsed by their respective employers and/or sponsors.
Authors’ Contact Information: Jiafeng Guo, Institute of Computing Technology, Chinese Academy of Sciences, Beijing,
China and University of Chinese Academy of Sciences, Beijing, China; e-mail: guojiafeng@ict.ac.cn; Changjiang
Zhou, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy
of Sciences, Beijing, China; e-mail: zhouchangjiang23s@ict.ac.cn; Ruqing Zhang (corresponding author), Institute of
Computing Technology, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy of Sciences,
Beijing, China; e-mail: zhangruqing@ict.ac.cn; Jiangui Chen, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing, China and University of Chinese Academy of Sciences, Beijing, China; e-mail: chenjiangui18z@ict.ac.cn;
Maarten de Rijke, University of Amsterdam, Amsterdam, The Netherlands; e-mail: m.derijke@uva.nl; Yixing Fan, Institute
of Computing Technology, Chinese Academy of Sciences, Beijing, China and University of Chinese Academy of Sciences,
Beijing, China; e-mail: fanyixing@ict.ac.cn; Xueqi Cheng, Institute of Computing Technology, Chinese Academy of
Sciences, Beijing, China and University of Chinese Academy of Sciences, Beijing, China; e-mail: cxq@ict.ac.cn.

This work is licensed under Creative Commons Attribution International 4.0.

© 2025 Copyright held by the owner/author(s).
ACM 1558-2868/2025/10-ART5
https://doi.org/10.1145/3763233

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://orcid.org/0000-0002-9509-8674
https://orcid.org/0009-0000-0005-9465
https://orcid.org/0000-0003-4294-2541
https://orcid.org/0000-0002-6235-6526
https://orcid.org/0000-0002-1086-0202
https://orcid.org/0000-0003-4317-2702
https://orcid.org/0000-0002-5201-8195
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3763233
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3763233&domain=pdf&date_stamp=2025-10-14

5:2 J. Guo et al.

architecture: the dynamic adapter is learned for each downstream KILT task via task-specific pre-training
objectives; the backbone parameters that are task-shared are kept unchanged to offer foundational retrieval
capacity. (ii) We use an experience replay strategy based on exemplar documents that are similar to new docu-
ments, to prevent catastrophic forgetting of old documents. Empirical results demonstrate the effectiveness and
efficiency of CorpusBrain++ in comparison to both traditional and generative information retrieval methods.

CCS Concepts: • Information systems → Retrieval models and ranking;

Additional Key Words and Phrases: Generative retrieval, Continual learning, Knowledge-intensive language
tasks

ACM Reference format:
Jiafeng Guo, Changjiang Zhou, Ruqing Zhang, Jiangui Chen, Maarten de Rijke, Yixing Fan, and Xueqi Cheng.
2025. CorpusBrain++: A Continual Generative Pre-Training Framework for Knowledge-Intensive Language
Tasks. ACM Trans. Inf. Syst. 44, 1, Article 5 (October 2025), 35 pages.
https://doi.org/10.1145/3763233

1 Introduction
Knowledge-intensive language tasks (KILTs) refer to a series of language-related tasks that
require access to external knowledge sources such as Wikipedia for accurate answer generation
[41]. In current mainstream approaches, a two-step process is commonly employed [5, 29, 62],
consisting of a retriever and a reader. The retriever aims to retrieve relevant documents from large,
external knowledge sources, while the reader is meant to synthesize the retrieved information
to generate accurate and correct answers to the initial query. Thanks to the emergence of large-
scale pre-trained generative language models [30, 42], the reader component has seen remarkable
advances recently. The retriever component has primarily leaned on conventional discriminative
methods [20], failing to fully capitalize on the potential advantages offered by generative models.

Generative retrieval (GR) has recently been proposed as an alternative retrieval paradigm [36].
In GR, the retrieval process is formalized as a sequence-to-sequence (Seq2Seq) learning problem,
i.e., directly establishing a mapping from a query to its relevant document identifiers (docids). In
essence, a single generative model is used to encode all information about the corpus into model
parameters, allowing for end-to-end optimization and facilitating the alleviation of computational
costs. As a result, GR stands out as a highly promising paradigm for retrieval in KILTs when
compared to traditional discriminative methods. Specifically, previous research has investigated
direct applications of pre-trained generative language models in the natural language processing
(NLP) field, such as BART [30] and T5 [42], to the KILT retrieval task [4, 8, 55]. This approach
involves initializing the model parameters with pre-trained generative models and subsequently
fine-tuning them using golden query-docid pairs in downstream KILTs, which has demonstrated
notable performance improvements in retrieval tasks.

Beyond the direct application of existing pre-trained generative models designed for NLP, there
have been several pioneering studies on constructing generative pre-training tasks tailored for
the KILT retrieval task. The underlying hypothesis is that using pre-training tasks that more
closely resemble the relevance relationship between queries and documents in downstream KILT
tasks can yield better retrieval performance [18, 26, 65]. A recent and representative contribution
following this research domain pertains to CorpusBrain [9], whose results reported on the KILT
leaderboard1 showcase new state-of-the-art performance, surpassing strong baselines. The key idea
of CorpusBrain is to construct pre-training data consisting of positive pairs of queries and docids

1https://eval.ai/challenge/689/leaderboard.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://doi.org/10.1145/3763233
https://eval.ai/challenge/689/leaderboard
https://eval.ai/challenge/689/leaderboard

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:3

Fig. 1. Comparison of CorpusBrain and CorpusBrain++. CorpusBrain can solely support one-time document
learning and service deployment, without the ability to assimilate new documents and dynamically update
the knowledge base. Going beyond CorpusBrain, the dynamic CorpusBrain++ can support CDL and service
deployment to adapt to evolving corpus in the realistic scenario. CDL, continual document learning.

that encompass various semantic granularities in downstream tasks. Subsequently, a transformer-
based [58] encoder–decoder architecture is pre-trained by maximizing the likelihood of the output
sequence with a standard Seq2Seq objective.

Themajority of prior retrieval models developed for KILTs, including CorpusBrain, have primarily
focused on a scenario with stationary knowledge sources, as shown in Figure 1(a): whenever they
have finished learning, they remain unchanged when used in practice. In contrast to this static
assumption, the accrual of knowledge over time is a ubiquitous phenomenon in most real-world
scenarios, giving rise to new documents added to the underlying knowledge source. For instance,
Wikipedia has experienced exponential growth in the number of documents2 since its inception
in 2001 [1], and new entities emerge in Wikipedia following, in many cases, the news cycle [19].
Therefore, to ensure that generalist information access systems based on a retriever-reader approach
remains up-to-date and well-informed in the face of this ever-changing information landscape, it is
imperative that they consistently expand their knowledge coverage. In traditional dense retrieval
methods [25, 66], the process of incorporating new documents into the retrieval system is relatively
straightforward; the encoded representations of the incremental documents can be directly added
to an explicit external index, without requiring updates to the retrieval model itself. However, in
the case of the state-of-the-art CorpusBrain model, the dynamic retrieval scenario poses a more
significant challenge, mainly due to the use of an implicit parameterized index. Hence, it is of
critical importance to investigate the ability of CorpusBrain to continuously accommodate the
inclusion of new documents.

In this work, as illustrated in Figure 1(b), we make the first attempt to address the dynamic
retrieval scenario for KILTs. We formally define the continual document learning (CDL) task
for KILTs and outline the corresponding evaluation metrics. To facilitate fair and quantitative
comparisons between different models w.r.t. their ability to tackle the CDL task, we introduce a
novel benchmark dataset named KILT++, which is constructed by splitting the original KILT dataset
[41] into distinct sessions to simulate the continual addition of new documents. Subsequently, we
assess the performance of two relatively straightforward variants of the off-the-shelf pre-trained
CorpusBrain model on the newly constructed KILT++ dataset, i.e., the direct insertion approach
and the sequential pre-training approach. Our empirical findings confirm that, unlike the promising

2https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
https://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia

5:4 J. Guo et al.

results achieved in the static scenario, CorpusBrain is vulnerable to catastrophic forgetting and
inadequate in the ability to effectively and efficiently address the dynamic retrieval scenario.

To tackle the non-trivial CDL task, we propose a continual generative pre-training framework
for KILTs, namely, CorpusBrain++ (“CorpusBrain + new documents”), to adapt CorpusBrain to the
dynamic nature of constantly evolving corpora. CorpusBrain++ is designed to accurately retrieve
both old and new documents for queries, without catastrophic forgetting of previous knowledge.
To achieve this objective, we need to address two main challenges:

(1) How to expeditiously learn specific retrieval capacity for each KILT task as the corpus
constantly evolves?

(2) How to prevent catastrophic forgetting the retrieval capacity already learned?

Specifically, we advance beyond the original CorpusBrain model in two key directions to solve the
aforementioned challenges:

(1) In CorpusBrain++, we use a backbone-adapter architecture, wherein a dedicated adapter
is employed for each downstream task to allow for capturing task-specific characteristics.
The fixed backbone component serves as long-term memory to retain fundamental retrieval
capacity, while the dynamic adapter component serves as short-term memory to rapidly
learn incremental documents. To enable continual pre-training of the task-specific adapters,
we design a pre-training task specifically tailored for each individual task.

(2) To avoid catastrophic forgetting of old documents, we use experience replay based on exem-
plar documents. We revisit old documents that are semantically similar to the incremental
documents and apply the specific pre-training tasks for both the newly-arrived documents
and the revisited ones.

We assess the performance of CorpusBrain++ on the constructed KILT++ dataset. Our empirical
results demonstrate that CorpusBrain++ excels in efficiently and effectively handling the CDL task
for KILTs. Further ablation studies are conducted, revealing the effectiveness of each individual
component within the CorpusBrain++ architecture. Moreover, through our experimental analysis,
we confirm that CorpusBrain++ successfully mitigates the occurrence of catastrophic forgetting of
previously encountered documents and showcases the capability of positive forward knowledge
transfer. Finally, we analyze the effectiveness-efficiency tradeoff of CorpusBrain++ and present a
case study to further clarify its inner workings.

2 CDL for KILTs
Here, we first introduce the CDL task for KILTs and then describe the constructed KILT++ bench-
mark dataset, and finally elucidate the corresponding evaluation metrics to assess the CDL task for
KILTs.

2.1 Task Formulation
Assume we have a large-scale base document set (i.e., Wikipedia articles) D0 and sufficiently many
labeled query-document pairs R0 in downstream KILT tasks. Here, R0 contains all the labeled
datasets in different KILT tasks, specifically including fact checking, entity linking, slot filling,
open-domain question answering (QA), and dialogue.

In the CDL task for KILTs, we assume there exist) batches of new documents {D1, . . ., DC , . . .,
D) }, which arrive in a sequential manner as the time session grows. In any session C ≥ 1, the
corresponding labeled KILT data RC is not available, i.e., DC is only composed of newly encountered
documents {31C , 32C , . . . } without labeled queries relevant to these documents. Let the retrieval
model after the Cth update be MC and the model parameters be ΘC . For session C , the training

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:5

Fig. 2. Evaluation criteria of the CDL task for KILTs.

objective of CDL for KILT can be defined as updating ΘC−1 to ΘC via the new document set DC and
previous datasets {D0, . . . ,DC−1}, such that MC can simultaneously retrieve relevant documents
from previously and newly arrived documents {D0, . . . ,DC }. To assess the retrieval performance
of MC , we employ the test set QX

8
, 8 ≤ C , where X denotes the specific downstream KILT dataset,

and 8 means that all relevant documents belong to {D0, . . . ,D8 }. The evaluation criteria of the CDL
task for KILTs is depicted in Figure 2.

2.2 Benchmark Construction
In order to study and evaluate the CDL task for KILTs, we build a new benchmark dataset based on
the original KILT dataset [41], i.e., KILT++. The KILT dataset encompasses 11 datasets spanning
5 KILTs, which are all rooted in a shared knowledge source derived from a common Wikipedia
snapshot. We split the datasets in each task into) + 1 sessions, i.e., session 0, . . . ,) , to simulate a
dynamic retrieval scenario for KILTs. We construct the benchmark dataset via the training set and
the dev set since the KILT leaderboard imposes restrictions on the frequency of the submission for
test performance.

To mimic the new arrival of documents, we set) to 4 and construct KILT++ as follows: (i)
We randomly sample 60% documents from the full Wikipedia knowledge source to constitute the
base document set D0. Then, we randomly divide the remaining Wikipedia documents into four
incremental sets with the same number of documents, to serve as D1, . . ., D4. (ii) To construct
the labeled query-document pairs R0 corresponding to D0, we filter the original KILT training
set by retaining only those query-document pairs where all relevant articles in the corresponding
provenance exclusively belong to D0. To ensure the simulation of newly arrived documents,
duplicate documents containing identical information to existing ones are systematically filtered
out. Specifically, documents are considered duplicates if their similarity rate exceeds 80%. Refer to
Section 5 for calculation of similarity rates between documents. (iii) To construct the test sets Q0, . . .,
Q4 corresponding to D0, . . ., D4, we employ an iterative algorithm as follows. Initially, we filter
the original KILT dev set by retaining only those query-document pairs where all relevant articles
in the corresponding provenance exclusively belong to D0 and denote the constructed dataset as
Q0. As for constructing Q8 , 8 ≥ 1, we iteratively filter the remaining KILT dev set by retaining only
those query-document pairs where all relevant articles in the corresponding provenance exclusively
belong to {D0, . . . ,D8 } and denote the constructed dataset as Q8 .

It is worth noting that since the original KILT dataset inherently consists of 11 datasets spanning
5 downstream tasks, the derived R0 and Q (·) are essentially the same. We typically use R0 or Q (·)
to denote the KILT++ training or test set as a whole, and when we would like to elucidate a specific

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:6 J. Guo et al.

Table 1. Overall Statistics of Our Constructed KILT++ Benchmark Dataset

Dataset Task 0 1 2 3 4

#Train #Test #Test #Test #Test #Test

FEV Fact Checking 73,078 6,064 1,007 1,088 1,161 1,124
AY2 Entity Linking 10,745 2,847 553 418 441 525
WnWi Entity Linking - 2,052 360 332 288 364
WnCw Entity Linking - 3,381 652 460 605 501
T-REx Slot Filling 1,304,897 2,876 488 504 553 579
zsRE Slot Filling 94,980 2,226 353 379 417 349
NQ Open-Domain QA 57,238 1,353 297 359 396 432
HoPo Open-Domain QA 44,897 1,994 742 835 959 1,070
TQA Open-Domain QA 33,152 2,457 599 732 708 863
ELI5 Open-Domain QA - 745 172 199 201 190
WoW Dialogue 39,823 2,162 391 131 199 171

KILT dataset such as FEV, we can add superscripts as a differentiation, i.e., R��+
0 or Q��+

(·) . Table 1
shows the overall statistics of our KILT++ benchmark dataset.

Furthermore, it is important to note that the random partitioning strategy used to divide the
Wikipedia knowledge source treats all documents as equivalent, overlooking the temporal order of
documents. Despite this disadvantage, we still use this strategy due to the following reasons: (i)
In the original Wikipedia knowledge source for the KILT dataset, the initial timestamp indicating
when a document was added is not available. Instead, only the timestamp of the most recent
revision can be obtained. However, due to frequent updates, this revision timestamp no longer
accurately reflects the original appearance of the document. Although it is theoretically possible to
manually retrieve the original timestamps, for instance, by employing a web crawler, this approach
would be highly resource-intensive and time-consuming, particularly given that our Wikipedia
knowledge source comprises over 5.9 million documents. (ii) The size of the Wikipedia knowledge
source varies across different years [39], resulting in fluctuations in the number of newly arrived
documents each year. This variability may lead to an imbalance in the test set size. In contrast, the
random partitioning strategy can help mitigate this issue. (iii) The random partitioning strategy is
also used in existing work that explores continual learning (CL) for GR [6, 35]. Nevertheless, we
acknowledge that the random partitioning approach does not reflect real-world temporal dynamics
due to overlooking the temporal order of documents. This limitation may hinder the assessment of
models’ effectiveness in recognizing novel topics and adapting to temporal changes.

2.3 Evaluation Metrics
In this section, we group the evaluation metrics into three parts. First, we describe the metrics
employed for assessing individual downstream datasets. Subsequently, we elucidate the metrics
used for assessing individual downstream tasks. Finally, we provide the metrics employed for
assessing all downstream datasets.

2.3.1 Assessing Individual Downstream Datasets. As illustrated in Table 1, for each session 8 , we
have 11 specific KILT++ test sets denoted as &X

8
where X denotes the specific downstream dataset

such as FEV and AY2, whose relevant documents belong to {D0, . . . ,D8 }. Suppose the performance

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:7

of the retrieval model MC evaluated on the held-out test set &X
8
is PX

C,8
:

PX
C,8 =

∑
@∈&X

8
,3@ ∈{D0,...,D8 }

6(3@,MC (@)), 8 ≤ C, (1)

where 3@ denotes the relevant document to the query @ ∈ &X
8
, and 6(·) denotes a widely used

evaluation metric for information retrieval (IR) such as recall [51]. Details of the evaluation
metrics used will be described in Section 5.3.

When it comes to individually assessing "C on a specific downstream dataset X , we compare the
vertical performance +%XC of different approaches on &X

C in the same session C :

+%XC = PX
C,C . (2)

2.3.2 Assessing Individual Downstream Tasks. When it comes to individually assessing "C on a
specific downstream task g in session C , we take the average vertical performance across all specific
datasets under this task as the metric:

+%gC =
1

|�g |
∑
X∈�g

+%XC , (3)

where �g denotes the set of all specific downstream datasets that belong to the task g .

2.3.3 Assessing All Downstream Datasets. To give a comprehensive retrieval performance across
all downstream datasets in the session C , we employ the vertical performance +%C :

+%C =
1
|� |

∑
X∈�

+%XC , (4)

where � denotes the set of all specific downstream datasets.
Since we pay more attention to the comprehensive retrieval capability across all downstream

datasets and tasks, we merely employ the following across-all-session metrics to assess the trends
in comprehensive retrieval performance. Hence, we first define the comprehensive retrieval per-
formance of the model on the test set Q8 after the learning phase of session C PC,8 to facilitate the
elaboration of the later-defined metrics:

PC,8 =
1
|� |

∑
X∈�

PX
C,8 , (5)

where � denotes the set of all specific downstream datasets. To provide a metric for assessing all
downstream datasets across all sessions, following [33, 35], we also employ the following evaluation
metrics:

(1) Average Performance (�%) is used to measure the average performance at the conclusion of
training with the entire existing data sequence:

�% =
1

) + 1

)∑
8=0

P),8 , (6)

where to the term P),8 represents the retrieval performance of the model on the test set Q8

after training on all available data up to session) . By averaging these performance scores
over all sessions (from 0 to)), �% can reflect the model’s average retrieval ability across all
sessions.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:8 J. Guo et al.

(2) Backward Transfer (�,)) is used to evaluate the effect of learning a new session on the
performance of all previous sessions:

�,) =
1
)

)−1∑
8=0

max
C ∈{0,...,)−1}

(PC,8 − P),8), (7)

where the term PC,8 indicates the comprehensive retrieval performance of the model on the
test set Q8 after the learning phase of session C . The expression PC,8 − P),8 quantitatively
represents the discrepancy in performance on Q8 between session C and) . By taking the
maximum over all sessions C ∈ {0, . . . ,) − 1}, the most significant backward transfer effect
can be identified. The average of these maximum values across all sessions provides a
comprehensive measure of how well the model retains knowledge from earlier sessions when
new sessions are introduced.

(3) Forward Transfer (�,)) is used to measure the ability to learn when confronted with a new
session:

�,) =
1
)

)∑
C=1

PC,C , (8)

where the term PC,C represents the comprehensive retrieval performance of the model on the
test set Q8 after the learning phase of session C . By averaging these performance scores from
session 1 to) , we assess the effectiveness of the model in using prior knowledge to enhance
learning in new sessions.

3 Analysis of CorpusBrain on CDL
In this section, based on our constructed KILT++ benchmark dataset, we conduct an empirical
analysis of CorpusBrain to investigate its performance on CDL tasks.

3.1 Background
Our method is designed based on CorpusBrain [9], and thus we would like first to provide a brief
overview of CorpusBrain before delving into the details of our proposed extension. CorpusBrain is
a pre-trained GR model for KILTs, exhibiting state-of-the-art retrieval performance for KILTs.

3.1.1 Model Architecture. In CorpusBrain, a transformer-based [58] encoder–decoder architec-
ture is used to capture the relevance between queries and docids, which incorporates an encoder to
yield the query representation and a decoder to generate the relevant docids. In the implementation
of CorpusBrain, the titles of Wikipedia pages are selected as docids.

3.1.2 Pre-Training Tasks. Three self-supervised pre-training tasks are devised to generate pseudo-
query-docid pairs from documents and hence facilitate retrieval for KILTs. The pre-training tasks in
CorpusBrain are carefully designed based on a prevailing hypothesis that using pre-training tasks
that bears greater resemblance to downstream tasks results in superior fine-tuning effectiveness.
Specifically, three pre-training tasks with different granularity are introduced:

—Inner sentence selection (ISS). Inner sentences are randomly sampled from the document
as pseudo-queries, with the document and destination pages linked by anchor texts serving
as relevant target documents. The ISS task is designed to capture sentence-level semantic
context.

—Lead paragraph selection (LPS). Leading paragraphs are drawn from the document as
pseudo-queries, with document and destination pages linked by anchor texts serving as

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:9

relevant target documents as well. The LPS task allows for capturing paragraph-level semantic
information.

—Hyperlink identifier prediction (HIP). The corresponding sentences of randomly sampled
anchors, along with the surrounding contextual sentences, are chosen as pseudo-queries, with
the destination pages linked by the anchors serving as the relevant target documents. The
LPS task is used to capture inter-document semantic relevance.

3.1.3 Pre-Training Process. In CorpusBrain, the “pre-train and fine-tune” paradigm is employed
to adapt to multiple downstream KILT tasks. In the pre-training phase, a checkpoint of BART
[30] is first applied to initialize the parameters to reduce the cost of training from scratch. After
generating pairs of pseudo-queries and docids by the aforementioned pre-training tasks, a standard
Seq2seq learning objective, i.e., maximum likelihood estimation [37], is employed to optimize the
model, denoted as:

L =
∑

@∈ 5 (D)

∑
<

∑
=

log? (F<,= | F≤<,<=, @;Θ), (9)

where D represents the knowledge source corpus, 5 (·) signifies the transformation function of
pre-training tasks, @ refers to the constructed pseudo-query,F<,= denotes the =th token in the<th
docid related to @, and Θ refers to the model parameters.

3.1.4 Fine-Tuning Process. To further adapt to multiple downstream KILT tasks, the model
is then fine-tuned on all KILT training datasets across five tasks through a multi-task training
objective. By applying the fine-tuned model to the KILT test set and decoding with a constrained
beam search strategy on the docid prefix tree, as illustrated in the KILT leaderboard, CorpusBrain
can achieve the top performance on a number of downstream tasks.

3.2 Overall Performance
As for directly using the pre-trained CorpusBrain model to address the CDL task for KILTs, we
build two naive CorpusBrain variants as follows.

—The direct insertion approach (denoted as Direct), inserts new docids, i.e., Wikipedia titles, from
the incremental corpus DC directly into the docid prefix tree, without updating the backbone
parameter Θ0.

—The sequential pre-training approach (denoted as Sequential), sequentially pre-trains the model
via D0 ∼ DC with self-supervised pre-training tasks.

Experimental Results. Based on the performance reported in Table 2, the following observations
can be made: (i) The Direct method suffers from a significant drop of approximately 20% in terms
of VP in the first incremental session, compared to BM25 with only 9%, which demonstrates that
the Direct method cannot learn incremental documents well when they arrive. Moreover, the
Direct method solely depends on the generalization capability of the backbone model, without
a mechanism to learn knowledge within new documents. (ii) The Sequential variant exhibits a
more considerable drop in terms of VP in the first incremental session, quantitatively about 47%.
We can also observe a high BWT score, which demonstrates the Sequential variant is prone to
catastrophic forgetting. Notably, the Sequential method even demonstrates inferior performance
compared to the traditional BM25 in terms of+% in session 4. (iii) On the whole, neither of the two
naive variants can effectively tackle the CDL task for KILTs.

Based on our analysis, we conclude that the naive variants of CorpusBrain are either deficient in
their ability of forward transfer or prone to catastrophic forgetting. Hence, the CDL task for KILTs
poses a non-trivial challenge for CorpusBrain.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:10 J. Guo et al.

Table 2. Performance of Naive CorpusBrain Variants on the CDL Task

Model Q0 Q1 Q2 Q3 Q4 AP↑ BWT↓ FWT↑

BM25 27.61 25.11 22.97 23.84 22.92 22.26 2.78 23.71
Direct 59.72 47.86 44.87 46.21 45.42 48.28 0.67 46.09
Sequential 59.72 31.84 27.09 26.81 22.48 17.67 19.89 27.05

We evaluate the retrieval performance on&8 in terms of+% . As for�% , �,) , and �,) , ↑ indicates that higher is
better and ↓ that lower is better.

Fig. 3. Illustration of our proposed CorpusBrain++ method. The backbone first involves pre-training on the
initial base document set �0 through the ISS, LPS, and HIP pre-training tasks, and fine-tuning with golden
pairs derived from the KILT++ training set. To accommodate each task, a specific adapter is allocated, and
a dedicated pre-training task is introduced to mimic the characteristics of downstream input queries. In
addition to the incremental document set �C , we also revisit semantically similar documents to �C from
previous sessions, thereby generating pseudo pairs and continually pre-training the adapters.

4 Methodology
In this section, we introduce a novel continual generative pre-training framework for KILTs, i.e.,
CorpusBrain++. We first introduce our model design, and then describe the technical details.
Finally, we explain the learning and inference processes of the model.

4.1 Model Overview
According to our analysis in Section 3, naive variants of CorpusBrain struggle to address the CDL
challenge effectively and efficiently. We attribute this to the fact that the characteristics of CL for
KILTs are neglected. Since KILTs encompass multiple downstream tasks with distinct forms of
input queries, modeling each task separately could facilitate CL.

Inspired by the parameter-isolation paradigm in the CL field [34, 48], we propose a continual
generative pre-training framework to incrementally learn new documents for KILTs, namely
CorpusBrain++. As shown in Figure 3, CorpusBrain++ incorporates three key features:

(1) First, we employ a backbone-adapter architecture. The shared backbone undergoes pre-
training on D0 and subsequent fine-tuning on R0, with the parameters held fixed to ensure
consistent provision of task-shared knowledge. To accommodate the evolving corpus, a
specific adapter is used for each KILT task to efficiently learn new documents, which aims to
retain the characteristics of specific data in each task.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:11

Fig. 4. The architectures of CorpusBrain and CorpusBrain++.

(2) Second, we design a specific pre-training objective for each KILT task, to resemble the
relevant relationship between queries and documents in each specific task. In this way, we
can continually pre-train the task-specific adapters.

(3) Third, to avoid catastrophic forgetting, we revisit some old documents and apply the specific
pre-training tasks for both new and old documents for continual pre-training.

4.2 Shared Backbone
Here, we present the structure of the shared backbone, which constitutes a transformer-based
encoder–decoder architecture. As depicted in Figure 4(a), both the encoder and decoder are generally
composed of ; layers. Each layer of the encoder comprises multiple components including a multi-
head self-attention sub-layer ("�(�), a feed-forward neural network sub-layer (��#), and a
residual connection subsequently followed by layer normalization ('�!#). Likewise, each layer of
the decoder consists of multiple components incorporating a masked multi-head self-attention sub-
layer (""�(�), a multi-head cross-attention sub-layer ("���), a feed-forward neural network
sub-layer (��#), and a residual connection subsequently followed by layer normalization ('�!#).

Next, we introduce the basic multi-head attention mechanism, then specify three sub-layers
incorporating the attention mechanism and introduce the principle of the feed-forward layer.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:12 J. Guo et al.

Multi-Head Attention Mechanism. Given the input hidden state ℎ@, ℎ: , ℎE ∈ R=×3 , the 8th attention
head can be formulated as:

Attention8 (h@,h: ,hE) =
∑
<

softmax

(
,

@

8
h@ ·, :

8 h
:√

3/<

)
, E

8 h
E, (10)

where, (·)
8

∈ R3/<×< are trainable projection matrices. Additionally, the outputs of multiple
attention heads are fed into a multi-head attention layer, of which the mechanism can be formulated
as follows:

"� (h@,h: ,hE) = Concat(Attention1 (h@,h: ,hE), . . . ,Attention= (h@,h: ,hE)), > , (11)

where, > ∈ R3×3 is the learned transformation matrix.
In the self-attention layers, i.e., "�(� and ""�(�, h@ , h: , and hE all refer to the input hidden

state h. An attention mask is employed in ""�(� to preserve the auto-regressive property. In
the cross-attention layers, i.e., "���, h@ comes from the previous decoder layer while h: and hE

come from the output of the encoder layer.

Feed-Forward Sub-Layer. The feed-forward sub-layer is a position-wise fully connected FFN, which
can be formulated as follows:

��# (h) = f (h,1 + 11),2 + 12, (12)

where,1 ∈ R3×43 and,2 ∈ R43×3 are trainable transformation matrices, 11 ∈ R43 and 12 ∈ R3

are trainable bias terms.
Each sub-layer, denoted as (∈ {"�(�,""�(�,"���, ��# }, uses a residual connection

followed by layer normalization ('�!#), which can be formulated as follows:

'�!# (h) = !# (((h) + h), (13)

where !# (·) denotes layer normalization.

4.3 Task-Specific Adapter
As mentioned before, we assign a task-specific adapter for each downstream KILT task and contin-
ually pre-train the adapters to accomplish the CDL task for KILTs. Below, we provide the technical
details for adapter insertion and adapter structure.

4.3.1 Adapter Insertion. To capture a specific query-to-docid mapping for each task, we maintain
an adapter module for each task independently, i.e., the task-specific adapter. The adapter is a series
of compact and efficient modules inserted after the sub-layers of the transformer, defined as:

Adapter(h) = 6(h,3>F=),D? , (14)

where,3>F= ∈ R3×A and,D? ∈ RA×3 are trainable down-projection and up-projection matrices
correspondingly, and 6 denotes the transformation function.

As depicted in Figure 4(b), we insert adapters into both the encoder and decoder modules. The
underlying reasons are two-fold: (i) The input queries vary significantly across distinct downstream
tasks, including semantic granularity and formats, hence we insert adapters into the encoder
module. (ii) The query-docid mapping also varies across downstream tasks, therefore we insert
adapters into the decoder module apart from the encoder module.

Given the promising results achieved in [23, 53], as depicted in Figure 4(b), we insert adapters in
an inside way. In other words, we place an adapter behind each sub-layer (∈ {"�(�, ""�(�,

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:13

"���, ��# }. The formulation of each sub-layer in Equation (13) undergoes the following trans-
formation:

Inside(h) = LN(Adapter(((h)) + h). (15)

4.3.2 Adapter Structure. In the area of multi-task learning and transfer learning [23], previous
work has made much progress on the issue of how to design more efficient transformation functions
6 in Equation (14). We employ a simple yet effective adapter structure named the low-rank layer,
which exhibits promising empirical results in [7, 52]. In this adapter structure, the 6 function is
defined as a low-rank transformation, i.e., an identity function.

4.4 Task-Specific Pre-Training Objective
To facilitate continually pre-training the task-specific adapters, we carefully design a specific
pre-training objective for each downstream KILT task. The principle of each pre-training task is
to mimic the relevant relationship between queries and documents in the corresponding down-
stream task as much as possible. The objective of each pre-training task mainly incorporates two
components, i.e., input pseudo-queries and output docids. In terms of distinct downstream KILT
tasks, distinctions of input pseudo-queries primarily manifest themselves in semantic granularity.
During the construction of input pseudo-queries, we first build preliminary pseudo-queries based
on semantic granularity, and further refine them to accommodate the characteristics of downstream
KILT tasks. On the other hand, distinctions of output docids primarily manifest themselves in
the number of supporting documents. During the construction of output docids, we determine
the number of output docids for each downstream task according to the specific output scenario
associated with the corresponding task.

4.4.1 Fact Checking. In terms of fact checking, the input pseudo-queries and output docids are
constructed as follows:

— Input pseudo-queries. The construction of input pseudo-queries includes the following steps:
(1) From the perspective of semantic granularity, fact-checking queries typically encompass

sentence-level semantic context. For instance, a typical query example that Windows
are the software products of Microsoft is at the sentence level. Hence we use the ISS pre-
training task to sample sentences from the document. Specifically, given a document 3 ,
we randomly draw ; inner sentences from 3 to form the preliminary pseudo-queries.

(2) We can also observe that fact-checking queries are typically short in length (seven words
in this case) and entity-centric (Windows and Microsoft in this case). To further mimic
the aforementioned characteristics, we randomly sample an =-gram span from each
preliminary pseudo-query.

(3) The document title is regarded as the core entity within 3 in previous work [13, 60].
Therefore, We add the document title to the beginning of the sampled span to construct
the final pseudo-query. An example input pseudo-query for fact checking is given in
Figure 5(i).

—Output docids. From the perspective of target document numbers, fact checking might require
multiple supporting documents to judge the authenticity of a given claim. For example, we
might need two supporting documents in this case, i.e., a document titled Windows and
another titled Microsoft. Following ISS, we first randomly sample > anchor texts within 3 .
Apart from 3 , we also treat the destination pages linked by these > anchors as the relevant
documents. As depicted in Figure 5(i), we concatenate the docid of 3 and the docids of these >
relevant documents with a separator [SEP]. By this means the final output sequence could be
constructed, which allows for dynamic predictions of relevant documents.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:14 J. Guo et al.

Fig. 5. Illustration of specific pre-training tasks for each KILT task. Anchor texts are marked in blue. The
colored underlines in Wikipedia content correspond to the source text of the corresponding KILT task in the
table below. Input and output refer to the constructed input pseudo-queries and corresponding output docids.

4.4.2 Entity Linking. In terms of entity linking, the input pseudo-queries and output docids are
constructed as follows:

— Input pseudo-queries. The construction of input pseudo-queries includes the following steps:
(1) From the perspective of semantic granularity, entity-linking queries typically involve inter-

document semantic relations. We provide a typical entity-linking query as an example:
[START_ENT] Bill Gates [END_ENT] is best known as the co-founder of Microsoft Corporation,
one of the world’s largest and most successful technology companies. This query carries
the inter-document semantic relation between the document titled Bill Gates and the
document titled Microsoft. Based on the above analysis, we employ a variant of the HIP
pre-training task to construct preliminary pseudo-queries. Specifically, given a document
3 , we randomly select ; anchor texts within 3 . Subsequently, we locate the corresponding
sentences containing the selected anchor texts as the preliminary pseudo-queries.

(2) As illustrated in Figure 5(ii), entity-linking queries typically contain special tokens to
indicate the entity boundary, i.e., [START_ENT] and [END_ENT]. To further mimic this
characteristic, we insert special tokens revealing entity boundaries as well. Specifically,
for each preliminary pseudo-query, we insert [START_ENT] and [END_ENT] to the left

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:15

and right of the anchor text. An example input pseudo-query for entity linking is given in
Figure 5(ii).

—Output docids. From the perspective of target document numbers, only a unique target docid
is required for entity linking (Bill Gates in this case). To this end, for each pseudo-query, the
output docid refers to the docid of the destination page linked by the selected anchor text. As
illustrated in Figure 5(ii), the constructed output docid refers to Bill Gates in this case.

4.4.3 Slot Filling. In terms of slot filling, the input pseudo-queries and output docids are con-
structed as follows:

— Input pseudo-queries. The construction of input pseudo-queries includes the following steps:
(1) From the perspective of semantic granularity, slot-filling queries typically involve sentence-

level semantic context. For example, a typical slot-filling query Microsoft [SEP] head-
quarters location mainly contains sentence-level semantics. Therefore, we first use the
ISS pre-training task to sample sentences from the document. Given a document 3 , we
randomly draw ; inner sentences from 3 to form the preliminary pseudo-queries.

(2) Each slot-filling query typically constitutes a subject entity (Microsoft in this case) and a
relational predicate (headquarters location in this case) pre-defined in the candidate set. To
closely mimic this characteristic, we first train a relation detector by fine-tuning the BERT
model [15] on the slot-filling training set in the initial session, i.e., R)−'�G

0 and RIB'�
0 . The

relation detector allows for the prediction of relation types within each sampled sentence.
We retain the top-: predicted relation types for each sampled sentence.

(3) We treat the core entitywithin3 , i.e., the document title, as the subject entity. Subsequently,
for each sampled sentence, we separately concatenate the subject entity with the top-:
predicted relation types using a separator ([SEP]) to form : final pseudo-queries. An
example input pseudo-query for slot filling is given in Figure 5(iii).

—Output docids. From the perspective of target document numbers, the slot-filling task tends to
require a single supporting document (Microsoft in this case). Therefore, as depicted in Figure
5(iii), the output docid refers to the docid of 3 for each pseudo-query.

4.4.4 Open-Domain QA. In terms of open-domain QA, the input pseudo-queries and output
docids are constructed as follows:

— Input pseudo-queries. The construction of input pseudo-queries includes the following steps:
(1) In the case of open-domain QA, queries typically involve sentence-level semantic context.

Therefore, we first use the ISS pre-training task to sample sentences from the document.
Given a document 3 , we randomly draw ; inner sentences from 3 to form the preliminary
pseudo-queries.

(2) As illustrated in Figure 5(iv), queries for open-domain QA are typically in the form of
questions. Additionally, we can observe that QA queries are often short in length (10 words
in this case). Moreover, the queries could sometimes incorporate an entity to locate the
supporting documents (Microsoft in this example). To further mimic the aforementioned
characteristics, for each preliminary pseudo-query, we randomly sample an =-gram span.
Subsequently, for each sampled span, we randomly select an interrogative word from a
pre-defined candidate set, and then add it to the beginning of the span.

(3) We insert the document title between the interrogative word and the sampled span to
emphasize the core entity within 3 . An example input pseudo-query for open-domain QA
is given in Figure 5(iv).

—Output docids. From the perspective of target document numbers, more than one supporting
document might be required to accomplish the QA task. Following ISS, we first randomly

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:16 J. Guo et al.

sample > anchor texts within 3 . Subsequently, we treat the destination pages linked by these >
anchors as the relevant documents. Finally, as shown in Figure 5(iv), we concatenate the docid
of 3 and the docids of the > relevant documents with a separator [SEP]. By this means the
final output sequence could be constructed, which allows for dynamic predictions of relevant
documents.

4.4.5 Dialogue. In terms of dialogue, the input pseudo-queries and output docids are constructed
as follows:

— Input pseudo-queries. The construction of input pseudo-queries includes the following steps:
(1) From the perspective of semantic granularity, queries in the dialogue typically involve

paragraph-level semantic information. Hence, we first apply the LPS pre-training task
to sample paragraphs from the document. Given a document 3 , we sample the leading ;
paragraphs from 3 to form the preliminary pseudo-queries.

(2) As illustrated in Figure 5(v), dialogue queries tend to comprise a long conversation context
and a question related to the context. To further mimic this characteristic, we treat each
preliminary pseudo-query as a conversation context and construct a question for each
preliminary pseudo-query. For each preliminary pseudo-query, we randomly sample an
=-gram span. Subsequently, for each sampled span, we randomly select an interrogative
word from a pre-defined candidate set, and then add it to the beginning of the span.
We insert the document title between the interrogative word and the sampled span to
emphasize the core entity within 3 . By this means we could construct ; paragraph-level
questions.

(3) Instead of replacing the preliminary pseudo-queries with the constructed questions, we
concatenate the preliminary pseudo-queries and the constructed questions to yield the
final pseudo-queries. An example input pseudo-query for dialogue is given in Figure 5(v).

—Output docids. From the perspective of target document numbers, multiple supporting docu-
ments might be needed to comprehend the conversation context and provide a correct answer.
Following LPS, we first randomly sample > anchor texts within 3 . Subsequently, we treat
the destination pages linked by these > anchors as the relevant documents. As shown in
Figure 5(v), we concatenate the docid of 3 and the docids of the > relevant documents with a
separator [SEP]. By this means the final output sequence could be constructed, which allows
for dynamic predictions of relevant documents.

4.5 Learning Process
Here, we detail the learning process deployed in our method. First, we elucidate the learning process
of newly arrived documents. We then explain the strategy of rehearsing old documents, which
serves as a countermeasure against catastrophic forgetting. Lastly, we present the overall learning
objective.

4.5.1 Learning New Documents. In the learning process, we continually learn new documents
by updating the parameters of task-specific adapters. When confronted with a new document
set �C , C ≥ 1, we first generate pairs of pseudo-queries and docids by applying the task-specific
pre-training tasks to each incremental document. For each downstream task, we can learn new
documents by continually pre-training the corresponding task-specific adapter with the constructed
pairs. The learning objective is detailed in Section 4.5.3.

4.5.2 Rehearsing Old Documents. To avoid catastrophic forgetting of old documents while
learning new documents, we perform experience rehearsal of old documents. When learning new
knowledge or skills, humans tend to draw upon similar past experiences as a reliance [10, 11, 22].

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:17

Inspired by this fact about human cognition, we employ a cluster-based strategy for rehearsing
old documents in our framework, which allows for the consideration of semantic similarity. For
each new session C ≥ 1, we first cluster old documents in previous sessions into : categories. In our
framework, we employ the K-means clustering algorithm [21] to cluster documents inD0, . . . ,DC−1
into : categories. In terms of representing each document, we directly use the docid to facilitate
efficiency. We feed all docids of the old documents into the K-means clustering algorithm:

{�1, . . . ,�: } = K-means

({
W | W ∈

C−1⋃
8=0

D8

})
, (16)

where W denotes the docid, and � (·) refers to the document cluster.
When a stream of documents DC arrives, for each new document 38C ∈ DC , we first judge the

specific cluster to which the document belongs. Subsequently, we randomly select = old documents
from the corresponding cluster. After repeating the aforementioned process for each38C ∈ DC , we can
construct an experience set D̂C , which share semantic similarity with DC . Similar to learning new
documents, we use the aforementioned pre-training tasks on D̂C to generate pairs of pseudo-queries
and docids. For each downstream task, we can review old documents by continually pre-training the
corresponding task-specific adapter with the constructed pairs. The learning objective is detailed in
Section 4.5.3.

4.5.3 Overall Learning Objective. For each new session C , the parameters of each task-specific
adapter are independently updated, while the parameters of the shared backbone are kept un-
changed. First, we initialize the parameters of each adapter by inheriting from the previous session.
Under exceptional circumstances wherein C = 1, the parameters of task-specific adapters are
randomly initialized since it is the first incremental session. Subsequently, we construct pairs of
pseudo-queries and docids for both the new document setDC and the old document set D̂C following
Section 4.5.1 and Section 4.5.2. Finally, for each downstream KILT task, we separately update the
parameters of the task-specific adapter with the generated pairs tailored for the corresponding task.
We apply a standard Seq2Seq learning objective to continually pre-train the task-specific adapters:

L =
∑
g∈T

∑
(@,W) ∈ 5 g (DC∪D̂C)

log? (W,Θg
C | @;Θg

C−1), (17)

where T denotes the task set, g represents a specific downstream task in T , 5 g (·) refers to the
transformation function of the pre-training task dedicated for g , (@,W) denotes the constructed
pairs of pseudo-queries and docids. DC refers to the new document set, and D̂C refers to the old
document set derived from the cluster-based strategy of document rehearsal. Θg

C−1 represents the
meta parameters of the task-specific adapter dedicated for g before the Cth update, and Θg

C refers
to the meta parameters of the task-specific adapter dedicated for g after the C th update.

4.5.4 Discussion on the Frozen Backbone. In our framework, we keep the parameters of the
backbone frozen to update the GR model with reduced computational overhead. This design
choice is justified based on the following two key assumptions: (i) The model is assumed to have
fully acquired fundamental retrieval capabilities by digesting the knowledge embedded in the
initial document collection. (ii) The introduction of newly arrived documents does not induce
extreme out-of-distribution (OOD) issues. We acknowledge that updating the parameters of the
backbone becomes necessary under the following circumstances: (i) The initial document collection
contains insufficient knowledge to equip the model with foundational retrieval capabilities, for
example because of limited domain coverage or insufficient data quantity. (ii) The arrival of new
documents leads to the emergence of a substantial number of new topics, concepts, or thematic

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:18 J. Guo et al.

clusters, hence invalidating the retrieval capabilities of the backbone. It is important to note that,
quantitatively, if retrieval performance degrades over time despite repeated adapter retraining, it
may become necessary to retrain the backbone. Despite the limitations of the frozen backbone,
parameter-efficient fine-tuning can offer several additional advantages: (i) It can inherently mitigate
catastrophic forgetting of existing knowledge by maintaining similarity to the original GR model.
(ii) It enables the use of task-specific adapters instead of individual model copies.

4.6 Inference Process
During the inference phase, when confronted with the test set &C , C ≥ 1, we initially categorize the
test data into distinct task groups following the corresponding relationship illustrated in Table 1.
Subsequently, for the test data of each task, we activate both the backbone model and the cor-
responding task-specific adapter to generate target docids incorporating both task-shared and
task-specific knowledge. Additionally, we use a constrained beam search approach [2, 13] to confine
the generated docids within a pre-defined set of docids. It is noteworthy that, in session C , only
docids corresponding to existing documents, namely, D0, . . . ,DC , are incorporated into the prefix
tree. Since docids refer to document titles in this work, we confine the output sequence within the
constraints of a document title prefix tree. Specifically, each node in the prefix tree corresponds
to a token. When traversing from the root to a specific node, all nodes on the path collectively
constitute a document title.

5 Experimental Settings
In this section, we explain our experimental settings.

5.1 Models
5.1.1 Baselines. In this study, we conduct a comparative analysis involving our proposed

CorpusBrain++, traditional IR models, and generative IR models.

—Traditional IR models. (i) BM25 [47] is a typical sparse retrieval model, which uses term-based
features to model the relevance between queries and documents. (ii) DocT5Query [38] expands
each document in the corpus with pseudo-queries generated by a fine-tuned T5 [42] model.
(iii) DPR [25] is a representative dense retrieval model, which models the semantic relevance
between queries and documents via a dual-encoder architecture. (iv) ANCE [61] selects hard
training negatives globally from the entire corpus with an asynchronously updated ANN
index to facilitate the contrastive learning of dense retrieval methods. For the traditional IR
models, our empirical results encompass both incremental and non-incremental scenarios
thanks to the high reproducibility provided by Pyserini3 and Tevatron.4

—Generative IR models. We first consider several generative IR models in stationary scenarios,
including (i)GENRE [13], which directly fine-tunes BART via multi-task training on the labeled
KILT training datasets and supervised BLINK datasets [60]; and (ii) SEAL [4], which applies a
BART-based autoregressive search engine to generate distinctive n-grams as docids. Given
that the focus of both models is confined to the non-incremental scenario, we only compare
them with CorpusBrain++ in terms of non-incremental retrieval performance. It is worth
noting that CorpusBrain++ degenerates to CorpusBrain in the non-incremental scenario.
Furthermore, we explore some advanced generative IR models fitting in dynamic scenarios,
including (i) DSI++, which continually fine-tunes DSI over new documents and allocates a

3https://github.com/castorini/pyserini.
4https://github.com/texttron/tevatron.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://github.com/castorini/pyserini
https://github.com/castorini/pyserini
https://github.com/texttron/tevatron
https://github.com/texttron/tevatron

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:19

unique integer as the docid for each new document; and (ii) CLEVER, which introduces a
technique named incremental product quantization to assign a docid to each new document.

5.1.2 Ablation Models. Apart from the naiveDirect and Sequential variants, whose modifications
on top of CorpusBrain have been introduced in Section 2, we modify CorpusBrain++ from three
perspectives to explore the effectiveness of each component:

—The impact of different model architectures. We assess two variants of CorpusBrain++, which
continually pre-train the backbone rather than the adapter with the task-specific pre-training
objective: (i) For CorpusBrain++−�30?C4A (()) we continually pre-train the backbone in a
single-task manner, i.e., we continually pre-train the backbone independently for each down-
stream task with the corresponding task-specific pre-training objective. And (ii) for Corpus
Brain++−�30?C4A (")) we continually pre-train the backbone in a multi-task manner, i.e., we
continually pre-train the backbone jointly for all downstream tasks with the proposed task-
specific pre-training objective.

—The impact of different pre-training objectives. We design a variant CorpusBrain++$A8%) , where
we continually pre-train the task-specific adapter with the original ISS, LPS, and HIP pre-
training tasks.

—Analyze the impact of different document rehearsal strategies. We implement two variants: (i)
CorpusBrain++'0=3>< , where we randomly sample some old documents to construct query-
docid pairs via the task-specific objective; and (ii) CorpusBrain++−'4ℎ40AB0; , where we elimi-
nate the strategy of old document rehearsal, i.e., we solely construct query-docid pairs with
incremental documents.

5.2 Implementation Details
In this work, we use the Wikipedia document title as the docid for simplicity. Following Chen
et al. [9], we employ ��');0A64 as the backbone architecture. We use ��')10B4 to encode Wikipedia
document titles and use the encoding representation of the special token [CLS] as the representation
of each Wikipedia document. The similarity rate between documents is calculated by normalizing
the cosine similarity of their representations to a range of [0, 1]. We can divide the learning process
into two phases, i.e., the initial phase and the incremental phase.

In the initial phase, we incorporate the pre-training and fine-tuning process following Chen et al.
[9]. For the pre-training process, we use three pre-training tasks originally defined in [9], i.e., ISS,
LPS, and HIP, to construct pre-training data on D0, and the number of constructed pseudo-pairs is
determined the same as [9]. Additionally, we employ a learning rate of 34−5 alongside the Adam
optimizer [27], incorporating a warmup technique with a warmup ratio of 0.1. Moreover, we set
the weight decay to 0.01, set the label smoothing to 0.1, set the gradient norm clipping to 0.1, and
set the batch size to 8,192 tokens. In terms of the fine-tuning process, we fine-tune the backbone
model via multi-task training on R0 spanning 5 distinct downstream tasks following [4, 9, 13], it is
worth noting, as illustrated in Table 1, that not all 11 datasets in R0 have an accessible training set.
We set the learning rate to 34−5 and set the batch size to 4,096 tokens.

In the incremental phase, i.e., in session C, C ≥ 1, we first construct pre-training data by the well-
designed task-specific pre-training tasks with the newly arrived documents DC and the revisited
documents D̂C , and then continually pre-train the task-specific adapters via the constructed pre-
training data. For the task-specific adapters, we set the hidden size to 1,024 and set the reduction
factor to 4. For the task-specific pre-training tasks, we select distinct hyper-parameters according
to the characteristics of different downstream tasks. Following Chen et al. [9], for all task-specific
pre-training tasks except entity linking and slot filling, > is in [0, 1, 2, 3, 4] with a probability of
[70%, 20%, 5%, 3%, 2%], respectively. For fact checking, we set ; to 3 and = to 10. For entity linking,

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:20 J. Guo et al.

we set ; to the maximum number of anchors within 3 to explore inter-document relations as much
as possible as anchors linked to other Wikipedia pages are relatively limited. For slot filling, we set
; to 3 and : to 1. For open-domain QA, we set ; to 3 and = to 10. For dialogue, we set ; to 1 and = to
10. When it comes to rehearsing old documents, we use K-means clustering algorithm to cluster
the encoding representation of document titles. We set : to 1,024 and set the maximum number of
iterations in the K-means clustering algorithm to 20. In the continual pre-training phase, we set the
learning rate to 14−5 a warmup technique with a warmup ratio of 0.1.

At inference time, we use constrained beam search with 10 beams and set the maximum decoding
steps to 15. As for the entity linking sub-task, we limit the input sequence to a maximum of 384
tokens by truncating either the left, right, or both parts of the context surrounding an entity mention.

In the non-incremental scenario, all models, except for sparse retrievers, are trained using the
original Wikipedia knowledge source and the full KILT training set. Sparse retrievers, including
BM25 and DocT5Query, construct their indices directly from the original Wikipedia knowledge
source. For the initial session of the incremental scenario, the experimental setup mirrors that
of the non-incremental scenario: all models, with the exception of sparse retrievers, are trained
on D0 and R0, while sparse retrievers, including BM25 and DocT5Query, construct their indices
directly from D0. For session C (C ≥ 1) in the incremental scenario, sparse retrievers reconstruct
their indices using the Wikipedia knowledge source available up to session C , i.e., D0,D1, . . . ,DC .
Dense retrievers generate dense embeddings for the documents in DC and incorporate them into
the existing dense index. Generative retrievers are continually trained on DC to facilitate CDL.

As for DSI++, we reimplement it following the empirical settings specified in the original
publications since the source code has not yet been released. As for CLEVER, we borrow the original
code and adapt it to the scenario of multiple downstream KILT tasks. To facilitate a fair comparison,
we adopt the ��');0A64 model architecture for both models consistent with CorpusBrain++ in our
implementation.

5.3 Evaluation Metrics
In order to assess the retrieval performance of distinct models on the KILT++ test set, as recom-
mended in the official instructions of KILT [41], we adopt R-precision (%) as the specific evaluation
metric, i.e., the 6(·) function in Equation (1). R-precision is defined as follows:

'-?A428B8>= =
A

'
, (18)

where ' refers to the number of Wikipedia pages in the golden provenance set, and A denotes
the number of relevant documents present within the top-' retrieved pages. We report page-level
R-precision in our analysis.

6 Experimental Results
In this section, we compare CorpusBrain++, baselines and variants in the dynamic retrieval sce-
nario. The aim is to assess the effectiveness of CorpusBrain++ in comparison to existing baselines
and ablation variants. We then evaluate CorpusBrain++ from a task-specific perspective, con-
sidering the retrieval performance in distinct tasks. We also evaluate the catastrophic forgetting
phenomenon and forward transfer capability of distinct models. Additionally, we analyze the
effectiveness-efficiency tradeoff. Finally, we present a case study to provide a specific illustration
of the effectiveness of our proposed method.

6.1 Baseline Comparison
CorpusBrain has been shown to outperform traditional IR methods such as BM25 and DPR as well
as generative IR methods such as GENRE and SEAL in the non-incremental retrieval scenario [9].

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:21

Table 3. Non-Incremental Retrieval Performance of Baseline Models on Full KILT Dev Sets

Model FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

BM25 26.0 3.41 0.09 3.23 49.4 51.53 25.31 37.71 26.53 5.97 18.83 22.55
DocT5Query 41.62 3.01 0.15 2.59 40.76 50.21 31.30 36.96 38.78 7.5 23.67 25.14
DPR 54.33 4.62 0.44 0.82 16.82 35.61 52.1 29.42 67.29 15.46 37.95 28.62
ANCE 62.53 3.97 0.29 0.41 19.5 39.15 55.30 28.29 59.96 13.87 38.47 29.25
SEAL 67.8 - - - 58.9 78.8 43.6 54.3 41.8 - 36.0 -
GENRE 84.68 92.75 87.69 70.57 79.68 94.84 64.26 51.82 71.11 13.47 56.32 69.74
CorpusBrain 85.03 92.86 88.64 71.35 80.22 98.49 64.61 52.23 71.71 14.33 59.72 70.84

The performance is evaluated in terms of the R-precision metric. Bold indicates the best performance.

To streamline our work, we do not repeat the experiments and refer, instead, to [9] for more
empirical details. In this work, we solely evaluate the retrieval performance of distinct models
in the incremental scenario. In the following, we first analyze the incremental effectiveness of
distinct models on 11 individual downstream datasets. Additionally, we analyze the incremental
effectiveness of distinct models on five individual downstream tasks, each of which contains one to
four datasets. Finally, we analyze the overall incremental effectiveness of distinct models on all
downstream datasets.

6.1.1 Non-Incremental Performance on Full Data. Table 3 exhibits the non-incremental retrieval
performance of baseline models on the full KILT datasets. As demonstrated in Table 3, CorpusBrain
outperforms the baseline methods, encompassing sparse, dense, and generative retrievers, by
achieving superior performance on 10 out of 11 datasets and demonstrating the highest average
retrieval performance. This observation underscores CorpusBrain’s robust retrieval capability in
non-incremental scenarios.

6.1.2 Incremental Performance of Individual Downstream Datasets. Table 4 provides an overview
of the incremental retrieval performance of different models on specific KILT datasets. When we
look at the retrieval results presented in Table 4, we observe the following:

(1) Sparse retrieval methods including BM25 and DocT5Query demonstrate close retrieval
capability across various distinct downstream datasets, and so do dense retrieval methods
including DPR and ANCE. Dense retrievers generally exhibit better performance than sparse
models in the majority of downstream datasets, and the underlying reason may be that the
supervised dense retrievers can learn more semantic characteristics of downstream datasets
than unsupervised sparse retrievers. However, the comparison results on the T-REx and
zsRE datasets are opposite, which may be due to the important differences between the
input query format of these two datasets (phrases) and the query format learned by DPR
(sentences).

(2) GR baselines, i.e., DSI++ and CLEVER, exhibit retrieval ability to some degree in non-
incremental scenarios, especially on the AY2 and NQ datasets. Nevertheless, this retrieval
ability fails to be effectively sustained in incremental scenarios. This may be attributed to the
exclusive focus of these models on homogeneous downstream queries during CL, while the
dynamic retrieval scenario for KILTs is dominated by heterogeneous downstream queries.The
failure of previous GR models highlights that it is a non-trivial challenge to continually model
the relevant relationship between heterogeneous downstream queries and the corresponding
documents.

(3) In general, CorpusBrain++ consistently surpasses traditional retrieval methods and GR
models in the majority of downstream datasets.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:22 J. Guo et al.

Table 4. Dynamic Retrieval Performance on Individual Downstream KILT++ Datasets

Session Model FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

0

BM25 32.58 4.00 8.77 4.14 56.82 60.51 30.75 42.50 32.52 6.98 24.10
DocT5Query 50.85 3.9 1.17 3.05 49.24 59.61 38.51 41.47 45.91 9.66 27.15
DPR 49.96 2.95 0.97 0.30 12.00 23.67 45.23 24.90 46.56 15.57 27.98
ANCE 57.47 5.02 0.39 1.01 18.78 36.34 46.39 30.64 48.57 15.57 29.64
DSI++ 6.96 56.06 9.84 22.86 0.07 0.58 22.32 1.58 25.27 2.95 12.72
CLEVER 15.5 67.93 17.93 28.54 1.91 6.42 39.1 4.36 38.26 4.97 19.29
CorpusBrain++ 85.57 83.32 54.24 53.95 84.11 97.53 51.22 40.52 58.85 9.4 38.16

1

BM25 31.17 5.79 1.11 3.22 53.69 58.64 27.61 41.11 27.55 8.14 18.16
DocT5Query 43.66 3.25 0.83 1.38 43.24 30.99 28.96 37.47 38.73 12.79 25.58
DPR 48.46 2.89 1.11 0.77 11.07 24.08 40.40 24.12 46.41 12.79 27.88
ANCE 53.84 2.17 0.83 0.15 15.78 35.69 39.64 29.99 47.77 16.28 38.34
DSI++ 0.15 0.72 0.0 0.46 0.2 0.0 1.35 0.07 4.67 1.16 0.26
CLEVER 0.55 0.18 0.0 0.15 0.82 0.0 4.04 0.2 1.34 0.0 7.93
Direct 76.03 52.26 47.22 34.05 77.66 94.90 24.92 37.87 45.74 4.65 31.20
Sequential 68.45 8.50 3.89 6.60 70.29 77.90 19.87 34.91 39.07 12.79 7.93
CorpusBrain++ 77.14 49.37 59.72 36.2 78.07 96.03 25.93 41.44 48.58 4.65 39.39

2

BM25 28.84 0.48 0.30 4.35 50.79 56.99 28.69 39.10 27.87 4.52 10.69
DocT5Query 40.49 0.48 0.0 4.13 41.07 53.83 33.43 37.31 39.34 4.52 13.74
DPR 44.36 2.15 1.81 0.87 7.74 20.58 43.18 24.73 44.95 14.57 3.05
ANCE 51.49 5.02 0.3 0.22 15.28 34.3 49.86 30.72 48.06 14.57 5.34
DSI++ 0.37 0.0 0.6 0.22 0.0 0.0 3.34 0.06 2.73 0.5 0.0
CLEVER 1.52 0.0 0.0 0.0 0.6 0.0 1.67 0.6 0.27 0.5 0.0
Direct 75.70 47.37 43.07 35.43 74.01 96.04 27.30 38.68 41.80 5.03 9.16
Sequential 70.53 4.07 4.22 8.26 55.95 63.32 13.37 29.70 32.38 8.54 7.63
CorpusBrain++ 80.64 49.28 62.05 38.48 74.21 96.83 31.2 43.65 48.63 7.54 7.63

3

BM25 30.19 5.67 0.35 3.80 48.10 57.07 26.52 37.9 31.07 3.98 17.59
DocT5Query 40.68 5.22 0.0 2.64 41.77 51.8 31.82 38.11 43.64 5.47 17.59
DPR 38.39 5.67 0.69 0.0 11.21 21.34 38.64 22.89 47.18 12.94 23.62
ANCE 46.53 6.8 1.04 0.0 14.1 33.33 45.71 27.95 48.7 14.43 21.61
DSI++ 0.43 0.0 0.0 0.33 0.0 0.0 1.77 0.05 1.69 1.0 0.0
CLEVER 0.99 0.0 0.35 0.0 0.18 1.44 2.53 0.1 0.56 0.5 0.0
Direct 64.15 56.92 44.44 38.51 74.50 95.20 28.03 35.71 45.76 8.96 16.08
Sequential 57.04 9.52 3.82 16.36 47.02 62.35 9.60 27.22 34.46 8.46 19.10
CorpusBrain++ 69.24 58.05 65.62 39.83 73.78 96.88 29.8 40.72 50.71 6.47 19.6

4

BM25 27.74 1.90 0.0 2.00 44.73 46.99 25.93 38.60 30.24 9.47 24.56
DocT5Query 40.45 2.48 0.0 2.0 38.0 47.56 30.32 37.43 41.02 7.89 24.56
DPR 43.65 2.48 0.27 0.0 9.67 21.78 38.19 21.68 44.15 13.16 23.39
ANCE 48.68 2.86 0.0 2.0 11.92 34.96 46.99 27.06 50.08 16.32 31.84
DSI++ 1.78 0.38 0.0 0.0 0.0 0.0 0.46 0.14 1.16 0.0 0.0
CLEVER 1.01 0.0 0.0 0.0 0.17 0.86 1.85 0.09 0.12 0.0 0.0
Direct 66.57 53.14 47.53 34.93 66.67 95.13 23.61 35.47 48.09 1.58 26.90
Sequential 61.35 2.29 4.40 5.79 38.69 53.58 9.95 25.75 29.90 7.37 8.19
CorpusBrain++ 71.98 50.86 67.03 39.72 66.67 97.13 23.84 40.47 53.42 2.11 32.16

We evaluate the performance of &f
0 ,. . ., &

f
4 in terms of vertical performance (+%) with the R-precision metric. Bold

indicates the best performance.

(4) CorpusBrain++ performs worse than DPR on the NQ dataset in incremental sessions, the
underlying reason may be that NQ serves as one of the training datasets employed by DPR,
rendering DPR a stronger retriever on the NQ dataset.

(5) CorpusBrain++ exhibits unstable retrieval performance on the AY2, ELI5 andWOW datasets.
What these datasets have in common is that the input queries are all of a relatively long and
complex form. For example, ELI5 is a dataset for long-form QA, which contains complex and

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:23

Fig. 6. Dynamic retrieval performance of distinct models on downstream KILT tasks. We evaluate the
performance of &g

0 ,. . ., &
g
4 in terms of vertical performance (+%) with the R-precision metric.

diverse questions that require explanatory multi-sentence answers [16]. More challengingly,
no training data is provided for ELI5. This phenomenon may suggest that CorpusBrain++
is unstable in retrieving results in the face of long and complex input queries, and a future
avenue is to boost the query length and complexity in the task-specific pre-training objectives.

6.1.3 Incremental Performance of Individual Downstream Tasks. To facilitate the readability of
the schematic representation, we select BM25, DPR, Direct, Sequential, and CorpusBrain++ to
analyze the incremental performance of individual downstream tasks. As illustrated in Figure 6,
CorpusBrain++ outperforms traditional retrieval methods and naive generative variants across
nearly all downstream KILT tasks during all sessions. When we examine the enhancements achieved
by CorpusBrain++ in each downstream task, we observe the following:

(1) The gain in dynamic retrieval performance is notably more significant in the fact checking
and entity linking tasks. We attribute this to the fact that both of these tasks are entity-centric.
Consequently, our model can effectively learn from new documents by emphasizing the
entities within these documents as part of the task-specific pre-training objective.

(2) The gain in dynamic retrieval performance for the slot filling task, compared to other down-
stream tasks, is relatively modest. This phenomenon can likely be attributed to the fact that
the pre-training tasks within CorpusBrain effectively align with the downstream format
of the slot filling task during the initial session, allowing the backbone model to retain a
substantial retrieval capability for this specific task.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:24 J. Guo et al.

Table 5. Comprehensive Retrieval Performance of Distinct Models on &8 in Terms of Vertical Performance
(+%) with the R-Precision Metric

Model Q0 Q1 Q2 Q3 Q4 AP↑ BWT↓ FWT↑

BM25 27.61 25.11 22.97 23.84 22.92 22.26 2.78 23.71
DocT5Query 30.05 24.26 24.39 25.34 24.70 24.71 2.86 24.67
DPR 22.74 21.82 18.91 20.23 19.86 18.49 2.77 20.21
ANCE 26.34 25.50 23.20 23.65 24.79 22.75 2.91 24.28
DSI++ 14.66 0.82 0.71 0.48 0.36 1.4 2.72 0.59
CLEVER 22.20 1.38 0.47 0.6 0.38 0.62 5.49 0.7
Direct 59.72 47.86 44.87 46.21 45.42 48.28 0.67 46.09
Sequential 59.72 31.84 27.09 26.81 22.48 17.67 19.89 27.05

CorpusBrain++−�30?C4A (()) 59.72 26.15 24.66 23.23 22.26 22.76 10.55 24.08
CorpusBrain++−�30?C4A (")) 59.72 33.06 33.29 31.71 31.78 32.97 6.26 32.46
CorpusBrain++$A8%) 59.72 45.33 41.15 40.5 39.29 41.85 4.18 41.57
CorpusBrain++'0=3>< 59.72 49.62 47.05 47.67 47.12 49.69 0.8 47.86
CorpusBrain++−'4ℎ40AB0; 59.72 49.26 47.56 47.85 46.96 49.55 1.05 47.91

CorpusBrain++ 59.72* 50.59* 49.10* 50.06* 49.58* 52.01* 0.41* 49.83*

As for�% , �,) , and �,) , ↑ indicates that higher is better and ↓ that lower is better. Bold indicates the best performance.
∗ indicates statistically significant improvements over all baselines (p-value < 0.05).

(3) The improvement in dynamic retrieval performance exhibits a relatively unstable pattern
in the open-domain QA task and the dialogue task. We attribute this variability to the
nature of these two tasks, which are not entity-centric. In these tasks, it is not guaranteed
that the entities within the target document will appear in the input query, and hence, the
characteristics of downstream tasks are hard to simulate in the task-specific pre-training
objective.

6.1.4 Incremental Performance of All Datasets. Table 5 presents an overview of the overall
dynamic retrieval performance of different models.

Overall Analysis. Based on Table 5, we find that:

(1) Sparse retrievers such as BM25 and DocT5Query demonstrate a similar tendency as the
knowledge source corpus evolves. Specifically, BM25 and DocT5Query suffer from a drop
in terms of VP in the first incremental session, and the observation across later sessions is
relatively consistent. Despite BWT suggests that the impact of CDL on backward transfer is
relatively acceptable, both sparse retrievers exhibit inferior retrieval and forward transfer
capabilities compared with the generative IR model CorpusBrain++.

(2) Dense retrievers including DPR and ANCE show relative stable performance across all
sessions. Similarly, AP and FWT suggest that they also suffer from weaker retrieval and
forward transfer capabilities in comparison to CorpusBrain++.

(3) Generative IR baselines, i.e., DSI++ and CLEVER, almost completely lose the retrieval capabil-
ity during the incremental phase, the underlying reason may be two-fold. First, both baselines
focus on the dynamic scenario of a single downstream task, while the dynamic retrieval
scenario for KILTs comprises various downstream tasks spanning multiple semantic gran-
ularity. Second, Wikipedia titles, given their robust semantic structure, can effectively serve
as docids in the retrieval scenario for KILTs, whereas the atomic integer docid employed in
DSI++ and the product quantization code used in CLEVER may increase the difficulty of CL.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:25

(4) In line with the analysis presented in Section 3, when naive variants of CorpusBrain, namely
Direct and Sequential, are exposed to the arrival of new documents, we observe a substantial
decline in retrieval performance, especially in the Sequential variant. This phenomenon
serves as compelling evidence that off-the-shelf CorpusBrain is susceptible to catastrophic
forgetting and faces challenges when adapting to the dynamic retrieval scenarios for KILTs.

(5) Taken as a whole, based on the data presented in Table 5, it is evident that CorpusBrain++
consistently achieves the best retrieval performance across all metrics, including VP, AP,
BWT, and FWT. Given the superior performance of CorpusBrain++ when compared to
traditional and GR methods, it is evident that our proposed CorpusBrain++ can effectively
adapt to the dynamic retrieval scenario.

Impact of Different Model Architectures. When we compare variants with different model ar-
chitectures, i.e., the backbone-only architecture incorporating CorpusBrain++−�30?C4A (()) and
CorpusBrain++−�30?C4A (")) , and the backbone-adapter architecture incorporating all other Corpus-
Brain++ variants, we can observe that:

(1) Variants using the backbone-adapter architecture consistently demonstrate superior retrieval
performance across all metrics when compared to variants employing the backbone-only
architecture. The backbone-adapter architecture exhibits significantly lower BWT scores,
indicating its enhanced ability to mitigate catastrophic forgetting. This phenomenon can
be attributed to the inherent characteristics of the backbone-adapter architecture, which
permits updates solely to fractional meta-parameters, specifically the adapter parameters,
while maintaining the stability of the backbone. This design choice ensures the preservation
of fundamental retrieval capabilities within the backbone.

(2) The variant CorpusBrain++−�30?C4A (()) is outperformed by CorpusBrain++−�30?C4A (")) . A
potential explanation for this discrepancy lies in the training strategy. During the initial
session, both pre-training and fine-tuning stages adhere to the multi-task training approach,
creating a divergence from the single-task training methodology employed during the incre-
mental session.

Impact of Different Pre-Training Objectives. When we look at variants with different pre-training
objectives, i.e., CorpusBrain++$A8%) which continually pre-trains the backbone-adapter architecture
with the original pre-training tasks, and CorpusBrain++which continually pre-trains the backbone-
adapter architecture with our proposed task-specific pre-training objective, we can observe and
analyze as follows:

(1) Despite retaining the backbone-adapter architecture to counteract catastrophic forgetting,
CorpusBrain++$A8%) exhibits retrieval performance even worse than the naive Direct variant
when new documents arrive. This observation reveals that it is not feasible to directly employ
general pre-training tasks to accommodate distinct downstream tasks in incremental sessions.

(2) Regarding the question of why the multi-task learning mechanism proves effective during
the initial session but falters in incremental sessions, the underlying explanation may lie in
the accessibility of golden query-docid pairs for downstream KILT tasks. During the initial
session, the availability of these golden query-docid pairs minimizes the introduction of data
noise, ensuring a more stable fine-tuning stage. Nevertheless, during incremental sessions,
we encounter a significant challenge in the form of insufficiently labeled query-docid pairs.
As a consequence, persisting with pre-training our model following the paradigm of multi-
task learning results in the introduction of substantial levels of data noise. To address this
challenge, we shift our approach to follow the work line of single-task learning, allowing for

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:26 J. Guo et al.

Fig. 7. The catastrophic forgetting phenomenon of different models. Based on the comprehensive retrieval
performance of all datasets, we illustrate the retrieval performance on &8 in terms of vertical performance
(+%) with the R-precision metric.

a more focused learning objective. Thanks to the backbone-adapter architecture, assigning
an adapter for each KILT task incurs minimal computational and storage overhead.

Impact of Different Document Rehearsal Strategies. When we focus on variants with distinct doc-
ument rehearsal strategies, i.e., CorpusBrain++−'4ℎ40AB0; without document rehearsal, Corpus-
Brain++'0=3>< with a random rehearsal strategy, and CorpusBrain++ with a document rehearsal
strategy based on semantic similarity, we can observe that:

(1) Among the variants, CorpusBrain++−'4ℎ40AB0; displays the poorest performance in terms of
BWT, underscoring the efficacy of the old document rehearsal strategy in further alleviating
the phenomenon of catastrophic forgetting.

(2) CorpusBrain++ demonstrates superior performance across all metrics when compared to
CorpusBrain++'0=3>< , highlighting the effectiveness of the semantic-similarity-based docu-
ment rehearsal strategy.

6.2 Assessing Catastrophic Forgetting
In order to further assess the forgetting behavior of distinct models, we illustrate the forgetting
curve of distinct models as the session grows in terms of the retrieval performance on &0, &1,
and &2. We select models with a relatively low BWT score including CorpusBrain++, Direct,
CorpusBrain++$A8%) , CorpusBrain++'0=3>< , and CorpusBrain++−'4ℎ40AB0; for comparison. In Fig-
ure 7 we observe that: (i) The forgetting curve for CorpusBrain++$A8%) exhibits a notably steeper
decrease compared to other models. The underlying reason might be that retrieval capabilities for
downstream KILT tasks are significantly weakened in the incremental phase without the task-
specific pre-training objective. (ii) Inconsistent with&0 and&1, CorpusBrain++'0=3>< , surprisingly,
even reinforces catastrophic forgetting in terms of retrieval performance on &2 compared with
CorpusBrain++−'4ℎ40AB0; . This phenomenon may imply that an improper rehearsal strategy such as
the random sampling strategy may even sometimes play a negative role in alleviating catastrophic
forgetting. (iii) The forgetting curve for the naive variant Direct is relatively flat, which we attribute
to the fact that the model parameters are constantly kept fixed in Direct. Influenced by the frozen
parameters, we can observe that Direct exhibits relatively worse retrieval performance in the incre-
mental phase compared with other models. (iv) CorpusBrain++ allows almost complete prevention
of catastrophic forgetting, which proves the effectiveness of the task-specific pre-training objective
and the semantic-similarity-based document rehearsal strategy.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:27

Table 6. The Forward Transferring Phenomenon of Different Models

Model Q0 Q1 Q2 Q3 Q4

Individual 59.72 50.59 47.24 47.17 46.54
CorpusBrain++ 59.72∗ 50.59∗ 49.10∗ 50.06∗ 49.58∗

Based on the comprehensive retrieval performance of all datasets, we illustrate
the retrieval performance on&8 in terms of vertical performance (+%) with the
R-precision metric. Bold indicates the best performance.
∗ indicates statistically significant improvements over all baselines (p-value
< 0.05).

Fig. 8. Comparison on effectiveness-memory tradeoff and effectiveness-training time tradeoff. Up and left is
better. Relative memory usage and the relative training time are with respect to Direct.

6.3 Assessing Forward Transfer
In order to further assess the forward transfer ability of CorpusBrain++, which measures the
capacity to use prior knowledge in adapting to new sessions, we design a new variant denoted
as Individual. In Individual, we continually pre-train the task-specific adapters individually with
the tailored pre-training objective in each session, without initializing the parameters of adapters
from the prior session. Importantly, the training process for both methods during session 0 and
session 1 is entirely equivalent. As illustrated in Table 6, CorpusBrain++ consistently outperforms
Individual by a substantial margin starting from session 2. This result further confirms the robust
forward transfer ability of CorpusBrain++.

6.4 Effectiveness-Efficiency Tradeoff
We undertake a further comparison of the effectiveness-efficiency tradeoff across various models.
Specifically, we select traditional IR methods including BM25 and DPR, as well as generative IR
methods including DSI++, CLEVER, Direct, Sequential, and CorpusBrain++. As for effectiveness,
we evaluate the retrieval performance on Q) in terms of +% after finishing training for all)
sessions. For the memory overhead, we calculate the disk space usage of each model after finishing
document learning of all sessions. For the temporal overhead, we compare the total training time
incurred at the conclusion of document learning. In the case of CorpusBrain++, the task-specific
adapters are continually pre-trained in parallel, hence we only count the training time of the most
time-consuming adapter in the incremental phase. As depicted in Figure 8, both memory and
training time are presented as relative ratios with respect to Direct, which enhances the clarity of
the comparison.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:28 J. Guo et al.

When we look at the effectiveness-memory tradeoff presented in Figure 8(a), we observe that: (i)
The memory overhead of generative IR methods is significantly more modest than that of traditional
IR methods, exhibiting a difference of an order of magnitude. This discrepancy can be attributed to
the inherent characteristics of parameterized indexes employed in generative IR methods, which
demonstrate higher rates of information compression when contrasted with the external indexes
used in traditional IR methods. (ii) Compared to Direct, CorpusBrain++ demonstrates a significant
enhancement in effectiveness while incurring only a marginal increase in storage overhead, which
further demonstrates the effectiveness and efficiency of the backbone-adapter architecture. (iii)
CorpusBrain++ achieves superior retrieval performance surpassing other models, while incurring
only a slight increase in memory overhead compared to Direct.

When we look at the effectiveness-training time tradeoff presented in Figure 8(b), we observe
that: (i) While the training process of traditional IR methods takes a shorter time than Direct, it is
noteworthy that the retrieval effectiveness achieved is suboptimal. (ii) Sequential incurs a substantial
training time cost, primarily attributable to the update of all backbone parameters. Despite this
investment in training time, Sequential fails to deliver satisfactory retrieval performance. (iii)
CorpusBrain++ demonstrates superior retrieval performance while incurring only a marginally
higher temporal overhead compared to Direct. This implies a commendable balance between
effectiveness and temporal efficiency, suggesting a high level of practicality in real-life scenarios.

6.5 Qualitative Analysis with Additional Examples
To provide a more comprehensive understanding of CorpusBrain++, we include a qualitative
analysis with additional examples. In this case, a new document titled Nelson Mandela arrives
in session 1, and the specific text is depicted in Table 7. We provide two real input examples to
further explain the mechanism of CorpusBrain++. (i) In the first example, when exposed to an
entity-linking query, CorpusBrain++ cannot generate the correct docid Nelson Mandela as the top-1
candidate provenance until session 1. Thanks to the high consistency between constructed pseudo-
pairs and golden pairs, CorpusBrain++ can perform the CDL task well from session 1. Thanks
to the document rehearsal strategy used by CorpusBrain++, it is able to remember the mapping
from pseudo-queries of entity linking to the docid Nelson Mandela through all sessions. Notably,
CorpusBrain++ can retrieve documents related to Nelson Mandela such as Mandla Mandela (the
grandson of Nelson Mandela) in session 0, which demonstrates the robustness and generalization
capabilities of the CorpusBrain++ framework. (ii) In the second example, when exposed to a QA
query, CorpusBrain++ can constantly generate the docid President of South Africa related to the
question since session 0. Although the document titled President of South Africa is not explicitly
labeled as the golden provenance, we can find that its content proves beneficial to answer the given
question. After session 1, CorpusBrain++ learns the new document titled Nelson Mandela, and
retrieves Nelson Mandela as a top-2 candidate provenance. As both cases illustrate, CorpusBrain++
is capable of retrieving accurate related documents for given downstream queries and maintaining
the retrieval capability without catastrophic forgetting.

7 Related Work
In this section, we review three lines of related work, KILTs, GR, and CL.

7.1 KILTs
KILTs refer to a series of language tasks that require extensive and external knowledge sources such
as Wikipedia. For instance, fact checking requires the identification of reliable pieces of evidence
to establish the authenticity of a claim [56], and open-domain QA entails the need for supporting
information from the knowledge base in order to provide an accurate response [16, 24, 29, 62].

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:29

Table 7. Case Study Pertaining to a Newly Arrived Document Titled Nelson Mandela in Session 1, Herein,
We Present Two Real InputQueries in the Test Set and the Corresponding Retrieval Documents of

CorpusBrain++ in Different Sessions

Wikipedia Title: Nelson Mandela

Text : Nelson Mandela Nelson Rolihlahla Mandela (18 July 1918–5 December 2013) was a South
African anti-apartheid revolutionary, political leader, and philanthropist who served as President
of South Africa from 1994 to 1999. He was the country’s first black head of state and the first
elected in a fully representative democratic election […]

Input Query 1: (Entity linking) […] Viljoen broke with other right-wing whites in 1994 by taking
part in the country’s first all-race elections in April of that year, saying the only way to attain self-
determination was by cooperating with President [START_ENT] Nelson Mandela [END_ENT]’s
majority African National Congress […]
Golden Provenance 1: Nelson Mandela

Retrieval Document 1:
Session 0: Nelson Mandela 70th Birthday Tribute [SEP] Mandla Mandela
Session 1: Nelson Mandela [SEP] Mandla Mandela
Session 2: Nelson Mandela [SEP] Mandla Mandela
Session 3: Nelson Mandela [SEP] Mandla Mandela
Session 4: Nelson Mandela [SEP] Mandla Mandela

Input Query 2 : (Open-domain QA) Who succeeded Nelson Mandela as South African president?
Golden Provenance 2 : Nelson Mandela

Retrieval Document 2 :
Session 0: President of South Africa [SEP] Mandela: Long Walk to Freedom
Session 1: President of South Africa [SEP] Nelson Mandela
Session 2: President of South Africa [SEP] Nelson Mandela
Session 3: President of South Africa [SEP] Nelson Mandela
Session 4: President of South Africa [SEP] Nelson Mandela

To facilitate the evaluation of KILTs, a comprehensive benchmark dataset named KILT has been
proposed [41], which collects 11 datasets spanning 5 tasks including fact checking, dialogue, slot
filling, QA, and entity linking. Essentially, all these tasks in KILT are grounded in the same snapshot
of Wikipedia.

Practical solutions to these tasks usually involve a two-step, pipelined framework [5, 16, 24,
29, 62], including a retriever and a reader. Given an input query, a retriever is used to select a
limited subset of relevant information from a large knowledge source [5, 31, 41, 46]. Subsequently,
a reader is applied to produce the final results by incorporating the input queries and derived
support information [30, 31, 42]. The majority of existing approaches in the retrieval component
can be divided into two categories: (i) sparse retrieval methods that typically involve constructing
an inverted index based on term-based features, and (ii) dense retrieval methods that generally
construct a vectorized index based on semantic features and rely on approximate nearest neighbor
search algorithms to facilitate efficient retrieval. Very recently, GR methods have been proposed
and employed to tackle the retrieval task for KILT [8, 9, 13]. CorpusBrain [9] is an example of this
approach; it achieves state-of-the-art retrieval performance.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:30 J. Guo et al.

The majority of prior research on KILTs, including CorpusBrain, is concentrated exclusively
on static knowledge source corpus. Nevertheless, in real-world scenarios knowledge accumulates
over time, leading to an evolution of the knowledge source corpus. Unfortunately, this pervasive
scenario of a dynamic knowledge source corpus has mostly been neglected so far. To the best of
our knowledge, our work is the first attempt to focus on the dynamic retrieval scenario for KILTs.

7.2 GR
Traditional methods for IR typically involve a multi-step pipeline paradigm, i.e., the “index-retrieve-
then-rank” paradigm [12, 17, 25]. Specifically, the paradigm typically boils down to three sequential
steps: (i) creating an index of documents based on their content, (ii) querying the index to retrieve
relevant documents, and (iii) ranking the retrieved documents based on their relevance to the
query. The pipeline paradigm has stood the test of time due to its adaptability and reliability across
applications. Though well-established, the pipeline paradigm encounters several challenges: (i)
During training, heterogeneous ranking components are usually difficult to be optimized in an
end-to-end way towards the global objective. (ii) During inference, an additional challenge pertains
to the substantial memory resource overhead necessary for constructing and maintaining the index,
which is a common dilemma not only in the inverted index of sparse retrieval models such as
TF-IDF [43] and BM25 [46], but also in the vectorized index of dense retrieval models like DPR [25].
Besides, any errors or inaccuracies introduced during a particular stage can propagate through the
system and potentially impact the outcomes of subsequent stages.

To address these disadvantages, GR has been proposed as an alternative paradigm. GR refers to a
new retrieval paradigm where a single consolidated model is employed to replace the commonly-
used multi-stage search pipeline. With GR, the traditional indexing stage is substituted by indexing
documents into model parameters in the model training phase, and the retrieval and ranking
stages are replaced by retrieving relevant documents for queries in the model inference phase [36].
In contrast to the classic “index-retrieve-then-rank” paradigm, GR methods exhibit considerable
advantages: (i) GR methods allow for end-to-end optimization, hence reducing error propagation.
(ii) The lack of constructing large-scale document indexes in GR reduces both time and space
overhead. Given the advantages, a surge of explorations of GR methods has recently emerged [4, 13,
55, 67]. GR methods mainly focus on two core issues: (i) how to represent documents with docids,
and (ii) how to model the correlation between queries and relevant docids. As for representing
docids, three primary techniques are proposed, namely unstructured atomic identifiers (e.g., unique
integers [55]), simple string identifiers (e.g., titles [9, 13]), and semantically structured identifiers
(e.g., clustering-based representation [55]). Very recently, Wang et al. [59] have proposed neural
optimized vocabularial docids, which are learnable by training on the retrieval tasks. Sun et al.
[54] have devised a document tokenization learning method to address the challenge of defining
document identifiers for GR. As for establishing the semantic mapping from documents to docids,
Tay et al. [55] apply memorization-based pre-training to establish a mapping between the content
of documents and corresponding docids and retrieval-focused fine-tuning to facilitate the mapping
of queries to relevant docids. Chen et al. [9] carefully designs three pre-training tasks to generate
pseudo-queries and thus resemble the relevance between downstream queries and docids.

Recently, Mehta et al. [35] have identified the challenge of catastrophic forgetting in DSI while
continually indexing new documents, and have proposed DSI++, which incorporates two solutions
to alleviate explicit and implicit forgetting, i.e., sharpness-aware minimization and generative
memory.

In this work, we have investigated the issue of catastrophic forgetting in the context of Corpus-
Brain, and have devised solutions to address the problem. Different from DSI++, we (i) focus on
continually pre-training rather than simply supervised fine-tuning in DSI++, and (ii) concentrate

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:31

on the distinctive scenario of incremental retrieval for KILTs, where queries demonstrate a wider
spectrum of diversity in contrast to the traditional retrieval scenario, incorporating varying per-
spectives such as task, granularity, and complexity. Very recently, Chen et al. [6] and Yoon et al.
[64] have also explored how to perform CL for GR over dynamic corpora. Unlike their work, which
mainly focuses on a single type of queries, we concentrate on incremental retrieval scenarios for
KILTs spanning multiple downstream tasks.

7.3 CL
CL, also commonly referred to as lifelong learning or incremental learning, is a significant and
challenging research area that draws inspiration from human cognition, which tends to acquire
knowledge in a sequential manner [14]. In contrast to human beings, artificial neural networks
often exhibit catastrophic forgetting when confronted with new information, leading to a loss of
previously acquired knowledge [28]. Therefore, the CL research area seeks to address this issue
by exploring methods to learn from a continuous stream of data while incrementally extending
existing knowledge and using it for future learning.The traditional CL scenarios [57] can be grouped
into three categories: (i) Task-incremental learning, where models are invariably equipped with
task identities conveying the specific task to perform, which are distinct in different sessions.
(ii) Domain-incremental learning, where the input distribution keeps changing, while the task
structure remains constant in spite of unavailable task identities at test time.

Class-incremental learning, where, without task identities being provided, models must be able
to both solve every task seen so far and extrapolate to the tasks encountered. Distinctly, our work
concentrates on the CDL task for KILT, where the knowledge source corpus evolves over time
without related KILT queries.

To avoid catastrophic forgetting of neural networks, existing methods for CL can be broadly
categorized into three families: (i) Replay methods [44, 50] typically involve explicitly retraining
the model on a limited subset of samples stored within a memory buffer to alleviate the issue of
catastrophic forgetting. To construct the memory buffer, existing work [3, 40, 44, 63] tends to select
old training samples or use generative models to produce pseudo-samples. A few principles are
employed for sample selection, e.g., iCaRL [44] preserves a representative subset of exemplars per
class to effectively approximate the complete data distribution of each class. As for pseudo rehearsal,
which is broadly employed in the absence of old samples, the generative models required can be of
various categories, e.g., generative adversarial networks [3, 40] and variational autoencoder [63].
(ii) Regularization-based methods [28, 32] incorporate an additional regularization term into the
loss function, which restricts the magnitude of representation change during learning on new data,
hence consolidating previously acquired knowledge and alleviating catastrophic forgetting. It is
common practice in regularization-based methods to maintain a static copy of the previous model
for reference purposes. A typical implementation strategy involves the incorporation of a quadratic
penalty into the loss function, which imposes a penalty on the variation of parameters that are
measured to be important in the previous learning phase [28, 45, 49]. (iii) Parameter isolation
methods are usually used in task-incremental learning and typically dedicate an isolated parameter
subspace to each task with a suitably designed model architecture. A representative implementation
of this model architecture is to explicitly decompose a model into task-sharing and task-specific
components. This implementation facilitates explicit modeling of each specific task and hence
mitigates catastrophic forgetting of the ability to perform each task. In the context of CDL task for
KILT, we take inspiration from this paradigm and propose to use task-sharing components as a
form of long-term memory to maintain retrieval capability and task-specific components as a form
of short-term memory for the assimilation of newly arriving knowledge.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

5:32 J. Guo et al.

In this work, we use parameter isolation methods as the primary approach to address the CDL
task for KILTs, alongside replay methods to achieve optimal CL effectiveness.

8 Conclusion and Future Work
In this article, we have focused on the dynamic retrieval scenario for KILTs. By defining the CDL task
for KILTs and introducing the new benchmark dataset KILT++, our work allows for a systematic
and comprehensive assessment of the dynamic retrieval scenario for KILTs.

In particular, we have presented a continual generative pre-training framework for KILTs to ad-
dress the CDL task. Our framework, CorpusBrain++, allows for effective and efficient CL for KILTs,
which results from a synergy between the backbone-adapter architecture and the task-specific
pre-training objective tailored for each downstream KILT task. Besides, the framework also incor-
porates a document rehearsal strategy based on semantic similarity to defy catastrophic forgetting
of old documents. Furthermore, a series of extensive experiments validate the effectiveness and
efficiency of CorpusBrain++.

Broader Impact. In practical scenarios, user queries often exhibit a broad spectrum of diversity,
encompassing various perspectives such as task orientation, granularity, and complexity. To the
best of our knowledge, we are the first to explore GR methods in the context of dynamic retrieval
scenarios incorporating multiple and diverse downstream tasks. Given that our approach accurately
models real retrieval scenarios and offers effectiveness and efficiency advantages, it is well-suited
for application in real-world search engines tailored to knowledge-intensive linguistic tasks. We
aim for our initial exploration to serve as a benchmark for dynamic retrieval scenarios for KILTs
and to inspire the IR community to further enhance the retrieval effectiveness and efficiency in
such scenarios.

Limitations and Future Work. Regarding the limitations of our work, we acknowledge that the
construction of KILT++ overlooks the temporal order of documents. Consequently, the evaluation
might be insufficient when genuinely novel topics and domains enter the corpus. In the future, we
will explore new evaluation settings focusing on the OOD issue of topics and domains. Moreover,
we currently only consider the continual paradigm of parameter isolation and experience replay.
The investigation of alternative continual paradigms such as regularization-based methods, and the
exploration of additional categories of parameter isolation methods, are both avenues that merit
thorough examination. Despite the promising results of our method, the dynamic retrieval scenario
for KILTs presents several unexplored facets, particularly in the era dominated by large language
models. One intriguing avenue for exploration involves the design of task-specific pre-training
objectives in collaboration with large language models.

Reproducibility. To facilitate reproducibility of the results in this article, we have only used open
datasets. The code and constructed benchmark data used to produce our results are available at
https://github.com/Sherlock-coder/CorpusBrainPlusPlus.

Acknowledgements
We want to thank our editor and reviewers for their helpful and constructive feedback.

References
[1] Rodrigo B. Almeida, Barzan Mozafari, and Junghoo Cho. 2007. On the evolution of Wikipedia. In Proceedings of the

International AAAI Conference on Web and Social Media (ICWSM).
[2] Peter Anderson, Basura Fernando, Mark Johnson, and Stephen Gould. 2017. Guided open vocabulary image captioning

with constrained beam search. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, 936–945.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://github.com/Sherlock-coder/CorpusBrainPlusPlus
https://github.com/Sherlock-coder/CorpusBrainPlusPlus

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:33

[3] Ali Ayub and Alan R. Wagner. 2021. EEC: Learning to encode and regenerate images for continual learning.
arXiv:2101.04904. Retrieved from https://arxiv.org/abs/2101.04904

[4] Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis, Scott Yih, Sebastian Riedel, and Fabio Petroni. 2022. Au-
toregressive search engines: Generating substrings as document identifiers. In Proceedings of the Advances in Neural
Information Processing Systems, Vol. 35, 31668–31683.

[5] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading Wikipedia to answer open-domain
questions. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), 1870–1879.

[6] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Maarten de Rijke, Wei Chen, Yixing Fan, and Xueqi Cheng. 2023. Continual
learning for generative retrieval over dynamic corpora. In Proceedings of the 32nd ACM International Conference on
Information and Knowledge Management , 306–315.

[7] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. 2021. FedMatch: Federated learning over
heterogeneous question answering data. In Proceedings of the 30th ACM International Conference on Information and
Knowledge Management , 181–190.

[8] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yixing Fan, and Xueqi Cheng. 2022. GERE: Generative evidence retrieval
for fact verification. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2184–2189.

[9] Jiangui Chen, Ruqing Zhang, Jiafeng Guo, Yiqun Liu, Yixing Fan, and Xueqi Cheng. 2022. CorpusBrain: Pre-train
a generative retrieval model for knowledge-intensive language tasks. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management , 191–200.

[10] Herbert H. Clark, S. Haviland, and Roy O. Freedle. 1977. Discourse production and comprehension. In Discourse
Processes: Advances in Research and Theory. Roy O. Freedle (Ed.), Ablex Publishing Corporation.

[11] Herbert H. Clark and Susan E. Haviland. 1974. Psychological processes as linguistic explanation. In Explaining
Linguistic Phenomena, 91–124.

[12] Zhuyun Dai and Jamie Callan. 2020. Context-aware term weighting for first stage passage retrieval. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 1533–1536.

[13] Nicola De Cao, Gautier Izacard, Sebastian Riedel, and Fabio Petroni. 2020. Autoregressive entity retrieval.
arXiv:2010.00904. Retrieved from https://arxiv.org/abs/2010.00904

[14] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, and Tinne
Tuytelaars. 2021. A continual learning survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence 44, 7 (2021), 3366–3385.

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.

[16] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. 2019. ELI5: Long form
question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
3558–3567.

[17] Jibril Frej, Philippe Mulhem, Didier Schwab, and Jean-Pierre Chevallet. 2020. Learning term discrimination. In
Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval,
1993–1996.

[18] Michael Glass, Alfio Gliozzo, Rishav Chakravarti, Anthony Ferritto, Lin Pan, G. P. Shrivatsa Bhargav, Dinesh Garg,
and Avirup Sil. 2020. Span selection pre-training for question answering. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, 2773–2782.

[19] David Graus, Daan Odijk, and Maarten de Rijke. 2018. The birth of collective memories: Analyzing emerging entities
in text streams. Journal of the Association for Information Science and Technology 69, 6 (June 2018), 773–786.

[20] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen Wu, W. Bruce Croft, and Xueqi
Cheng. 2020. A deep look into neural ranking models for information retrieval. Information Processing & Management
57, 6 (2020), 102067.

[21] Greg Hamerly and Charles Elkan. 2003. Learning the: in:-means. In Proceedings of the Advances in Neural Information
Processing Systems, Vol. 16.

[22] Susan E. Haviland and Herbert H. Clark. 1974. What’s new? Acquiring new information as a process in comprehension.
Journal of Verbal Learning and Verbal Behavior 13, 5 (1974), 512–521.

[23] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, BrunaMorrone,Quentin De Laroussilhe, Andrea Gesmundo,Mona
Attariyan, and Sylvain Gelly. 2019. Parameter-efficient transfer learning for NLP. In Proceedings of the International
Conference on Machine Learning. PMLR, 2790–2799.

[24] Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. 2017. TriviaQA: A large scale distantly super-
vised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 1601–1611.

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://arxiv.org/abs/2101.04904
https://arxiv.org/abs/2101.04904
https://arxiv.org/abs/2010.00904
https://arxiv.org/abs/2010.00904

5:34 J. Guo et al.

[25] Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-
tau Yih. 2020. Dense passage retrieval for open-domain question answering. arXiv:2004.04906. Retrieved from
https://arxiv.org/abs/2004.04906

[26] Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu, and Minlie Huang. 2020. SentiLARE: Sentiment-aware language repre-
sentation learning with linguistic knowledge. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 6975–6988.

[27] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv:1412.6980. Retrieved
from https://arxiv.org/abs/1412.6980

[28] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A. Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. 2017. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy of Sciences 114, 13 (2017), 3521–3526.

[29] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle
Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. 2019. Natural questions: A benchmark for question answering
research. Transactions of the Association for Computational Linguistics 7 (2019), 452–466.

[30] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Veselin Stoyanov,
and Luke Zettlemoyer. 2020. BART: Denoising sequence-to-sequence pre-training for natural language generation,
translation, and comprehension. In Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, 7871–7880.

[31] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler,
Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive NLP
tasks. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 33, 9459–9474.

[32] Zhizhong Li and Derek Hoiem. 2017. Learning without forgetting. IEEE Transactions on Pattern Analysis and Machine
Intelligence 40, 12 (2017), 2935–2947.

[33] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for continual learning. In Proceedings of
the Advances in Neural Information Processing Systems, Vol. 30.

[34] Arun Mallya and Svetlana Lazebnik. 2018. PackNet: Adding multiple tasks to a single network by iterative pruning.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 7765–7773.

[35] Sanket Vaibhav Mehta, Jai Gupta, Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Jinfeng Rao, Marc Najork, Emma Strubell,
and Donald Metzler. 2022. DSI++: Updating transformer memory with new documents. arXiv:2212.09744. Retrieved
from https://arxiv.org/abs/2212.09744

[36] Donald Metzler, Yi Tay, Dara Bahri, and Marc Najork. 2021. Rethinking search: Making domain experts out of
dilettantes. ACM SIGIR Forum 55, 1 (2021), 1–27.

[37] In Jae Myung. 2003. Tutorial on maximum likelihood estimation. Journal of Mathematical Psychology 47, 1 (2003),
90–100.

[38] Rodrigo Nogueira and Jimmy Lin. 2019. From doc2query to docTTTTTquery. In An MS MARCO Passage Retrieval
Task Publication. University of Waterloo.

[39] Felipe Ortega. 2009. Wikipedia: AQuantitative Analysis. Ph.D. Dissertation. Universidad Rey Juan Carlos, Madrid,
Spain.

[40] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jahnichen, and Moin Nabi. 2019. Learning to remember: A
synaptic plasticity driven framework for continual learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 11321–11329.

[41] Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick Lewis, Majid Yazdani, Nicola De Cao, James Thorne, Yacine
Jernite, Vladimir Karpukhin, Jean Maillard, et al. 2020. KILT: A benchmark for knowledge intensive language tasks.
arXiv:2009.02252. Retrieved from https://arxiv.org/abs/2009.02252

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research 21 (2020), 1–67.

[43] Juan Ramos. 2003. Using TF-IDF to determine word relevance in document queries. In Proceedings of the 1st Instructional
Conference on Machine Learning, Vol. 242, 29–48.

[44] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H. Lampert. 2017. iCaRL: Incremental
classifier and representation learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2001–2010.

[45] Hippolyt Ritter, Aleksandar Botev, and David Barber. 2018. Online structured Laplace approximations for overcoming
catastrophic forgetting. In Proceedings of the Advances in Neural Information Processing Systems, Vol. 31.

[46] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance framework: BM25 and beyond. Foundations
and Trends in Information Retrieval 3, 4 (2009), 333–389.

[47] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline M. Hancock-Beaulieu, and Mike Gatford. 1994. Okapi at
TREC-3. In Text Retrieval Conference. Retrieved from https://api.semanticscholar.org/CorpusID:3946054

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/2004.04906
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2212.09744
https://arxiv.org/abs/2212.09744
https://arxiv.org/abs/2009.02252
https://arxiv.org/abs/2009.02252
https://api.semanticscholar.org/CorpusID:3946054
https://api.semanticscholar.org/CorpusID:3946054

CorpusBrain++: A Continual Generative Pre-Training Framework for KILTs 5:35

[48] Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu,
Razvan Pascanu, and Raia Hadsell. 2016. Progressive neural networks. arXiv:1606.04671. Retrieved from https:
//arxiv.org/abs/1606.04671

[49] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan
Pascanu, and Raia Hadsell. 2018. Progress & compress: A scalable framework for continual learning. In Proceedings of
the International Conference on Machine Learning. PMLR, 4528–4537.

[50] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. 2017. Continual learning with deep generative replay. In
Proceedings of the Advances in Neural Information Processing Systems, Vol. 30.

[51] Amit Singhal. 2001. Modern information retrieval: A brief overview. IEEE Data Engineering Bulletin 24, 4 (2001), 35–43.
[52] Asa Cooper Stickland and Iain Murray. 2019. BERT and Pals: Projected attention layers for efficient adaptation in

multi-task learning. In Proceedings of the International Conference on Machine Learning. PMLR, 5986–5995.
[53] Lixin Su, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Yanyan Lan, and Xueqi Cheng. 2020. Continual Domain Adaptation

for Machine Reading Comprehension. In Proceedings of the 29th ACM International Conference on Information and
Knowledge Management , 1395–1404.

[54] Weiwei Sun, Lingyong Yan, Zheng Chen, Shuaiqiang Wang, Haichao Zhu, Pengjie Ren, Zhumin Chen, Dawei Yin,
Maarten de Rijke, and Zhaochun Ren. 2023. Learning to tokenize for generative retrieval. arXiv:2304.04171. Retrieved
from https://arxiv.org/abs/2304.04171

[55] Yi Tay, Vinh Tran, Mostafa Dehghani, Jianmo Ni, Dara Bahri, Harsh Mehta, Zhen Qin, Kai Hui, Zhe Zhao, Jai Gupta,
et al. 2022. Transformer memory as a differentiable search index. In Proceedings of the Advances in Neural Information
Processing Systems, Vol. 35, 21831–21843.

[56] JamesThorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. 2018. FEVER: A Large-scale dataset for
fact extraction and verification. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), 809–819.

[57] Gido M. Van de Ven and Andreas S. Tolias. 2019. Three scenarios for continual learning. arXiv:1904.07734. Retrieved
from https://arxiv.org/abs/1904.07734

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems,
Vol. 30 (2017).

[59] ZihanWang, Yujia Zhou, Yiteng Tu, and Zhicheng Dou. 2023. NOVO: Learnable and interpretable document identifiers
formodel-based IR. In Proceedings of the 32ndACM International Conference on Information and KnowledgeManagement ,
2656–2665.

[60] Ledell Wu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer. 2020. Scalable zero-shot entity
linking with dense entity retrieval. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 6397–6407.

[61] Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold Overwijk.
2020. Approximate nearest neighbor negative contrastive learning for dense text retrieval. arXiv:2007.00808. Retrieved
from https://arxiv.org/abs/2007.00808

[62] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D.
Manning. 2018. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, 2369–2380.

[63] Fei Ye and Adrian G. Bors. 2022. Task-free continual learning via online discrepancy distance learning. In Proceedings
of the Advances in Neural Information Processing Systems, Vol. 35 (2022), 23675–23688.

[64] Soyoung Yoon, Chaeeun Kim, Hyunji Lee, Joel Jang, and Minjoon Seo. 2023. Continually updating generative retrieval
on dynamic corpora. arXiv:2305.18952. Retrieved from https://arxiv.org/abs/2305.18952

[65] Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Peter Liu. 2020. Pegasus: Pre-training with extracted gap-sentences
for abstractive summarization. In Proceedings of the International Conference on Machine Learning. PMLR, 11328–11339.

[66] Wayne Xin Zhao, Jing Liu, Ruiyang Ren, and Ji-Rong Wen. 2022. Dense text retrieval based on pretrained language
models: A survey. arXiv:2211.14876. Retrieved from https://arxiv.org/abs/2211.14876

[67] Yujia Zhou, Zhicheng Dou, and Ji-Rong Wen. 2023. Enhancing generative retrieval with reinforcement learning from
relevance feedback. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing.

Received 4 March 2024; revised 16 March 2025; accepted 29 July 2025

ACM Transactions on Information Systems, Vol. 44, No. 1, Article 5. Publication date: October 2025.

https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/1606.04671
https://arxiv.org/abs/2304.04171
https://arxiv.org/abs/2304.04171
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/2007.00808
https://arxiv.org/abs/2007.00808
https://arxiv.org/abs/2305.18952
https://arxiv.org/abs/2305.18952
https://arxiv.org/abs/2211.14876
https://arxiv.org/abs/2211.14876

	Abstract
	1 Introduction
	2 CDL for KILTs
	2.1 Task Formulation
	2.2 Benchmark Construction
	2.3 Evaluation Metrics

	3 Analysis of CorpusBrain on CDL
	3.1 Background
	3.2 Overall Performance

	4 Methodology
	4.1 Model Overview
	4.2 Shared Backbone
	4.3 Task-Specific Adapter
	4.4 Task-Specific Pre-Training Objective
	4.5 Learning Process
	4.6 Inference Process

	5 Experimental Settings
	5.1 Models
	5.2 Implementation Details
	5.3 Evaluation Metrics

	6 Experimental Results
	6.1 Baseline Comparison
	6.2 Assessing Catastrophic Forgetting
	6.3 Assessing Forward Transfer
	6.4 Effectiveness-Efficiency Tradeoff
	6.5 Qualitative Analysis with Additional Examples

	7 Related Work
	7.1 KILTs
	7.2 GR
	7.3 CL

	8 Conclusion and Future Work
	References

