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Inverse-propensity scoring and neural click models are two popular methods for learning rankers from user clicks affected by position
bias. Despite their prevalence, the two methodologies are rarely directly compared on equal footing. In this work, we focus on the
pointwise learning setting to compare the theoretical differences of both approaches and present a thorough empirical comparison on
the prevalent semi-synthetic evaluation setup in unbiased learning-to-rank. We show theoretically that neural click models, similarly
to IPS rankers, optimize for the true document relevance when the position bias is known. However, our work also finds small but
significant empirical differences between both approaches indicating that neural click models might be affected by position bias when
learning from shared, sometimes conflicting, features instead of treating each document separately.
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1 INTRODUCTION

Click modeling [12, 13, 15, 16, 32] and inverse-propensity scoring (IPS) [1, 20, 23, 28, 37] are two popular methods
for learning rankers from biased user clicks. One well-known problem with learning from interaction data is that the
position at which an item is displayed affects how likely a user is to see and interact with it [13, 22, 23, 36, 39]. IPS-based
methods mitigate position bias by re-weighting clicks during training inversely to the probability of a user observing
the clicked item [23, 38]. In contrast, click models are generative models that represent position bias and item relevance
as latent parameters to directly predict the biased user behavior [12, 13, 15, 16, 32].

IPS approaches were introduced to improve over click models [23, 38] by: (i) requiring less observations of the same
query-document pair by representing items using features instead of inferring a separate relevance parameter for each
document [1, 23, 38, 39], (ii) decoupling bias and relevance estimations into separate steps since the joint parameter
inference in click models can fail [2, 25, 39], and (iii) optimizing the order of documents through pairwise [20, 23] and
listwise loss [27] functions instead of independent pointwise relevance estimations for each document [23, 39]. Since
then, neural successors of click models have been introduced [7, 11, 17, 18, 41, 42] that can leverage feature inputs,
similarly to IPS-based rankers. At the same time, the IPS community has introduced pointwise ranking losses [5, 33].
Are both approaches two sides of the same coin when it comes to pointwise learning-to-rank?

To address this question, we introduce both approaches and investigate their ability for unbiased relevance estimation.
We perform an empirical comparison on the prevalent semi-synthetic benchmarking setup in unbiased learning-to-rank.
And we investigate emerging differences, simulating circumstances under which the neural click model, in contrast to
IPS, cannot obtain unbiased relevance estimates even when the true position bias is known.
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2 METHODS

We assume the position-based model (PBM) [13, 32] of how user behavior is affected by position bias. Let 𝑦𝑑 be the
probability of a document being relevant and 𝑜𝑘 the probability of observing a rank 𝑘 ; then clicks occur only on items
that were observed and relevant: 𝑐𝑑,𝑘 = 𝑜𝑘 · 𝑦𝑑 .

Neural click models mirror this user model in their architecture [7, 11, 17, 41]. We use a neural network to estimate
document relevance from features 𝑥𝑑 and estimate position bias using a single parameter 𝑜𝑘 per rank. We use sigmoid
activations and multiply the resulting probabilities: 𝑐𝑑,𝑘 = 𝜎 (𝑜 | 𝑘) · 𝜎 (𝑔(𝑦 | 𝑥𝑑 )). A common choice to fit neural click
models is the binary cross-entropy loss between predicted clicks and the observed clicks in our dataset [17, 18, 41–43]:

Lpbm (𝑦, 𝑜) = −
∑︁

(𝑑,𝑘 ) ∈𝐷
𝑐𝑑,𝑘 · log(𝑦𝑑 · 𝑜𝑘 ) + (1 − 𝑐𝑑,𝑘 ) · log(1 − 𝑦𝑑 · 𝑜𝑘 ) .

Instead of predicting clicks, IPS directly predicts the document relevance𝑦𝑑 . Thus, our IPS model only uses the relevance
network 𝑔: 𝑦𝑑 = 𝑔(𝑦 | 𝑥𝑑 ). Bekker et al. [5] introduce a pointwise IPS loss that minimizes the binary cross-entropy
between predicted and true document relevance. Note how the PBM assumption is used to recover the unbiased
document relevance by dividing clicks by the estimated position bias 𝑜𝑘 :

Lips (𝑦, 𝑜) = −
∑︁

(𝑑,𝑘 ) ∈𝐷

𝑐𝑑,𝑘

𝑜𝑘
· log(𝑦𝑑 ) + (1 −

𝑐𝑑,𝑘

𝑜𝑘
) · log(1 − 𝑦𝑑 ) .

We note that both approaches are equivalent in the case in which we correctly assume that no position bias exists
𝑜 = 𝑜 = 1, i.e., clicks indicate relevance, and in the case of falsely assuming no position bias exists: 𝑜 = 1 ∧ 𝑜 < 1.

Saito et al. [33] show that Lips (𝑦) is unbiased if the position bias is correctly estimated, ∀𝑘 ∈ 𝐾, 𝑜𝑘 = 𝑜𝑘 . The notion
of an unbiased estimator is harder to apply to neural click models, since relevance is a parameter to be inferred. Recent
work by Oosterhuis [25] shows that click models jointly estimating bias and relevance parameters are not consistent
estimators of document relevance. This means that there are cases in which even an infinite amount of click data will
not lead to the true document relevance estimate.

But what happens if click models do not have to jointly estimate bias and relevance parameters, but only item
relevance? Since IPS approaches often assume access to a correctly estimated position bias [1, 23, 27, 37], we investigate
this idealized setting for our click model and explore if initializing the model parameters 𝑜𝑘 with the true position bias
leads to an unbiased relevance estimate. For this, we take the partial derivative of Lpbm with regard to the estimated
document relevance in our click model, its minima, and get in expectation: 𝑦 =

𝑜 ·𝑦
𝑜
. We provide more details in

Appendix A. So given the correct position bias, we find that the click model and IPS objective optimize for the unbiased
document relevance, suggesting a similar performance in an idealized benchmark setup.

We encounter one notable difference between both loss functions concerning their magnitude and relationship
with position bias. While IPS-based loss functions are known to suffer from high variance due to dividing clicks by
potentially small probabilities [35, 40], the neural click model seems to suffer from the opposite problem since both
𝑦𝑑,𝑘 and 𝑦𝑑,𝑘 (assuming our user model is correct) are multiplied by a potentially small examination probability. Thus,
independent of document relevance, items at lower positions have a click probability closer to zero, impacting the
magnitude of the loss (and gradient) as visualized in Appendix B. Note that while the magnitude differs, the minimum
of the loss, as computed earlier in this section, is still correct. We will explore if this difference in loss magnitude might
negatively impact items at lower positions in our experiments below.
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3 EXPERIMENTAL SETUP

We perform a thorough empirical comparison of both approaches on the semi-synthetic click simulation setup that is
prevalent in unbiased learning-to-rank [19, 21, 23, 26, 28, 29, 36, 37]. For the exact setup and model implementation, we
defer to Appendix C. We use query-document pairs judged by human experts from three extensive LTR datasets: Yahoo!
Webscope [9], MSLR-WEB30k [30], and Istella-S [14] (more in Appendix D) to generate clicks under the assumption of
our PBM model. We also generate a fully synthetic dataset with 10,000 one-hot encoded documents with randomly
sampled relevance. When reporting statistical significance, we use a two-tailed student’s t-test [34] with significance
level 𝛼 = 0.0001 and Bonferroni correction [6]. We compare five models in our experiments:

• Pointwise IPS / PBM - Naive: Naive version of (both) models that does not compensate for position bias.
• Pointwise IPS - True Bias: Pointwise IPS ranker with access to the true simulated position bias.
• PBM - Estimated Bias: PBM jointly inferring position bias and document relevance during training.
• PBM - True Bias: PBM initialized with the true position bias; the bias is fixed during training.
• Production Ranker: LambdaMART production ranker used to pre-rank queries during simulation.

4 RESULTS AND DISCUSSION

4.1 Is the neural click model empirically equivalent to the pointwise IPS ranker?

To answer this question, we first turn to the three classic LTR datasets. We train all models with up to 100M clicks and
display the results in Figure 1, full tabular results are available in Appendix E. PBM - Estimated Bias, jointly estimating
position bias and relevance, performs significantly better than the naive baseline on two of the three LTR datasets
(except Istella-S). While being less stable than other models in this line-up, it still achieves a high performance without
knowledge of the simulated bias. Next, we see that providing the PBM - True Bias model access to the correct position
bias stabilizes and improves performance significantly over the naive baseline on all datasets. While having a lower
variance, the improvements over PBM - Estimated Bias are not significant on any of the datasets.
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Fig. 1. Test performance on three LTR datasets and one fully synthetic dataset after training on up to 100M simulated queries. All
results are averaged over 10 independent runs, and we display a bootstrapped 95% confidence interval.

Pointwise IPS performs lower than the neural click models for the first 100k clicks but ends up outperforming the click
model significantly on two of the three LTR datasets (Istella-S and Yahoo! Webscope). These differences under idealized
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conditions between pointwise IPS and the click model are small, but significant. In this setup, the neural click model
performs worse than the pointwise IPS model, even with access to the true position bias.

4.2 Is the neural click model biased?

In Section 2, we find that click models should be able to recover the true document relevance when the true bias is
known. Given that this is not the case on the LTR datasets, we revisit the role of position bias and the magnitude of
the loss functions discussed earlier. Our first hypothesis as to what might be happening concerns model tuning. We
verify manually that items at lower positions indeed have smaller gradient updates, affecting the choice of learning rate
and number of epochs. While this is certainly a concern when using SGD, our extensive hyperparameter tuning and
use of adaptive learning rate optimizers should mitigate this issue. Instead, we hypothesize that higher ranked items
might overtake the gradient of lower ranked items, given their higher potential for loss reduction. This case might
occur when encountering two documents with similar features but different relevance. The item at the higher position
could bias the expected relevance towards its direction. This is exactly what we find in a toy scenario in Figure 2.
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Fig. 2. Visualizing the loss and expected document relevance of two documents. Note how the expected relevance is correctly
estimated when computing the loss for each item separately (dotted lines). When computing the combined loss, IPS converges to the
average relevance of both documents, while the neural click model biases towards the item with the higher examination probability.

We test our hypothesis that the click model’s gradient updates are biased towards items with higher examination
probability with three small experiments. First, we should see an equivalent performance of both approaches in a setting
in which documents share no features since the gradient magnitude should not matter in this setting. For this, we turn
to the one-hot encoded synthetic dataset and find that both approaches are able to recover the true document relevance
(see Figure 1). Second, gradually forcing documents to share features by introducing random feature collisions into
our synthetic dataset should lead to a stronger drop in performance for the click model. We show in Appendix F that
the click model deteriorates faster than IPS when introducing feature collisions. A last interesting consequence is that
this problem should get worse with an increase in (known) position bias. Simulating an increasing position bias and
supplying the examination probabilities to both approaches on Istella-S shows that IPS can recover from high position
bias, while the click model increasingly deteriorates in performance (Appendix G).

Concluding, we show theoretically that the neural click model, similarly to a pointwise IPS ranker, optimizes for the
true document relevance when the position bias is known. However, we find small but significant empirical differences
between both approaches in an idealized LTR benchmark setting. Our findings indicate that neural click models might
be affected by position bias when generalizing over shared, sometimes conflicting, features instead of treating each
document separately. We end by emphasizing that these findings are specific to our setup, and we make no claims
about other neural click model architectures [17, 39, 41, 42], which we leave as future work. The code for this work is
available at: https://github.com/philipphager/ultr-cm-vs-ips
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A EXPECTED MINIMUM OF THE CLICK MODEL LOSS

In the following, we calculate the partial derivative of the binary cross-entropy loss used by the neural click model with
regard to the estimated document relevance 𝑦:

𝜕Lpbm

𝜕𝑦
= −

(
𝑐 · 𝜕

𝜕𝑦
[log(𝑜𝑦)] + (1 − 𝑐) · 𝜕

𝜕𝑦
[log(1 − 𝑜𝑦)]

)
= −

(
𝑐 · 𝑜
𝑜𝑦

+ (1 − 𝑐) · −𝑜
1 − 𝑜𝑦

)
= −

(
𝑐

𝑦
+ −𝑜 + 𝑜𝑐

1 − 𝑜𝑦

)
= − 𝑐 − 𝑜𝑦

𝑦 (1 − 𝑜𝑦) .

Next, we find the ideal model which would minimize the loss by finding the roots of the function. We note that this
function is convex and any extrema found will be a minimum:

𝜕Lpbm

𝜕𝑦
= 0

− 𝑐 − 𝑜𝑦
𝑦 (1 − 𝑜𝑦) = 0

𝑐 − 𝑜𝑦 = 0.

Lastly, we see in expectation that:

𝑦 =
E𝑜 [𝑐]
𝑜

𝑦 =
𝑜𝑦

𝑜
.

B HOW POSITION BIAS AFFECTS LOSS
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Fig. 3. Visualizing the loss of the neural click model and the pointwise IPS approach for a single document of relevance 𝑦𝑑 = 0.5
under varying degrees of position bias in expectation of infinite clicks. We highlight the relevance prediction that minimizes the loss
as a dot. Note how the magnitude of the loss on the click model gets smaller with increasing position bias, while the IPS loss always
converges to the same distribution as the number of clicks approaches infinity.
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C EXPERIMENTAL SETUP

C.1 Synthetic click datasets

We compare the neural click model and pointwise IPS model empirically using the semi-synthetic evaluation setup that is
prevalent in the unbiased learning-to-rank community [19, 21, 23, 26, 28, 29, 36, 37]. Our simulation uses three large-scale
public LTR datasets: Yahoo! Webscope (set 1) [9], MSLR-WEB30k (fold 1) [30], and Istella-S [14]. Each query-document
pair is represented by a feature vector 𝑥𝑑 and is accompanied by a score 𝑠𝑑 ∈ {0, 1, 2, 3, 4} indicating relevance as judged
by a human annotator. We also generate a synthetic dataset with 10,000 documents, representing each with a one-hot
encoded feature vector and assign each a relevance score 𝑠𝑑 uniformly at random. Note that every document in the
validation or test set appears once in the training dataset, thus achieving a perfect ranking score (e.g., 𝑛𝐷𝐶𝐺@10 = 1.0) is
possible on this dataset. Appendix D contains an overview of the dataset statistics. During preprocessing, we normalize
document features on MSLR-WEB30k and Istella-S using log1p(𝑥𝑑 ) = loge (1 + |𝑥𝑑 |) ⊙ sign(𝑥𝑑 ) as suggested by Qin
et al. [31]. Yahoo! Webscope comes already normalized [9]. In addition, we use stratified sampling to limit the document
set per query to a maximum number of documents (p90 in Table 1), improving computational speed while keeping the
distribution of relevant documents almost identical.

Following Vardasbi et al. [36, 37], we train a LightGBM (version 3.3.2) [24] implementation of LambdaMART [8]
ranker on 20 sampled train queries as our production ranker (100 trees, 31 leafs, and learning rate 0.1.). The intuition is
to simulate initial rankings for the user model that are better than chance but leave room for further improvement. We
generate clicks on our train and validation sets by repeatedly: (i) Sampling a query uniformly at random. (ii) Ranking
the associated documents using our production ranker. (iii) Generate clicks using the PBM user model. Similar to [37],
we generate validation clicks proportional to the train/validation split ratio provided by the datasets (see Table 1).
We use the annotator scores 𝑠𝑑 to compute a graded document relevance [3, 4, 10, 20] and add click noise 𝜖 = 0.1:
𝑦𝑑 = 𝜖 + (1− 𝜖) · 2𝑠𝑑 −124−1 . For position bias, we adopt the prevalent definition by Joachims et al. [23]: 𝑜𝑘 = ( 1

1+𝑘 )
𝜂 and set

the strength of position bias by default to 𝜂 = 1. Setting 𝜂 = 0 corresponds to simulating no position bias.
Lastly, we apply an optimization step developed by Oosterhuis and de Rijke [27] and train on the average click-

through-rate of each query-document pair instead of the actual raw click data. This step allows us to scale our simulation
to millions of queries and multiple repetitions while keeping the computational load almost constant. Our experimental
results hold without this trick.

C.2 Model implementation and training

We use neural networks to implement both the click model and IPS-based ranker. To estimate document relevance
from features 𝑔(𝑦 | 𝑥𝑑 ), we use the same three layer feed-forward network architecture with [512, 256, 128] neurons,
ELU activations, and dropout 0.1 in the last two layers for both models. We pick the best-performing optimizer ∈
{Adam, Adagrad, SGD} and learning rate ∈ {0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001} over five independent runs on the
validation set for each model. In all experiments, we train our models on the synthetic click datasets up to 200 epochs
and stop early after five epochs of no improvement of the validation loss. We do not clip propensities in the IPS model
to avoid introducing bias into our comparison [1, 23]. We follow related work and report the final evaluation metrics on
the original annotation scores of the test set [1, 23, 27]. We test differences for significance using a two-tailed student’s
t-test [34] and apply the Bonferroni correction [6] to account for multiple comparisons.
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D DATASETS

Table 1. Overview of the LTR datasets used in this work.

Dataset # Features # Queries % Train / Val / Test Split # Documents per Query

min mean median p90 max

Yahoo! Webscope 699 29,921 66.66 / 10 / 23.33 1 24 19 49 139
MSLR-WEB30K 136 31,531 60 / 20 / 20 1 120 109 201 1,251
Istella-S 220 33,018 58.3 / 19.9 / 21.8 3 103 120 147 182
Synthetic 10,000 1,200 33.3 / 33.3 / 33.3 25 25 25 25 25

E EXPERIMENTAL RESULTS

Table 2. Ranking performance on the full-information test set after 100M train queries as measured in nDCG and Average Relevant
Position (ARP) [23]. We display statistical differences compared to the PBM - True Bias model computed with a two-sided student’s
t-test, marking significantly higher ▲ or lower performance ▼. We use a significance level of 𝛼 = 0.0001, declaring significance if
𝑝 < 𝛼 , and use Bonferroni correction to adjust our significance level.

Dataset Model nDCG@5 ↑ nDCG@10 ↑ ARP ↓

Yahoo! Webscope

Production 0.613 (0.012) ▼ 0.671 (0.009) ▼ 10.439 (0.095) ▲

Naive 0.647 (0.006) ▼ 0.699 (0.004) ▼ 10.199 (0.052) ▲

PBM - Est. Bias 0.673 (0.005) 0.722 (0.003) 9.848 (0.055)

PBM - True Bias 0.680 (0.004) 0.728 (0.003) 9.812 (0.035)

IPS - True Bias 0.695 (0.001) ▲ 0.741 (0.001) ▲ 9.658 (0.011) ▼

MSLR-WEB30K

Production 0.301 (0.027) ▼ 0.330 (0.024) ▼ 49.223 (0.693) ▲

Naive 0.348 (0.022) ▼ 0.370 (0.020) ▼ 48.386 (0.538) ▲

PBM - Est. Bias 0.429 (0.010) 0.449 (0.008) 44.835 (0.274)

PBM - True Bias 0.428 (0.006) 0.447 (0.006) 44.965 (0.230)

IPS - True Bias 0.432 (0.011) 0.454 (0.010) 44.418 (0.227)

Istella-S

Production 0.566 (0.012) ▼ 0.632 (0.010) ▼ 10.659 (0.207) ▲

Naive 0.616 (0.005) ▼ 0.683 (0.005) ▼ 9.191 (0.154) ▲

PBM - Est. Bias 0.629 (0.008) 0.692 (0.007) 10.605 (1.193)

PBM - True Bias 0.638 (0.003) 0.703 (0.004) 8.911 (0.212)

IPS - True Bias 0.656 (0.005) ▲ 0.724 (0.004) ▲ 8.274 (0.141) ▼

Synthetic

Production 0.369 (0.005) ▼ 0.439 (0.005) ▼ 12.994 (0.038) ▲

Naive 0.783 (0.005) ▼ 0.849 (0.004) ▼ 9.232 (0.026) ▲

PBM - Est. Bias 0.772 (0.022) ▼ 0.833 (0.019) ▼ 9.335 (0.143) ▲

PBM - True Bias 1.000 (0.000) 1.000 (0.000) 8.140 (0.004)

IPS - True Bias 1.000 (0.000) 1.000 (0.000) 8.148 (0.003)
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F SIMULATING FEATURE COLLISIONS
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Fig. 4. Simulating collisions between document features on the synthetic dataset by projecting an increasing percentage of documents
on feature vectors of other documents. Given that document relevance is randomly assigned in the synthetic dataset, we expect a
gradual decrease in performance of both rankers. However, the click model degrades significantly faster in performance. In each step,
we trained both models on 100M train clicks and display averaged results over 10 independent runs.

G MITIGATING POSITION BIAS
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Fig. 5. Comparing the capacity of the neural click model and pointwise IPS model to mitigate varying degrees of simulated position
bias on Istella-S (𝜂 = 0 implies no position bias). Note that both models have access to the currently simulated position bias at every
step in this setup. IPS is able to consistently converge to a ranking performance comparable to the setting without any position
bias. Despite access to the same propensities, the click model’s performance degrades with an increase in position bias. We evaluate
ranking performance on the full-information Istella-S test set after training on 100M queries over 10 independent runs and display a
bootstrapped 95% confidence interval.

10


	Abstract
	1 Introduction
	2 Methods
	3 Experimental Setup
	4 Results and Discussion
	4.1 Is the neural click model empirically equivalent to the pointwise IPS ranker?
	4.2 Is the neural click model biased?

	Acknowledgments
	References
	A Expected Minimum of the Click Model Loss
	B How Position Bias Affects Loss
	C Experimental Setup
	C.1 Synthetic click datasets
	C.2 Model implementation and training

	D Datasets
	E Experimental Results
	F Simulating Feature Collisions
	G Mitigating Position Bias

