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ABSTRACT
Traditional batch evaluation metrics assume that user interaction
with search results is limited to scanning down a ranked list. How-
ever, modern search interfaces come with additional elements sup-
porting result list refinement (RLR) through facets and filters, mak-
ing user search behavior increasingly dynamic. We develop an
evaluation framework that takes a step beyond the interaction as-
sumption of traditional evaluation metrics and allows for batch eval-
uation of systems with and without RLR elements. In our frame-
work we model user interaction as switching between different sub-
lists. This provides a measure of user effort based on the joint effect
of user interaction with RLR elements and result quality.

We validate our framework by conducting a user study and com-
paring model predictions with real user performance. Our model
predictions show significant positive correlation with real user ef-
fort. Further, in contrast to traditional evaluation metrics, the pre-
dictions using our framework, of when users stand to benefit from
RLR elements, reflect findings from our user study.

Finally, we use the framework to investigate under what condi-
tions systems with and without RLR elements are likely to be effec-
tive. We simulate varying conditions concerning ranking quality,
users, task and interface properties demonstrating a cost-effective
way to study whole system performance.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Evaluation/methodology

Keywords
Simulation; Search behavior; Faceted search; Evaluation

1. INTRODUCTION
Many of today’s enterprises require a dedicated search system,

i.e., a particular optimal configuration of both a ranking algorithm
and interface, to effectively support their specific type of user, task,
and collection. To select this optimal configuration an evaluation
metric–capturing a particular user behavior and interface combina-
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tion–together with a fixed set of queries, documents, and relevance
judgements, is required to determine the quality of various rank-
ing algorithms [28]. Traditional batch evaluation metrics, how-
ever, typically assume that after launching a query, user interac-
tion remains limited to scanning down a ranked result list and stops
at some rank k [3]. As interfaces of modern search systems are
equipped with additional elements, such as result filters, and users
become more actively involved in the search process, the whole
system effectiveness no longer solely depends on the quality of the
ranking, but also on how the interface elements function, as well
as on how users operate these elements [13, 21]. Consequently,
batch evaluation metrics for traditional search systems no longer
accurately reflect system performance when it comes to the combi-
nation of a ranking algorithm and interface.

A key problem, then, is how to choose between systems with
varying combinations of interface elements and ranking algorithms.
As a first step, in this paper, we present a framework for comparing
search systems equipped with a particular class of interface ele-
ments, i.e., elements supporting result list refinement (RLR). We
define RLR search systems as those that provide: (i) a fixed set of
filter values that remain visible to the user at all times; and (ii) the
filter values operate on a fixed initial result set for a particular query.
For example, a system with minimal RLR elements has a single
filter value, where elements of increasing complexity are a list of
multiple filter values (keywords/entities), and filter values grouped
in categories (facets). A relation exists between facets and RLR
elements, however, we do not require filter values to be mutually
exclusive, exhaustive [29], or orthogonal [12].

We limit the initial framework to search systems with RLR el-
ements for two reasons. The first is pragmatic: without loss of
generality, user interactions with these elements can be modeled as
switching between a limited number of different subsets of a result
list. It allows this work to go beyond the standard user interaction
model in batch evaluation, cf. [3], while remaining tractable. The
second is methodological: we wish to focus on user interactions
with a class of elements that require users only to recognize a suit-
able filter value to refine a result list with. This in contrast to, for
example, query (re)formulations that require additional mental ef-
fort on the part of the user [24], thereby allowing greater variability
in user interactions depending on individual user characteristics.

Our evaluation framework for systems with RLR elements has
two parts: (i) an evaluation measure specified by a model that char-
acterizes how users interact with systems supporting RLR and a
specification of how these interactions are associated with user ef-
fort and gain (Section 3); and (ii) a simulation strategy, i.e., an in-
stantiation of the interaction model parameters (Sections 4 and 5).



The framework has two immediate applications. (i) Prediction:
by obtaining estimates of the parameters of the interaction models
from usage data, e.g., from online systems or user studies, system
performance can be predicted and evaluated off-line. This allows
optimization of systems by varying the ranking algorithm and inter-
face elements, for a particular application and user group. (ii) Sim-
ulation: our framework allows us to perform “what-if ” analyses,
i.e., to investigate system performance under varying conditions by
simulating different combinations of ranking quality, interface ele-
ments, and type of users. Such simulation results can inform deci-
sions about the type of interface, ranking algorithm, and queries to
be used when comparing systems in subsequent user studies.

To demonstrate the efficacy of our evaluation framework we ap-
ply it to the comparison of two standard snippet-based search sys-
tems, one with RLR elements and one without. Here, our first goal
is to examine the accuracy of the framework in predicting user
effort when interacting with an RLR system. We instantiate the
model parameters of the two systems with user data and then com-
pare each system’s predictions with real usage data. Specifically,
we seek answers to the following questions: (i) does the effort pre-
dicted by our framework correlate with user effort on a task with
the two systems; and (ii) does comparing simulated system per-
formance allow us to accurately predict when RLR elements are
beneficial and when they are not?

Having validated its accuracy, our second goal is to investigate
system performance under varying conditions, including different
ranking quality, filter properties, as well as user behaviors—and
how these factors interplay. In short, we study the question: “when
does an RLR-enabled system help to improve user performance?”

2. RELATED WORK
User interaction models are closely related to effectiveness met-

rics developed for batch-evaluation. Users invest effort to oper-
ate a system in order to gain relevant information. With some
abstraction, a batch evaluation metric can be viewed as a func-
tion that makes predictions about user effort and gain, based on its
assumptions—i.e., its user interaction model—about how users op-
erate the system, cf. [3]. For example, widely used metrics P@K
and NDCG@K, employ user interaction models that describe two
different types of user search behavior: P@K assumes users ex-
amine all top K results in no particular order, and NDCG@K as-
sumes users examine top K results from top-to-bottom and find
lower-ranked results of less value. In both cases, we can interpret
the number of documents a user examines as effort, and the number
of relevant documents found as gain.
User interaction with a traditional search interface. Modeling
user interaction with retrieved results has become a central topic in
recent discussions on evaluation methodology [1]. In the context
of Web search, a wide range of stochastic models are learned from
Web search engine click logs [7], e.g., models aimed to identify
patterns of user browsing behavior [10], or to predict user clicks [4,
11]. Underlying these models are a few common assumptions that
have been identified as typical user interaction patterns in Web
search. For example, the examination assumption states that users
are less likely to view lower ranked results [17]; and the cascade
model assumes users browse a ranked result list from top to bottom,
and stop once a relevant result is found [8].

Meanwhile, several effectiveness metrics have been proposed in
an effort to integrate more realistic user interaction models. For
example, the Rank Biased Precision (RBP) [23] models the “per-
sistence” of a user, i.e., how likely a user examines a next results
when going down a ranked list; and the Expected Reciprocal Rank

(ERR) [5] is derived from the cascade model. Time-biased gain
takes into account user variability in terms of the time needed to
process information, e.g., reading summaries [26].

Further, an alternative use of user interaction models is to simu-
late user search activities. These simulations can be used to evalau-
tion system performance under various conditions such as “what if
users do X?” which are not likely to be investigated by a user study.
For example, Smucker and Clarke [26] presented a method to sim-
ulate time-biased gain; and Chuklin et al. [6] proposed to turn click
models into evaluation measures. A shared assumption in the stud-
ies listed so far is the traditional ranked list search interface.
Beyond traditional search interfaces. Moving away from the
traditional ranked list search interface, Fuhr [13] proposed an in-
teractive probabilistic ranking principle (iPRP) aimed at providing
a formal description of user interaction with search systems, and
the corresponding optimization strategy for a system. While this
framework is generally applicable to interactive search systems, in-
stantiation of the model for practical use remains an open problem.

More concretely, faceted search is a typical example where user
interaction models beyond traditional ranked list interaction model
is needed. Often, simulation based evaluation is employed [18–
20, 22, 27]. A key notion shared by these simulation models is
“utility” [18, 20, 27]—the trade-off between the effort users spend
and the benefit gained, e.g., finding a target document.

A variety of heuristic user interaction models have been pro-
posed for simulation, differ in the goal of users as well as how they
interact with retrieved results and facets. In terms of user goals, for
instance, Kashyap et al. [18] studied faceted search in the context
of database queries, and therefore users were assumed to examine
all filtered results. Alternatively, in [20, 25, 27], users were as-
sumed to find only one relevant result. In terms of user operation
with facets, Koren et al. [20], assumed that users can always recog-
nize the facet that contains relevant document(s), and the way they
select facets falls into 4 categories: (i) random facets; (ii) facets
with least document coverage; (iii) the first facet that contains the
target document; or (iv) the optimal facets. Kong and Allan [19]
assumed that users sequentially scan facets and skip an entire facet
when they find it irrelevant.
Our work. Our goal is to devise a new evaluation method for sys-
tems with a search interface enabling RLR elements. What we need
is a user interaction model that is able to characterize not only the
traditional “examine a result list” interactions, but also interactions
with RLR elements—for which the interaction models underlying
traditional batch-evaluation metrics do not apply.

We evaluate an RLR system under the same notion of utility
(user effort and gain) as in the above studies in faceted search.
Our work differs in two important ways. First, we model user
interactions with RLR elements (including facets) in a more nat-
ural way—users scan filtered results without a particular order; and
they may and may not recognize a “good” filter value. Second,
we do not make explicit assumptions to create categories of users
(like in [20]). The variability of users is captured by a probabilistic
framework: by varying two model parameters, we are able to sim-
ulate a wide range of users. This second property of our model al-
lows us to encompass empirical user interaction models developed
for traditional search interfaces, i.e., to fit the model with real usage
data and make predictions of system performance with respect to a
particular group of users/search tasks.

3. MODELING RLR INTERACTIONS
Our evaluation framework consists of the following components:

(a) a user interaction model that characterizes how users interact



with a system that enables result refinement (Section 3.1); (b) as-
sociating effort and gain to user interactions for evaluation (Sec-
tion 3.2); and (c) integration of the above two components (Sec-
tion 3.3).

We assume that users perform actions to make progress on a
search task (e.g., inspect results); every action costs effort; and the
user may gain from that action by finding relevant information.
With an interaction model, we simulate and predict action paths
of users during a search task, which vary across users and search
tasks, and are influenced by the quality of the result lists. By asso-
ciating effort and gain with different paths of search actions, we are
able to predict user effort given different types of users, tasks and
the quality of result lists.

Overall, the effectiveness of a system can be measured by an-
swering questions such as: How much effort is required to achieve
x amounts of gain with system A, as compared to system B?

3.1 User interaction at a conceptual level
User interaction with a basic interface. With a basic search in-
terface, the common assumptions are: users browse a result list
from top to bottom; and after examining each result, they make a
decision—whether to continue to examine another result, or to give
up this result list [11, 14].
User interaction with an RLR-enabled interface. With an RLR-
enabled interface, apart from examining results in the retrieved
ranked list, users may choose to refine the result list by filtering
on a particular value. A typical consequence of these RLR interac-
tions is that users switch between different filtered versions of the
original result list. We refer to these different versions of the result
list, including the original ranked list, as sublists.

Without making assumptions about the specific implementation
of these elements, at a functional level, we can model the user in-
teractions with RLR elements as selecting a sublist.

This leads to at least two additional decisions a user needs to
make: (1) continue with the current sublist, switch to a different
sublist, or quit searching? and (2) if switching, which sublist to
select next?
Parameterization of user interactions. Each of the decision
points introduces uncertainty in computing user effort and gain dur-
ing a search task: it is at these points users diverge from each other’s
action paths. Taking these decision points as variables of our inter-
action model allows us to capture variability in user behavior.

Specifically, to quantify the uncertain nature of user decisions,
we model the outcome of the aforementioned decisions as random
variables following specific distributions:

• Continuation decision: we model the decision of user u at
rank r to examine the next result in the same result list as a
binary variable sr,u ∼ Ber(pr,u). While it looks similar to
the persistence probability [23], we do not make the i.i.d. as-
sumption about the continuation behavior at each rank. That is,
in [23], a single persistence probability p is shared by results
at all ranks; and the probability that a user examines the result
at rank r is pr−1. The Bernoulli parameter pr,u in our model,
however, is specific to a rank r and a user u, thus leaving more
flexibility for setting different hypothesized values for simula-
tion or fitting empirical parameters from log data.
• Switching decision: similarly, we model the decision of user u

at rank r to switch sublists as a binary variable lr,u ∼ Ber(plr,u)

with parameter plr,u specific to a user and a rank.
• Sublist selection decision: we model user decisions on sublist

selection among K candidates as a vector of binary random
variables following a categorical distribution f ∼ Cat(K, cu).

Sublist k is chosen if fk = 1; 0 otherwise; and only one list
is chosen at a time. The parameter cu determines the likeli-
hood that a list is chosen by a user, e.g., according to his/her
perception of the quality of the sublists.

These three probabilities can be set to empirical values estimated
from usage logs (Section 4), or based on hypotheses about their
values (Section 5). Of course, users may decide to quit search-
ing. However, as quitting is complementary to the continuation
and switching decisions, there is no need to explicitly define it.

3.2 User actions, effort, and gain
With the conceptual user interaction model in place, we now

specify how we can associate effort and gain to user interactions.
User actions. We consider 3 types of action:
• Examine result: Users examine a result to determine its rele-

vance, by inspecting the title, summary, or the document con-
tent. While these introduce great variety in the effort needed
for an examination, we consider them as a single action of con-
stant cost. We wish to focus on factors that change the result
list, e.g., pagination or filtering, which may lead to more exam-
ination activities. However, it is straightforward to incorporate
fine-grained levels of user interactions with our model, which
we leave as future work.
• Pagination: While not explicitly modeled as a decision, a user

will need to paginate if he/she decides to examine a result which
is on a next page. Effort required by pagination is directly re-
lated to result list quality.
• Select candidate result list: This activity involves a series of

mental activities such as estimating which sublist is more likely
to contain relevant information, e.g., by inspecting the filter
names. As with result examination, we abstract away the de-
tails and treat the whole process as a single action.

Effort of actions. Each action is associated with an effort. Let A
be the possible actions users can perform, and Pa = a1, ..., at be
the action path of a user from staring browsing results of q till they
stop, ai ∈ A. The user’s effort along Pa is

E(q, Pa) =
∑t
i=1 wiai, (1)

where wi is the effort needed for action ai.
Effort can be implemented in different ways. For example, with

NDCG or P@10, the only actions considered are “examine” a doc-
ument, and each costs a unit effort. With time-biased gain [26],
effort is implemented in a more elaborate way, e.g., the effort re-
quired for an “examine” may depend on the document length.
Gain of actions. We assume that user gain is determined by the
relevant documents they encounter. Let DPa be the documents a
user encounters along action path Pa; its total gain is

G(q,DPa) =
∑
d∈DPa

rel(d, q), (2)

where rel(d, q) is the relevance judgement of d w.r.t. to query q.
This approach to “measuring” effort and gain is of course closely
related to the cumulative gain type of evaluation measures [2, 16].

3.3 User action paths
The final ingredient that ties together the above components for

measuring user effort / gain when interacting with an RLR sys-
tem is the user action path Pa. Assuming users examine docu-
ments in a ranked list from top to bottom with a basic interface,
the order in which users examine documents is deterministic. The
only uncertainty is that users may quit, which can easily be han-
dled by computing the gain at a cut-off point, or at an expected



search depth [23]. However, with an RLR interface, the possible
paths users can take for a query is combinatory given that users can
switch between sublists without a particular order. Thus we resort
to a Monte Carlo method. The interaction model specified in Sec-
tion 3.1 allows us to simulate possible user action paths for a given
set of parameters, creating a sample of user effort and gain for a
particular task and user behavior. System performance can then be
compared with these samples using standard statistical tools.
Action path constraints. To further reduce the complexity of the
simulation process, we constrain the possible user action paths with
the following assumptions.

A1 Users examine results in a ranked list from top to bottom.
A2 When switching between sublists, users skip and only skip the

results that they have already seen. This prevents inflated counts
of user gain (e.g., in terms of relevant documents encountered).
A similar design choice has been made in the literature for eval-
uating faceted search systems [25]. In addition, when switch-
ing, users always examine the next (unseen) result in the new
sublist, preventing an infinite loop in switching.

A3 Instead of assuming a user quits searching with a certain prob-
ability, we assume a deterministic cut-off, leaving two com-
plementary decision points with continuation probability being
sufficient. Practically, for gain-based measures, the cut-off is
based on a fixed amount of efforts, and systems are compared
in terms of the amount of gain achieved for a fixed amount of
efforts (cf., NDCG@K). For effort-based measures, a cut-off
can be set to gain and systems are compared in terms of the
amount of effort needed to achieve a fixed amount of gain (cf.,
expected search length).

Steps to simulate a user action path.
1. Specify model parameters (with empirical or hypothesized val-

ues), i.e., pr,u for continuation decisions, and cu for sublist se-
lection decisions.

2. At each step, draw sr,u ∼ Ber(pr,u). If sr,u = 1, add exam-
ine to Pa; else draw f ∼ Cat(K, cu), add select sublist and
examine to Pa. When encountered, add pagination and handle
situations specified in A2.

3. Stop when: (1) the total efforts/gain meets a predefined cut-off
value; or (2) all results are exhausted.

4. VALIDATION OF PREDICTION
The core of our framework consists of a specific mapping ŷ =

h(~x), where ŷ is the estimated user effort, aimed at approximating
the actual user effort y, given the input variables ~x. In a typical
machine learning scenario h(·) would be selected from a pool of
possible hypotheses by fitting example pairs of y and ~x. In con-
trast, we have specified in advance a single hypothesis h∗, i.e., the
interaction model motivated in Section 3, and the values of ~x is de-
termined by specific types of user behavior. Here, we validate our
hypothesis h∗ by examining how well its output, ŷ, approximates
actual user effort y.

In this section, we validate our model using usage data gath-
ered for an RLR interface. Specifically, we calibrate our interac-
tion model parameters (pu,r and cu) with empirical values derived
from the usage log of a particular group of users (i.e., participants
of our experiment), and examine whether the model prediction cor-
responds to the actual user effort as recorded in the log. We aim to
answer the following questions:
Q1 Does the predicted effort (ŷ) correlate to user effort (y) as com-
puted with usage data?

Q2 Can we accurately predict when an RLR interface is beneficial,
compared to a basic interface?

4.1 Obtaining usage data

4.1.1 Test collection
We use the TREC Federated Search data [9], for it has two im-

portant properties: (1) all document-query pairs in this collection
have been assessed. This provides us with a more accurate estima-
tion of system performance; and (2) this collection has been con-
structed by querying a large number of web search engines all of
which are categorized. These categories can be converted to fil-
ter values in an RLR system. The complete list contains 24 cate-
gories [9, Table 3], including academic, travel, etc.

The collection contains 50 (judged) test topics, their associated
web pages, and the summaries (snippets) to represent these pages.
We create rankings for each topic based on a standard query likeli-
hood model as implemented in Indri.

We consider two types of system: one with a basic interface,
and the other with an RLR interface, where categories are used to
construct sublists for each topic. We treat every document as being
annotated with the category of its source search engine. Since an
engine can be in multiple categories, and documents may have been
retrieved by multiple engines, every document is associated via its
source(s) to one or more categories.

Relevance judgements for the Federated Search track are graded,
4 levels from highly relevant to non-relevant. We only distinguish
between relevant (level 1–3) and non-relevant to ensure more than
10 relevant documents per topic are available (see Section 4.1.3).

4.1.2 Search interfaces
RLR interface. Fig. 1 shows a screenshot of the RLR enabled in-
terface, where numbers 1–6 indicate components of the system. On
the left are the filter values (1) as provided by the federated search
track [9]. On the right a dashboard (2) is available indicating the
number of clicks left for a task and the number of relevant docu-
ments found. After 25 clicks a “give up” button (3) would appear
providing the option to skip the remainder of the task. The topic
description (4) is available at the top of the screen. An additional
button allows users to expand the description and review the exam-
ples as provided before starting a task. The middle of the screen
is devoted to a scrollable result list (5) with 10 snippets. At the
bottom of the page a pagination button (6) is available.
Basic interface. The basic interface is similar to this design except
that the filter panel (1) is unavailable. One of the filter values pro-
vided in the RLR interface is “all category,” which is the unfiltered
result list as it would be in the basic interface. It is possible for
users to ignore the filter values and use the RLR interface exactly
as the basic interface.

4.1.3 Setup of user experiment
We investigate the effort it takes users to locate relevant docu-

ments. While our interaction model can be applied to both effort-
based and gain-based measures, in this study design we focus on
measuring effort.
User task. Users were asked to find 10 relevant documents for
a topic. It is not as trivial as, e.g., finding 1 relevant document,
allowing variability between user action paths. Meanwhile, it limits
the effort required to a manageable amount.

Specifically, we asked users to locate by clicking on 10 result
summaries of relevant documents within 50 clicks, where a click is
counted if it is on a result summary, a pagination button, or a fil-
ter value. We use the 50-click limit to prevent users from clicking



Figure 1: The RLR interface: (1) filter values; (2) dashboard;
(3) give up button; (4) topic description; (5) result list; (6) pag-
ination. The basic interface excludes (1).

every result and to force users to make conscious choices instead.
We require users to only click on summaries to abstract away from
actions as opening and reading documents as well as to keep the
time necessary to complete a task manageable. To reduce user vari-
ability in judgements of relevance, we provide feedback to users
whether a clicked result is relevant or not.
Experiment design. We recruited participants via university mail-
ing list and social media. We used a standard between-subject de-
sign common to A/B testing, where each new user is randomly as-
signed to one of the two interfaces and directed to the same inter-
face on subsequent visits. To reduce learning effects, new tasks are
randomly assigned to users.

4.1.4 Obtained usage data
In total 145 task instances were completed by 49 users for the

system with the basic interface, and 255 by 48 users for the RLR
interface. The median number of completed task-instances per task
is 2 for the basic interface and 3 for the system with an RLR inter-
face. As some tasks have been completed by more participants than
others, we consider median values in our analysis of participants’
effort in completing tasks.

4.2 Measuring user & predicted effort
To answer Q1 and Q2, we need to compute the following quanti-

ties: (i) user effort y (with basic or RLR interface) as derived from
the usage data, and (ii) the predicted effort ŷ, where the model pa-
rameters are calibrated with the actual usage data.

4.2.1 User effort
For simplicity we assume equal effort for user actions. We mea-

sure user effort (y) as the number of result summaries users visited
and the clicks they spent on choosing filter values and pagination.

To determine which summaries a user has visited we consider
mouse hovers over results, which has been shown to correlate with
eye-gaze [15]. Fig. 2(a) shows the percentage of total hovers over
the 10 ranks of each result page. We observe that the distribution
of hovers over the ranks is relatively uniform, i.e., compared to the
distribution of hovers over ranks on Web search engine result pages
where differences of 38% between the highest and lowest rank are
observed [15]. We observe a difference of 3% between the highest
and lowest rank for the basic interface (back bar), and 6% for the
RLR interface. That the skew is slightly stronger for the RLR inter-
face is expected as not all filter values return 10 results. The hover
data suggests that participants tend to visit all result summaries on
a page. This is by design as in our systems we reduced the effort
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Figure 2: Users’ result page rank visiting behavior.

needed to judge a result page (i.e., read summary, open/read the
page) to judging the result summary. We are therefore able to focus
on user effort as introduced by interaction with RLR elements and
not by pages and result summaries.

Given these observations, we approximate the number of result
summaries visited as follows. We assume that if a user does pagina-
tion, they have seen all the results in the previous page and count all
results in SERPs before the last visited page as visited. On the last
page, we count the number of results up to the last clicked result.

4.2.2 Predicted effort
So far we have obtained user effort y by directly counting the

number of actions recorded in the usage log. To compute ŷ—an
approximation of y of our user group—we calibrate our model pa-
rameters with empirical values derived from the same log data.
Continuation probability. We compute pr,u using the empirical
distributions of the search depths aggregated from all users. The
probability that a user will examine the result at rank r is computed
as the number of times r has been visited, normalized by the max-
imum number of times a rank has been visited. In terms of the
number of results a user has visited, we take the same approach
described above (Section 4.2.1). Fig. 2(b) shows the probability
of visiting each rank for the basic and RLR interface. Under the
assumption that participants visit all result summaries on a page,
ranks 1–10 are visited an equal number of times.
Sublist selection proabiliaty. To model user preferences of sub-
lists (filter values), we collect the counts of filter value clicks for
each query, and set these as the parameter cu. That is, the expected
value of the probability a filter value will be chosen is proportional
to how often it is chosen by the users. Since the original result list,
i.e., the filter value “All,” is always shown to the users as a starting
point, we always add 1 count to it.

4.3 Predicted vs. user effort
We simulated a sample of 1000 ŷr for an RLR interface. To

answer Q1, we perform a correlation analysis between the median
of predicted effort (ŷr) and the median of user effort (yr) over the
50 topics. We see a significant linear correlation between the two
(Fig. 3): Pearson ρ = 0.79 (p < 0.001). This suggests that our
proposed model can be used to reliably predict user effort needed
in accomplishing a search task in terms of the number of results
visited and the number of filter values they need to explore.

4.4 Predicted vs. user benefit
Next, we investigate how the predicted effort can be used to com-

pare system effectiveness, e.g., between a system with a basic in-
terface and with an RLR interface (Q2). To proceed, we investigate
whether and on which topics an RLR interface reduces the effort
needed to complete the task, as compared to a basic interface.
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Figure 3: Correlation between estimated effort and user effort.
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Figure 4: The black bars show ∆effortu, and the white
(hatched) bars show ∆effortp. A negative value indicates more
effort is spent with the RLR interface. Difference values ex-
ceeding 100 or less than -100 have been cut-off for legibility.

We compute two quantities for each topic (see Fig. 4):
1. User difference: ∆effortu = yb − yr
2. Predicted difference: ∆effortp = yb − ŷr

Note that yb (effort spent with the basic interface) is fixed as the
action path of a user with a basic interface is deterministic.

In terms of user difference, we observe that on 31 out of 50 topics
less user effort is needed with the basic interface (∆effortu < 0);
on 16 topics effort is less with the RLR interface and on 3 topics
there is no difference. Of the 31 topics where ∆effortu < 0, on 14
a user is able to save more than 10 actions (points of effort), e.g.,
paginating to a next page and scanning 10 results. Of the 16 topics
where ∆effortu > 0, on 11 a user is able to save more than 10
actions.

On 34 out of 50 topics, ∆effortp agrees with ∆effortu, as in,
which interface would reduce user effort in completing a topic. All
cases of disagreement are on topics where users of the RLR inter-
face spent more (or the same) amount of effort than users of the
basic interface. In these cases participants may have struggled to
effectively use filter values or did not use filters at all. If partic-
ipants did effectively use filters, our interaction model predicted
that using filters would save effort.

We observe that our model is able to identify 100% of the cases
when an RLR interface is better (i.e., costs less effort) than a basic
interface. However, when it predicts that an RLR interface is better,
it is only correct in 52% of the cases (0.68 F1-measure). In contrast,
it is able to predict when a basic interface is better with 85% pre-
cision and 55% recall (0.66 F1-measure). This suggests that if a
user would benefit from using the RLR interface, then the model
will predict so, and if our model indicates that the basic interface is
more beneficial, use of the RLR interface should be avoided.

Further, we find that ŷr has significant negative correlation with
∆effortu: ρ = −0.49, p < 0.001, confirming its predictive power.

(a) Probability of reaching rank r
given different λ.

(b) Amounts of smooth vs. KL-
divergence from the oracle.

Figure 5: Illustration of parameter setup

A negative correlation means that the higher the effort needed with
an RLR interface predicted by our model, the more likely that a
basic interface is better. The stronger this correlation is, the better
the model is at predicting which interface is beneficial.

5. WHOLE SYSTEM PERFORMANCE
In Section 4 we have demonstrated that, while remaining sim-

ple and tractable, our user interaction model is able to accurately
predict user effort with empirical parameter settings. We observed
that an RLR interface can be useful for some queries while the basic
interface is good for others. Many factors may contribute to this ob-
servation, ranging from system properties (backend as well as UI)
to user properties. However, it is difficult to investigate the exact
impact of these different factors with user studies: a large number
of experiments are needed given the number of factors considered
and their combination; and it is difficult to control user behavior.

In this section, we discuss how our evaluation framework can be
used for studying whole system performance, under strictly con-
trolled and varying conditions that may not be attained in real life
studies. We use the same test collection as before, and focus on one
question:
Q3. When does an RLR interface help?
By instantiating our interaction model with parameter values de-
signed to reflect user behavior with desired properties, we generate
simulated usage data of large quantity and under strict control. We
then study whether and how various factors (and their interactions)
affect the advantage of an RLR interface versus a basic one.

5.1 Simulating user browsing behavior
To start with, we describe how we instantiate the interaction

model with parameters that characterize different user behaviors.
Examination depth on a ranked list. Users do not visit all doc-
uments in a ranked list. The common examination assumption [8]
states that the deeper a user investigates a ranked list, the less likely
they are to continue examining the list’s next document; consistent
with the probability ranking principle, deep down the ranked list
we expect IR systems to return fewer relevant documents.

In our interaction model, at rank r, users decide either to con-
tinue examining another document, or to switch to a different sub-
list (cf. A3). The assumption that users are more likely to switch
when they move deeper down the ranked list can be captured by
controlling the parameter pr,u of the Bernoulli distribution with an
exponential decay function:

pr,u = e−λr, (3)

where λ controls the decay rate. That is, a user with a larger λ
would decide to switch list at an earlier rank. The resulting expo-
nential decay (Fig. 5(a)) is a good fit for Fig. 2(a).



We simulate the continuation decision of a user with λu in the
following steps:

1. Compute pu,r with Eq. 3 given λu;
2. Draw a decision su,r ∼ Ber(pu,r).

Accurate and inaccurate users. When switching between sub-
lists, some users make better choices than others. A good decision
leads to a sublist with many (unseen) relevant documents ranked
near the top, potentially reducing the total effort the user needs for
his/her search task. We simulate users with different levels of accu-
racy by varying the sublist selection probability (cf. Section 3.1).

Specifically, we sample cu from its conjugate prior distribution,
i.e., a Dirichlet distribution Dir(αu), with hyperparameters αu.
By setting αu to different values we can simulate users with dif-
ferent types of prior knowledge. E.g., users who do not have a
clue which sublist to choose can be simulated by setting αu to a
uniform distribution; an “accurate” user can be simulated by set-
ting αu proportional to the quality of the list, e.g., as measured
by NDCG. The properties of the Dirichlet distribution ensure that
the expected value of cu,k is αk/

∑
j αj , i.e., proportional to the

performance of the sublists.
In summary, for a given αu, we simulate a user’s choice of sub-

list with the following procedure:
1. Draw cu ∼ Dir(K,αu);
2. Draw the decision vector (f1, . . . , fK) ∼ Cat(K, cu).

Influence of user behavior on search performance. Before ap-
plying the simulation strategy for analyzing system performance
under varying conditions, we conduct a sanity check which exam-
ines how the above parameter settings influence estimated user ef-
fort by taking the following setups:

User task We consider an information gathering task where users
target to collect 1, 10, or all relevant documents;

Examination depth We set λ ∈ {1, .5, .1, .05, .01, .005, .001}
to reflect different user examination depths on a ranked list.

User accuracy We consider two cases: a uniform prior αu,k =
1/K, and a prior biased on list quality, i.e., αk is set to the
NDCG value of the corresponding result list.

User effort and gain As before, we assume equal effort for all ac-
tions and binary relevance to compute gain.

Given the possible settings above, we run the simulation over all
combinations of these parameters, each for 1000 times.

Fig. 6 shows the simulation results. We plot the median of sim-
ulated user effort with two different user accuracy priors: NDCG
vs. Random. With each prior, the continuation probability is set to
different values with varying λ. From the figure we observe: (i)
in all cases, irrespective of the value of λ and the task type, good
prior knowledge about which sublist to choose is beneficial. A uni-
form prior corresponding to random selection always leads to more
effort. (ii) The continuation probability has a limited effect when
fewer relevant documents need to be found. When more relevant
documents need to be found, e.g., in the Find-all task, it is better to
go deeper down a ranked list (i.e., small λ). These observations are
intuitive and provide a sanity check on the simulation results using
our user interaction model and the proposed simulation strategy.

5.2 Analysis method
Next, we describe the method we employ to analyze conditions

when an RLR interface is likely to be beneficial and when it is not.

5.2.1 Factors influencing RLR effectiveness
We identified the following factors that, presumably, determine

whether an RLR interface is preferable over a basic one.

Query difficulty for the basic interface (Dq). A priori, if the
ranked list in a basic interface is good, i.e., with all relevant doc-
uments on top, then users do not need to switch to other sublists
for their tasks. We use the effort users need to accomplish a task
with the basic interface (effortb) as the indicator of Dq . The higher
effortb, the more difficult the query is for a basic interface.
Sublist relevance (Rq). The effectiveness of an RLR element should
depend on the quality of the sublists created for result refinement.
If the sublists would filter the relevant documents that were buried
deep down in the original ranked list, then it is likely to help users
to accomplish their tasks faster. We compute Rq as the averaged
NDCG scores over the sublists of a query.
Sublist entropy (Hq). A priori, if few sublists cover most of the
relevant documents, these could help to effectively filter out irrel-
evant documents. Meanwhile, if many sublists contain many rel-
evant documents, then it may be easy for users to find them. In
short, we believe the effectiveness of a RLR system is related to
how the relevant documents are distributed among sublists, but the
exact relation is yet to be explored.

We compute Hq = −
∑
i pi log(pi) as the sublist entropy of a

query q, where pi is the probability that the sublist i of query q con-
tains relevant documents, derived from the empirical distribution of
the relevant documents among the sublists of q.
User accuracy (Ulevel). As shown in Fig. 6, how users choose the
sublists makes a big difference on the effectiveness of using RLR.
Following the distribution of NDCG scores of the sublists is a good
strategy, while choosing randomly leads to inferior performance.

Here, we aim to investigate the impact of user accuracy at a
more refined level, i.e., how accurate should the user be in order
to make the RLR work? Recall that user sublist selection behav-
ior is controlled by the parameter α. Assuming user choices fol-
lowing NDCG scores are “oracles,” by gradually smoothing out α
with respect to this oracle distribution, we can create user accura-
cies of different levels between the oracle and the complete ran-
dom choices (i.e., uniform α). Fig. 5(b) shows the relation between
amounts of the smoothing added and the median of the KL diver-
gence of the “new” user from the “oracle” user over the 50 test
topics. We create 4 user levels, with the amount of smoothing set
to 0, 0.1, 0.5, and 1.0, corresponding to the oracle user (level 1),
and approximately 15% (level 2), 50% (level 3), and 67% (level 4)
less accurate users.
User task. Intuitively, the impact of these factors would be differ-
ent with respect to different user tasks. For example, when the task
is to find all relevant documents, it may not be very important how
good the top of the ranked list is, but rather, where the last relevant
document is located. As before, we consider finding 1, 10, and all
relevant documents.

As a final note, in Fig. 6 we have observed the influence of user
search depth on the RLR performance. Overall its impact is not as
obvious as user accuracy, in terms of the magnitude of changes in
efforts it leads to. In this analysis, we focus on the sublist selection
aspect of the users and fix λ to 0.01, which seems to be optimal for
finding all relevant documents. For the other two tasks it does not
seem to make a major difference when set to a different value.

5.2.2 Analyzing the impact of the identified factors
Let ∆effort = effortb − effortr be the difference between the ef-

fort needed to complete a search task with a basic interface and
that with an RLR interface. We then make ∆effort > 0 a depen-
dent variable (DV), which takes binary values (1 as yes, 0 as no),
and the above four factors (Dq , Rq , Hq , and Ulevel) as independent
variables (IVs). Our goal is to investigate how each of the IVs, and
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Figure 6: Influence of user patience and their accuracy in choosing result lists. The line curves represent the median of the simulation
results, and the shades indicate their upper and lower quartiles.

their interactions, influence the outcome of whether or not an RLR
interface improves over a basic interface.

We apply a generalized linear model (GLM) for this purpose,
which allows us to analyze how the IVs contribute to explain the
variance observed in the DV. Specifically, given that ∆effort > 0 is
a binary variable, we take the form of a logistic regression model.
We fit the models with the data simulated with parameters set to
different user tasks and differentUlevels. The conditions with respect
to the rest of the variables Dq , Rq , and Hq are determined at per-
query level, which comes with the test collection.

To determine which IVs and interaction terms should be included
in the model, we conducted model selection based on the Bayesian
information criterion (BIC) using both forward and backward se-
lection. Further, we expect that for different types of tasks (e.g.,
Find-1 vs. Find-all), the importance of these factors would differ
dramatically, and different models would be appropriate. There-
fore, we fit a model for each of the user tasks individually.

5.3 When does RLR help?
Table 1 shows the parameters for models best able to predict

whether the RLR interface will be effective based on combinations
of the four factors for each task.

5.3.1 Main effect
We observe that for Find-1 none of the main factors in the model

have a significant effect on the dependent variable (RLR effective-
ness). However, for Find-10 and Find-all tasks we see that the Ulevel

has a significant effect. The negative coefficients for the Ulevel vari-
ables indicate that, as users deviate from the “oracle” sublist se-
lection behavior, the log-odds of the RLR interface being effective
decrease. Those user level effects for Find-10 and Find-all but not
for Find-1 suggest that if a user’s task would be to locate 1 docu-
ment, then just the accuracy with which users select sublists is not
enough to predict whether an RLR interface will be beneficial. One
explanation is that, since most sublists will have at least one rele-
vant document ranked highly, users do not need to be accurate in
their choice of sublist to achieve the task. When collecting more
relevant documents however, knowing which sublist to pick is im-
portant.

Regarding Rq we find that it has a significant effect only for
Find-all. As the average relevance of sublists increases the log-
odds of the RLR interface being effective increase as well. That
is, having sublists with relevant documents ranked high is essen-
tial for the RLR interface to be effective for the Find-all task. For
the Find-1 and Find-10 tasks sublist relevance alone is not enough
to predict RLR effectiveness and the effect depends on the interac-
tion between two or more of the main factors. We look into these
interaction terms in more detail next.

Table 1: Estimated coefficients of the selected models and their
effects on the odds that an RLR interface helps. The overall ef-
fect of user accuracy (ulevel) is tested by Wald test. The model
goodness-of-fit (GOF) is tested by Hosmer-Lemeshow test. Sig-
nificance codes: ≤0.001 (N); ≤0.01(M); ≤ 0.05(∗).
Coefficients Find-1 Find-10 Find-all

(Intercept) -7.3401 -10.4365 -0.5337
Dq 0.1058 -0.0686 0.0017
Ulevel2 3.2234 -2.1309N -5.1061N

Ulevel3 1.5590 -5.5278N -8.0140N

Ulevel4 -2.3189 -8.1936N -8.0140N

Hq -1.0443 3.6347 -1.6492
Rq – -49.7916 114.9398N

Dq : Ulevel2 -1.6547 – –
Dq : Ulevel3 -2.0041∗ – –
Dq : Ulevel4 -2.0683 – –
Dq : Hq 1.3103N -0.0968 –
Dq : Rq – 3.2363M 0.0906∗

Hq : Rq – 13.9680 -57.2773N

Dq : Hq : Rq – -0.8422∗ –

Overall effect of χ2=1.6 χ2 = 16.0M χ2 = 25.6N

Ulevel (df=3) (df=3) (df=3)

Model GOF (p-value) 0.9339 0.9928 0.9213

5.3.2 Effect of interaction terms
To investigate the effect of the interaction terms on the probabil-

ity of RLR effectiveness, we express the relation visually. Due to
space limitation, we focus here on the model for the Find-10 task.

To visualize interaction terms between continuous variables, we
plot the predicted value of the DV against one varying IV, and re-
center the other IVs to a fixed level. We take the 25% and 75%
quantile of the values of a variable as its low and high level, respec-
tively. A model fitting the re-centered data then shows the effect of
the varying IV on the DV with respect to the different levels of the
re-centered IVs. For Find-10 there are two interactions terms that
have significant effect: Dq:Rq and Dq:Rq:Hq . For Dq:Rq , we re-
center Dq to its low and high levels, and fix Hq to its median. For
Dq:Rq:Hq we re-center both Dq and Rq to a low and high level.

Fig. 7(a) shows the effect of increasing Rq on the probability
P (∆effort > 0) whenDq is high for varying levels of user accuracy.
At relatively low levels (0.15 to 0.25) ofRq there is a steep increase
in the probability of RLR being more effective for all user levels.
This suggests that when a query is difficult (i.e., the quality of the
original ranked list is low), the sublists and the users do not need to
be very accurate for an RLR interface to be more effective than a
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Figure 7: Effect of interaction terms query difficulty : sublist
relevance for task Find-10.

(a) Dq: high; Rq: high (b) Dq: low; Rq: high

(c) Dq: high; Rq: low (d) Dq: low; Rq: low

Figure 8: Effect of interaction terms query difficulty : sublist
relevance : sublists entropy for task Find-10.

basic interface. In Fig. 7(b) we see that when query difficulty is low,
high quality sublists (relevant documents ranked high) and higher
user accuracy are necessary for an RLR interface to be helpful.

The relation between Dq , Rq , and Hq in the final interaction
term for task Find-10 is shown in Fig. 8. It shows the effect of
increasing Hq on P (∆effort > 0) under conditions in terms of com-
binations of different levels of Dq (high/low), Rq (high/low), and
varying levels of user accuracy. We see that a high level of Dq
combined with low/medium levels of Hq result in a relative high
P (∆effort > 0) for both high (Fig. 8(c)) and low (Fig. 8(a)) levels
of Rq . This interaction aligns with our intuition of when sublists
are beneficial, i.e., having a single high quality sublist when the
original ranked list is of low quality. When Dq is low, we observe
that P (∆effort > 0) decreases at low levels of Hq when Rq is low
(Fig. 8(d)) and at medium levels ofHq whenRq is high (Fig. 8(b)).
This suggests that at lower levels of query difficulty very specific
conditions need to be met for an RLR interface to be beneficial.
Hq plays a role in different interaction terms depending on the

task as well (cf. Table 1). For Find-1 we find that as both Dq and
Hq increase the log-odds of the RLR interface being beneficial in-
creases. Since the task requires a single relevant document, the
ranking within the vertical is less important. Having more sublists
with a relevant document allows users to complete the task effec-
tively with the RLR interface even when users select sublists ran-
domly. For Find-all, an increase in both Hq and Rq result in a de-
crease in the log-odds of the RLR interface being beneficial. As we
saw in Fig. 8, for Find-10 high sublist entropy results in low prob-

ability of an RLR interface being helpful. Sublist relevance only
plays a role when query difficulty is low; however, as the number
of relevant documents to be found increases, it is less likely that
enough documents are available at the top of the ranking.

5.3.3 Summary
Query difficulty alone is not a good predictor for the probability

of an RLR interface being helpful. Depending on the task, differ-
ent factors determine whether users will be more effective with the
basic or RLR interface. In the case of Find-1, sublists do not have
to be of high quality for an RLR interface to be helpful; it becomes
more likely to be beneficial when the query is difficult and the en-
tropy of the sublists is high. For Find-10, high query difficulty
and low entropy are conditions for the RLR interface to be benefi-
cial. The importance of sublist relevance depends on user accuracy;
when they are accurate, lower levels of sublist relevance are neces-
sary. For Find-all, the conditions necessary for an effective RLR
interface are high query difficulty, high user accuracy, high sublist
relevance and low entropy.

6. RELATION TO TRADITIONAL METRICS
We have illustrated how our evaluation framework can be used

for simulating and predicting RLR system performance in two ways,
and its efficacy has been validated with usage data. Next, we dis-
cuss how it relates to metrics for evaluation of traditional search
systems, i.e., normalized Discounted Cumulative Gain [16, nDCG],
Expected Reciprocal Rank [5, ERR], normalised Rank-biased pre-
cision [23], average precision (AP), and precision@10 (P@10).

From a modeling perspective, Carterette [3] has proposed a con-
ceptual framework for analyzing and comparing different effective-
ness measures (for traditional systems). Our framework is close to
the category of Model 3 under his classification, i.e., computing the
effort a user needs to achieve a particular amount of utility. Fur-
ther, all metrics discussed in [3] compute an expected value (util-
ity, effort or gain). Computing the expected performance directly is
rather intractable in our setting, as the order in which sublists are se-
lected and the number of results viewed in each of these lists is non-
deterministic. To compute the expected performance, one needs to
obtain the distribution of all possible orders in which sublists are
selected. Here, simulation provides samples of possible sequences
from which performance can be approximated (Section 3.3).

We now move on to an empirical investigation. By examining to
what extent metrics for traditional systems are able to predict the
performance of an RLR system, we investigate whether our frame-
work offers new insights. Table 2 shows the correlation between
traditional measures and actual user effort (column 1, 2; obtained
in Section 4), predicted user effort (column 3, 4), and the difference
between user effort with the basic and RLR interface (∆effortu in
column 5, 6). We observe that nDCG measured at low cut-offs (10)
has no significant correlation with user or predicted effort. When all
relevant documents are taken into account (nDCG@all), the corre-
lation is significant at ρ = −.42 (negative, for gain vs. effort). We
observe a similar pattern for binary nDCG (BnDCG); however, in
this case the correlation is stronger than for nDCG. When collecting
usage data we did not distinguish between highly relevant and rel-
evant documents. Other measures have a negative correlation with
user effort and our model in the range between nDCG and BnDCG.
We focus on BnDCG here, as it is most strongly correlated.

The correlation between user effort and BnDCG@all is ρ =
−.72, which indicates that for topics with high BnDCG@all scores,
i.e., with many relevant documents at the top of the ranking, user
effort is low. The magnitude of the correlation of both BnDCG and
our model with actual user effort is high. The negative correlation



Table 2: Correlation of traditional metrics with user effort, pre-
dicted effort, and the ∆effortu (cf. Fig. 4).

user effort simulated effort ∆effortu
measure ρ p-value ρ p-value ρ p-value

nDCG@10 -0.21 0.142 -0.19 0.185 0.02 0.896
nDCG@all -0.42 0.002 -0.34 0.016 0.00 0.994
NRBP -0.41 0.003 -0.33 0.018 0.08 0.568
ERR@10 -0.45 0.001 -0.36 0.010 0.08 0.567
P@10 -0.56 <0.001 -0.46 <0.001 0.00 0.980
AP -0.63 <0.001 -0.54 <0.001 0.02 0.875
BnDCG@10 -0.54 <0.001 -0.44 0.001 0.02 0.875
BnDCG@all -0.72 <0.001 -0.59 <0.001 0.04 0.776
our model 0.79 <0.001 – – -0.49 <0.001

between BnDCG@all and our model is lower than that of either
measure with user effort (ρ = −0.59, p < 0.001), indicating that
these measures disagree on the effort needed for some topics.

We apply BnDCG@all to the task of predicting whether a topic
would cost a user more effort with the basic or the RLR interface
(∆effortu). We compute the correlation between BnDCG@all and
∆effortu. Results are listed in Table 2 (last two columns). There
is no significant correlation (ρ = 0.04, p = 0.776): BnDCG@all
cannot differentiate between topics suitable for a basic or RLR in-
terface. In comparison, the correlation of ∆effortu with the pre-
dicted effort (by our model) is significant (ρ = −0.49, p < 0.001).
That is, simulated effort tells us which interface is the best.

As a final remark, the lack of correlation between traditional met-
rics and ∆effortu confirms our observation that query difficulty,
i.e., the quality of the original ranked list alone, is not sufficient to
predict whether an RLR interface is preferable over a basic inter-
face (cf. Section 5.3).

7. CONCLUSION
We have developed a simulation-based evaluation framework that

measures the effectiveness of systems enabling result refinement,
e.g., facets or filters. Its key component is an interaction model
that characterizes the user’s search behavior in the presence of re-
sult list refinement features. Using this framework, we investigate
whole system performance, under various conditions. Instantiat-
ing the parameters of the user interaction model, corresponding to
properties of search task and user type, allows us to predict system
performance for specific groups of users. We validated the predic-
tions made using data collected with two search systems, re-using
the TREC Federated Search test collection.

We found that user effort estimated by our model is correlated
significantly with actual user effort measured in the user data. We
applied our interaction model to the task of predicting when a user
should or should not use an RLR interface, and found a significant
correlation between the predictions we made and observations in
the user data. We did not find such correlations when applying tra-
ditional retrieval metrics to this task, demonstrating the value of the
proposed user interaction model for search with result refinement.

Our study extends user interaction models beyond the classic “10
blue links.” It provides a means to evaluate retrieval systems while
considering the interaction effects between non-standard search UI
features and search system effectiveness and the variability in how
different people use the search UI.
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