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ABSTRACT
Counterfactual learning to rank (CLTR) relies on exposure-based

inverse propensity scoring (IPS), a LTR-specific adaptation of IPS

to correct for position bias. While IPS can provide unbiased and

consistent estimates, it often suffers from high variance. Especially

when little click data is available, this variance can cause CLTR to

learn sub-optimal ranking behavior. Consequently, existing CLTR

methods bring significant risks with them, as naively deploying

their models can result in very negative user experiences.

We introduce a novel risk-aware CLTR method with theoretical

guarantees for safe deployment. We apply a novel exposure-based

concept of risk regularization to IPS estimation for LTR. Our risk

regularization penalizes the mismatch between the ranking behav-

ior of a learned model and a given safe model. Thereby, it ensures

that learned ranking models stay close to a trusted model, when

there is high uncertainty in IPS estimation, which greatly reduces

the risks during deployment. Our experimental results demonstrate

the efficacy of our proposed method, which is effective at avoid-

ing initial periods of bad performance when little data is available,

while also maintaining high performance at convergence. For the

CLTR field, our novel exposure-based risk minimization method

enables practitioners to adopt CLTR methods in a safer manner

that mitigates many of the risks attached to previous methods.
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1 INTRODUCTION
Learning to rank (LTR) methods optimize ranking systems so that

the resulting ranking behavior maximizes a given ranking met-

ric [20]. Traditionally, most LTR methods applied a supervised

learning procedure based on manually-created relevance judge-

ments. However, obtaining such judgements is time-consuming,

expensive and does not scale [2, 33]. As an alternative, LTRmethods

have been developed that rely on clicks, as they are much cheaper

to obtain in abundance in the form of user interaction logs [16].

Despite its low costs, click data is generally strongly affected

by different forms of interaction bias. Interactions with rankings

often suffer from position bias [7]: the position at which an item

was shown often affects its click through rate (CTR) more than its

relevance. As a result, the clicks observed in interaction logs are

often more reflective of where items were displayed during logging

than how relevant users find them. Thus, naively using this data

for LTR, without corrections, can result in heavily biased models

with suboptimal ranking performance [18, 44].

To mitigate the bias problem in interaction data, the field of

counterfactual learning to rank (CLTR) has proposed methods to

mitigate bias with unbiased estimation [18]. CLTR mainly relies

on exposure-based inverse propensity scoring (IPS) [31, 45], a LTR

specific adaptation of the IPS counterfactual estimation method [11,

17, 41]. Standard exposure-IPS weights clicks by the inverse effect

of position-bias on the clicked item. This procedure thus gives

more weight to clicks on items that are underrepresented due to

position-bias, and vice versa. In expectation, this removes the effect

of position-bias from the loss that is optimized.

Unsafe CLTR. Despite enabling unbiased optimization, IPS is also

known to suffer from high variance [18, 25]. In cases with a lack of

click data or with large amounts of noise, high variance can make

IPS-based CLTR unreliable and lead to very sub-optimal ranking

models [12, 30]. This problem can be so severe that the learned

ranking models can be worse than the model used to log the in-

teraction data. Deploying such a learned model could result in a

substantially degraded user experience. In other words, despite the

improvements that IPS-based CLTR can bring, it is also an unsafe
approach since it may lead to considerable deteriorations.

This (un)safety issue is not unique to IPS-based CLTR. Swami-

nathan and Joachims [41] address this issue for contextual bandit

problems by applying a generalization bound. Such a bound can

provide a high-confidence upper limit on the difference between

the true and estimated performance of a bandit policy [39, 42]. This

allows for safer conservative optimization. For instance, Wu and

Wang [49] introduce a bound based on the divergence between the

new policy and the logging policy. This bound avoids policies that

stray away from the logging policy, unless there is strong evidence
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that they are actual improvements. This method might appear to be

a great fit for CLTR, but, unfortunately, it is based on action propen-

sities that do not generalize well to the very large action spaces in

CLTR. Therefore, there is a need for a conservative generalization

bound that is practical and effective in the CLTR setting.

Safe CLTR. To address this gap, we propose an exposure-based

counterfactual risk minimization (CRM) method that is specifically

designed for safe CLTR. Similar to how exposure-based IPS deals

with the large action spaces in ranking settings, our method is

based on an exposure-based alternative to action-based general-

ization bounds. We first introduce a divergence measure based on

differences between the distributions of exposure of a new policy

and a safe logging policy. Then we provide a novel generalization

bound and prove that it is a high-confidence lower-bound on the

performance of a learned policy. When uncertain, this bound de-

faults to preferring the logging policy and thus avoids decreases in

performance due to variance. In other words, with high-confidence,

ranking models optimized with this bound are guaranteed to never

deteriorate the user experience, even when little data is available.

Main contributions.We are the first to address CRM for CLTR and

contribute a novel exposure-based CRMmethod for safe CLTR. Our

experimental results show that our proposed method is effective

at avoiding initial periods of bad performance when little date is

available, while also maintaining high performance at convergence.

Our novel exposure-based CRM method thus enables safe CLTR

that can mitigate many of risks attached to previous methods. We

hope that our contribution makes the adoption of CLTR methods

more attractive to practitioners working on real-world search and

recommendation systems.

2 RELATEDWORK
We review related work on CLTR and CRM in off-policy learning.

2.1 Counterfactual learning to rank
LTR deals with learning optimal rankings tomaximize a pre-defined

notion of utility [20]. Traditionally, LTR systems were optimized

using supervised learning on manually-created relevance judge-

ments [2]. But the manual curation of relevance judgements is a

time-consuming and costly process [2, 33]. Also, manually-graded

relevance signals do not always align well with actual user prefer-

ences [38]. Due to these shortcomings, LTR from user interactions

has become a popular alternative to supervised LTR [3, 15, 18, 40].

Learning from user interactions/click logs was introduced in the

pioneering work of Joachims [16]. Click data is relatively cheap

to collect and indicative of actual user preferences [34]. In spite

of these advantages, click data is known to be a noisy and biased

estimate of the true user preferences [7, 31]. Some of the common

biases identified in the LTR literature are position bias [7]: trust

bias [1], and item-selection bias [27].

To counter the effect of bias, Joachims et al. [18] introduced

counterfactual learning in the context of LTR. They proposed the

application of inverse propensity scoring (IPS), a causal inference

technique that has prevalence in the offline bandit learning lit-

erature [17]. IPS models the probability of the user examining a

document at a given displayed rank. The inverse of the exami-

nation probability, i.e., the inverse propensity, is used to correct

for the position bias. As a result of the inverse weighing scheme,

IPS-based LTR optimization is unaffected by position bias, in ex-

pectation [18]. Since its introduction, there has been an increasing

interest in the area, with several application of IPS in the context of

ranking [1, 27, 43, 45]. Recent work has also explored CLTR under

a stochastic logging policy, where some exploration is introduced,

as opposed to pure exploitation [27, 29, 50].

With regard to safety in learning from user interactions, Jager-

man et al. [12] introduced the notation of safe exploration for offline

contextual bandit algorithms. The authors introduced safe explo-

ration algorithm (SEA), which applies high-confidence performance

bounds to safely choose between the deployment of a logging pol-

icy and a learned policy. Oosterhuis and de Rijke [30] applied this

context to LTR and introduced a generalization and specialization

framework to safely choose between a generalized feature-based

LTR model, and a specialized tabular LTR model. The important dif-

ference between prior work and our work is that existing methods

safely choose between policies, whereas our method safely optimizes
a policy. To the best of our knowledge, we are the first to consider

notion of safety for the optimization of LTR models.

2.2 Counterfactual risk minimization for
offline learning from logs

A relevant area closely related to CLTR is off-policy learning, or

offline learning from bandit feedback data [10, 17, 37, 41]. Off-policy

learning tries to bridge the mismatch between the action distribu-

tions of a new policy and the logging policy [17]. The most common

techniques used to achieve that goal are IPS and importance sam-

pling [11]. However, as noted by Cortes et al. [6], the IPS estimator

can have unbounded variance, which can lead to large errors in

its estimation. Consequently, optimization with IPS can result in

convergence problems and severely suboptimal policies.

To account for this high-variance problem, Swaminathan and

Joachims [41] introduced counterfactual risk minimization (CRM),

an off-policy method that explicitly controls for the variance dur-

ing off-policy learning from bandit feedback data. Their learning

objective consists of both the IPS loss and a variance regularization

term, which minimizes the dissimilarity between the two policies.

This variance regularization term represents the risk that stems

from the variance of the IPS estimation. Computing it requires a

pass over the entire data which does not scale well. As a scalable

alternative, Wu and Wang [49] introduced variational counterfac-

tual risk minimization (VCRM), where the authors estimate the risk
of the new policy by random sampling from the logged data. The

objective function to be optimized in the VCRM method is derived

from a generic theoretical analysis of learning from importance

sampling [6]. The risk term in the VCRM method is defined in

terms of a specific divergence between the logging policy and the

new policy, known as the Rényi divergence [35]. To the best of our

knowledge, there is no work on CRM in a LTR setting, making our

work the first to propose a CRM approach for the LTR task.

3 BACKGROUND
3.1 Learning to rank
The objective of learning to rank methods is to optimize a ranking

policy (𝜋 ), so that for user-issued queries (𝑞) it provides the optimal
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ranking of their pre-selected candidate document sets (𝐷𝑞) [20].

Formally, this objective can be expressed as the maximization of

the following utility function:

𝑈 (𝜋) = E𝑞

∑︁
𝑑∈𝐷𝑞

𝜌 (𝑑 | 𝑞, 𝜋)𝑃 (𝑅 = 1 | 𝑑, 𝑞)
 . (1)

where 𝜌 (𝑑 | 𝑞, 𝜋) is the weight 𝜋 gives to document 𝑑 for query 𝑞.

The choice of 𝜌 determines what metric is optimized, for instance,

the well-known normalized discounted cumulative gain (NDCG)

metric [14]:

𝜌DCG (𝑑 | 𝑞, 𝜋) = E𝑦∼𝜋 ( · |𝑞)
[
(log

2
(rank(𝑑 | 𝑦) + 1))−1

]
. (2)

where 𝑦 is a ranking sampled from the policy 𝜋 . For this paper, the

aim is to optimize the expected number of clicks, the next subsection

will explain how we choose 𝜌 accordingly.

3.2 Counterfactual learning to rank
Position bias in clicks. Optimizing the LTR objective in Eq. 1

requires access to the true relevance labels (𝑃 (𝑅 = 1 | 𝑑, 𝑞)), which
is often impossible in real-world ranking settings. As an alternative,

CLTR uses clicks, since they are present in abundance as logged user

interactions. However, clicks are a biased indicator of relevance;

for this paper, we will assume the relation between clicks and

relevance is determined by a position-based click model [5, 18]. For

a document 𝑑 displayed in ranking 𝑦 for query 𝑞, this means the

click probability can be decomposed into a rank-based examination

probability and a document-based relevance probability:

𝑃 (𝐶 = 1 | 𝑑, 𝑞,𝑦) = 𝑃 (𝐸 = 1 | rank(𝑑 | 𝑦))𝑃 (𝑅 = 1 | 𝑑, 𝑞) . (3)

The key characteristic of the position-based click model is that the

probability of examination only depends on the rank at which a

document is displayed: 𝑃 (𝐸 = 1 | 𝑑, 𝑞,𝑦) = 𝑃 (𝐸 = 1 | rank(𝑑 | 𝑦)).
Furthermore, this model assumes that clicks only take place when

a document is both relevant to a user and examined by them. Con-

sequently, the click signal is an indication of both the relevance and

examination of documents. Thus, the position at which a document

is displayed can have a stronger effect on its click probability than

its actual relevance [7].

Inverse-propensity-scoring for CLTR. We assume a setting

where 𝑁 interactions have been logged using the logging policy 𝜋0,

for each interaction 𝑖 the query 𝑞𝑖 , the displayed ranking 𝑦𝑖 , and

the clicks 𝑐𝑖 are logged:

D =
{
𝑞𝑖 , 𝑦𝑖 , 𝑐𝑖

}𝑁
𝑖=1
. (4)

We will use 𝑐𝑖 (𝑑) ∈ {0, 1} to denote whether document 𝑑 was

clicked at interaction 𝑖 . Furthermore, we choose 𝜌 to match the

examination probabilities under 𝜋 :

𝜌 (𝑑 | 𝑞, 𝜋) = E𝑦∼𝜋 ( · |𝑞)
[
𝑃 (𝐸 = 1 | rank(𝑑 | 𝑦))

]
= 𝜌 (𝑑) . (5)

Hence, our optimization objective 𝑈 (𝜋) is equal to the expected

number of clicks (cf. Eq. 1 and 3).

In order to apply IPS, we need the propensity of each docu-

ment [18], following Oosterhuis and de Rijke [29] we use:

𝜌 (𝑑 | 𝑞, 𝜋0) = 𝑃 (𝐸 = 1 | 𝜋0, 𝑑, 𝑞)
= E𝑦∼𝜋0 ( · |𝑞)

[
𝑃 (𝐸 = 1 | rank(𝑑 | 𝑦))

]
= 𝜌0 (𝑑) .

(6)

Thus, the exposure of 𝑑 represents how likely it is examined when

using 𝜋0 for logging. Thereby, it indicates how much the clicks on

𝑑 underrepresent its relevance. For the sake of brevity, we drop 𝑞,

𝜋 and 𝜋0 from our notation when their values are clear from the

context: i.e., 𝜌 (𝑑 | 𝑞, 𝜋) = 𝜌 (𝑑) and 𝜌 (𝑑 | 𝑞, 𝜋0) = 𝜌0 (𝑑).
The exposure-based IPS estimator takes each click in D and

weights it inversely to 𝜌0 (𝑑) to correct for position-bias [18, 29]:

𝑈 (𝜋) = 1

𝑁

𝑁∑︁
𝑖=1

∑︁
𝑑∈𝐷𝑞𝑖

𝜌 (𝑑)
𝜌0 (𝑑)

𝑐𝑖 (𝑑) . (7)

In other words, to compensate that position bias lowers the click

probability a document by a factor of 𝜌0 (𝑑), clicks are weighted
by 1/𝜌0 (𝑑) to correct for this effect in expectation. As a result,

clicks on documents that 𝜋0 is likely to show at positions with low

examination probabilities (i.e., the bottom of a ranking) receive a

higher IPS weight to compensate.

Statistical properties of the IPS estimator. The IPS estimator

𝑈 (𝜋) (Eq. 7) is an unbiased and consistent estimate of our LTR

objective 𝑈 (𝜋) (Eq. 1) [26]. It is unbiased since its expected value

is equal to our objective:

E𝑞,𝑦,𝑐
[
𝑈 (𝜋)

]
= 𝑈 (𝜋), (8)

and it is consistent because this equivalence also holds in the limit

of infinite data:

lim

𝑁→∞
𝑈 (𝜋) = 𝑈 (𝜋). (9)

For proofs of these properties, we refer to previous work [18, 23, 27].

Importantly, the unbiasedness and consistency properties do not

indicate that the actual IPS estimates will be reliable. This is because

the estimates produced by IPS are also affected by its variance:

Var𝑦,𝑐

[
𝑈 (𝜋) | 𝑞

]
=

∑︁
𝑑∈𝐷𝑞

𝜌 (𝑑)2

𝜌0 (𝑑)2
Var𝑦,𝑐 [𝑐 (𝑑) | 𝜋0, 𝑞] . (10)

The variance is large when some propensities are small, due to the

𝜌0 (𝑑)−2 term. Hence, the actual estimates that IPS produces may

contain large errors, especially when 𝑁 is relatively small or clicks

are very noisy. Thus,𝑈 (𝜋) may be far removed from the true𝑈 (𝜋),
and optimization with IPS may be unsafe and lead to unpredictable

results.

3.3 Counterfactual risk minimization for
offline bandit learning

The foundational work by Swaminathan and Joachims [41] intro-

duced the idea of counterfactual risk minimization (CRM) for off-

policy learning in a contextual bandit setup. To avoid the negative

effects of high-variance with IPS estimation during bandit optimiza-

tion, they utilize a generalization bound through the addition of a

risk term [21]. With a probability of 1 − 𝛿 , the IPS estimate minus

the risk term is a lower bound on the true utility of the policy:

𝑃
(
𝑈 (𝜋) ≥ 𝑈 (𝜋) − Risk(𝛿)

)
> 1 − 𝛿. (11)

Therefore, optimization of the lower bound can be more reliable

than solely optimizing the IPS estimate (𝑈 (𝜋)), since it provides a
high-confidence guarantee that a lower bound on the true utility of

3
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A B C D E

Ranking 1

A B C D E
1 2 3 4 5 A B C D E

Ranking 2

A C B E D
1 2 3 4 5 A B C D E

Ranking 3

E D C B A
1 2 3 4 5

Figure 1: Three rankings and their normalized expected exposure distributions (Eq. 16) based on DCG weights (Eq. 2). According
to our exposure-based divergence, ranking 1 and ranking 2 are quite similar despite only agreeing on the placing of document
A. In contrast, ranking 1 and ranking 3 also agree on the placement of a single document (C) but have the highest possible
dissimilarity, due to their highly mismatched exposure distributions.

the policy is maximized. Swaminathan and Joachims [41] propose

using the sample variance as the risk factor:

𝑈action-CRM (𝜋) = 𝑈action (𝜋) − 𝜆
√︂

1

𝑁
Var

[
𝑈action (𝜋)

]
, (12)

where 𝜆 ∈ R>0 is an alternative to the 𝛿 parameter that also deter-

mines how probable it provides a bound on the true utility. Impor-

tantly, this bound is based on an action-based IPS estimator. For

our LTR setting this would translate to:

𝑈action (𝜋) =
1

𝑁

𝑁∑︁
𝑖=1

𝜋 (𝑦𝑖 | 𝑞𝑖 )
𝜋0 (𝑦𝑖 | 𝑞𝑖 )

∑︁
𝑑∈𝐷𝑞𝑖

𝑐𝑖 (𝑑) . (13)

Action-based IPS estimation does not work well in the LTR setting

because the large number of possible rankings results in extremely

small action propensities: 𝜋0 (𝑦𝑖 | 𝑞𝑖 ), creating a high-variance

problem. As discussed in Section 3.2, for this reason CLTR uses

exposure-based propensities instead (Eq. 6 and 7), as they effectively

avoid extremely small values. As a result, the CRM approach from

[41] is not effective for CLTR, since the high-variance of its action-

based IPS make the method impractical in the ranking setting.

Another downside of the CRM approach is that the computa-

tion of the sample-variance requires a full-pass over the training

dataset, which is computationally costly for large-scale datasets. As

a solution, Wu and Wang [49] introduce variational CRM (VCRM)

which uses an upper bound on the variance term based on the Rényi

divergence between the new policy and the logging policy [35].

This Rényi divergence is approximated via random sampling, thus

making the VCRM method suitable for stochastic gradient descent-

based training methods [22]. Nevertheless, this CRM approach still

relies on action-based propensities, and therefore, does not provide

an effective solution for the high-variance problem in CLTR.

4 A NOVEL EXPOSURE-BASED
GENERALIZATION BOUND FOR CLTR

To develop a CRM method for CLTR with safety gaurantees, we

aim to find a risk term that gives us a generalization bound as in

Eq. 11. Importantly, this bound has to be effective in the LTR setting,

therefore, our approach should avoid action-based propensities. We

take inspiration from work by Wu and Wang [49], who use the fact

that the Rényi divergence is an upper bound on the variance of an

IPS estimator:

Var

[
𝑈action (𝜋)

]
≤ 𝑑2 (𝜋 ∥ 𝜋0), (14)

where 𝑑2 is the exponentiated Rényi divergence between the new

policy and the logging policy [35]:

𝑑2 (𝜋 ∥ 𝜋0) = E𝑞

[∑︁
𝑦

(
𝜋 (𝑦 | 𝑞)
𝜋0 (𝑦 | 𝑞)

)
2

𝜋0 (𝑦 | 𝑞)
]
. (15)

In other words, the dissimilarity between the logging policy and a

new policy can be used to bound the variance of the IPS estimate of

the new policy’s performance. However, because this divergence is

based on action propensities, it is not effective in the LTR setting.

Below, we introduce an exposure-based measure of divergence

that can produce a desired generalization bound for LTR optimiza-

tion. Section 4.1 introduces the concept of normalized exposure

that treats rankings as exposure distributions. Section 4.2 proves

that Rényi divergence based on normalized exposure can bound

the variance of an exposure-based IPS estimator. Section 4.3 uses

this variance bound to construct a generalization bound for CLTR.

4.1 Normalized expected exposure
Rényi divergence is only valid for probability distributions, e.g.,

𝑑2 (𝜋 ∥ 𝜋0) with 𝜋 (𝑦 | 𝑞) and 𝜋0 (𝑦 | 𝑞). However, expected exposure
is not a probability distribution, i.e., the values of 𝜌 (𝑑) (Eq. 5) or
𝜌0 (𝑑) (Eq. 6) do not necessarily sum up to one, over all documents

to be ranked. This is because users generally examine more than a

single item in a single displayed ranking [7], as a result, expected

exposure can be seen as a distribution of multiple examinations.

Our insight is that a valid probability distribution can be obtained

by normalizing the expected exposure:

𝜌′ (𝑑) = 𝜌 (𝑑)∑
𝑑 ′∈𝐷 𝜌 (𝑑′)

=
𝜌 (𝑑)
Z

, (16)

where the normalization factor is a constant that only depends on

𝐾 , the (truncated) ranking length:

Z =
∑︁
𝑑∈𝐷

𝜌 (𝑑) =
∑︁
𝑑∈𝐷
E𝑦∼𝜋

[
𝑃
(
𝐸 = 1 | rank(𝑑 | 𝑦)

) ]
= E𝑦∼𝜋

[ ∑︁
𝑑∈𝐷

𝑃
(
𝐸 = 1 | rank(𝑑 | 𝑦)

) ]
= E𝑦∼𝜋

[ 𝐾∑︁
𝑘=1

𝑃
(
𝐸 = 1 | 𝑘

) ]
=

𝐾∑︁
𝑘=1

𝑃
(
𝐸 = 1 | 𝑘

)
.

(17)

In this way, Z can be seen as the expected amount of examination

that any ranking will receive, and 𝜌′ as the probability distribution

that indicates how it is expected to spread over documents.

An important property is that the ratio between two propensities

is always equal to the ratio between their normalized counterparts:

𝜌 (𝑑)
𝜌0 (𝑑)

=
𝜌′ (𝑑)
𝜌′
0
(𝑑) . (18)

This is relevant to IPS estimation since it only requires the ratios

between propensities, the proofs in the remainder of this paper

make use of this property.

4
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Finally, using the normalized expected exposure, we can intro-

duce the exponentiated exposure-based Rényi divergence:

𝑑2 (𝜌 ∥ 𝜌0) = E𝑞
[ ∑︁
𝑑∈𝐷𝑞

𝜌′
0
(𝑑)

(
𝜌′ (𝑑)
𝜌′
0
(𝑑)

)
2
]
. (19)

The key difference between our exposure-based divergence and

action-based divergence is that it allows policies to be very similar,

even when they have no overlap in the rankings they produce. As

an intuitive example, Figure 1 displays three different rankings and

their associated normalized expected exposure distributions; these

are the distributions for deterministic policies that give 100% proba-

bility to one of the rankings. Under action-based divergence, these

policies would have the highest possible dissimilarity since they

have no overlap in their possible actions, i.e., the rankings they give

non-zero probability. In contrast, exposure-based divergence gives

high similarity between ranking 1 and ranking 2, since the differ-

ences in their exposure distribution are minor. We note that these

rankings still disagree on the placement of all documents except

one. Conversely, for ranking 1 and ranking 3, which also only agree

on a single document placement, exposure-based divergence gives

the lowest possible similarity score because their exposure distri-

butions are highly mismatched. Importantly, by solely considering

differences in exposure distributions, exposure-based divergence

naturally weighs differences at the bottom of rankings as less im-

pactful than changes that affect the top. As a result, exposure-based

divergence more closely corresponds with common ranking metrics

(Eq. 1) than existing action-based divergences.

4.2 Exposure-divergence bound on variance
We now provide proof that exposure-based divergence is an upper

bound on the variance of IPS estimators for CLTR.

Theorem 4.1. Given a ranking policy 𝜋 and logging policy 𝜋0,
with the expected exposures 𝜌 (𝑑) and 𝜌0 (𝑑) respectively, the vari-
ance of the exposure-based IPS estimate 𝑈 (𝜋) is upper-bounded by
exposure-based divergence:

Var𝑞,𝑦,𝑐

[
𝑈 (𝜋)

]
≤ Z

𝑁
𝑑2 (𝜌 ∥ 𝜌0) . (20)

Proof. From the definition of𝑈 (𝜋) (Eq. 7) and the assumption

that queries 𝑞 are independent and identically distributed (i.i.d),

the variance of the counterfactual estimator can be rewritten as an

expectation over queries [28]:

Var𝑞,𝑦,𝑐

[
𝑈 (𝜋)

]
=

1

𝑁
E𝑞

[
Var𝑦,𝑐

[
𝑈 (𝜋) | 𝑞

] ]
. (21)

Since we have assumed a rank-based examination model (Sec-

tion 3.2), the examinations of documents are independent. This

allows us to rewrite the variance conditioned on a single query:

Var𝑦,𝑐

[
𝑈 (𝜋 | 𝑞)

]
= Var𝑦,𝑐


∑︁
𝑑∈𝐷𝑞

𝜌 (𝑑)
𝜌0 (𝑑)

𝑐 (𝑑, 𝑞)
 (22)

=
∑︁
𝑑∈𝐷𝑞

Var𝑦,𝑐

[
𝜌 (𝑑)
𝜌0 (𝑑)

𝑐 (𝑑, 𝑞)
]
≤

∑︁
𝑑∈𝐷𝑞

E𝑐,𝑦

[(
𝜌 (𝑑)
𝜌0 (𝑑)

𝑐 (𝑑, 𝑞)
)
2

]
.

Since: 𝑐 (𝑑, 𝑞)2 = 𝑐 (𝑑, 𝑞), we can further rewrite to:∑︁
𝑑∈𝐷𝑞

E𝑐,𝑦

[(
𝜌 (𝑑)
𝜌0 (𝑑)

𝑐 (𝑑, 𝑞)
)
2

]
=

∑︁
𝑑∈𝐷𝑞

E𝑐,𝑦

[(
𝜌 (𝑑)
𝜌0 (𝑑)

)
2

𝑐 (𝑑, 𝑞)
]

(23)

=
∑︁
𝑑∈𝐷𝑞

(
𝜌 (𝑑)
𝜌0 (𝑑)

)
2

𝑃 (𝐶 = 1 | 𝑑, 𝑞, 𝜋0) .

Next, we use Eq. 3 and 6 to substitute the click probability; subse-

quently, we replace the examination propensities with normalized

counterparts using Eq. 16 and 18; and lastly, we upper bound the

result using the fact that 𝑃 (𝑅 = 1|𝑑, 𝑞) ≤ 1:∑︁
𝑑∈𝐷𝑞

E𝑐,𝑦

[(
𝜌 (𝑑)
𝜌0 (𝑑)

𝑐 (𝑑, 𝑞)
)
2

]
=

∑︁
𝑑∈𝐷𝑞

𝜌0 (𝑑)
(
𝜌 (𝑑)
𝜌0 (𝑑)

)
2

𝑃 (𝑅 = 1 | 𝑑, 𝑞) (24)

=
∑︁
𝑑∈𝐷𝑞

Z 𝜌′
0
(𝑑)

(
𝜌′ (𝑑)
𝜌′
0
(𝑑)

)
2

𝑃 (𝑅 = 1|𝑑, 𝑞) ≤ Z

∑︁
𝑑∈𝐷𝑞

𝜌′
0
(𝑑)

(
𝜌′ (𝑑)
𝜌′
0
(𝑑)

)
2

.

Finally, we place this upper bound for a single query back into the

expectation over all queries (Eq. 20):

1

𝑁
E𝑞

[
Var𝑦,𝑐

[
𝑈 (𝜋) | 𝑞

] ]
≤ Z

𝑁
E𝑞

[ ∑︁
𝑑∈𝐷𝑞

𝜌′
0
(𝑑)

(
𝜌′ (𝑑)
𝜌′
0
(𝑑)

)
2
]
. (25)

Therefore, by Eq. 21, 25 and the definition of exposure-based diver-

gence in Eq. 19, it is a proven upper bound of the variance. □

4.3 Exposure-divergence bound on performance
Using the upper bound on the variance of an CLTR IPS estimator

that was proven in Theorem 4.1, we can now introduce a general-

ization bound for the CLTR estimator.

Theorem 4.2. Given the true utility𝑈 (𝜋) (Eq. 1) and its exposure-
based IPS estimate 𝑈 (𝜋) (Eq. 7), for the ranking policy 𝜋 and the
logging policy 𝜋0 with expected exposures 𝜌 (𝑑) and 𝜌0 (𝑑), respec-
tively, the following generalization bound holds with probability 1−𝛿 :

𝑈 (𝜋) ≥ 𝑈 (𝜋) −
√︂

Z

𝑁

(
1 − 𝛿
𝛿

)
𝑑2 (𝜌 ∥ 𝜌0). (26)

Proof. As per Cantelli’s inequality [9], given an estimator 𝑋

with expected value E[𝑋 ] and variance Var[𝑋 ], the following tail-
bound holds:

𝑃 (𝑋 − E[𝑋 ] ≥ 𝜆) ≤ Var[𝑋 ]
Var[𝑋 ] + 𝜆2

. (27)

Since 𝜆 > 0 is a free parameter, we can define 𝛿 such that:

𝛿 ≔
Var[𝑋 ]

Var[𝑋 ] + 𝜆2
, 𝜆 =

√︂
1 − 𝛿
𝛿

Var[𝑋 ] . (28)

Consequently, the following inequality holds:

𝑃 (E[𝑋 ] ≥ 𝑋 − 𝜆) ≥ 1 − 𝛿. (29)

Building on this inequality, the following inequality must hold with

probability 1 − 𝛿 :

𝑈 (𝜋) ≥ 𝑈 (𝜋) −
√︂

1 − 𝛿
𝛿

Var𝑞,𝑦,𝑐

[
𝑈 (𝜋)

]
. (30)
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Policy for IPS with Action-based Risk

Policy for IPS without Risk

Figure 2: Example comparison of the optimal policy for a sin-
gle logged click according to three different risk estimators.

Finally, we can replace the variance with the upper bound from

Theorem 4.1, which completes the proof. □

Risk in CLTR. Based on the generalization bound proposed in

Theorem 4.2, we see that it proposes the following measure of

risk: Risk(𝛿) =
√︃

Z

𝑁

(
1−𝛿
𝛿

)
𝑑2 (𝜌 ∥ 𝜌0) (cf. Eq. 11). Clearly, this risk is

mostly determined by the exposure-based divergence between the

new policy and the logging policy. Thereby, it states that the greater

the difference between how exposure is spread over documents by

the logging policy and the new policy, the higher the risk involved.

Therefore, to optimize this lower bound, one has to balance the

maximization of the estimated utility𝑈 (𝜋) and the minimization of

risk by not letting 𝜋 differ too much from 𝜋0 in terms of exposure.

Furthermore, we see that our measure of risk diminishes as

𝑁 increases. As a result, the risk term will overwhelm the IPS

term when 𝑁 is very low, as there is much risk involved when

estimating based on a few interactions. Conversely, when 𝑁 is

very large, the risk term mostly disappears, as the IPS estimate is

more reliable when based on large numbers of interactions. Thus,

during optimization, the generalization bound is expected to mostly

help with avoiding initial decreases in performance, while still

converging at the same place as the standard IPS estimator.

Lastly, the 𝛿 parameter determines the safety that is provided by

the risk, where a lower 𝛿 makes it more likely that the generalization

bound holds. Accordingly, as 𝛿 increases the risk term becomes

smaller and will thus have less effect on optimization.

To the best of our knowledge, this is the first exposure-based

generalization bound, which makes it the first method designed for

safe optimization in the CLTR setting.

Illustrative comparison. To emphasize the working and novelty

of our exposure-based risk, a comparison of the optimal policies for

action-based risk, exposure-based risk, and no risk are shown in

Figure 2. We see that IPS without a risk term places the once-clicked

document at the first position, with 100% probability. This is very

risky, as it greatly impacts the ranking while only being based on a

single observation. The action-based risk tries to mitigate this risk

with a probabilistic policy that gives most probability to the logging

policy ranking (90%) and the remainder to the IPS ranking (10%). In

contrast, with exposure-based risk, the optimal policy makes the

risk and utility trade-off in a single ranking, that mostly follows

the logging policy but places the clicked document slightly higher.

This example illustrates that because action-based risk does not

have a similarity measure between rankings, it can only produce

a probabilistic interpolation between the logging policy and IPS

rankings. Alternatively, because exposure-based risk does have

such a measure, it produces a ranking that is neither the logging

ranking nor the IPS ranking, but one with an exposure distribution

that is similar to both. Thereby, exposure-based risk has a more

elegant and natural method of balancing utility maximization and

risk minimization in the CLTR setting.

5 A NOVEL COUNTERFACTUAL RISK
MINIMIZATION METHOD FOR LTR

Now that we have the proven generalization bound described in

Section 4.3 (Theorem 4.2), we can propose a novel risk-aware CLTR

method for optimizing it. The aim of our method is to find the

policy that maximizes this high-confidence lower bound on the true

performance. In formal terms, we have the following optimization

problem:

max

𝜋
𝑈 (𝜋) −

√︂
Z

𝑁

(
1 − 𝛿
𝛿

)
𝑑2 (𝜌 ∥ 𝜌0) . (31)

We propose to train a stochastic policy 𝜋 via stochastic gradient

descent, therefore, we need to derive the gradient and find a method

of computing it. For the computation of the gradient w.r.t. the utility

𝑈 (𝜋), the first part of Eq. 31, we refer to several prior work that

discusses this topic extensively [24, 27, 50]. Thus, we can focus our

attention on the second part of Eq. 31:

∇𝜋
√︂

Z

𝑁

(
1 − 𝛿
𝛿

)
𝑑2 (𝜌 ∥ 𝜌0) =

√︄
Z(1 − 𝛿)

4𝑁𝛿𝑑2 (𝜌 ∥ 𝜌0)
∇𝜋𝑑2 (𝜌 ∥ 𝜌0). (32)

To derive the gradient of the exposure-based divergence function,

we use the relation between 𝜌 and 𝜌′ from Eq. 17 and 18:

∇𝜋𝑑2 (𝜌 ∥ 𝜌0) = ∇𝜋E𝑞
[ ∑︁
𝑑∈𝐷𝑞

𝜌′
0
(𝑑)

(
𝜌′ (𝑑)
𝜌′
0
(𝑑)

)
2
]

=
2

Z

E𝑞

[ ∑︁
𝑑∈𝐷𝑞

𝜌 (𝑑)
𝜌0 (𝑑)

∇𝜋𝜌 (𝑑)
]
.

(33)

Thus, we only need the gradient w.r.t. the exposure of a document

(∇𝜋𝜌 (𝑑)) to complete our derivation. If 𝜋 is a Plackett-Luce (PL)

ranking model, one can make use of the specialized gradient com-

putation algorithm from [24]. However, for this work, we will not

make further assumptions about 𝜋 and apply the more general

log-derivate trick from the REINFORCE algorithm [48]:

∇𝜋𝜌 (𝑑) = E𝑦∼𝜋
[
𝑃
(
𝐸 = 1 | rank(𝑑 | 𝑦)

) ]
∇𝜋 log𝜋 (𝑦) . (34)

Putting all of the previous elements back together, gives us the

gradient w.r.t. the exposure-based risk function:√︄
1 − 𝛿

𝑁𝛿 Z𝑑2 (𝜌 ∥ 𝜌0)
E𝑞,𝑦∼𝜋

[(
𝐾∑︁
𝑘=1

𝜌 (𝑦𝑘 )
𝜌0 (𝑦𝑘 )

𝑃 (𝐸 = 1| 𝑘)
)
∇𝜋 log𝜋 (𝑦)

]
, (35)

where 𝑦𝑘 is the document at rank 𝑘 in ranking 𝑦. For a close ap-

proximation of this gradient, we substitute the gradient with the

queries from the given dataset, and the rankings sampled from 𝜋

during optimization [24, 48].

Similarly, since the exact computation of is 𝑑2 (𝜌 ∥ 𝜌0) infeasi-
ble in practice, we introduce a sample-based empirical divergence

estimator:

ˆ𝑑2 (𝜌 | | 𝜌0) =
1

𝑁

𝑁∑︁
𝑖=1

∑︁
𝑑∈𝐷𝑞𝑖

𝜌′
0
(𝑑)

(
𝜌′ (𝑑)
𝜌′
0
(𝑑)

)
2

. (36)
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Table 1: NDCG@5 performance under different settings and datasets for several values of 𝑁 , the number of logged interactions
in the simulated training set. Reported numbers are averages over 10 independent runs evaluated on the held-out test-sets, bold
numbers indicate the highest performance. Statistical significance for differences with the exposure-based CRM are measured
via a two-sided student-t test, ▼ indicates methods with significantly lower NDCG with 𝑝 < 0.01, and ★ no significant difference.

Yahoo! Webscope MSLR-WEB30k Istella

𝑁 = 4 · 102 𝑁 = 4 · 107 𝑁 = 10
9 𝑁 = 4 · 102 𝑁 = 4 · 107 𝑁 = 10

9 𝑁 = 4 · 102 𝑁 = 4 · 107 𝑁 = 10
9

Logging 0.677 0.677 0.677 0.435 0.435 0.435 0.635 0.635 0.635

Skyline 0.727 0.727 0.727 0.479 0.479 0.479 0.714 0.714 0.714

Naive 0.652 (0.021)
▼

0.694 (0.000)
▼

0.695 (0.000)
▼

0.353 (0.003)
▼

0.448 (0.000)
▼

0.448 (0.001)
▼

0.583 (0.007)
▼

0.661 (0.001)
▼

0.661 (0.001)
▼

Action IPS 0.656 (0.008)
▼

0.701 (0.001)
▼

0.701 (0.001)
▼

0.359 (0.007)
▼

0.448 (0.001)
▼

0.448 (0.001)
▼

0.578 (0.004)
▼

0.671 (0.001)
▼

0.671 (0.002)
▼

Action CRM 0.617 (0.004)
▼

0.698 (0.001)
▼

0.700 (0.001)
▼

0.359 (0.005)
▼

0.448 (0.001)
▼

0.449 (0.001)
▼

0.449 (0.013)
▼

0.668 (0.002)
▼

0.672 (0.001)
▼

Exp. IPS 0.659 (0.010)
▼ 0.723 (0.001)★ 0.730 (0.001)★ 0.389 (0.014)

▼ 0.474 (0.001)★ 0.481 (0.001)★ 0.576 (0.010)
▼ 0.696 (0.001)★ 0.706 (0.001)★

Exp. CRM 0.677 (0.001) 0.723 (0.001) 0.730 (0.000) 0.434 (0.001) 0.473 (0.001) 0.480 (0.001) 0.635 (0.001) 0.695 (0.001) 0.706 (0.001)

This is an unbiased estimate of the true divergence given that the

sampling process is truly monte-carlo [13].

6 EXPERIMENTAL SETUP
For our experiments, we follow the semi-synthetic experimental

setup that is common in the CLTR literature [18, 29, 30, 43]. We

make use of the three largest publicly available LTR datasets: Ya-

hoo!Webscope [2], MSLR-WEB30k [32], and Istella [8]. The datasets

consist of queries, a preselected list of documents per query, query-

document feature vectors, and manually-graded relevance judge-

ments for each query-document pair. To generate clicks, we follow

previous work [29, 30, 43] and train a logging policy on a 3% fraction

of the relevance judgements. This simulates a real-world setting,

where a production ranker trained on manual judgements is used to

collect click logs, which can then be used for subsequent click-based

optimization. Typically, in real-world ranking settings, given that

the production ranker is used on live-traffic, it is deemed as a safe

policy that can be trusted with real users.

We simulate a top-𝐾 ranking setup [27] where five documents

are presented at once. Clicks are generated with our assumed click

model (Eq. 3) and the following rank-based position-bias:

𝑃 (𝐸 = 1 | 𝑞, 𝑑,𝑦) =

(

1

rank(𝑑 |𝑦)

)
2

if rank(𝑑 | 𝑦) ≤ 5,

0 otherwise.
(37)

In real-world click data, the observed CTR is typically very low [4,

19, 36]; hence, to simulate such a sparse click settings, we apply the

following transformation from relevance judgements to relevance

probabilities:

𝑃 (𝑅 = 1 | 𝑞, 𝑑) = 0.025 ∗ 𝑟𝑒𝑙 (𝑞, 𝑑) + 0.2, (38)

where 𝑟𝑒𝑙 (𝑞, 𝑑) ∈ {0, 1, 2, 3, 4} is the relevance judgement for the

query-document pair and 0.2 is added as click noise. During training,

the only available data consists of clicks generated on the training

and validation sets, no baseline method has access to the underlying

relevance judgements (expect the skyline).

Furthermore, we assume a setting where the exact logging policy

is not available during training. As a result, the 𝜌0 propensities have

to estimated, we use a simple frequency estimate following [29]:

𝜌0 (𝑑) =
𝑁∑︁
𝑖=1

1
[
𝑞 = 𝑞𝑖

]∑𝑁
𝑗=1 1

[
𝑞 = 𝑞 𝑗

] 𝑃 (
𝐸 = 1 | rank(𝑑 | 𝑦𝑖 )

)
. (39)

For the action-based baselines, the action propensities 𝜋0 (𝑦 | 𝑞) are
similarly estimated based on observed frequencies:

𝜋0 (𝑦 | 𝑞) =
𝐾−1∏
𝑘=1

𝜋0 (𝑦𝑘 | 𝑞), 𝜋0 (𝑦𝑘 | 𝑞) =
𝑁∑︁
𝑗=1

1
[
𝑦𝑘 = 𝑦 𝑗 ]∑𝑁

𝑗=1 1
[
𝑞 = 𝑞 𝑗

] , (40)

where 𝜋0 (𝑦𝑘 | 𝑞) is the estimated probability of𝑑 appearing at rank𝑘

for query 𝑞. As is common in CLTR [18, 23, 37], we clip propensities

by 10/
√
𝑁 in the training set, to reduce variance, but not in the

validation set.

We optimize neural PL ranking models [24] with early stopping

based on validation clicks to prevent overfitting. For the REIN-

FORCE policy-gradient, we follow [50] and use the average reward

per query as a control-variate for variance reduction.

As our evaluation metric, we compute NDCG@5 metric using

the relevance judgements on the test split of each dataset [14]. All

reported results are averages over ten independent runs, significant

testing is performed with a two-sided student-t test.

Finally, the following methods are included in our comparisons:

(i) Naive. As the most basic baseline, we train on the generated

clicks without any correction (equivalent to ∀𝑑, 𝜌0 (𝑑) = 1).

(ii) Skyline. To compare with the highest possible performance,

this baseline is trained on the actual relevance judgements.

(iii) Action-based IPS. Standard IPS estimation (Eq. 13) that is not

designed for ranking and thus uses action-based propensities.

(iv) Action-based CRM. Standard CRM (Eq. 12) that is also not

designed for ranking, for the risk function we use the action-

based divergence function in Eq. 15.

(v) Exposure-based IPS. The IPS estimator designed for CLTR

with exposure-based propensities (Eq. 7). The most important

baseline, as it is the prevalent approach in the field [27, 29].

(vi) Exposure-based CRM. Our proposed CRM method (Eq. 31)

using a risk function based on exposure-based divergence.

7 RESULTS AND DISCUSSION
7.1 Comparison with baseline methods
The main results of our experimental comparison are presented

in Figure 3 and Table 3. Figure 3 displays the performance curves

of the different methods as the number of logged interactions (𝑁 )

increases. Table 3 presents performance at 𝑁 ∈ {4 · 102, 4 · 107, 109}
and indicates whether the observed differences with our exposure-

based CRM method are statistically significant.
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Figure 3: Performance in NDCG@5 of various IPS and CRM methods for CLTR. The top-row presents the results when the size
of the training data is varied from extremely small (102) to extremely high (109). The bottom-row is a zoomed-in view, focusing
on the low-data region from 10

2 to 10
5. Results are averages over 10 runs; shaded areas indicate 80% confidence intervals.

We start by considering the performance curves in Figure 3. We

see that both the action-based and exposure-based IPS baselines

have an initial period of very similar performance that is far below

the logging policy. Around 𝑁 ≈ 10
4
their performance is compara-

ble to the logging policy, and finally at 𝑁 = 10
9
the exposure-based

IPS has reached optimal performance, while the performance of

action-based IPS is still far from optimal. We can attribute this initial

poor performance to the high variance problem of IPS estimation;

when 𝑁 is small, variance is at its highest, resulting in risky and

sub-optimal optimization by the IPS estimators. However, even

when 𝑁 = 10
9
, the variance of the action-based IPS estimator is

too high to reach optimal performance, due to its extremely small

propensities. This illustrates why the introduction of exposure-

based propensities was so important to the CLTR field, and that

even exposure-based IPS produces unsafe optimization when little

data is available or variance from interactions is high.

Next, we consider whether action-based CRM is able to mitigate

the high variance problem of action-based IPS. Despite being a

proven generalization bound, Figure 3 clearly shows us that action-

based CRM only leads to decreases in performance compared to its

IPS counterpart. It appears that this happens because the logging

policy is not available in our setup, and the propensities have to be

estimated from logged data. Consequently, the action-based risk

pushes the optimization to mimic the exact rankings that were

observed during logging. Thus, due to the variance introduced

from the sampling of rankings from the logging policy, it appears

that action-based CRM has an even higher variance problem than

action-based IPS. As expected, our results thus clearly indicate that

action-based CRM is also unsuited for the CLTR setting, to our

surprise; it is substantially worse than its IPS counterpart.

Finally, we examine the performance of our novel exposure-

based CRM method. Similar to the other methods, there is an initial

period of low performance, but in stark contrast, this period ends

very quickly; on Yahoo! logging policy performance is reached

when 𝑁 ≈ 125, on MSLR-WEB30k when 𝑁 ≈ 350 and on Is-

tella when 𝑁 ≈ 400. For comparison, exposure-based IPS needs

𝑁 ≈ 1100 on Yahoo!, 𝑁 ≈ 10
4
on MLSR-WEB30k and 𝑁 ≈ 1.1 · 104

on Istella to do the same; meaning that our CRM method needs

roughly 89%, 97% and 97% fewer interactions, respectively. In ad-

dition, Table 3 indicates that the logging policy performance is

matched on all datasets when 𝑁 = 400 by exposure-based CRM,

where it also outperforms all baseline methods. We note that there

is still an initial period of low performance, because the logging

policy is unavailable at training, and thus, its behavior still has to

be estimated from logged interactions. It is possible that in settings

where the logging policy is fully known during training, this initial

period is eliminated entirely. Nevertheless, our results show that

exposure-based CRM reduces the initial periods of poor perfor-

mance due to variance by an enormous magnitude.

Furthermore, while the initial period is clearly improved, we

should also consider whether there is a trade-off with the rate of

convergence. Surprisingly, Figure 3 does not display any noticeable

decrease in performance when compared with exposure-based IPS.

Moreover, Table 3 shows the differences between exposure-based

IPS and CRM are barely measurable and not statistically significant

when 𝑁 ∈ {4 · 107, 109}. We know from the risk formulation in

Eq. 31 that the weight of the risk term decreases as 𝑁 increases at a

rate of 1/
√
𝑁 . In other words, the more data is available, the more

optimization is able to diverge from the logging policy. It appears

that this balances utilitymaximization and riskminimization sowell

that we are unable to observe any downside of applying exposure-

based CRM instead of IPS. Therefore, we conclude that, compared

to all baseline methods and across all datasets, exposure-based

CRM drastically reduces the initial period of low performance,

matches the best rate of convergence of all baseline, and has optimal

performance at convergence.

7.2 Ablation study on the confidence parameter
To gain insights into how the confidence parameter 𝛿 affects the

trade-off between safety and utility, an ablation study over various

𝛿 values was performed for both CRM methods.

The top-row of Figure 4 shows us the performance of action-

based CRM, and contrary to expectation, a decrease in 𝛿 corre-

sponds to a considerably worse performance. For the sake of clarity,
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Figure 4: Performance of CRM methods with varying confidence parameters (𝛿). Top-row: action-based CRM baseline; bottom-
row: our exposure-based CRMmethod. Results are averages of 10 runs; shaded areas indicate 80% confidence intervals.

in theory, 𝛿 is inversely tied to safety, a lower 𝛿 should result in

less divergence from the safe logging policy [30]. Conversely, we

see that action-based CRM displays the opposite trend. We think

this further confirms our hypothesis that a frequency estimate of

action-based divergence has an even higher variance problem than

action-based IPS. Consequently, a higher weight to the risk function

results in worse performance. This further confirms our previous

conclusion that action-based CRM is unsuited for the CLTR setting,

regardless of how the 𝛿 parameter is tuned.

In contrast, the bottom-row of Figure 4 displays the expected

trend for exposure-based CRM; as 𝛿 decreases the resulting per-

formance gets closer to the logging policy. With 𝛿 = 0.1, CRM

performs extremely close to its IPS counterpart, as optimization

is less constrained to mimic the logging policy here. Decreasing

𝛿 appears to have diminishing returns, as the difference between

𝛿 = 10
−4

and 𝛿 = 10
−5

is marginal. Importantly, we do not observe

any downsides to setting 𝛿 = 10
−5
, thus we have not reached a

point in our experiments where 𝛿 is set too conservatively. This

suggests that exposure-based CRM is very robust to the setting

of the 𝛿 parameter, and that a sufficiently low 𝛿 does not require

fine-tuning. Therefore, this shows that the improvements we ob-

served when comparing with baseline methods, did not stem from a

fine-tuning of 𝛿 . Thus, we can conclude that this robustness further

increases the safety that is provided by exposure-based CRM, as

there is also little risk involved in the tuning of the 𝛿 parameter.

8 CONCLUSION
In this paper, we introduced the first counterfactual risk mini-

mization (CRM) method designed for CLTR, that relies on a novel

exposure-based divergence function. In contrast with existing action-

based CRM methods, exposure-based divergence avoids the prob-

lem of the enormous combinatorial action space when ranking, by

measuring the dissimilarity between policies based on how they

distribute exposure to documents. As a result, exposure-based CRM

optimization produces policies that rank similar to the logging pol-

icy when it is risky to follow IPS, i.e., when little data is available or

variance is very high. Consequently, our experimental results show

that it almost completely removes initial periods of detrimental

performance; to be precise, our method needed 89% to 97% fewer

interactions than state-of-the-art IPS to match production system

performance. Importantly, we observed no downsides in its applica-

tion, as it maintained the same rate and point of convergence as IPS,

in all tested experimental settings. Therefore, we conclude that our

exposure-based CRM method provides the safest CLTR methods

so far, as it almost completely alleviates the risk of decreasing the

performance of a production system.

These improvements have large implications for practitioners

who work on ranking systems in real-world settings, since the

almost complete reduction of initial detrimental performance re-

moves the main risks involved in applying CLTR. In other words,

when applying our novel exposure-based CRM, practitioners can

have significantly less worry that the resulting policy will perform

worse than their production system and hurt user experience.

We hope future work will further research the promising poten-

tial applications of exposure-based CRM, for instance, in settings

with fast turn-around times in deployment, or large numbers of

tail-queries [46, 47], where interaction data is limited.
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