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Chapterr 1 

Introduction n 

TheThe purpose of computing is insight, 
notnot numbers. 

-- Richard Hamming 

1.11 What is Logic good for? 

Formall logic is the study of necessary truths and of systematic methods for clearly 
expressingg and rigorously demonstrating such truths. 

Whenn confronted with a modeling task, logic can be used to capture a situation 
(aa property of the world, a machine state, a cognitive state, the state of a database, 
. . . ) ;; given the inference mechanisms allowed by the logic, we can then derive 
implicitt or explicit information about the situation being modeled. During its 
longg history, logic has been used to analyze phenomena ranging from planning 
inn robotics or scheduling in railways to natural language processing [CGM+97, 
BBKdN98,, CGV02]. The value of logic as a tool comes from its power to validate 
complexx assertions; if the premises are true and our reasoning is correct, our 
conclusionn is guaranteed to be also true. 

Inn this thesis we are interested in "classical" logics, that is, in logics that work 
onn exact ("crisp") input and that only admit two truth values: true and false. 
Whilee this may not always be the best choice, it is very much the norm for the 
settingss in which we are interested in in this thesis: modal and hybrid satisfiability 
testingtesting and dynamic first order logic theorem proving. 

1.22 Working with Logic 

Logicc is useful in any context in which the notion of inference is relevant. In 
particular,, logic can be used to certify that computer programs perform their 
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assignedd task (if formally stated) [Hoa69], or that reactive systems have the de-
siredd behavior, or that a theory is consistent. Sometimes, however, the task of 
determiningg whether or not a statement follows from a theory is so huge as to be 
intractablee for humans; this led to the development of programs to automate the 
inferencee tasks [Rob65, DP60, Smu68]. More specifically, automated tools exist 
too support the following reasoning tasks (among others) 

 satisfiability checking: the task of determining whether a given formula or 
sett of formulas in a certain logic is possibly true. 

 validity checking: the task of determining whether a given formula or set of 
formulass in a certain logic is necessarily true. 

 model checking: the task of determining whether a given formula in a certain 
logicc is true, given a model. 

 model generation: the task of finding out which model, if any, makes a given 
formulaa true. 

Butt there is also a further reason to develop general-purpose automated reasoning 
tools:: Having a computer program carry out the reasoning tasks lets us experi-
mentt with theories, concentrate on the modeling tasks, handle bigger problems 
thann we could on our own. Ideas become more tangible, and if a tool is well 
implemented,, it is possible that people will use it for things the authors never 
dreamedd of. In a sense, having a reasoning tool empowers a logic to come out 
off the books and get its hands dirty (hopefully for a clean cause). This thesis is 
thenn about automated reasoning tools: how one can make a tool for automated 
reasoning,, how to tell if it is any good, how to make it better, and how it can be 
useful. . 

InIn this thesis we will focus almost exclusively on satisfiability checking. The 
purposee of this work is to explore some of the algorithms that enable computers 
too perform automated satisfiability checking, as well as their implementation and 
assessment.. We will discuss some of the ways in which logic can be put to use 
throughh automated reasoning, and the importance of testing in the evolution of 
automatedd reasoning tools. 

1.33 The Road Ahead 

Thee rest of this thesis is organized in two main parts. Part I, Evaluation in Modal 
andd Hybrid Theorem Proving, deals with current and existing efforts in the field 
off modal and hybrid logic theorem proving, and the importance of evaluation in 
thee design and comparison of theorem provers as well as in the evaluation of the 
benchmarkss themselves. In Chapter 2 we'll review the evolution of benchmarking 
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inn modal logic theorem proving, and introduce a hybrid logic benchmark. In 
Chapterr 3 we talk about the different methods for translating Modal Logic to 
Firstt Order Logic (FOL), to take advantage of the years of development that went 
intoo FOL theorem proving, and how different methods compare. In Chapter 4 we 
describee another approach to theorem proving in non-classical logics: developing 
yourr own specialized theorem prover. We describe the theory and implementation 
off HyLoRes, a resolution-based theorem prover for hybrid logics; we also describe 
howw testing was an integral part of development. 

Inn Part II, Programming with Dynamic First Order Logic, we explore the use 
off Dynamic First Order Logic (DFOL) as a programming language. In Chap-
terr 5 we give some background to the 'formulas as programs' paradigm; we in-
troducee the concept of an executable interpretation of DFOL(U, a), and describe 
twoo increasingly faithful approximations to the interpretation. In Chapter 6 we 
explainn why DFOL(U, a) is a good candidate for a programming language and 
describee a Hoare calculus for it. In Chapter 7 we describe a tableau calculus for 
DFOL(U,<j)) which gives an even better approximation to the executable inter-
pretationn of DFOL(U, a) and can be used as a programming language engine, and 
inn Chapter 8 we describe the implementation of such an engine and show some 
examplee runs. 

InIn Part III, Conclusion, we reflect on what was learned from Parts I and II, 
whatt they had in common, and where they would meet. 

Partss of Chapter 2 were originally published in [HdROl] and [AH03]; Chapter 3 
containss material from [AGHdROO]; Chapter 4 is an extension of [AH02a]. Most 
off Chapter 7 was originally published in [vEHNOl]. 

Beforee embarking on our trip, we will review the notions and notation required 
forr reading the material in later chapters. In addition, the next few sections 
providee the reader with an overview that should help situate the logics and issues 
investigatedd in this thesis. 

1.44 A Plethora of Logics 

Wee present now the general logical framework in which this work is set. Outside of 
propositionall logic [GvMWOO], the best known logic, the one which has the most 
toolss developed for it, is First Order Logic (FOL). The satisfiability problem for 
firstt order logic is undecidable, in spite of which a myriad of reasoning tools exist; 
seee [CAS]. These tools have reached impressive levels of optimization, but the fact 
remainss that the underlying problem is undecidable. So, if the problem at hand 
cann be stated in terms of a less expressive logic which has a decision procedure, 
that'ss already an improvement (at least in principle). Also, sometimes FOL does 
nott offer the right perspective for the task at hand, so that a logic with the 
samee expressive power, yet different syntax or semantics, will be better suited. 
Specifically,, the following three logics will play a leading role in this thesis: 
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Figuree 1.1: Relationships between the logics introduced 

•• first order logic [Fit96]. 

•• modal and hybrid logic [BdRVOl]. 

•• dynamic first order logic [GS91]. 

Butt we will encounter even more logics. In Figure 1.1 we provide a diagrammatic 
overvieww of the logics we will shortly introduce. The labels on the arrows indicate 
somee aspect of the relation between the logics involved. 

Wee will now provide formal definitions as well as some examples and discus­
sionss that should help understand their raison d'etre. 

1.4.11 First Order Logic 

Firstt order logic, by far the most widely studied logic, was first formulated in 1879 
byy Frege. It provides a formal framework for quantified expressions of the form 
'alll computers use Windows' or 'there is a computer that does not crash'. Even 
thoughh it cannot quantify over properties, its satisfiability problem is already 
undecidable:undecidable: for some sentences of FOL, it is not possible to ascertain whether 
theyy could be true or not. We will now introduce the logic proper. 

1.4.1.. DEFINITION. [Syntax] Let REL be a countable set of relational symbols, 
eachh with its own arity, let FUN be a countable set of function symbols, each with 
itss own arity, and let CON and VAR be countable sets of constant and variable 
symbolss respectively. We call S = (REL, FUN, CON, VAR) a signature. The well-
formedd terms over this signature are defined as follows: 

TERMSS :=c | x \ f(h,...,tn), 
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wheree c G CON,x G VAR, ƒ G FUN with arity n, and *1 (. . . ,tn € TERMS. The 
well-formedd formulas over the signature are 

FORMSS : = T | J l fa , . . . , ^ ) \-^<j> \ ( fcAfc) | 3x f» , 

wheree R G REL with arity n, t i , . . . ,£n e TERMS, x G VAR and ^,^1,^2 € 
FORMS.. We take V,—•, *+ and V as defined symbols. 

1.4.2.. DEFINITION. [Semantics of FOL]: A model over a signature S is a pair 
AiAi = (D,I), where D is a nonempty set, called the domain of /A, and ƒ is an 
interpretation;interpretation; to every ƒ € FUN of arity n, it associates a function ƒ/ : £>n —• D, 
andd to every ƒ£ G REL of arity n, a relation # / C Dn . To every element c of 
CON,, it associates an element of D. An assignment in a model M = (£>, / ) is 
aa mapping g : VAR —y D. Given an assignment g for M, x G VAR and m E D, 
wee define g^ (an x-variant of y) by ff^(x) = m and 5^(2/) = Q{V)I f° r V ¥" x-
Now,, given a model .M and an assignment g every term in the language can be 
evaluatedd to an element of D\ 

I(x)I(x) = g{x) 

I{f(tI{f(t uu......77U))U)) = /(ƒ)(/(*!),-..,/(*»)). 

Andd the satisfiability relation, then, is as follows: 

 t= ~T[g] always 
M\=R(tM\=R(tuu...,t...,tnn)[g])[g] iff I{R){I(t 1)t...,I{tn)) 

M\=^[g]M\=^[g] iff M£<t>[g] 

MM h <f>i  A fo[?] iff M N 4n\s\ and JU (= fofr] 
MM \= 3ar(^)[^] iff X |= 0[<&] for some m E D. 

1.4.22 Restrictions 

SometimesSometimes the full expressive power of FOL is not necessary; in those cases, we 
mightt be able to model our problem using logics that are less expressive but more 
tractable.. It is also possible that a logic is as complex as FOL, but is better suited 
att describing the situation at hand. In this subsection we review a small number 
off restrictions of first order and second order logic. 
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Modall Logic. Modal logic is a powerful and flexible tool for working with re-
lationall structures [BdRVOl]. It's very well behaved, robustly decidable [Var97], 
andd allows us to reason about relational structures such as those found in math-
ematics,, computer science and linguistics. Modal and modal-like logics such as 
temporall logic, description logic, and feature logic, have had a long history in 
artificiall intelligence, both as an area of foundational research and as a source 
forr useful representation formalisms and reasoning methods [FHMV95, HS97], 
andd the recent advent of agent-based technologies and the Semantic Web have 
dramaticallyy increased the need for efficient automated reasoning methods for 
modall logic [FHMV95, PSHvH02]. But there are things that can't be expressed 
inn modal logic: the gains in decidability have a price in expressiveness. 

1.4.3.. DEFINITION. [Syntax] Let REL be a countable set of relational symbols, 
andd PROP a countable set of propositional variables. The well-formed formulas 
off the modal language MC in the signature (REL, PROP) are 

FORMSS := T j p | -.0 | <j> x A <fa \ [R]<f> 

wheree p € PROP, R € REL and 4>,<j> r,<j> 2 6 FORMS. 

Thee operator (R) is defined as -<[R]->, i.e. they are dual operators. 

1.4.4.. DEFINITION. [Semantics] Given a signature {REL, PROP), a (modal) model 
MM is a triple M = <M, {i^},  V) such that M is a non-empty set, {Ri} is a set 
off binary relations on M, and V : PROP ->• Pow(M). 

Lett M = {M,{Ri},V) be a model, m € M. Then the satisfiability relation 
iss defined as follows: 

M,m\\-M,m\\- T always 
M,m\\-M,m\\- p iff m e V(p),p e PROP 
M,m\\-M,m\\- -«fi iff M,m\y-<j) 
M,m\\-M,m\\- ^ iA^2 iff M,m\\- <f>\  and M,m\\- <p2 

M,m\\-M,m\\- [R\4> iff Vm'.(i?(m,m') ==>  M,m' Ih <j>) 

Modall logic allows us then to talk about properties of elements of a given domain, 
whichh are themselves connected to each other by one or more relations. What 
wee can't do with modal logic, however, is tell these elements apart; two different 
elementss of the same model can satisfy the same set of modal formulas and 
thereforee be indistinguishable to the logic. Now, we could go back to FOL, but 
wee can also see if we can add expressive power to the modal language and still 
preservee decidability. This has been carried out in a number of ways, as we shall 
seee below. 
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Hybridd Logics. In hybrid logics, the relational structures of modal logics are 
kept,, but we add the capability to refer to individual elements of M, thus going 
beyondd the expressive power of modal logic. Some of the additions increase 
thee complexity of the satisfiability problem, while others go so far as making it 
undecidable,, but basically hybrid logics can be tailored so that their expressivity 
andd complexity are matched to the problem at hand. Hybrid logics can be said to 
spann the expressivity and complexity gap between modal logic and FOL; see [HyL] 
forr a thorough introduction and extensive bibliography. Still, hybrid logics are 
nott the only way in which one can extend modal logic; we'll look at some more 
wayss later. 

1.4.5.. DEFINITION. [Syntax] Let REL be a countable set of relational symbols, 
PROPP a countable set of propositional variables, NOM a countable set of nominals, 
andd SVAR an infinite, countable set of state variables. We assume that these sets 
aree pairwise disjoint. We call SSYM = NOM U SVAR the set of state symbols, and 
ATOMM = PROP U NOM U SVAR the set of atoms. The well-formed formulas of 
thee hybrid language H[@,l) in the signature (REL, PROP, NOM, SVAR) are 

FORMSS :=T | a \ -nf> | & A fa I  [R]<f> I ®,<P I \x.fa 

wheree a € ATOM, x <= SVAR, s € SSYM, R € REL and <j>,  fa, fa e FORMS. 
Notee that all types of atomic symbol (i.e., proposition symbols, nominals and 

statee variables) are formulas. Further, note that the above syntax is simply that 
off ordinary (multi-modal) propositional logic extended with clauses for @s<j>  and 
\x.<f>.\x.<f>.  Finally, the difference between nominals and state variables is simply that 
nominalss cannot be bound by I, whereas state variables can. 

Thee notions of free and bound variable are defined as in first order logic, with 
II as the only binding operator. A sentence is a formula containing no free state 
variables. . 

Thee basic hybrid language is %, basic modal logic extended with nominals. 
Furtherr extensions are usually named by listing the added operators; we are 
interestedd in the logics ft(@) and W(@,l), which also adds state variables. 

1.4.6.. DEFINITION. [Semantics] A (hybrid) modelMisa. tripleM = {D,{Ri}, V) 
suchh that D is a non-empty set, {Ri} is a set of binary relations on D, and 
VV : PROP U NOM -> Pow(D) is such that for all nominals i € NOM, V(i) is a 
singletonn subset of D. 

Ann assignment g for M is a mapping g : SVAR -> D. Given an assignment g, 
g^g^ is defined as for FOL. Assignments are not needed when dealing with H(@). 

Lett M. = (D,{Ri},V) be a model, m € D, and g an assignment. For any 
atomm a, let [V,p](a) = {g{a)} if a is a state variable, and V(a) otherwise. Then 
thee satisfiability relation is defined as follows: 

file:///x.fa
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M,g,M,g, mlh T always 
M,g,m\\-M,g,m\\- a iff m € [V,#](a), a € ATOM 
Ai,5,, mlh -i0 iff M,g,m\y- <f> 
M,g,M,g, mlh 0i A 02 iff -M,<?, m lh 0i and M,g,m lh 02 

M,S,mlhh [fl]0 iff Vm'.(fl(m,m') = > M,5 ,m ' l h0 ) 
.M,, ff, m lh @s0 iff M, s, m' lh 0, where [V, s](s) = {m'} 
M,g,m\\-M,g,m\\- ix.(f> iff M , 5 ^ , m l h 0 . 

Namedd elements can now be distinguished, and we can express properties 
whichh were not expressible before: the formula (|x. [#]->#) is true in every element 
off a model if and only if the accessibility relation R for that model is irreflexive, 
somethingg not expressible in modal logic. 

Proposit ionall Dynamic Logic. While Propositional Dynamic Logic(PDL) is 
aa modal logic, by all accounts, it is not a restriction of first order logic (as modal 
andd hybrid logic), but rather a restriction of second order logic. Propositional 
Dynamicc Logic deals with actions as modalities; usually, the represented actions 
aree atomic programs, and the elements of the domain therefore reflect the relevant 
statee of the computer running them. With this interpretation in mind, many 
naturall operators on programs (i.e., relations) suggest themselves, such as U (non-
deterministicc choice), ; (sequential composition), and the Kleene star * (iteration). 
Seee [HKT84] for a thorough introduction. Here's a brief overview of the standard 
repertoiree of PDL operators, with their intended meanings: 

[a]A[a]A After every execution of a, A holds 
ai;; a2 Do ai and then do a2 

aiai U a2 Do either ai or a2 non-deterministically 
a** repeat a some finite number (possibly zero) of times 
A?A? Test A; continue if A is true, otherwise fail. 

1.4.7.. DEFINITION. [Syntax] Let AP be a set of atomic programs, and PROP a 
sett of atomic formulas. Then the formulas A and the programs a are defined as: 

FORMSS := 1 | p | Ax -+ A2 \ [a]A, 
PROGSS :=7r | ai,a2 | a i U a2 \ a* \ AI 

wheree p <E PROP, w £ AP, A, Au A2 € FORMS, and a , au a 2 £ PROGS. 

1.4.8.. DEFINITION. [Semantics] A model for this language would be a structure 
off the form M = (S, {RQ : a e PROGS}, V) with Ra a binary relation on S for 
eachh program a and V : PROP -> 5 a valuation. We want to consider models 
thatt reflect the intended meanings of the program combinations; a model is con-
sideredd standard if the Ra satisfy the following conditions: 
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tfa-tfa- = (Ra)' = l)k<u(Ra)k, 

RRA?A? = {{s,s)}\s\=A}, 

Thee semantics of a PDL formula, then, are as follows: 

M,s\\-M,s\\- _L never 
M,s\\-M,s\\- p iff seV{p) 
M,s\\-M,s\\- Ai-*A2 iff  M,s IK J4I implies M,s lh J42 

A4,, s lh [a]>l iff  SÜQ  ̂ implies .M, t f= J4 

Combinatoryy PDL. Next we consider an extension of PDL: Combinatory 
PDLL [PT85, PT91], which adds nominals and the universe program. This brings 
aboutt a huge increase in expressive power, accompanied by undecidability. The 
mainn insight behind Combinatory PDL was the search for a dynamic logic that 
wouldd allow for an axiomatic definition of the intersection between two modalities; 
thiss is particularly relevant for parallel, or concurrent, computing [Pel85]. 

1.4.9.. DEFINITION. [Syntax] Let AP and PROP be the sets of atomic programs 
andd atomic formulas, as in PDL, and NOM be the set of names. The letter 
vv & NOM U PROP U AP will be called the universe program. Then the formulas 
FORMSS and programs PROGS of the language are defined as: 

FORMSS := _L | p \ n \ Ax -> A2 | [a]A, 
PROGSS :=TT I 1/ J oi ;o2 I 01U02 I a* I A? 

wheree p € PROP,7r 6 AP,n 6 N O M , ^ , ^ ,  ̂ € FORMS, anda ,a i , a2 € 
PROGS. . 

1.4.10.. DEFINITION. [Semantics] A model for CPDL is a quadruple M = (M, R, x, V), 
wheree M is a non-empty set (the set of states), and the other three are functions: 

RR : PROGS -»- Pow{M2), 
XX : NOM - • M, 
VV : FORMS -+ Pow(M), 

RR satisfies the following requirements: 

RRyy = M 2, 
RaUpRaUp = fi«U RB, 
Ra,0Ra,0 = RaRfi = {(s, t) I 3v(sRaV A vRpt)}, 
Ra*Ra* = (Ray = \Jk<„(Ra)k, 
RAIRAI =  {(«,»)} I » h A} 
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wheree sRQt is (s,t) 6 Ra. 
Givenn this model, the semantics of CPDL are as follows: 

M,s\\-M,s\\- J. never 
M,s\\-M,s\\- n iff s = x(n), for n E NOM 
M,s\\-M,s\\- p iSseVip) 
M,s\\-M,s\\- Ai - • A2 iff M,s\\- Ai implies M,s\\-A2 

M,M, s lh [a]A iff sRat implies M,t\=A 

1.4.33 Extensions 
Afterr having reviewed a number of restrictions of first order and second order 
logic,, we will now examine some extensions of first order logic that play an im­
portantt role in this thesis. 

Dynamicc First Order Logic 

Dynamicc Predicate Logic (DPL) was introduced by Groenendijk and Stokhof [GS91] 
ass a first step towards a compositional, non-representational theory of discourse 
semantics.. Like we did with hybrid logics, we will now present the family of 
dynamicc first order logics, obtained by using DPL as a base logic and extending 
itt with additional operators, some of which we will use to arrive at an useful 
executablee program interpretation. 

Thee difference between DPL and first order logic proper resides mostly in their 
semantics,, in that the meaning of a DPL sentence is not captured by its truth 
conditionss but by the way it changes the information state of the interpreter; a 
sentencee takes us from one state of information to another, and its meaning is 
givenn by how it does so [GS91]. This feature of DPL makes it very straightforward 
too supply it with an executable program interpretation, with the advantage that 
anyy programming language based on such an interpretation will have a clear and 
naturall semantics. 

Forr example, the FOL formula </>i A <j> 2 is true in a model M under an as­
signmentt g iff both 0i and <fo are true under that assignment, while in DPL the 
formulaa <f>\,<f> 2 (sequential composition, the DPL analogue to A) carries us from 
ann assignment s to an assignment u iff there is an assignment t such that <f>i  car­
riess us from s to t and <j> 2 carries us from t to u. We will now formally introduce 
DPL. . 

1.4.11.. DEFINITION. [Syntax of DPL] Let PRED be a countable set of predicate 
symbols,, each with its own arity, and let CON and VAR be countable sets of 
constantt and variable symbols respectively. The DPL language is then given by 
thee following production rules: 

TERMSS := v\c 
FORMSS := 3v | Pt \tx = t2\ - . (» | &; 02 
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wheree v € VAR, c E CON, P E PRED, *, t1} t2 E TERMS, and <f>, <j> u fa E FORMS. 

DPLL has been extended with a variety of operators, some([Vis98, GS90]) coming 
fromm the original linguistic perspective and some [vEHNOl] from the 'formulas as 
programs'' perspective; a survey of extensions of DPL can be found in [tCvEHOl]. 
Inn this work we will consider the logics resulting of the extension of DPL with 
operatorss for nondeterministic choice (0 U <j>),  explicit substitutions (a), local 
variablee declaration (3v(<f>)) and iteration ((/>*),  as well as the inclusion of function 
symbolss in the signature. We will give the name Dynamic First Order Logic 
(DFOL)) to the extension of DPL with function symbols. 

1.4.12.. DEFINITION. [DFOL and Extensions] Given a signature for FOL, the 
syntaxx for DFOL and extensions is the appropriate fragment of the following: 

TERMSS := v\c\ j_{tx, ...,tn) (Terms) 
FORMSS := 3v\Pt\ti = t2\ ->(<f>)  \ <f>i\  <fo I (<Ai U fa) j (Formulas) 

\(<kirnh)\3v{4)\ff\»\i\4^ \(<kirnh)\3v{4)\ff\»\i\4^ 

wheree v E VAR,c E CON,P € PRED,/ € FUN,*i,t2,-..,*n € TERMS, and 
<f>,<f>,  0i, <h € FORMS. We will write t for (#i, . . . , tn). The names for the extensions 
aree given as DFOL(X), where X is a subset of {u, n,3,cr,a,"}. A substitution a 
iss a function VAR —y TERMS that makes only a finite number of changes, i.e., 
aa has the property that dom(a) = {v E VAR | a{v) ^ v} is finite. We will use 
rng(a)rng(a) for {o~{v) \ v E dom(cr)}. During the rest of this work, we will use the 
letterss p, 9, a to denote substitutions. An explicit form (or: a representation) for 
substitutionn a is a sequence 

WM/vi,...,a{vWM/vi,...,a{vnn)/v)/vnn], ], 

wheree {vi,...,vn} = dom(a), (i.e., a(vi) ^ vi; for only the changes are listed), 
andd i ^ j implies vt ^ Vj (i.e., all variables in the domain are mentioned only 
once).. We will use \\ for the empty substitution, i.e. the substitution that has 
emptyy domain and therefore changes nothing. We will call these representations 
bindings.bindings. A definition we will need is the one of syntactic composition of bindings: 

1.4.13.. DEFINITION. [Syntactic composition] The syntactic composition of two 
bindingss 9 and p (notation 9 o p) is defined in the following way: 
Lett 0 = [h/vi,..., tn/vn]  and p = [ri/wu..., rm/wm] be binding representations. 
Thenn $ o p is the result of removing from the sequence 

[9{ri)/wi,[9{ri)/wi,...,..., 9{r m)/wm, h/vu..., tn/vn] 

thee binding pairs 6(ri)/wi for which 0(rj) = Wi, and the binding pairs tj/vj for 
whichh Vj E {wi,..., wm}. 
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Wee will omit parentheses where it doesn't create syntactic ambiguity, and 
alloww the usual abbreviations: we write _L for ->([]), ~>Pt for ~>(Pt), h ^ t2 for 
-,(ti-,(ti = t2), 0i U 02 for (0i U 02). Similarly, (0 -> ip) stands for -i(0; ->(^)), Vv(0) 
forr -.(3Ü; -(0)), 0" for ( 0 ^ j _ 0 ) and UM..JV 0 for  (([M/v]; 0) U • • • U ([JV/v]; 0)), 

n n 

assumingg M, iV € N and M < N. A formula 0 is a literal if 0 is of the form Pt 
orr -'Pt, or of the form ti = *2 or ti ^ t2. The complement 0 of a formula 0 is 
givenn by: 0 :— ift if 0 has the form -i(V>) and 0 := ->(0) otherwise. We abbreviate 
-i-ii (0) as ((0)), and we will call formulas of the form ((0)) block formulas. 

Wee can think of formula 0 as built up from units U by concatenation. For 
formulaa induction arguments, it is sometimes convenient to read a unit U as the 
formulaa U\ []  (recall that [] is the empty binding), thus using [] for the 'true' 
formula.. This formula has the same semantics as U; see Definition 1.4.16. In 
otherr words, we will silently add the [] at the end of a formula list when we need 
itss presence in recursive definitions or induction arguments on formula structure. 

Bindingg in DFOL(CT,  U) 

Thee extension of DFOL that we will be using as the core of most of Part II is 
DFOL(a,, U); DFOL augmented with nondeterministic choice and simultaneous 
bindings.. Here follow some definitions and results that we will need later on. 

Bindingss 9 are lifted to (sequences of) terms and (sets of) formulas in the 
familiarr way: 

1.4.14.. DEFINITION. [Binding in DFOL(CT, U)] 

) ) 

0(3u;0) ) 

0(*i=*2;0) ) 

Ö((0!U02);03) ) 
0H0i);02) ) 

== /»(t i)-Ö(<„) 
== Sop 

== (0op)0 

== 3v; 0'0 where 0' = 0\{t/v \ t £ TERMS} 

== Pet;9(f> 

==  9ti = et2',6<f> 

==  0(0 i ;03)U0(02;03) 

-- -(00i);002 

Notee that it follows from this definition that 

Ö(((01));02)) = ((Ö01));^02. 

Thus,, binding distributes over block: this accounts for how ((• 
namicc binding effects. 

•))) insulates dy-
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Thee composition 9- p of two bindings 9 and p has its usual meaning of k9 after 
p',, which we get by means of 9 p(v) := 9(p(v)). It can be proved in the usual 
way,, by induction on term structure, that the definition has the desired effect, 
inn the sense that for all t € T, for all binding representations 9, p: (9 o p)(t) = 
9(p(t))9(p(t)) = (9-p)(t). 

Heree is an example of how to apply a binding to a formula: 

[a/x]Px;[a/x]Px; (Qx U 3x; ->Px); Sx 

== Pa; [a/x] (Qx U 3x; ->Px); Sx 

== Pa; {[a/x]Qx; Sx U [a/x]3x; ^Px; Sx) 

== Pa; (Qa; Sa; [a/x] U 3x; -iPx; Sx) 

Thee binding definition for DFOL fleshes out what has been called the 'folklore 
ideaa in dynamic logic' (Van Benthem [vB96]) that syntactic binding [t/v] works 
semanticallyy as the program instruction v := t (Goldblatt [Gol92]), with seman-
ticss given by s[v := t]** iff u = s[[t\%*fv\. To see the connection, note that 
vv := t can be viewed as DFOL shorthand for 3v; v = t, on the assumption that 
vv £ var(t). To generalize this to the case where v € var(t) and to simultaneous 
binding,, auxiliary variables must be used. The fact that we have simultaneous 
bindingg represented in the language saves us some bother about these. 

Inn standard first order logic, sometimes it is not safe to apply a binding to a 
formula,, because it leads to accidental capture of free variables. The same applies 
here.. Applying binding [x/y] to 3a;; Rxy is not safe, as it would lead to accidental 
capturee of the free variable y. The following definition defines safety of binding. 

1.4.15.. DEFINITION. [Binding 9 is safe for <f>] 

99 is safe for p 

99 is safe for p; <j> 

99 is safe for Pt; <f> 

99 is safe for ti = t2; 0 

99 is safe for 3v; cf> 

99 is safe for - ^ I ) ; <fo 
99 is safe for (<f>x  U fa); fa 

always s 

99 o p is safe for <j> 

99 is safe for <f> 

99 is safe for <f> 

vv ^ var[rng 91) and & is safe for 0 

wheree 0' = 9\{t/v \ t € TERMS} 

99 is safe for fa and 9 is safe for fa 

99 is safe for fa; fa and 9 is safe for fa; fa 

Notee that there are ^ with \\ not safe for <f>.  E.g., [] is not safe for [y/x]3y; Rxy, 
becausee [y/x] is not safe for 3y; Rxy. 

Givenn a first order signature and a model M = (D, I), the semantics of DFOL is 
givenn as a binary relation on the set DVAR, the set of all variable maps (valuations) 
inn the domain of the model. We impose the usual non-empty domain constraint 
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off FOL: any DFOL model M = {D,J) has D ^ 0. If s,u e DVAR, we use 
ss % u to indicate that s, u differ at most in their value for v, and s ~x u to 
indicatee that s, u differ at most in their values for the members of X. If s € DVAR 

andd v,v' 6 VAR, we use s[v'/v] for the valuation u given by u(v) = s(v'), and 
u(w)u(w) = S(ÏÜ) for all w € VAR with w ^ v. 

M.M. \=-s Pt indicates that s satisfies the predicate Pt in M, according to the 
standardd truth definition for classical first order logic, [t]^4 gives the denotation 
off t in M under s. If a is a substitution and s a valuation (a member of £)VAR), 
wee will use s^ for the valuation u given by u(v) — {(^(v)]^. Then, the semantics 
off DPL and its extensions is defined inductively: 

1.4.16.. DEFINITION. [Semantics of extensions of DPL] 

33[3v]?[3v]? iff s ~ r u 

8 fP t ] ^^ iff s = u and M K p* 

ss\h=t\h=t22\^\^ iff s = u and fa)? = [t2\? 

,H0 )K** iff a = u and -a t with,[0]*1 

.fyüfe]??  ̂ 3* «•*• . M ? and t[02]f 
.feiUfc]*** iff . fo i l? or .[fclJ* 

.foinfctf** iff . fo i l* and  . [ f c ]* 

*P«(0)I^^ iff 3 ^ « ' *•*• * ~«»' ,« ~»«'» .'[0]»'> a n d M " = M " 
.[a\?.[a\? iff u = S(T 

ss[a]?[a]? iff 5 = uff 

WX?WX? iff s = u o r 3 t s.t. M? andt [0*]^ 

Wee will denote by \<f\? the set of all assignments u such that JÎ IU" 1-

Thee connection between syntactic binding and semantic assignment is formally 
spelledd out in the following: 

1.4.17.. LEMMA (BINDING LEMMA FOR DFOL(a,U)). For all models M, all 
M.M. -valuations s, u, all formulas <f>,  all bindings 9 that are safe for <j>: 

Proof.Proof. Induction on the structure of <f>.  H 

Immediatelyy from this we get the following: 

1.4.18.. PROPOSITION. DFOL(a, U) has greater expressive power than DFOL(a, u) 
withwith quantification replaced by definite assignment v := d. 
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Proof.Proof. If </> is a DFOL(cr, U) formula without quantifiers, every binding 9 is safe 
forr <j>.  By the binding lemma for DFOL(cr, U), <f>  is equivalent to a DFOL(cr, U) 
formulaa without quantifiers but with trailing bindings. It is not difficult to see 
thatt both satisfiability and validity of quantifier free DFOL(CT, U) formulas with 
bindingg trails is decidable, while DPL is known to be as expressive as FOL [GS91], 
whichh is undecidable. H 

Inn fact, the tableau system presented in Chapter 7 constitutes a decision 
algorithmm for satisfiability or validity of quantifier free DF0L(<7, U) formulas, 
whilee the trailing bindings summarize the finite changes made to input valuations. 

Thee Lattice of DPL Extensions. The following figure represents the lattice 
off all possible extensions of DPL with operators from {U, fl,", a, <7,3} (union, in-
tersection,, converse, simultaneous substitution, converse substitution, hiding) [tCvEHOl]. 
Itt indicates which operators can be defined in terms of which; the labels on the ar-
rowss indicate counterexamples to equal expressivity, i.e., formulae from the lower 
languagee that don't have a counterpart in the upper language. 

DPL,DFOL( DPL,DFOL( 

3xU3y 3xU3y 

DFOL(a) DFOL(a) DFOL(U),DFOL{U,~) DFOL(U),DFOL{U,~) DFOL{6) DFOL{6) 

DFOL{',a),DFOL{',a) DFOL{',a),DFOL{',a) 
tFOL{a,a),DFOL{-,a,a) tFOL{a,a),DFOL{-,a,a) 

3xU3jf f 

DFOL{U,",DFOL{U,", a), DFOL{U,', a) 
DFOL(U,DFOL(U, a, a),DFOL(U,', a, a) 

3\x(x=y;3y\Rxy) 3\x(x=y;3y\Rxy) 

DFOL{XDFOL{X C {U,rV,cr,<7,3}) 
wheree X n { n , 3 } / 0 

3xU3t/ / 

DFOL{U,a) DFOL{U,a) 

Notee that all 64 combinations of the six operators are present in the diagram. 
Thee diagram makes immediately clear which extensions of DPL are closed un-
derr converse: precisely those which are in the same node of the lattice as the 
correspondingg version of DPL with converse operator. Adding Kleene star gives 
ann isomorphic lattice for DFOL(*) and its extensions: none of the distinctions 
collapsee because the same counter-examples to equal expressivity still work. 
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1.55 The Correctness Problem 
Howw do we know if a program will always perform the task it was written to carry 
out?? We can do some trial runs for which we know the intended output, but that 
iss not a guarantee of correctness; the process is only informative if the program 
fails,, or if we can run it on every possible input, which is usually not feasible. 
Butt we can turn to logic for an answer: in general, the purpose of a program is 
too achieve a desired state transformation, and a specification is a "declarative" 
descriptionn of such a transformation. That is, it specifies the desired net effect 
off a transformation without concerning itself about how this effect is achieved in 
aa particular implementation. The classical method of Hoare [Hoa69] presents a 
specificationn as a pair (A, B) of expressions in a FOL over an underlying data 
structure,, meaning that the task of the required program is to bring the data 
structuree from any state satisfying A to a state satisfying B. Then, a way of 
checkingg whether a program fulfills a specification is to have a language that lets 
uss talk about specifications and programs and a calculus that lets us reason in 
thatt language. If we can prove that the calculus preserves correctness and covers 
alll the possible correct combinations, then we can check any program against its 
specifications,, or use the calculus to help build the program. 

1.5.11 Alma-0 : Executable First Order Logic 

Thee correctness analysis of a program in the manner just described is made much 
simplerr if the programming language has a faithful translation into logical for-
mulas:: this is one of the insights behind the Alma-0 programming language (see 
[AB98,, ABPS98]). Alma-0 extends a subset of Modula-2 (an imperative program-
mingg language) with a number of declarative constructs inspired by the logic 
programmingg paradigm. A translation is given from the extensions into FOL, 
andd the semantics of the extensions is then stated in terms of an executable in-
terpretationn of FOL [AptOO, Ver03]. We will give more details on this perspective 
inn Chapter 5, where we give the executable program interpretation of DFOL. 

1.5.22 DFOL and correctness 

InIn the usual correctness reasoning, we distinguish between partial and total cor-
rectness,, the difference being that total correctness ensures termination. In 
DFOL,, negation is expressed as a test of failure to terminate successfully; there-
fore,, even for partial correctness we must examine at the same time both cor-
rectnesss and termination. We distinguish two main kinds of correctness rules 
forr DFOL: universal and existential. The existential rules guarantee termination 
andd the existence of at least one output state which satisfies the postcondition, 
whilee universal rules are equivalent to partial correctness: i.e. they guarantee that 
alll resulting states will satisfy the postcondition but do not guarantee successful 
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termination.. We express existential correctness by (A)<j>(B), and universal cor-
rectnesss as {v4}</>{5}. Total correctness is proved when we derive both universal 
correctnesss and existential correctness for the same program, although T will suf-
ficefice as the postcondition for the existential case. Of course, existential correctness 
mightt result in a different precondition, but then the conjunction of the universal 
andd existential preconditions will guarantee total correctness. Formally, the two 
kindss of correctness boil down to the following: 

MM \= (A)4>(B) <=> Vfl(M \=9A = • 3h{9[<f,\^  AM\=h B)) 

MM \= {A}(j>{B} <=• Vg[M^ tA=*  W» (gmt4 = • M \=h B)) 

1.5.33 Dynamo 

DynamoDynamo is an imperative programming language whose semantics are defined in 
termss of DFOL(U,cr), in a similar manner as Alma-0 is defined in terms of an 
executablee interpretation of FOL. The Hoare calculus for DFOL(U, a) mentioned 
abovee is then directly applicable to Dynamo. Dynamo programs have a purely 
declarativee dynamic semantics. There are no side effects, and no control features. 
Seee Van Eijck[vE98a, vE99b] for a more thorough introduction. 

Figuree 1.2 introduces the Dynamo syntax by means of a translation to the 
languagee of DFOL. The translation fixes the intended meaning of every Dynamo 
construct. . 

Figuree 1.2: Translation from Dynamo to DFOL. 

({5 i ; . . . ;5n})° ° 
({Si\...\S({Si\...\Snn})° })° 
(true)0 0 

(false)0 0 

(*ii = * 2)° 
(Pi)° ° 
(somee v)° 
(somee vi,...,vn)° 
(v:=t)° (v:=t)° 

(v(v + +y 
(findd v in [ALM] with 5)° 
(doo N times S)° 
(iff Si 52 e lse S3)° 
( le tt vi =*!••• vn = tn in S)° 
(nott S)° 

C ° -- . C o 
—— O i , . . . , O n 

== S? U . . . U S° 

== 0 
== - D 
== h = t2 

== Pt 
== 3v 
== 3vi;...;3vn 

== [t/v] 
==  [{v + i)M 
==

 UM..N S° 
== {S°)N 

== (-.-.S?;SS)UhS?;SS) 
== [ti/vu--',tn/vn];S° 
== -5° 
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1.66 The Role of Evaluation 
Usually,, theoretical studies are not enough to provide sufficient insight on the 
effectivenesss and behavior of complex systems such as satisfiability solvers. For 
onee thing, worst-case complexity analysis is never influenced by optimisations, 
whichh as we will see have a very strong influence on the behavior of satisfiability 
solvers.. As a complement, then, empirical evaluations have to be used. In the area 
off prepositional satisfiability checking there is large and rapidly expanding body 
off experimental knowledge; see e.g., [GvMWOO]. In contrast, empirical aspects of 
modall satisfiability checking have only recently drawn the attention of researchers. 
Wee now have a number of test sets, some of which have been evaluated extensively 
[BFH+92,, HS96, GS96, HS97, HPSSOO]. In addition, we also have a clear set of 
guideliness for performing empirical testing in the setting of modal logic; these 
weree proposed by Horrocks, Patel-Schneider, and Sebastiani [HPSSOO], building 
onn work by Heuerding and Schwendimann [HS96]. We contend that empirical 
testingg is an integral part not only of the design and evaluation of theorem provers, 
butt also of the tests themselves, and can (and should) strongly influence the 
developmentt of both. 

Wee will now start Part I, with an overview of empirical evaluation in modal 
andd hybrid logics. 



Partt I 

Evaluationn in Modal and Hybrid 
Theoremm Proving 
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Heree we will survey current and past methods of evaluating modal and hybrid 
theoremm provers, as well as some ways of approaching the satisfiability problem 
inn modal and hybrid logics. We will introduce first the indirect method: trans-
latingg formulas from our logic into FOL, and then performing resolution on the 
translatedd formulas, and then the direct method: developing our own theorem 
prover.. Also, we make explicit the role of empirical evaluation in the development 
off theorem provers. 





Chapterr 2 
Howw Long is a Ruler? 

TheThe police protects us from the bandits. 
WhoWho protects us from the police? 

Comparingg theorem provers 

Ourr aim in this chapter is to discuss empirical evaluation methods for modal 
theoremm provers, and see if an evaluation method for hybrid logic provers can be 
developed,, given the strong link between modal and hybrid logic. Now, empiri-
call comparison of theorem provers is conceptually simple: given a representative 
samplee of the problems they are meant to solve, a criterion for comparison is es-
tablishedd such as mean run time, and the performances are compared. However, 
somee complications arise when trying to define what 'representative' problems 
are,, and perhaps 'real life' problems are too few or still too difficult. In that 
case,, artificial problems must be supplied, and there are several criteria that the 
testt sets must comply with. Since our goal is to develop an evaluation method 
forr hybrid logics, it's only natural that we study the existing efforts for modal 
logic.. Heuerding and Schwendimann [BHSOO] stated a set of criteria for evaluat-
ingg modal theorem proving benchmarks, which was later expanded by Horrocks, 
Patel-Schneiderr and Sebastiani [HPSSOO]. We will start, in Section 2.1 by giving 
ann overview of these criteria. We will then review the existing modal test sets, 
particularlyy with respect to these criteria, in Sections 2.3, 2.4 and 2.5. Finally, 
wee will discuss a new test methodology for hybrid logic, also in Section 2.5. 

2.11 Fitness criteria for modal test sets 

Too be able to assess the quality of test methodologies for modal theorem proving, 
wee will review a number of 'common sense' criteria that have been proposed in 
thee literature. 

23 3 
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Reproducibility.. Reproducibility of experiments is fundamental in science; 
anybodyy should be able to run the same experiment to confirm the result. Ap-
pliedd to theorem proving, this means that the formulas used, or the algorithm to 
generatee them, must be made available. In the case of random generation, this 
wouldd include the 'seeding' of the random generator. Also, if the generating al-
gorithmm is provided, variants of the test can be developed, for example to extend 
thee target logic [AH03]. 

Representativeness.. Ideally, a test set should cover as much as possible of the 
inputt space, and span the whole range of sources of difficulty. Of course, there is 
noo complete catalogue of sources of difficulty, so a test set should at least cover 
aa large area of inputs. If the problems are limited to a narrow area of the input 
space,, we run the risk of not assessing the real capabilities of the provers if they 
aree to be run on arbitrary formulas. 

Validd vs. not valid balance. Uncertainty with respect to the satisfiability of 
thee formulas in the test should be maximum: the provers should not a priori have 
anyy information as to whether the formula is satisfiable or not, and furthermore 
theree should be about as many satisfiable as unsatisfiable formulas in the set; 
satisfiablee and unsatisfiable formulas might present different sources of difficulty, 
andd we want a fast answer from our prover in either case. 

Difficulty.. The set should provide a challenge to the provers being tested; if 
thee problems are too easy, the resource consumption will reflect mostly startup 
costs,, which do not scale with problem difficulty. Also, some problems should be 
tooo hard for the current provers: as the proving techniques evolve, this helps the 
testt remain current. 

Termination.. The test should terminate in a reasonable amount of time, with 
aa meaningful result. If all inputs are too hard, there will be no information gained 
evenn if the benchmark can be run in a short time. 

Thesee criteria give rise to the following, more specialized considerations: 

Parameterisation.. One way to achieve a good coverage of the input space is 
too make the generating algorithm accept parameters that allow the problems to 
spann large areas of the input space. There should be enough parameters to allow 
forr a good coverage, but not so many that covering a specific part of the input 
spacee would take an inordinate amount of experiments. 
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Control.. It is very useful for the generating algorithm to have parameters 
thatt control monotonically features of the problems like valid/not valid balance, 
modal/propositionall balance, difficulty, etc. Monotonicity is very important: it 
allowss us to leave out uninteresting areas of the input space, and to control the 
problemm features independently of other parameters. 

Modall vs. prepositional balance. A modal prover should be adept at both 
propositionall and 'purely modal' reasoning tasks; therefore, a test set should 
providee enough challenge for both aspects of modal reasoning. 

Dataa organization. It should be possible to summarize the results of the 
benchmark,, and to plot them to see the qualitative behavior of the evaluated 
provers. . 

Focuss on narrow problems. Special ad-hoc sets may serve to measure the 
behaviorr of the systems with respect to specific difficulty sources; even though 
theyy do not provide a complete assessment of the capabilities of theorem provers, 
theyy are a good complement of a test set that spans large areas of the input space. 

Redundancy.. Ideally, many of the formulas in a complex problem should play 
aa part in determining its satisfiability status; that is, it should not be decided by 
aa small subset of the formulas. While a solver that recognizes redundancy in a 
sett is desirable, redundant problems should not be a significant part of the test 
suite,, as they can be rendered trivial by the handling of the redundancy. 

Triviality.. When a small part of a formula dictates the satisfiability of the 
whole,, independently of the rest, the formula is said to be trivial. Trivial problems 
shouldd not be a significant component of the test set, even if recognizing trivial 
problemss is of course a desirable capability of theorem provers. 

Artificiality.. If there is an application in mind for the systems, problems gen-
eratedd should be of a similar nature to those coming from application inputs. 
Otherwise,, the results of the test may not reflect the suitability of the systems for 
thee task at hand. Note that 'real life' problems might not fulfill any of the other 
criteria,, and indeed a specific system might be the best for the problem type at 
hand,, and not for the general case. 

Size.. The problems should not be too big with respect to their difficulty; we 
aree not as interested in processing of big files as in algorithm efficiency. 
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2.22 Real-world Problems 

Whenn the logic at hand is used for real-world applications, there is a source 
off problems whose representativity cannot be contested. They are, after all, 
thee problems the provers should excel at, if we want them to be useful as well 
ass interesting objects of study. Common downsides of this kind of input often 
includee not having enough real-world problems to provide sufficient testing, and 
thatt as provers advance old inputs usually become trivial to solve. 

Inn the following sections, we will come back to these criteria as we discuss the 
meritss of the different test methodologies. 

2.33 Hand-tailored Problems 

Thee Balsiger, Heuerding and Schwendimann test set 

Thee Balsiger, Heuerding and Schwendimann test set [BHSOO] was used in the 
TANCSS '98 comparison, and represents one of the first attempts at having a 
comprehensivee test set for the comparison of modal theorem provers. It consists 
off nine classes of provable formulas and nine classes of unprovable formulas, pa-
rameterizedd by a number in N. The performance score of a prover in each class is 
givenn by the highest numbered problem in that class that the prover can solve in 
lesss than 100 seconds. There are nine different types of problem, each with both 
aa satisfiable and an unsatisfiable class associated to it. The purpose of parame-
terizationn was to have a test set which could present harder problems as provers 
becamee more advanced; the complexity of each formula in a class is expected to 
bee exponential on its parameter. There is a base problem for each class, which 
iss then made more complex using several techniques, and there was an effort to 
makee the problems resistant to simple optimization. 

However,, dramatic advances in the field yielded provers which could solve any 
formulaa in most of the categories; the increase in complexity from instance to 
instancee was not exponential any more [HPSS00]. Nevertheless, the test remains 
veryy useful for development of modal theorem provers, as it gives a quick way to 
evaluatee improvements to the program, and performance in the different classes 
mightt confirm whether optimizations work as planned or not. 

Extendingg the set for hybrid logics Extending the test set to create hybrid 
formulass is in principle possible, but as we have seen, there would be a poor 
coveragee of the problem space and the tricks to 'hide' the formulas are sooner or 
laterr rendered harmless by optimization. 
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2.44 Random Problems: Modal QBF 
Otherr than the previously described test set, all empirical test sets for modal 
logicc are parameterised random formula generators. The first random generation 
techniquee used in testing modal decision procedures, the random 3CNFDfn test 
methodology,, was proposed in [GS96]; its subsequent development is described 
in,, for instance, [HPSSOO], and the latest version is presented in [PSS03]. After 
havingg gone through a series of revisions, this methodology is considered to be 
welll understood. In between revisions of 3CNFnm, the random modal quantified 
Booleann formula test set was proposed by Massacci [Mas99], and used in the 1999 
andd 2000 editions of the TANCS system performance comparisons [TAN]. We'll 
examinee the Modal QBF set now, and the 3CNF test set family in Section 2.5. 

2.4.11 The Random Modal QBF Test Set 

Thee random modal QBF test set is based on the idea of randomly generating 
quantifiedd boolean formulas (QBFs) and then translating these into modal logic. 
Lett us explain these two steps in more detail. 

Generatingg QBFs 

Recalll that QBFs have the following shape [GJ79]: Qi^ i . . . Qnu„ CNF{vi,..., vn). 
Thatt is, QBFs are prenex formulas built up from proposition letters, using the 
booleans,, and Vvj3 and 3v 0 (where v is any proposition letter). 

Whatt is involved in evaluating a QBF? We start by peeling off the outermost 
quantifier;; if it's 3v, we choose one of the truth values 1 or 0 and substitute it 
forr the newly freed occurrence of v; if it's \fv, substitute both 1 and 0 for the 
newlyy freed occurrences of v. In short, while evaluating QBFs we are generating 
aa tree, where existential quantifiers increase the depth, and universal quantifiers 
forcee branching. 

InIn the random modal QBF test set, 4 parameters play a role: c, d, v, k: 

•• The parameter c is the number of clauses of the randomly generated QBF. 

•• The parameter d is the alternation depth of the randomly generated QBF; 
itt is not the modal depth of the modal translation. (More on this below.) 

•• The parameter v is the number of variables used per alternation. 

•• And A; is the number of different variables used per clause. 

Thee QBF-validity problem is the problem of deciding whether a QBF without 
freee variables is valid; it is known to be PSPACE-complete [GJ79]. For every 
fixedfixed valued of d we can capture the problems in ££ in the polynomial hierarchy; 
PSPACEE can only be reached by an unbounded value of d. 
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Here'ss a concrete example. Using d = 3 and u = 4we can generate 

44 4 4 4 

VV «34«33«32«31 3 «24«23^22«21 V «14^13^12^11 3 «Q4«03«02«01y CNF(v0l, . . . , V^). 

3 3 

Eachh clause in CNF(v0i,... , u34) has fc different variables (default 4) and each 
iss negated with probability 0.5. The first and the third variable (if it exists) are 
existentiallyy quantified. The second and fourth variable are universally quantified. 
Thiss aims at eliminating trivially unsatisfiable formulas. Other literals are either 
universall or existentially quantified variables with probability 0.5. The depth of 
eachh literal is randomly chosen from 1 to d. 

Byy increasing the parameter d from odd to even, a layer of existential quanti-
fiersfiers is added at the beginning of the formula, and, conversely, when d increases 
fromm even to odd, a layer of universal quantifiers is added. The impact of increas-
ingg d on the shape of the QBF trees may be visualized as in Figure 2.1, for the 
casee where v = 2. 

*** MM 
d-l,...d-l,... 2 3 

Figuree 2.1: The shape of QBF trees for v = 2 

Translatingg QBFs into Modal Logic 

Thee QBF that is produced by the random generator is translated into the basic 
modall logic as introduced in 1.4.3, using a variant of an encoding that is originally 
duee to Ladner [Lad77]. The core idea underlying the translation is to capture, 
byy means of a modal formula, the 'peel off quantifiers and substitute' evaluation 
processs for a given input QBF. The translation forces branching in the structure 
off the possible model whenever a universal quantifier is found in the original 
formula,, keeps the branches separate, and makes sure there are enough modal 
levelss in the model. It forces the structure of the possible model to be a tree, and 
thee resulting formula is satisfiable iff the original formula is. 

Here'ss a detailed example. The formula (j>  = Vï^B^Vi («i  V ~^v2 V ^v3 V -1V4) 
(generatedd with parameters v = 2, d= 1, c= 1, default encoding) translates into 
thee conjunction of the following formulas. 

É É 
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•• The matrix (/> must be true everywhere in the model: Am=i n m ( u i v """̂  V 
->t>33 V -1^4), where dm is a sequence of m occurrences of the • operators. 

•• Keep values of proposition letters forever, adding one per level, in order of 
quantifierr appearance: 

"" A J L I O 3 " ^ V DHO) A n m (^ 4 V D(»4))) A 
"" Am=i( DT7t(D(^3 V ü ( - ^ ) ) ) A  D m ( D ( ^ 3 V D(t*)))) A 

-- D(D(D(i, 2 V ü(-it^)))) A D ( D ( D ( ^ 2 V n(v 2)))) 

•• Force branching on universally quantified variables: Ou4 AO-iu4 A D(Ot>3) A 
• (O-1V3) . . 

•• Force tree depth (note that the first two levels are covered by the previous 
twoo formulas): 0(D(0(T)))) A D(D(D(0(T))))). 

Thee parameters c, k, v and d that are used in the generation process are 
relatedd to the final modal formula in the following way. The (maximum) number 
off clauses is c • k + (v • (d + l))2 + [v  (d+ 1)/2J. The (maximum) number of 
propositionn letters is v  (d + 1). And the (maximum) modal depth is v - (d + 1). 
Thesee maximums obtain when c is high enough compared to v  (d+1) to cover all 
thee possible proposition letters. The file size for the translated formula is linear 
inn c, and polynomial in v and d, but usually we are not interested in very big 
valuess of the last two, so this is not much of a problem. 

Fitnesss of the test set 

Somee of the fitness criteria (reproducibility, representativeness, parameterisation 
forr example) can be evaluated by an analysis of its description; others like diffi­
culty,, termination or size require empirical testing. We benchmarked a few theo­
remm provers, aiming not to evaluate the state of the field (we left some prominent 
systemss out, for example) but to evaluate the test set itself. 

Settings s 

Too evaluate the QBF test set, we used 3 satisfiability solvers for modal logic. First, 
wee used the general first order prover SPASS [SPA], version 1.0.3, extended with 
thee layered translation of modal formulas into first order formulas as presented 
inn [AGHdROOj. Second, we used MSPASS version V 1.0.0t.l.2.a [MSP]. And, 
third,, we used *SAT version 1.3 [Tac99]. 

Ourr experiments were run on a Pentium III 800 MHz with 128 MB of memory, 
runningg RedHat Linux 7.0. 

Forr our measurements we had to translate the modal QBF files to the formats 
off the various provers we were using, and in one case we were also were converting 
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thee formulas from modal to first order logic. We checked that the resulting file 
sizess were linear in c, even though the linear coefficient varied from one solver to 
another. . 

Ourr main measurements concerned both CPU time elapsed (with a 10800 sec-
ondd timeout) and a time independent measure: the number of clauses generated 
forr SPASS plus layering and for MSPASS, and the number of unit propagations 
forr +SAT.1 

Findings s 

Wee first ran the standardized tests provided by the TANCS competition: 64 
instancess randomly generated with c = 20, v = 2, d = 2, and default settings for 
thee remaining parameters. See Figure 2.2. 

_.. 1 1 1 1 1 — i 1 0 J I , , , , , — i — 1 _ 
WW 2 0 30 4 0 W 60 10 20 30 40 50 00 

ProcJ«mm instance ProoHm mstance 

Figuree 2.2: The standardized tests provided by TANCS, used for SPASS, 
MSPASS,, and *SAT. (Left): clauses generated/unit propagations per problem 
instance,, log scale. (Right): CPU time (seconds) per problem instance, log scale. 

Whilee the number of clauses generated by resolution provers and the num-
berr of unit propagations in *SAT are not directly comparable as a performance 
measurement,, they do give an indication of the relative difficulty of a problem 
(orr problem set). As such, we can see that the difficulty of a problem varies with 
thee method used to solve it. The correlation between time elapsed and clauses 
generated/unitt propagations varies widely between the methods. In fact, for this 
testt the *SAT times are so low as to be completely dominated by startup costs 
andd don't really inform us about relative problem difficulty. 

Nextt we ran a number of sweeps, with each of three provers, with v = 2 
andd increasing d from 1 to 4 (and to 5 in the case of *SAT), while increasing 

11 Unit propagations came out to be a less than perfect indicator of resource consumption in 
thee general case, although for this benchmark it was roughly as informative as the number of 
assignmentss found. 
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cc from 1 to 100 (or to the maximum number of clauses allowed by the rest of 
thee parameters, whichever was lower). The resulting CPU times and the number 
off clauses generated/unit propagations are depicted in Figure 2.3; the curves 
forr d = 1, d = 2 do not extend to the right-hand side of the plots, as the 
formulass being generated with these settings are simply too small to be be able 
too accommodate a larger number of different clauses. 

Severall things are worth noting about Figure 2.3. First, the sets display an 
easy-hard-easyy pattern familiar from propositional satisfiability testing [GvMWOO], 
Thee shape of the curves is strongly dependent on the solver used. Moreover, 
thee patterns seem to vary from not-too-hard-hard-easy in some cases (SPASS, 
dd — 1, d — 2, d = 4) to not-too-hard-hard-hard in others (SPASS, d = 4; 
MSPASS,, d — 3, d = 4) to not-too-hard-hard-not-too-hard in yet others (SPASS, 
dd = 3;*SAT, d = 2, d = 3, d = 4, d = 5). 

Second,, for both SPASS and MSPASS we see that curves cross each other; this 
iss most clearly visible in (a), where the number of clauses generated by SPASS 
aree displayed,but it also shows up in (b) where the CPU times for SPASS are 
shown.. Hence, for SPASS (and to a lesser extent for MSPASS) the d parameter 
doess not influence the difficulty of the problems being generated in a monotonie 
way. . 

Third,, the time elapsed (displayed in (b), (d), and (f)) has a very strong 
dependencee on file size: after the hard region has been crossed and the elapsed 
timee tends to decrease, it actually starts going up again. The impact of input 
filefile size and I/O is most noticeable for MSPASS (plot (d)); but even in the case 
off *SAT, where the number of unit propagations remains more or less constant 
afterr the hard region has been traversed, the CPU times start going up: this 
increasee is entirely due to input file size and I/O2. In Figure 2.4 we have plotted 
thee growth of the input file size against c, and against d. The file size can be 
approximatedd by 11500+e*485, while the preprocessing performed by the layered 
translationn brings this up to 20000 + c * 930. Remarkably, the translated file for 
MSPASSS is smaller than the original input file. (For the purposes of illustration, 
wee have also indicated what the input file size would be for the first order prover 
BLIKSEMM [Bli].) 

Whenn we increased the v parameter, we saw similar curve shapes as for v = 2. 
InIn Figure 2.5 we have displayed results of running *SAT with v = 2 (top) and 
withh v = 3 (bottom). Notice that the humps indicating the hard regions are 
higherr for v = 3 than for v = 2, indicating that the problems are harder; hence, 
thee CPU times are not as strongly dominated by file size and I/O aspects as in 
thee case where v = 2. The fact that the hard regions are 'wider' than for v = 2 
indicatess that we are not only getting harder problems, but also that the fraction 
off hard problems is increasing. 

2Ourr filesystem runs over a network: performance in local filesystems is very likely to be 
muchh better. 
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3;; V=2, D = l - 4 . C= l -100 

•SAT:: V = 2 . D = 1 - 5 , C 1 - 1 0 0 "SAT;; V=2, D-1-5, C-1-100 
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Figuree 2.3: SPASS, MSPASS, and *SAT on QBF test sets, v = 2, d = 1 . . . 4 
(5),, 64 samples/point. (Left): clauses generated/unit propagations, log scale. 
(Right):: CPU time in seconds, log scale. 
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Alt»motionn flaplti 

Figuree 2.4: Size of the input files. (Left): as a function of the number of clauses. 
(Right):: as a function of the alternation depth. 

*SAT:: V=2. D=1-S. C=1-100 'SAT;; V=2, 0 . 1 - 5 , C-1 -1 

Figuree 2.5: *SAT results for v = 3, d — 1 . . .5 , 64 samples/point. (Left): unit 
propagations,, log scale. (Right): CPU time in seconds, log scale. 
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(a)) (b) (c) 

Figuree 2.6: SPASS, MSPASS and *SAT results for i; = 2 (3), d = 1 - 6 (7), 64 
samples/point,, (a): SPASS with v = 2. (b): MSPASS with v = 2, 3. (c): *SAT 
withh v = 2, 3. Log scales are used in (a), (b) and (c). 

Lett us return to the phenomenon observed in Figure 2.3, where it was found 
thatt the d parameter does not monotonically control difficulty. We can observe 
thiss even clearer when we plot d along the rr-axis, as in Figure 2.6. Note that the 
phenomenonn is strongly prover dependent: it clearly shows up for SPASS (with 
thee layered translation) as shown in (a); it is somewhat visible with MSPASS 
(b),, but not at all with *SAT (c). Further experimental work has shown that 
thiss 'staircase phenomenon' is also present with larger values of v for SPASS. 
Thee phenomenon is related to the special way in which QBFs grow: existential 
quantifierss are added to the original QBF when d is increased from odd to even, 
universall quantifiers when d is increased from even to odd; see Figure 2.1. The 
formerr simplifies matters for SPASS with the layered translation, while the latter 
makess matters considerably harder for that solver.3 

Onee central concern with any test set, synthetic or not, is parameterization: 
too which extent can we choose the difficulty of the problem and of exploring the 
inputt space? In the QBF test set the difficulty can easily be controlled: the v 
parameterr controls it monotonically, the d parameter also with some caveats. It 
seems,, however, that v and d do not control truly independent dimensions of the 
problemm space. More precisely, combinations of v and d for which the value of 
vv  (d+ 1) coincides have very similar curves, as can be seen in Figure 2.7. This 
suggestss that v (d + 1) is the dimension along which the QBF problem space 
shouldd be explored, instead of either v or d independently. (As an aside, it is clear 
fromm Figure 2.7 that with increasing values of v (d + 1), the truly hard region 
forr a given setting of parameters moves to the right as we increase the number of 
clauses.) ) 

Ann important aspect that we have not discussed so far is the satisfiable vs. 
non-satisfiablee fraction. The parameter c does indeed allow us to control the 

3Notee that the staircase phenomenon will not be observed if one only performs the stan-
dardizedd TANCS test as this test only involves a single value of d. 
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•SAT::  V=2-4.  D=1-5,  0=1-100 
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Figuree 2.7: *SAT results for v = 2-4, d = 1-5, and c = 1-100, 64 samples/point. 
Thee numbers in brackets indicate the value of v (d + 1). 

satisfiabilityy fraction: it goes from 1 to 0 monotonically with c. However, there 
aree remarkably few values of c for which the satisfiable fraction is 1; see Figure 2.8. 
Inn line with Figure 2.8 (a), we have found satisfiable fractions of about 20% in 
manyy repeated runs of the standardized 20/2/2 TANCS test (see Figure 2.2). 
Moreover,, there is a heavy 'tail' of unsatisfiable problems, as indicated by the 
curvess in Figure 2.7. And contrary to intuition, the constrainedness of problems 
doess not seem to depend very strongly on the d parameter; for a fixed v, increasing 
dd from odd to even doesn't shift the satisfiable fraction graph by any noticeable 
amount.. The constrainedness of the underlying models, then, remains unchanged 
despitee the addition of more variables and the increase in depth. 

Finally,, recall that a modal formula is trivially satisfiable iff it is satisfiable 

Figuree 2.8: *SAT results for d = 1-4 (5), c = 1-50, 64 samples/point. (Left): 
Satisfiablee fraction for v = 2. (Middle): Satisfiable fraction for v = 3. (Right): 
Satisfiablee fraction for v = 4. 
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onn a model with a single node [HPSSOO, HS97]. Clearly, trivial satisfiability is 
nott a problem for modal QBF test sets. Because of the highly structured form 
off the randomly generated QBFs, the resulting modal formulas always contain 
O-subformulas,, thus avoiding trivial satisfiability. 

Evaluatingg the evaluator 

Thee general criteria for evaluating modal test methodologies put forward in Sec-
tionn 2.1, boil down to demanding a reproducible sample of an interesting portion 
off the input space with appropriate difficulty. To conclude this section, here's a 
brieff discussion of these criteria as they relate to our setting. 

Byy its very nature, reproducibility is guaranteed for the modal QBF test set. 
Thee modal QBF test set seems to represent just a restricted area of the whole 
inputt space; that is, it scores low on representativeness. There are three reasons 
forr this. First, the QBF test set provides poor coverage of the satisfiable region; 
mostt of the hard modally encoded QBF-formulas generated with values of v and d 
thatt are within reach of today's tools, are unsatisfiable, as suggested by Figure 2.8. 
Second,, the modally encoded QBFs are of a very special shape, which seems to 
leadd to the so-called staircase phenomenon for some solvers. And third, the v and 
dd parameters end up being substantially overlapping and interrelated as part of 
thee translation of QBFs into modal formulas. A strong point in favor of the QBF 
testt set is that it is possible to generate hard problems with a large modal depth 
whichh are still within reach of today's modal satisfiability solvers; in this respect 
thee QBF random test methodology fares better than, for instance, the 3CNFam 

testt methodology, as reported in [PSS03]. 

Thee levels of difficulty offered by the modal QBF test set are certainly suffi-
cient,, as they range from next to trivial to too hard for today's systems. Related 
too this, the tests terminate and provide information in a reasonable amount of 
time. . 

Inn conclusion, then, the random modal QBF test methodology provides useful 
testt sets that should, however, not be used as the sole measure in the evaluation 
off modal satisfiability solvers. 

Randomm QBF and Hybrid Logic. It would be possible to fit nominals and 
tee ©-operator into a random QBF translation framework, but there is no natural 
wayy to fit the | operator. QBF does not actually capture the complexity class of 
thee W(@, I) logic, which is undecidable, and we have just seen that the coverage 
off the input space is not so thorough even in the modal case. We have to keep 
looking. . 
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2.55 Random problems: Random CNF 

2.5.11 3SAT 

Thee satisfiability problem for prepositional logic has been widely investigated, 
sincee it has many applications such as timetabling, code optimization, or cryp-
tography.. It is known that random CNF clauses of three or more literals capture 
thee complexity of the satisfiability problem for the logic [GJ79], and that random 
CNFF problems of more than 3 literals can be linearly encoded into CNF formu-
lass of exactly 3 literals each. Therefore, even though there are many real-world 
problemss and test sets available for propositional logic, one of the best known 
andd most used test sets for propositional logic is Random 3SAT: a conjunction of 
LL clauses of 3 random propositional literals each, chosen from a set of iV differ-
entt propositional variables. Since Propositional 3CNF has become the de facto 
standardd random test set for propositional satisfiability testing [GvMWOO], devel-
opingg a modal version of the test set has naturally received a lot of attention. We 
willl see now how propositional 3SAT has been expanded into modal and hybrid 
CNFF formula generation. 

2.5.22 Random Modal CNF 

InIn this test set, the formulas to be checked for satisfiability are randomly generated 
CNFnmm formulas. A CNFDfn formula is a conjunction of CNFGm clauses, where 
eachh clause is a disjunction of a certain number of either propositional or modal 
literals.. A literal is either an atom or its negation, and modal atoms are formulas 
off the form O^C, where C is a CNFDm clause. A 3CNFam formula is a CNFDm 

formulaa where all clauses have exactly 3 literals. 
Thee latest version [PSS03] of this generator accepts five main parameters: the 

maximumm modal depth D, the number of propositional variables N, the number 
off modalities m, the number of clauses L, and the probability p of an atom 
occurringg at depths less than d being purely propositional. Although the usual 
numberr of literals per clause is 3, the generator gives a great degree of control 
overr the clause size. In fact, both modal/propositional balance and clause size 
probabilityy distributions can be specified either as constants or as a function of 
modall depth. 

Givenn these parameters, a CNFDfB formula of depth D is a set of L clauses, 
eachh made up of a number (chosen randomly according to the clause size proba-
bilityy distribution) of distinct modal CNF disjuncts, each consisting of either 

•• a proposition from the set {P i , . . . , P/v}, or 

•• (if D > 0) a disjunct D rC, where Dr e {D^ . . . , Dm}, and C is a CNFDm 

clausee of depth (D — 1). 
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Thee way this test method works is the following: all the parameters but L are 
fixed,fixed, and then a range for L is selected that covers the transition from 'only 
satisfiablee formulas generated' to 'only unsatisfiable formulas generated'. For 
valuesvalues of L covering this range, a tuple of the parameters' values is defined. A 
fixedfixed number of formulas (usually a hundred or more) is generated and given as 
inputt to the prover under test, generally with a time limit. Satisfiability rates, 
median/90t/ll percentile of CPU time elapsed, and other possible indicators are 
plottedd against either L or L/N. 

Thee original 3CNFam test set had a series of problems with respect to the fit-
nesss criteria we introduced [HS97, HPSSOO]. One concerned redundancy: as the 
originall generator did not check for repetition of propositional variables inside 
thee same clause, the generated formulas could contain propositional tautologies. 
Thiss made the effective size of a problem much smaller. The same problem was 
detectedd for the modal atoms [GGST98]. The other problem was triviality: for 
certainn values of the generator's parameters, the formulas generated contained 
enoughh purely propositional clauses that they could be solved without recourse 
too modal reasoning. This methodology has now gone through a series of improve-
ments,, and is believed to be fully compliant with the fitness criteria. 

CNFF and hybrid logics The random modal CNF generation is very appealing 
too us as a method for generating hybrid formulas: it is simple to expand, its 
trivialityy issues are under control, and (at least for modal logic) it provides the 
mostt coverage of the input space. We decided to use the CNFDfn test set as a 
basee for our hybrid test set; 

Wee used the latest version of the generator [PSS03] to develop a test set for 
hybridd logics to benchmark the HyLoRes prover [AH02b]. 

2.5.33 Random Hybrid CNF 

Whyy is a new test set necessary? In Chapter 4 we will introduce HyLoRes, 
aa theorem prover for hybrid logics based on direct resolution [AH02b]. We made 
extensivee use of empirical testing to evaluate our development work on the basic 
algorithm,, but the available test sets were not sufficient to evaluate the prover 
onn the aspect that was most distinguishing of HyLoRes, that is, its ability to deal 
withh hybrid formulas. We had a few handcrafted hybrid formulas, but in order to 
doo some exploration of the hybrid satisfiability space we needed a more thorough 
tool.. We decided to expand the algorithm presented in the latest version of the 
modall CNF test set to generate hybrid logic formulas. 

Basicc Idea. We decided to make as few changes as possible to the algorithm 
describedd in [PSS03], and add the @, | and A (universal modality) operators. 
Thiss requires us to talk not about modal depth, but about operator depth, which 
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iss defined as the level of nesting of a specific operator, independently of the others. 
Forr example, the formula 

@»,, (Pi V |xi.(p2 V Oi fo V @Xlm) V Oiipa V pa))) 

hass modal depth 1, ©-depth 2, and 4-depth 1. Also, instead of propositions we 
usee atoms of hybrid logic, that is, propositions, nominals, and state variables. 

Parameters.. The program accepts as parameters: 

•• The maximum nesting of operators, D (generalizes modal depth) 

•• The number of prepositional variables, nominals, and state variables, iVp, Nn 

andd Nx 

 The number of modalities, Nm 

 The number of clauses, L 
•• The distribution of probabilities for clause size (a list [/i,... , / n ] , with fc 

thee relative frequency of clauses of size i) 

•• The probability for a disjunct of being non-atomic, Pop 

•• The relative frequencies of modalities, ©-operators, 4- operators, and the 
universall modality as main operator in non-atomic disjuncts, Pmod, Pdovmi Pau 
andd puniv 

•• The relative frequencies of propositions, nominals and state variables when 
thee disjunct is an atom, pvrop,pnom, and psvar 

•• The probability for any literal of appearing negated, pneg 

•• The number of instances to generate, numinst 
Givenn these parameters, a hybrid CNF formula of depth D is a set of L clauses, 
eachh made up of (a number between 1 and n chosen with relative frequencies 
[fi,[fi,...,...,  ƒ„] of) distinct hybrid CNF disjuncts, each consisting of either 

•• a proposition from the set {Pi , . . . , P/vp}> or 
•• a nominal from the set {n i , . . . , n^ n } , or 
•• a state variable from the set {x\,..., Xffx}, or 
•• (if D > 0) 

-- a disjunct DrC, where •,. € {d i , . . . , Ejvm}, and C is a random hybrid 
CNFF clause of depth (D - 1), or 

-- a disjunct @nC, where n € {ni , . . . , nNn}, and C is a random hybrid 
CNFF clause of depth (D - 1), or 

-- a disjunct ixr op C, where xr € {xi,...,xpfx}, op is one of {@, • , A} 
andd C is a random hybrid CNF clause with depth (D — 1), or 

-- a disjunct AC, where C is a random hybrid CNF clause of depth 
( D - l ) . . 
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Algorithmm Used. The algorithm used to generate the formulas is as follows: 

genn .clauses (params) 
forr i := 1 to L do Cli := gen_cl(params); 
returnn (AÏLi Clt); 

gen_cl(params) ) 
ndd := rndJength(params.C); 
nopp := rnd_numops(nd, params); 
Atomss := rnd_atoms(params, nd — nop); 
Opss := rnd_opsd(nop, params); 
OCC := {}; 
foreachh op^ in Ops 

OCC := OC U {op» (gen_cl(params{depth := depth — 1))} 
return(VV OC V V Atoms); 

rnd_numops(nd,, params) 
iff (params.depth = 0) then 0 
elsee rnd-fc d(nd, params.pop); 

rnd^atoms(params,, nat) 
iff (nat = 0) then {} 
elsee Atoms := rnd^atoms (params, nat — 1); 

atomm := rnd_atom(Atoms, params); 
return(Atomss U atom); 

rnd-ops(n,, params) 
iff (n = 0) then {} 
elsee Ops := rnd_ops(params, n — 1); 

opp := rnd_op(params); 
return(Opss U op); 

Figuree 2.9: Test generation structure 

Thee outline of the algorithm used to generate hybrid CNF formulas is given in 
Figuree 2.9. The function rnd-atom(v4£oms, params) returns a random atom not 
inn the set Atoms, respecting the relative frequencies of the different types of atom 
ass given in params. rndJfc(nd, params.pop) takes as arguments the number of 
disjunctss nd and the proportion of non-atomic disjuncts in a clause, params.pop. 
Iff  prop = nd  params.pop is an integer, it returns prop, otherwise it returns [prop] 
withh probability prop—[prop\, or [prop\ otherwise (probability \prop] —prop). 

file:///prop
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Thiss prevents the accidental creation of clauses in which all disjuncts are atomic, 
whichh has been a source of triviality in early modal CNF test set generators [HS97, 
HPSSOO,, PSS03]. rnd-op(params) returns an operator according to the relative 
frequenciess stated in params, optionally enforcing maximum nesting per operator. 
AA special case is the l operator, which always precedes another operator; the 
reasonn is explained later. 

Differencess with the random modal CNF generator. In the presence of 
multiplee modalities, the satisfiability operator and the universal modality, the 
notionn of modal-depth becomes rather involved. In hGen, we work instead with a 
globall notion of depth defined as operator nesting (this together with the prob-
abilitiess for each operator, allows strict control over the generation of formulas 
forr fragments of %(@, |,A) defined in terms of operator nesting). Clause size 
probabilityy distribution is kept constant. This departs from the generator pre-
sentedd in [PSS03]: in that generator, it is possible to select a different clause size 
distributionn and modal/propositional balance for each modal depth; we are not 
convincedd such a feature can be meaningfully generalized to hybrid logic in a 
practicall way. We calculate the maximum nesting per operator from its probabil-
ityy of appearance and the total depth D; whether the calculated depths should 
bee enforced or not can be set from the command line. Since we're generating 
binderss and variables, we ensure that every appearing variable is bound, and we 
forcee bound variables to appear. 

Neww redundancy sources. The extended expressivity of the target languages 
thatt hGen can handle introduces new redundancy sources; the following cases are 
handledd by hGen. 

Forr all 0, lxi-(xi V (j>)  is a tautology, and conversely for all <j>,  lxi.(-<Xi  V (j>)  is 
equivalentt to 4̂ t-< -̂ Such formulas are never generated by hGen. Moreover, the 4-
operatorr does not cause its argument clause to be evaluated at another element 
inn the model, allowing for formulas of operator depth > 0 that still require no 
modell exploration. hGen introduces 4- only in expressions of the form ^ ( - ^ O ^ , 
4^t(_,)@n>^)) or iXi(->)A<j).  Otherwise the clause would be equivalent to one in 
whichh all the atomic disjuncts are outside of the scope of the 4- (since we're 
banningg the bound variable from appearing at the same level it is bound in), 
effectivelyy altering the clause size. There are two cases to consider when we want 
too place the | operator, the difference being whether we are enforcing maximum 
nestingg to be per operator or global: if global, then no further considerations 
aree necessary, but if the maximum nesting is enforced per operator, then it can 
happenn that all possible occurrences of @, Dj and A have already appeared when 
wee select the I, in which case it will be replaced by an atom. 

Withh respect to the @ operator, for any <j>,  @ni (ni V 0) is a tautology, and 
©nit -1"!!  V <f>)  is equivalent to @m<j>.  Again, such formulas are not generated by 
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hGen:: when generating the argument clause for an operator of the form @„C, the 
nominall n is never chosen by rnd_atoms. 

Implementation.. hGen is implemented in Haskell; it can be compiled with 
GHCC 5.04 [GHC]. The use of random generators (an eminently imperative task) 
inn the context of a purely functional language is transparently handled through a 
Statee monad; we keep the random seed as the state, and all functions that need 
too generate random numbers are monadic. See [Wad95] for more about monads 
inn functional programming. 

Usingg hGen as a modal test set. Since we are extending the language of 
thee formulas generated with the modal CNF algorithm, it is important to verify 
thatt constraining the generator to modal formulas produced similar results to 
thosee obtained with the generator from [PSS03]. We decided to run a series of 
benchmarkss and see if the results compared, in terms of mean difficulty, location 
off the easy-hard-easy pattern, and shape of the satisfiability fraction plot. 

Experimentall setting. We used a 1.6 GHz Pentium 4 computer running Linux 
Redd Hat 7.3 for the tests, and fixing all the parameters but L, we ran the tests 
forr L/N going from 1 to 80, with 50 instances per data point, for N going from 3 
too 8. Modal depth was fixed at 1. We set the parameters of the generator to only 
producee modal formulas, and checked whether the runs showed any variations 
withh respect to runs of the Modal CNF test set for equivalent parameter sets. 
Thee prover we used for this benchmark was *SAT [*SA]; we ran the tests with a 
timeoutt of 300 seconds. 

Results.. The results are displayed in Figure 2.10. The first row displays the 
satisfiable/unsatisfiablee fractions; the second row shows the median of the CPU 
timee used for every data point, and the third row shows the 90th percentile of 
thee CPU times. The experiment confirmed that, for equivalent parameter sets, 
thee behavior of both test sets was very similar, in terms of location of the sat-
isfiable/unsatisfiablee transition and overall difficulty4. We are aware that the 
numberr of problems per data point (50) is not the best, and maybe 100 samples 
perr data point would give more accurate results and smoother curves; this can 
bee considered preliminary testing. 

Off course, the Modal CNF test set allows for specification of clause size proba-
bilityy distribution and modal/propositional balance as a function of modal depth, 
whilee the hybrid CNF generator only accepts constant distributions, so the rela-
tionshipp between the test sets is more one of overlap than one of inclusion. One 
intriguingg thing that can be seen in the 90th percentile graphs is a second "hump" 

44 Our filesystem is networked, which means it takes longer for files to load; this accounts for 
thee steady increase in solve times as a function of L/N. We apologize for the inconvenience 
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inn the graph, for N — 8, around L/N = 50, in both plots. We plan to further 
investigatee the phenomenon. 

Satisfiable/unsatisfiablee fraction (Hybrid CNF) Satisfiable/unsatisfiable fraction (Modal CNF) 

Mediann times (Modal CNF) 
•SAT:: C-3. lta3-«. 0 . 1 . UN.1-B0 

90""" percentile times (Hybrid CNF) 90"" percentile times (Modal CNF) 

Figuree 2.10: Results of the comparison between Hybrid and Modal CNF 

2.66 Conclusion 

Wee have given an overview of the different empirical test methodologies for modal 
theoremm provers, and we have seen that since there are many criteria, each test set 
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hass its own place. The Heuerding and Schwendimann test set focuses on narrow 
problemss and can be used with developing modal theorem provers, although it 
cannott distinguish between mature provers; the random modal QBF test set 
providess nontrivial doable problems of a good modal depth, however the coverage 
off the input space is poor, and the results obtained with it might not carry over to 
otherr areas of the input space; finally, the random CNFDfn generator can produce 
formulass that range all over the input space, and we think is the one to use 
forr empirical comparison of mature modal theorem provers. We will be using 
alll the modal test sets, however, to estimate the relative merits of the different 
translationss from modal logic into FOL in Chapter 3. We also introduced a new 
testt set generator, based on modal CNFam that produces random hybrid CNF 
formulas;; this test set will be useful for testing HyLoRes in Chapter 4. 



Chapterr 3 
Modall Theorem Proving: 

Translationss into First Order Logic 

NotNot knowing is like not seeing. 
-Old-Old Spanish proverb 

3.11 Introduction 

Forr many years, the main logic used in automated theorem proving has been clas-
sicall logic. However, as we have seen in Chapter 1, for some applications other 
logicss may be more suitable, be it because they express more naturally the con-
ceptss at hand, or because the full expressive power of classical logic is not needed, 
orr not sufficient. Sometimes, then, we want to work with other logics; we have 
inn that case the choice of developing tools which are specific to the logic, usu-
allyally from scratch, or take advantage of the wealth of tools available for classical 
FOL,, if a suitable translation from our logic exists. Broadly speaking, there are 
threee general strategies for modal theorem proving: (1) develop purpose-built cal-
culii and tools [PS98, *SA]; (2) translate modal problems into automata-theoretic 
problems,, and use automata-theoretic methods to obtain answers [PSV02]; and 
(3)) translate modal problems into first order problems, and use general first order 
toolss [MSP]. The advantage of indirect methods such as (2) and (3) is that they 
alloww us to re-use well-developed and well-supported tools instead of having to 
developp new ones from scratch. 

Inn this chapter we focus on the third option: translation-based theorem prov-
ingg for modal logic, where modal formulas and reasoning problems are translated 
intoo first order formulas and into reasoning problems to be fed to first order the-
oremm provers. Since most of the state of the art first order theorem provers are 
basedd on resolution, one aspect we will pay particular attention to is the inter-
actionn between the translated formulas and the mechanics of resolution-based 
theoremm proving. The rest of this chapter is organized as follows: first, we will 

45 5 
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introducee the basics of resolution-based theorem proving; then, we will recall 
thee relational translation from modal logic to FOL[vB83], and we'll show how 
wee run into trouble if we want to perform resolution on the resulting formulas. 
Thenn we will discuss an alternative strategy for improving the effectiveness of FO 
proverss on (translated) modal input:the functional translation [ONdRGOO], which 
hass been integrated with the SPASS first order theorem prover, resulting in the 
MSPASSS theorem prover [MSP]. Finally, we will introduce an improvement on 
thee relational translation: the layered translation [AGHdROO], and show its effects 
onn resolution-based theorem proving. 

3.22 Resolution Theorem Proving in a Nutshell 
Resolutionn theorem proving was invented by Robinson [Rob65]; the basic idea 
behindd it is to derive new formulas from a set of given ones, by applying certain 
inferenceinference rules, in the hope of arriving at a contradiction. We refer to [BG01] for a 
detailedd exposition. When no more formulas can be inferred, and a contradiction 
hass not been derived, the conclusion is that the formula is satisfiable; we have then 
arrivedd at a saturation. When implementing a resolution-based theorem prover, 
aa key problem that has to be solved is finding a good strategy for choosing, at 
eachh step, which formulas to process and which inference rules to use in order to 
minimizee the search space. 

Thee resolution rule. The resolution principle for prepositional logic is stated 
ass follows: 

AA V B ^AVC 
BvC BvC 

Thee rationale for the resolution rule is that for both A V B and ->A V C to be 
truee in the same model, either B will have to be true (when A is false) or C will 
havee to be true (when A is true). Since A will be either true or false, we can infer 
BwCBwC (the resolvent of A V B and ->A V C) from these premises. This extends 
too first order logic in the following way: 

AA V C ^B\/D 
(C(C V D)a 

wheree a is the mgu of the atomic formulas A and B, and factoring: 

CvAvB CvAvB 
(CC V A)a 

wheree a is the most general unifier (mgu) of the atomic formulas A and B. For-
mulass are assumed to be in clause form. That is, a conjunction of clauses, which 
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aree defined as quantifier-free disjunctions of literals. A literal is an expression 
AA (positive literal) or ->A (negative literal), where A is an atomic formula, or 
atom.atom. An atom is an expression P(h,...,tn), where P is a predicate symbol of 
arityy n and t\,... ,tn are terms. All variables are implicitly universally quanti-
fied;fied; any variables originally existentially quantified are replaced by skolem terms; 
thatt is, terms of the form / ( x i , . . . ,xn), where ƒ does not otherwise appear in 
thee formula and x\,...,xn are universally quantified at the position where the 
existentiall quantifier appears. The search for a contradiction consists of system-
aticallyy applying the inference rules until either a contradiction is found or no 
furtherr rules can be applied. Resolution with factoring is refutationally complete 
forr first order logic without equality; that is, a contradiction can be inferred from 
anyy unsatisfiable set of clauses [BG01]. 

Reasoningg with equality. Improving the behavior of resolution-based meth-
odss with respect to the equality predicate has naturally received a lot of attention, 
givenn the relevance of reasoning with equality in mathematics, logic and computer 
science.. In principle, a set of formulas can be expanded with a series of axioms 
aboutt equality to ensure the properties of equality are respected (monotonicity, 
symmetry,, transitivity, reflexivity), but this usually results in the generation of 
excessivee numbers of unnecesary clauses. Robinson and Wos [RW69] discovered 
anotherr way of dealing with equality: treating it as part of the logical language, 
andd developing dedicated inference rules for first order logic with equality. An 
examplee of this is the paramodulation rule: 

wheree D \p is the subterm of D at position p, and D[t]p denotes the result of 
replacingg in D this subterm by p. The addition of paramodulation to resolution 
andd factoring has been proved refutation complete, under the presence of the 
reflexivityy axiom x ~ x [Bra75]. 

Givenn that all the rules presented generate new clauses, therefore extending 
thee search space, a very important aspect of resolution theorem proving is do-
ingg an efficient search. Also, some of the generated clauses will be redundant, 
andd some will make preexisting clauses redundant. Accordingly, for most refuta-
tionall provers, a substantial part of the program is devoted to guiding the proof 
effortt and discarding redundant clauses to prune the search space. While the 
worst-casee complexity is not affected, the average case performance gains can be 
dramaticc [BG01, VorOl]. 
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3.33 Translations from Modal Logic to First Or-
derr Logic 

Afterr our quick reminder of basic facts on first order resolution, we turn to map-
pingg modal logic into FO formulas, keeping in mind that our goal is to use a first 
orderr prover to determine their satisfiability status. 

3.3.11 The Relational Translation 

Ourr first step will be to define suitable first order languages that we can translate 
to.. Let Index be an index set. Consider the language MC as presented in 
Definitionn 1.4.3, with REL = {R}, and the multi-modal language MMC, with 
RELL = {Ra | a G Index}. The vocabulary of the first order language TO\ has 
unaryy relation symbols P corresponding to the proposition letters in PROP, and 
aa single binary relation symbol R. Instead of a single binary relation symbol R, 
thee vocabulary of the first order language TÖ2 has binary relation symbols Ra, 
forr every a € Index. 

Modelss for MC and MMC can also be viewed as models for the corresponding 
firstfirst order languages Tö\ and Fö2, respectively. To interpret the unary relation 
symbols,, we simply look up the values of the corresponding proposition letters in 
thee valuation. 

3.3.1.. DEFINITION. [Relational Translation] The relational translation ST{<p) of 
uni-modall formulas (f> into first order formulas of Tö\, is defined as follows. Let 
xx be an individual variable. 

STSTxx(p)(p) = P(x) (3.1) 

STSTxx(-*t>)(-*t>)  = -^STx(<j>) 

STSTXX(4>ATP)(4>ATP) = STx{<f*)ASTx{i>) 

STSTxx(0<f>)(0<f>)  = 3y(RxyASTy(<t>)).  (3.2) 

Inn (3.1), P is the unary relation symbol corresponding to the proposition letter 
p;; in (3.2), the variable y is fresh. Observe how (3.2) reflects the truth definition 
forr the modal operator O. The translation ST is easily extended to a translation 
takingg multi-modal formulas into FÖ2, by using the relation symbol Ra instead 
off just R in the translation of the modal operator (a). 

Forr example, the modal formula ü(p -> Op) translates into the first order formula 
Vyy (Rxy - • (Py -¥ 3z (Ryz A Pz))). 

Onee can show that a modal formula is satisfiable if and only if its relational 
translationn is [vB83]. This effectively embeds the modal languages considered here 
intoo first order languages, and, thus, opens the way to solving modal problems by 
firstfirst order means. The resulting first order fragments can be described as follows. 
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3.3.2.. DEFINITION. [Modal Fragment] Let x be an individual variable. The 
modalmodal fragment MF of Tö\ is built up from unary atoms Px, using negation, 
conjunction,, and guarded quantifications of the form 3y(Rxy A a[x (-• y\) and 
VyVy (Rxy ~¥ a[x •-)• y\), where y is fresh, and a[x *-¥ y] is the result of replacing 
alll free occurrences of x in a by y, and a(x) 6 MF only has x free. Observe that 
thee relational translation maps modal formulas into MF. The modal fragment of 
TÖ2TÖ2 is defined analogously. 

Wee have seen a method to verify (un)satisfiability of formulas in FOL, and a way 
off translating modal formulas into FOL: we will now see how the two interact. 

3.3.3.. EXAMPLE. Consider the formula D(p -¥ Op) again; it is clearly satisfiable. 
Provingg this in first order logic amounts to showing that the translation of the 
formula,, Vy(Rxy —>• (Py —> 3z(Ryz A Pz))) is satisfiable, or equivalently, that 
thee following set of clauses is satisfiable. 

1.. {-.H(c,y), -P(y) , R(yJ(y))} 

2.. {^R(c,z), -iP(z), P(f(z))}. 

Thee clauses have two resolvents (fn is ƒ applied n times): 

3.. H f e c ) , ^P(c), -P( / (c ) ) , P(f2(c))} 

4.. {-.*(c, ƒ(*)), R(f(z)J2(z)), ^R(c,z), --P(*)}. 

Clausess 2 and 4 resolve to produce 

5.. {^R(c,/2(2)), W a ( z ) , ƒ»(*)), -*(*,ƒ(*)), -*(c ,*) , -PCs)}. 
Clausess 2 and 5 resolve again to produce an analogue of 5 with even higher 
term-complexity,, etc. None of the clauses is redundant and can be deleted; in 
thee limit our input set has infinitely many resolvents. This shows that standard 
resolutionn does not necessarily terminate for relational translations of satisfiable 
modall formulas. 

Whatt went wrong in Example 3.3.3? First, to obtain the resolvent in step 3, 
aa positive and negative binary literal were resolved; note that these literals (or 
rather:: the modal operators from which they derive) live at different modal depths 
inn the original modal formula ü(p -*• Op). This resolution step is useless: the 
negativee ^-literal derives from the D-operator which occurs at modal depth 0, 
andd the positive i?-literal comes from the O-operator which occurs at modal 
depthh 1. Unless we explicitly stipulate so (by means of axioms), different modal 
depthss are completely independent and should not resolve. A similar comment 
cann be made about the resolvent obtained in step 4, where a positive and negative 
unaryy literal corresponding to the two occurrences of the proposition letter p were 
resolvedd upon. 

AA number of solutions have been proposed for this problem: we'll review 
herehere the functional translation [ONdRGOO] and the layered relational transla­
tionn [AGHdROO]. 
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3.3.22 The Functional Translation 

Thee functional translation is based on an alternative semantics of modal logic. 
Thee fundamental idea is to represent each binary relation as a set of (partial 
orr total) functions. It appeared simultaneously and independently in a number 
off publications: see [Ohl88, LFdC88, Her89, Zam89, AE92]. We give a short 
introductionn of the translation as presented in [ONdRGOO] 

3.3.4.. PROPOSITION. For any binary relation R on a non-empty set W there is 
aa set AFR of accessibility functions, that is, a set of partial functions 7 : W —> W, 
suchsuch that 

Vz,, y (R(x, y) <=ï (37 e AFR 7(x) = y))). 

Too avoid quantification over function symbols, a list notation is introduced, in 
whichh any term ^(x) is written as [xj]. [•, •] denotes the functional application 
operationn which is defined to be a mapping from a domain W to the set of 
alll partial functions over W. So complex terms of the form 7m(- • • (72(71(2)))) 
becomee terms of the form [[[[£7i]72] • • -]7m]- Of course, when the accessibility 
relationn R is not serial, it cannot be properly represented by any set of total 
functions.. As the target logic for the translation demands total functions ([2:7] is 
aa first order term and will always have an interpretation), a special element _L is 
adjoinedd to the domain W of the model at hand. Now, every function 7 will map 
thee elements which have no successor under R to the special element X, and a 
speciall 'dead end' predicate, deRl is introduced, defined as follows: 

3.3.5.. DEFINITION. The dead-end predicate, representing the absence of succes­
sors,, is defined as 

Vx{deVx{deRR{x){x) «=>> V 7(7 e AFR -> [37] = X)). 

3.3.6.. THEOREM. Let Rbea binary relation on a set W, and let W1- =
Then,Then, the following defines R in terms of a set AFR of total functions 7 : W1- —• 
WW : : 

Vz,, y{W (R(x, y) <F=Ï  (^deR{x) A 3 7 (7 e AFR A [xj] =  y)))), 

wherewhere deR is defined in 3.3.5 

3.3.7.. DEFINITION. A functional frame is a 4-tuple T — {W, de, AF, [•, •]), where 
WW is a non-empty set, de is a subset of W, AF is a set of total functions 7 : W —)• 
W,W, and [•, •] : W x AF -* W the functional application operation. 
AA functional model is a pair J = (ƒ", P), where T is a functional frame, and P is 
aa valuation. The new truth definition for the diamond operator is 

S,, w \= O A iff w <£ de and 3j{AF (J, [wy] \=  A)), 

andd dually for the box operator. 
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3.3.8.. DEFINITION. Following [Sch97], we choose as our target a many-sorted 
logicc with a sort hierarchy and set declarations for function symbols [Wal94]. In 
thiss logic, a sort symbol can be viewed as a unary predicate and it denotes a 
subsett of the domain. For the functional translation we introduce the sorts W 
andd AF. The variables x, y,z,..., are assumed to be of the sort W\ the functional 
variabless are denoted by Ai, A2,..., and are of sort AF. The sort of the operator 
[-,, •] is W x AF -*• W. The functional translation FT(t,A) is defined as follows: 

P(t) P(t) 
->FT(t,A) ->FT(t,A) 
FT{t,FT{t, A) V FT(t, B) 
FT(t,A)AFT{t,B) FT(t,A)AFT{t,B) 

ƒƒ 37(AF(FT([*y],A))) if R is serial, 
ii -ide{t) A3y(AF(FT(t-y,A))), otherwise 

ƒƒ V7 (AF(FT([ti\, A))) if Ris serial, 
ii ->de(*) -+V-y(AF(FT{tj,A))), otherwise 

Whilee the functional translation results in great improvements for theorem prov­
ingg over the relational translation, as seen for example in Figure 4.5(b), we believe 
wee can improve the performance for theorem proving without departing so much 
fromm the inspiration behind the relational translation. 

Wee will boost the performance of resolution procedures on the relational trans­
lationn of modal formulas by making literals living at different modal depths syn­
tacticallyy different. The mathematical justification for these ideas is provided 
byy a strong form of the tree model property, as we will explain in the following 
section. . 

3.3.33 The Tree Model Property 

Too increase the performance of general first order theorem provers on 'modal 
input',, we will feed them with information about its modal character. More 
precisely,, we will aim to encode by syntactic means the fact that basic modal 
logicc enjoys a very strong form of the tree model property. In recent years, the 
latterr has been identified as one of the semantic key features explaining the good 
logicall and computational behavior of many modal logics; see [GraOl, Var97] for 
twoo very accessible presentations. 

First,, by a tree T we mean a relational structure (T, 5) where T, the set of 
nodes,, contains a unique r eT (called the root) such that Vt € T(S*rt); every 
elementt of T distinct from r has a unique 5-predecessor; and S+ is acyclic; that 
is,, Vt(->S+tt). (Here, S+ and 5* denote the transitive and reflexive, transitive 
closuree of 5, respectively.) 

FT(t,p)FT(t,p) = 
FT(t,-*A)FT(t,-*A) = 

FT{t,A\/B)FT{t,A\/B) = 

FT{t,AAB)FT{t,AAB) = 

FT{t,OA)FT{t,OA) = 

FT{t,UA)FT{t,UA) = 
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AA tree model (for the uni-modal language MC) is a model M = {W, R, V), 
wheree (W, R) is a tree. A tree-like model for the multi-modal language M.M.C is a 
modell (W, {Ra \ a € Index}, V) such that (W, \Ja Ra) is a tree. A logic L has the 
treetree model property if every L-satisfiable formula is satisfiable at the root of a tree 
orr tree-like model for L. Observe that the tree model property is incomparable 
too the finite model property; there are modal logics where the former fails but 
thee latter holds, and vice versa. For example, the logic %(@) has the finite model 
propertyy but not the tree model property, and the fixed point logic with chop 
(FLC)) has the tree model property but not the finite model property [LS02]. 

3.3.9.. PROPOSITION. [BdRVOlJ 

1.1. The basic uni-modal logic of the language /AC has the tree model property. 

2.2. The basic multi-modal logic of the language M.M.C has the tree model prop-
erty. erty. 

Manyy modal logics, including K and K(m), enjoy stronger versions of the tree 
modell property, where the degree of the tree model can be bounded by the size 
off the formula [BdRVOl]. But K and K(m) enjoy an even stronger version of 
thee tree model property. The key notion here is that of layering, both w.r.t. 
treee models and w.r.t. formulas. Tree (or tree-like) models come with a lay-
eringg induced by the depth of the nodes. Likewise, the parse tree of a modal 
formulaa induces a natural formula layering, where new layers begin immedi-
atelyy below nodes labeled by modal operators. For instance, in D(p —• Op), 
thee • occurs in layer 0, while the O occurs in layer 1, with its argument in 
layerr 2. Next, the modal depth, mdepth(0), of a uni-modal or multi-modal 
formulaa 0 is defined as follows. Proposition letters p have mdepth(p) = 0; 
mdepth(-'V)) = mdepth(^); mdepth(V'Ax) = max(mdepth(V>),mdepth(x)), while 
mdepth(O^)) = mdepth((a)V>) = 1 + mdepth(V0-

3.3.10.. PROPOSITION. Let (f> be a modal formula, and M be a tree (or tree-like) 
modelmodel with root w such that M.,w f= <f>. 

LetLet ip be a subformula of <j>  which occurs in formula layer I and which has 
modalmodal depth k. To determine the truth value ofip we only need to consider nodes 
atat tree depth i, where I <i < k + l. 

Inn words: there is a direct correlation between formula layers and layers in a 
treee (or tree-like) model; as a consequence, literals occurring at different formula 
layerss should not resolve and need not be combined. 

3.3.44 The Layered Translation 

Fromm Uni-Modal to First Order. The key idea behind our improved trans­
lationn of modal formulas into first order formulas is to label unary and binary 
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relationss according to the number of modal operators nested within a modal for-
mula.. For instance, the formula p is translated into PQX, while the formula Op 
becomess 3y (RixyAPiy). The index 1 of the relation symbols Ri and Pi measures 
thee modal depth of the modal formula. 

Too motivate the translation of uni-modal M.L formulas into an intermedi-
atee multi-modal language, consider the following examples, where we use new 
operatorss and new proposition letters each time we change modal depth: 

OOpp H* <>xOiP% 

D(pp - • Op) i-> D i (p i -> 02 p 2 ) . 

Iff we then apply the relational translation (Definition 3.3.1) to the intermedi­
atee multi-modal representations, we obtain 3y {R\xy A 3z [R^yz A P<iz)) and 
Vyy (R\xy -+ {P\y —• 3z (R^yz A P2Z))), respectively. Observe that the prob­
lematicc derivation from the relational translation of ö(p -» Op) in Example 3.3.3 
iss no longer possible with the new first order translation. 

Too make things precise, we need an intermediate multi-modal language M.M.Cy 

whosee collection of modal operators is {0< | i > 0}. 

3.3.11.. DEFINITION. Let <f>  be a uni-modal formula. Let n be a natural number. 
Thee translation Tr(4>, n) of <j>  into the intermediate modal language MMC is 
definedd as follows: 

Tr(p,n)Tr(p,n) := pn 

Tr(^ip,n)Tr(^ip,n) := -.2V(>,n) 

Tr{tpATr{tpAXX,n),n) := TVty.n) A Tr{X,n) 

Tr{Oil),n)Tr{Oil),n) := On+17V(</>,n + 1). 

Ourr next aim is to show that the intermediate translation Tr preserves satisfia­
bility. . 

3.3.12.. PROPOSITION. Let 4> be a uni-modal formula. If <j>  is satisfiable, then so 
isis its intermediate multi-modal translation Tr((f>,0). 

Proof.Proof. By Proposition 3.3.9 we may assume that <f>  is satisfiable at the root w of 
aa tree model JA — (W, R, V). Since M, is a tree model, for every state v € W 
theree exists a unique path of .R-steps from the root w to v\ let d(w, v) denote the 
lengthh of this path. 

Wee define a model J\f = (W, {Rn+i \ n > 0}, V) for the intermediate multi­
modall language M.M.C, by taking its universe to be W, the universe of M.. Its 
relationss are defined by stipulating that Rn+i(u,v) holds iff d(w,u) = n and 
R(u,R(u, v) both hold. We complete the definition of J\f by defining the valuation V: 
forr every proposition letter p and every state v € W such that d(w, v) = n, we 
putt v € V'(Tr(p,n)) iff v € V(p). 
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Wee leave it to the reader to show that for every uni-modal formula <£, every 
statee u and every n such that d(w, v) v) = n, we have M, v |= <f>  iff  JV, v (= Tr(4>, n). 
Promm this the lemma follows. H 

3.3.13.. PROPOSITION. Let <f>be a uni-modal formula. If its intermediate multi-
modalmodal translation Tr(4>, 0) is satisfiable, then so is <j>. 

Proof.Proof. Let Tr(<j>,  0) be satisfied at some state w in some model M for the in-
termediatee multi-modal language M.M.C. As before we may assume that M. is 
aa tree-like model with root w. We define a uni-modal model M which differs 
fromm M in that it has only one relation (R) and in its valuation. The relation 
RR consists of all pairs (u, v) such that (u, v) € Rn+i and d(w, u) = n, where 
d(w,u)d(w,u) is the length of the path from w to u (in M). The valuation V' of our 
modell M is defined as follows: for every proposition letter p, for every v such 
thatt d(w, v) = n, we put v € V(j>) iff v G V(7V(p, n)), where V is .M's valuation. 
Onee can then show that if d(w1 v) = n, then M,v (= 7V(0,n) iff jV, v (= 0. This 
impliess the lemma. H 

3.3.14.. DEFINITION. The layered relational translation is the composition of Tr 
andd ST. 

3.3.15.. THEOREM. Let (j>  be a uni-modal formula. Then <f>  is satisfiable iff its 
layeredlayered relational translation ST(Tr((f>,0)) is. 

Wee contend that the layered translation greatly improves the performance of 
resolutionn procedures for the satisfiability problem of translated modal formulas. 

3.44 Comparing the approaches: Experimental 
results s 

Wee will now see how the different translations compare, in terms of the efficiency 
forr resolution theorem proving. We will compare the layered translation approach 
withh both the relational translation and the functional translation, using the test 
setss reviewed in Chapter 2. We do the comparisons separately to better appreciate 
thee differences: the formulas that result from the relational translation take so 
longg to solve that showing results for the three translations together would not 
permitt a correct appreciation of the difference between formulas created with 
thee layered and functional translations. Before going into the test results, we 
commentt on the problem sets and theorem provers used in our experiments. 

Thee Problem Sets To evaluate our tree-based heuristics, we have run a 
seriess of tests on a number of problem sets. To compare the relational and layered 
translations,, we used the Heuerding and Schwendimann test set and the modal 
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QBFF test set; provers take too long with the relational translation of Modal CNF 
formulas.. For the comparison between the functional and layered translation, we 
foundd that easy modal CNF runs were feasible, so we used the modal CNF for 
thatt test. 
Thee Theorem Provers. The comparisons between the layered and relational 
translationss were performed on a Sun ULTRA II (300MHz) with 1Gb RAM, 
underr Solaris 5.2.5, with SPASS version 1.0.3 and MSPASS version V 1.0.0t.l.3. 
SPASSS [SPA] is an automated theorem prover for full sorted first order logic 
withh equality that extends superposition by sorts and a splitting rule for case 
analysis;; it has been in development at the Max-Planck-Institut fur Informatik 
forr a number of years. MSPASS [MSP] is an enhancement of SPASS (Version 
l.O.Ot)) with a translator of modal formulae, formulae of description logics, and 
formulaee of the relational calculus into sorted first order logic with equality. For 
thee comparison between the layered and functional translations, a Pentium IV 
PCC with 256MB RAM running RedHat Linux 7.3 was used. 

SPASSS was invoked with the auto mode switched on; no sort constraints were 
built,, and both optimized and strong Skolemization were disabled. 

Layeredd vs Relational: Heuerding and Schwendimann. Table 3.1 dis-
playss the maximum number of problems of the Heuerding and Schwendimann 
testt set solved in less than 100 seconds each, the standard timeout for this test, 
byy the layered and relational translations. We see that he layered translation 
outperformedd the relational translation, being able to solve harder instances in 
almostt all categories. Interestingly, categories kjphjp and k.ph-n are known to be 
propositionallypropositionally hard; in these categories, the effect of layering is not expected to 
bee very noticeable, and indeed these are the only categories in which the layered 
translationn does not improve upon the relational translation (apart from kJinjp, 
whichh is too easy for both). 

Translation n 

relational l 
layered d 

branch h 
PP « 
33 3 
88 8 

d4 4 
PP n 
33 1 
111 7 

dum m 
PP n 
33 1 
211 21 

grz z 
PP n 
55 0 
211 21 

lin n 
PP n 
211 4 
211 5 

path h 
PP n 
44 2 
77 4 

ph h 
PP n 
55 5 
55 5 

poly y 
PP n 
55 4 
133 14 

t4p p 
PP n 
00 0 
133 6 

Tablee 3.1: Comparison using the Heuerding and Schwendimann test set. 

Layeredd vs Relational: Modal QBF. To explore the behavior of our heuris-
ticss in a larger portion of the landscape of the K-satisfiability problem, we gen-
eratedd sets of 10 random modal QBF problems for different sets of parameters. 
Tablee 3.2 compares the average time in CPU seconds and number of clauses gen-
eratedd for the two translations: layered and relational. "C/V/D" in the first 
columnn denotes the number of clauses, the number of variables, and the depth 
usedd in the generation. Columns labeled by "M" show the orders of magnitude 
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C/V/D D 

5/2/1 1 
10/2/1 1 
15/2/1 1 
5/2/2 2 

10/2/2 2 
15/2/2 2 
5/2/3 3 

10/2/3 3 
15/2/3 3 
5/2/4 4 

10/2/4 4 
15/2/4 4 
5/2/5 5 

10/2/5 5 
lb/2/5 lb/2/5 
5/3/1 1 

10/3/1 1 
15/3/1 1 
5/3/2 2 

10/3/2 2 
lb/3/2 lb/3/2 
5/3/3 3 

10/3/3 3 
15/3/3 3 

Average e Timee M 
Layeredd Relational 
0.53469 9 
0.41734 4 
0.10859 9 
0.66141 1 
0.78297 7 
0.75656 6 
36.048 8 
58.996 6 
94.192 2 
20.362 2 
33.084 4 
35.068 8 
1136.1 1 

2896 6 
3758.2 2 
7.1862 2 
9.752 2 

14.066 6 
7.0931 1 
8.3192 2 
9.3902 2 
1445.2 2 
4045.1 1 
4865.4 4 

9.62222 1 
3.99099 1 

0.131722 0 
450.444 3 
370.099 3 
147.388 2 

N/AA N/A 
N/AA N/A 

2094.44 1 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 

2047.99 2 
2324.22 2 
1506.88 2 

N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 

Averagee Clauses M 
Layered d 

726 6 
546 6 

10 0 
437 7 
500 0 
473 3 

10714 4 
15395 5 
20786 6 
3121 1 
4971 1 
5358 8 

48546 6 
91767 7 

106870 0 
4372 2 
5390 0 
6687 7 
1804 4 
2221 1 
2687 7 

52153 3 
107800 0 
119150 0 

Relational l 
56955 1 
23677 1 

100 0 
270299 2 
223066 2 
113688 1 
N/AA N/A 
N/AA N/A 

457988 0 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 

1059600 1 
1081100 1 
726055 1 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 
N/AA N/A 

Tablee 3.2: Comparison using the Modal QBF test set. 

off the difference between the preceding two columns, i.e., round(—1 *log(N/N')). 
Wee used a time out of 3 hours on a shared machine; N/A indicates that a value 
iss not available due to a time out. 

Ass can easily be seen from Table 3.2, our improved translation method out-
performedd the relational translation in every case, both in computing time (CPU 
time)) and number of clauses generated; this is not only an average behavior but 
itt was observed in each instance. For some configurations the drop in computing 
timee is as much as three orders of magnitude. The average number of clauses 
generatedd was nearly always smaller by at least one order of magnitude. 

Inn Figure 3.1 we display a sample from our experimental results: 64 instances 
off the 10/3/1 configuration. The top curve indicates the CPU time needed by the 
relationall translation, and the bottom one the CPU time needed by the layered 
translation.. Note that the relational translation can be very sensitive to certain 
hardd problems, which results in significant differences between easy and hard 
instances;; the layered method responds in a much more controlled way to hard 
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Figuree 3.1: Relational vs Layered: Time elapsed. 

(a)) (b) (c) 
Figuree 3.2: Easy-hard-easy. 

problems.. Interestingly, the curves follow each other, even at many orders of 
magnitudee of difference. This shows that our heuristics do not change the nature 
off the problem: they simply make it much easier for the resolution prover. 

Thee latter phenomenon can also be observed more globally. The plots in 
Figuree 3.2 were obtained with V = D = 2, while C ranged from 2 to 40. Fig-
uress 3.2 (a) and (b) show the number of clauses generated and the CPU time 
needed,, respectively, for the relational and layered method, while 3.2 (c) plots 
thee proportion of satisfiable instances as C increases. The curves for the rela-
tionall and layered methods are very similar, with the layered method lacking 
thee sharp lows and highs that seem to be characteristic for the relational method. 
Bothh display a clear easy-hard-easy behavior, but the layered translation improves 
performancee by several orders of magnitude. Note that the biggest improvements 
aree achieved in the satisfiable region, i.e., for C < 26. 

Oncee we were confident that the layered method consistently displayed a good 
behaviorr and a significant improvement over the relational translation, we ran the 
standardizedd tests provided by TANCS (64 instances randomly generated with 
thee 20-clauses/2-variables/2-depth parameters); see Figure 3.3 for the outcomes. 

Finally,, to obtain the results in Figure 3.4 we generated 64 instances of prob-
lemss for 2 and 3 variables with depths ranging from 1 to 6, again with a time out 
off 3 hours. The figure shows the average values we obtained. We ran the same 
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Figuree 3.3: Standard TANCS test 20/2/2. 

testss with the relational instead of the layered translation, but even for mod-
eratee depths the computing time and number of clauses exceeded the available 
resources. . 

-—-— - C15tima, V=3 

Figuree 3.4: The Staircase Effect 

Layeredd vs Functional: Modal CNF. We performed a comparison of the 
layeredd and functional translations using the Random Modal CNF test set. We 
generatedd a set for C = 3, D = 1, N = 3, L = 1 — 60, and the results are shown 
inn Figure 3.5. Figure 3.5 (a) shows the satisfiable/unsatisfiable proportion as a 
functionn of L/N. Which was of course identical for both translations, since we 
feedd them the same formulas and there were no timeouts. Figure 3.5 (b) shows 
thee mean CPU time used by each prover on the formulas, also as a function of 
L/N L/N 

Onee thing which is apparent from this figure is that for both translations the 
peakk difficulty does not correspond to the point of maximum uncertainty with 
respectt to satisfiability; this could be a characteristic of resolution-based modal 
theoremm proving, since it does not happen with other provers [PSS03]. 
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Figuree 3.5: Layered - Functional translations comparison. 

3.55 Conclusion 

Wee have reviewed different ways of translating modal formulas into first order 
logic,, and seen how the translation method affects the performance of first order 
theoremm provers when checking the satisfiability of those formulas. 
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Layeredd vs Relational. Layering proved to be very useful: a simple improve-
mentt to the relational translation means that a modal formula will take orders of 
magnitudee less effort to check for satisfiability. 

Layeredd vs Functional. The functional translation enjoys a wider applicabil-
ityy than that of the layered translation; since it does not depend on the strong 
versionn of the tree model property we are using, it can be applied to modal logics 
thatt do not have it, such as S4. The price to pay in this case is the replacement 
off relation symbols with functions: the translated formulas are not in the modal 
fragmentt any more. 

Otherr layering inspired techniques. Other variations on the tree model 
propertyy and layering have been explored. In [PSV02], a very competitive automata-
basedd method of checking modal satisfiability is presented, which is based on the 
automatonn accepting all tree models of the formula. In [BGdR03], the tree model 
propertyy is used to encode modal satisfiability problems into constraint satisfac-
tionn problems, and an algorithm to solve them is proposed; initial experiments 
showw the approach to be promising. 



Chapterr 4 
Modall and Hybrid Theorem Proving -

Directt Resolution 

"The"The problem, Mendieta, 
isis that nature is as wicked 

asas it is wise." 
Robertoo Fontanarrosa 

4.11 Resolution for Modal-Like Logics 

Designingg resolution methods that can directly (without translation into large 
backgroundd languages) be applied to modal logics, received quite some atten-
tionn in the late 1980s and early 1990s; see for example [Min89, EdC89]. Given 
thee simplicity of prepositional resolution and the fact that modal languages are 
sometimess viewed as "simple extensions of propositional logic," we might expect 
modall resolution to be as simple and elegant. However, direct resolution for 
modall languages proved to be a difficult task. Intuitively, in basic modal lan-
guagess the resolution rule has to operate inside the box and diamond operators 
too achieve completeness. This leads to more complex systems, less elegant re-
sults,, and poorer performance, ruining the "one-dumb-rule" spirit of resolution. 
Inn [AdNdROl] a resolution calculus for hybrid logics addressing these problems 
wass introduced: the hybrid machinery is used to "push formulas out of modali-
ties"" and in this way, feed them into a simple and standard resolution rule. 

Inn this chapter we describe HyLoRes, an automated theorem prover based on 
thee calculus introduced in [AdNdROl], with special emphasis on implementation 
details.. Indeed, the aim of this chapter is to give a fairly detailed account and 
assessmentt of the main optimizations that went into HyLoRes. 

Thee Logic. We will use the language of hybrid logic as introduced in Definitions 
1.4.55 and 1.4.6 ; we present the syntax again for ease of reference. The well-formed 

61 1 
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formulass of the hybrid language W(@, 4,) in the signature (REL, PROP, NOM, SVAR) 

are e 
FORMSS : = T | a | -nf> \ fa /\fa \ [R]<f> \ @s<j> \ \x.fa 

wheree a € ATOM, x e SVAR, s 6 SSYM, R € REL and fa fa, fa € FORMS. 

4.22 The Rules 

Wee will now describe the resolution calculus implemented in HyLoRes. We need 
aa normal form that guarantees formulas will have a unique representation with 
respectt to negation, so we define the following rewriting procedure nf on formu-
lass of /H(@1i). Let 4> be a formula in ?{(<§>, | ) , nf((f>) is obtained by repeated 
applicationn of the rewrite rules nf until none is applicable: 

-<@tv>> s 
-i\x.ifi-i\x.ifi  ~* 

—1—1^>> "V-+ 

@t^1p @t^1p 
ix.-iip ix.-iip 

* * 

ClausesClauses are sets of formulas in this normal form. To determine the satisfiability 
off a sentence <j>  e %(@) we first notice that 0 is satisfiable iff  @t<j>  is satisfiable, 
forr a nominal t not appearing in <j>.  Define the clause set CISet corresponding to 
(j>(j>  to be ClSet(<j>) = {{@tnf (<f>)}}.  Next, let ClSef(fa) - the saturated clause set 
correspondingg to 0 - be the smallest set containing ClSet(fa and closed under 
thee rules shown in Figure 4.1. 

CW{@CW{@tt(faKfa)}(faKfa)} ClU{@t->(faAfa)} 
ClU{@ClU{@ttfa}fa} Ctö{@tnfhfa),®tnfhfa)} 
CICI U {@tfa} 

( R E S )) C7iU{@<^} C/2U{@r^} 
Cl\Cl\ U CI2 

Chö{@Chö{@tt[R]<f>}[R]<f>} Cl 2ö{@^[RU} ciu{@HR]<i>}  for n npw 

CICI U{@nnf (-,<!>)} 

Clö{@t@Clö{@t@ss<j>} <j>} 
WW ClU{@s<f>} 

( S Y M ) ^ i MM ( R E F ) C f U ^ > (PARAM) <*"<«*> ?»"ƒ« '» KK 'ciu{@st}
 K ' CI v ; Ch U Cl2 U {<f>{t/s)} 

Figuree 4.1: Resolution calculus for the logic ?{(@) 

file:///x.fa
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Lett us briefly explain the rules. The (RES) rule is the known resolution rule. 
Too understand the ([R]) rule, keep in mind the relational translation of the O 
operator,, from Definition 3.3.1: 

S T . H O f l )) = --(3y (Rxy A STy(<f>))) 

Or,, equivalently, 
ST,(-"(O0))) = V» hRxy V -5Ty(0)) 

Here,, x plays the role of t. In essence, what happens with this rule is that 
thee "hidden" universally quantified variable y, which should only be unified to R-
successorss of x, is both created and unified behind the scenes, when an il-successor 
off x is available, and resolution is applied. /2-successors of x are created by the 
{(R)){(R)) rule, which can be seen as a form of skolemization which only introduces 
constants.. This way, unification is controlled, to the point that free variables are 
nott needed in the calculus. The (A) and (V) rules break down complex formulas 
intoo their components; the calculus can resolve on complementary formulas of 
arbitraryy complexity, which can save time but is not in itself a complete method. 
Thee (@) rule simplifies formulas into equivalent formulas to achieve a unique 
representation,, much like the transformation into negation normal form does for 
negation,, and the (SYM), (REF) and (PARAM) rules all deal with equality 
betweenn nominals: since nominals can only be true of one element in the model, 
wheneverr we encounter a formula of the form @,t, that can only be true if s and 
tt are true on the same element of the model. Hence, (SYM) represents symmetry 
(iff s and t denote the same element of the model, formulas true in s will also 
bee true in £), (REF) represents reflexivity (every nominal is true in the element 
off the model it denotes), and (PARAM) is the paramodulation rule, adapted to 
equalityy between nominals. 

Thee computation of ClSef((f>) is in itself a sound and complete algorithm for 
checkingg satisfiability of W{@), in the sense that 0 is unsatisfiable if and only if 
thee empty clause {} is a member of ClSetf{4>) [AdNdROl]. 

Thee X operator. To be able to account for hybrid sentences using 4. we need 
onlyy extend the calculus with the rule 

CICI U {@tXx<f>} 
ww ciu{@t<t>(x/t)Y 

Thee full set of rules is a sound and complete calculus for checking satisfiability of 
sentencess in H(@,|) [AdNdROl]. 

4.2.1.. EXAMPLE. We prove that ix.{R)(x Ap) ->> p is a tautology. Consider the 
clausee set corresponding to the negation of the formula: 
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1.. {Qi(UMtfMxAp))A^p)} by (A) 
2.. {@ilxHRHx*P)h{@i^P} by (|) 
3.. { Q H f l H i A p ) } , { a ^ p } by« f l» 
4.. {©*-.[iïl-.j},{© i(iAp)} I{enp} by (A) 
5.. {©jl},  {@jp}, {@i^p} by (PARAM) 
6.. {©#}, {©i^p} by (RES) 
7-- { } " 

Heree we see the calculus in action; the underlining reflects the operators or 
formulass that trigger the rule. In step 2, we see how the variable x is bound to 
thee nominal in which the 4- operator is evaluated. In step 3, the (R) rule creates a 
neww nominal j , "connects" it to i through R, and creates a clause that states that 
thee argument of (R) is true in j . Step 5 shows us the effect of paramodulation: 
sincee i and j refer to the same element in the model, formulas satisfied on j must 
alsoo be satisfied on i, and vice versa. 

4.33 The Given Clause Algorithm 

HyLoRess implements a version of the "given clause" algorithm [VorOl], which 
iss the underlying framework of many current state of the art resolution-based 
theoremm provers [SPA, Bli, Hil03]; our version is shown in Figure 4.2. A brief 
explanationn of the functions on that figure follows: 

•• normalize(A) applies nf to formulas in A and handles trivial tautologies 
andd contradictions. 

•• computeComplexity(A) determines length, modal depth, number of literals, 
etc.. for each of the formulas in A; these values are used by select to pick 
thee given clause. 

•• infer (given, A) applies the resolution rules to the given clause and each 
clausee in A. If the rules (A), (V), ((R)) or (J,) are applicable, no other 
rulee is applied as the clauses obtained as conclusions by their application 
subsumee the premises. 

•• simplify(A,B) performs subsumption deletion, returning the subset of A 
whichh is not subsumed by any element in B. 

•• notRedundantfgiven^ is true if none of the rules (A), (V), (->[#]) or (|) was 
appliedd to given. 

4.44 Implementation 

HyLoRess is implemented in Haskell (ca. 3500 lines of code), and compiled with the 
Glasgoww Haskell Compiler (GHC) Version 5.04. We use Happy 1.13 to generate 
thee parser. GHC produces fairly efficient C code which is afterward compiled into 
ann executable file. Thus, users need no additional software to use the prover. The 
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input:: init: set of clauses 
var:: new, clauses, inuse: set of clauses 
var:: given: clause 

clausess := {}; inuse := {}; new := normalize(init) 
ifif {} 6 new then return "unsatisfiable" 
clausess := computeComplexity(new) 
whilee clauses ^ {} do 

{{  *  Selection of given clause *} 
givenn := select (clauses); clauses := clauses - {given} 

{{  *  Inference *} 
neww := infer(given, inuse); new := normalize(new) 
iff {} G new then return "unsatisfiable" 

{{  *  Subsumption deletion *} 
neww := simplify (new, inuse U clauses) 
inusee := simplify (inuse, new) 
clausess := simplify (clauses, new) 

{{  *  Initialization for next cycle *} 
iff notRedundant(given) then 

inusee := inuse U {given} 
clausess := clauses U computeComplexity(new) 

returnn "satisfiable" 

Figuree 4.2: Structure of the given clause algorithm. 

HyLoRess site (http://www.illc.uva.nl/~juann/HyLoRes) provides executables 
forr Solaris (tested under Solaris 8) and Linux (tested under Red Hat 7.0 and 
Mandrakee 8.2). The original Haskell code is also made publicly available under 
thee GPL license [GNU]. 
Wee will see now how HyLoRes handles the formula from Example 4.2.1 : 

4.4.1.. EXAMPLE. Input file: 

begin n 
KCdownn (xl dia (xl & pi) )) -> pi) 
end d 

Execution: : 

http://www.illc.uva.nl/~juann/HyLoRes
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(juanh©banaann 149) hy lo res - f t e s t . f r m - r 
Inpu t : : 

{[©(NO,, (-P1 ft Down(Xl, - [R1] - (P1 ft X I ) ) ) ) ] } 
Endd of input 

Given:: ( 1 , [ö(N0, (-P1 ft Down(Xl, - [R1] - (P1 ft X I ) ) ) ) ] ) 
CON:: {[©(NO, -PI)][©(NO, Down(Xl, - [R1] - (P1 ft X l ) ) ) ] > 
Given:: (2 , [©(NO, - P I ) ] ) 
Given:: ( 3 , [©(NO, Down(Xl, - [R1] - (P1 ft X I ) ) ) ] ) 
ARR:: {[©(NO, - [R1] - (P1 ft NO))]} 
Given:: (4 , [©(NO, - [R1] - (P1 ft NO))]) 
DIA:: {[©(N-2, (PI ft NO))] [©(NO, - [ R l ] - N - 2 ) ] } 
Given:: (5 , [Q(N-2, (PI ft NO))]) 
CON:: {[©(N-2, P I ) ] [©(N-2, NO)]} 
Given:: (6 , [©(N-2, NO)]) 
PARR ( 0 , - 2 ) : {[©(N-2, (PI ft N-2)) ] [©(N-2, - [R1 ] - (P1 ft N-2)) ] 
[©(N-2,, Down(Xl, - [R1 ] - (P1 ft X I ) ) ) ] [©(N-2, - P I ) ] 
[©(N-2,, (-P1 ft Down(Xl, - [R1] - (P1 ft X I ) ) ) ) ] } 
Given:: (7 , [©(N-2, P I ) ] ) 
Given:: (8 , [©(N-2, - P I ) ] ) 
RES:: (7 , [ ] ) 

Thee formula i s u n s a t i s f i a b l e 
Clausess genera ted : 11 
Elapsedd t ime : 0.0 

Heree we see the prover giving a step by step account of the clause chosen as given, 
thee rules applied to it, and the results. Lines starting with CON, ARR, DIA, PAR 
andd RES respectively indicate application of the (A), (4-), ( (#) ) , (PARAM) and 
(RES)) rules, with the remainder of the corresponding lines showing the result 
off applying such rules. A number is assigned to each clause when it becomes 
thee given clause; it is shown when the clause is displayed. In the case of the 
(PARAM)) rule, the nominals involved are shown between brackets, and in the 
casee of the (RES) rule, the numbers of the clauses involved are shown before the 
correspondingg resolvent. We see that the proof follows closely the steps given 
inn Example 4.2.1, except that the paramodulation rule actually generates more 
clausess than previously shown. 

Inn addition to HyLoRes, a graphical interface called xHyLoRes implemented in 
Tcl /Tkk was developed. It uses HyLoRes in the background and provides full file 
accesss and editing capabilities, and a more intuitive control of the command line 
parameterss of the prover, in the manner of Spin/XSpin [XS]. A screenshot of 
xHyLoRess can be seen in Figure 4.3. 
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X-axhvloress 1.0-20 Feb 2002 .. D X 

Hee i Edit Help Options s 

begin n 
'' <>(nl v (pi s Ip l ) ) . 

n l :: (< >true -> pi) ; 
II <nl: o p l ) 
end d 

X-«« Options .;;  a x ] 

Printt rules 
Printss  the internal state 
Timeoutt in seconds 

Selectt order 

OKK J Cancell  || 

Given::  (13,  [9(H-1,  P1),&(H-1, [Rl]-T)|) 

RES::  (9,  [S(H-1,  [R1]-T),8(H-1, Hi)]J(10.  I»(H-1,  IR1]-T))) 

Given::  (12,  [9(H-1,  -[RlJ-H-l),  »(H-1,  PI)]) 

Given::  (16,  [9(N-1,  IR1]-T)]) 

BOX::  (12,  |9(H-1,  -T),9(H-1, PI))) 

Given::  (17,  [»(K-1,  Pi))} 

RES::  (9,  [8(H-1,  Hl)])(10, []) 

Thee formula i s unsaCisfiable 
Clausess generated: 17 
Elapsedd t ine : 0.0 

Figuree 4.3: A screenshot of xHyLoRes. 

4.55 The Gory Details 

4.5.11 Data Structures 
Thee design of HyLoRes is modular with respect to the internal representation of 
thee different kinds of data. We have used the Edison package [OkaOl] (a library 
off efficient data types provided with GHC) to implement most of the data types 
representingg sets. The basic data types we created are as follows. 

Statee and Output Monads. Functional programming does not allow for 
globall variables or side effects; in a function, all input must be passed as an 
argumentt and all consequences must be part of the returned value. For some 
applications,, this can result in functions having very long and unintuitive lists of 
arguments,, and contrived output types. In Haskell, a particular data type called 
monadd is used to overcome this problem. The internal state of the given clause 
algorithmm (the sets clauses, inuse and new, the data structures used for sub-
sumptionn checking, the control information, etc) is represented as a combination 
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off a state and an output monads [Wad95]; the former provides transparent access 
too the internal state of the program from the monadic functions that perform 
inference,, while the latter handles all printing services with no need of further 
parameterss in the function signatures. In addition, the use of monads allows the 
additionn of further structure (hashing functions, etc.) to optimize search, with 
minimumm re-coding. We have already experienced the advantages of the monad 
architecturee as we have been able to test different data structures and improve 
thee performance of some of the most expensive functions with great ease. 

Formulas.. We took advantage of the possibility of defining recursive data types 
inn Haskell, with the result that the data type definition closely resembles the 
definitionn given in Section 1.4.5: 

dataa Formula 
== Taut | Nom Int I Prop Int | Var Int I Neg Formula I Con [Formula] 

II At Int Formula | Atv Int Formula I Down Int Formula 
II Box Int Formula 

derivingg (Ord, Eq) 

Thee integers in the definition represent the different elements of their correspond-
ingg sets, i.e. Nom 1 represents the element n\ in the set NOM, and so on. Con-
junctionss are stored as the Con constructor plus a list of conjuncts, to allow for 
n-aryy conjunctions. 

Clausess and Sets of clauses. The given clause algorithm at the heart of Hy-
LoRess deals with three main repositories of clauses: clauses, that holds the eligible 
candidatess por processing; inuse, that holds the clauses which can interact with 
thee given clause, and new, where the clauses that result from the application of 
thee rules go. The different clause sets and their clauses have different access pat-
ternss and aggregate information and need a different data type for each, clauses 
usess the UnbalancedSet type provided by the Edison library which is specially 
optimizedd for search; as in every cycle the given clause has to be selected from 
thiss set, the comparison of clause scores is given as the ordering function, so the 
givenn clause can be selected without having to examine the whole set. The ele-
mentss of clauses are tuples containing the clause proper (represented also as an 
UnbalancedSet),, a complexity measure which depends on the chosen order for 
clausee selection, and the clause number. 

Inn new, clauses are stored as UnbalancedSets while new itself is a list of 
clauses,, as all its elements have to be processed one by one in each cycle, inuse 
iss a list of pairs composed of the clause number and a clause represented also as 
aa list, as both clauses and formulas in clauses need to be accessed one by one in 
everyy cycle. 
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4.5.22 Optimizations 

Thee first implementation of HyLoRes was very naive and as a result was terribly 
inefficient.. We then proceeded to adapt and apply well established first order 
resolutionn optimizations to the hybrid environment, with encouraging results. 

Orderedd resolution with selection. HyLoRes actually implements a version 
off ordered resolution with selection [BG01], where the application of the (RES) 
andd ([#]) rules are restricted to certain selected formulas in the clause. Ordered 
resolutionn with selection greatly reduces the size of the saturated set, preventing 
thee generation of certain clauses, without compromising the completeness of the 
calculus.. Interestingly, the proof of completeness of ordered resolution with se-
lectionn for %(@, I) [AG03] closely follows the proof in [BG01], based on a step 
byy step construction of a Herbrand model for any consistent input clause set. 
Oncee more, hybrid logics seem to provide the appropriate framework to merge 
firstt order and modal ideas. 

Formulaa indexing. Formulas are indexed using a mapping between formulas 
andd integers, in which indexes for positive and negative occurrences of the same 
formulaa will be equal except for the sign. As the (RES) rule involves searching 
forr complementary formulas, searching for clauses to resolve with is made more 
efficientt by storing the clauses in inuse as ordered lists of the indexes. This 
indexingg is much simpler than in the case of first order, as clauses do not have 
freee variables. 

Subsumptionn checking. Whenever a clause A follows from another clause B 
inn the clause set, A is said to be subsumed by B, and can be ignored, reducing the 
searchh space while maintaining correctness. We consider two main types of sub-
sumptionn checking: forward subsumption (when new clauses are redundant w.r.t. 
oldd clauses) and backward subsumption (when old clauses are redundant w.r.t. 
neww clauses) .Finding out which clauses can be discarded is one of the - or perhaps 
"the"" - most expensive operations in resolution based theorem provers [Vor95]. 
HyLoRess uses a simple version of subsumption checking where a clause C\ sub-
sumess a clause Ci if C\ C C2. Version 0.5 of the prover implemented this test 
veryy inefficiently, checking the subset relation element by element, and clause by 
clause.. In the latest prototype, a set-at-a-time subsumption checking algorithm 
whichh uses a clause repository structured as a trie [Vor95] was implemented, with 
dramaticc improvements (see Section 4.6). We also noticed that while forward sub-
sumptionn is essential, many times backward subsumption does not really make a 
difference.. This is also the case for some first order logic provers; see [RSV01]. 

Thee clause repository is organized as a list of tries, in the following manner. 
Thee clauses are inserted and queried as ordered lists of integers. The repository 
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iss a list of tries, in which each node represents a formula and each path that ends 
inn a leaf node represents a clause. 

4.5.1.. EXAMPLE. The set of clauses 

{{  {1,2,3}, {1,2,4}, {1,2,8}, {1,4,5}, {1,4,7,8}, 

{1,4,7,9,10},, {2,3,9}, {2,7,9}, {2,7,8,10}, {2,7,8,11} } 

iss stored as shown in Figure 4.4. 

1 < < 

2 < < 

11 < r - " 

44 "\. 

^r^r 3 

" ^^ 7 ^ -
77 " \ 

^ 3 3 

- ^^  4 

^ ^ 8 8 

-** J 

11 "— 

-** y 

00 ~-^. 

9 9 

-** o 
y y 

** 1U 
l l l 

-** JU 

Figuree 4.4: Trie representation for a set of clauses 

Whenn inserting a clause, if its head is the root of any of the visible tries then we 
insertt its tail into that trie, otherwise we add a branch to the current node and 
insertt the clause there. In this way, all clauses are represented as a path from 
onee of the root nodes to a leaf, so that all the clauses that are extensions of a 
particularr path are stored as branching from it. The fact that the formulas in the 
clausee are ordered gives us the possibility to optimize search, both by having a 
uniquee representation and by knowing when it will be useless to keep searching. 
Thee clause repository holds both the clauses in inuse and the ones in clauses, so 
ass to check for (forward or backward) subsumption against just one set of clauses, 
whichh also eliminates the cost of transferring clauses from one trie to the other 
whenn a clause is moved from clauses to inuse. Subsumption checking has then 
becomee very efficient, and indeed it brought a speed up of about two orders of 
magnitudee to the prover. 

Inn forward subsumption, the clauses in new are checked one by one for sub-
sumptionn by the clauses in inuse or clauses, as follows: for each clause C in new, 
forr each of the visible tries T, in the repository, if the root of T; is in the checked 
clause,, all the branches of T, are successively checked for the elements of the 
clausee that are greater than the root. If we reach the end of any branch, then the 
clausee is subsumed by the repository and the search stops. If we find any element 



4.5.4.5. The Gory Details 71 1 

nott present in C, none of the clauses represented by the current path subsumes 
CC and we can proceed to the next trie. If the root of the next trie is greater than 
thee maximum element in C, no match will be possible and the search ends. 

Inn backward subsumption, the clauses in new are checked one by one for 
subsumptionn of the clauses in inuse or clauses, as follows: for each clause C in 
new,new, for each of the visible tries T» in the repository whose root is less than or 
equall to the head of the clause (the smallest element), if the root of 7* is equal 
too the head of C, we check the branches of Ti for existence of the elements in the 
taill of C, and if the root of Ti is less than the head of C we check the branches of 
TiTi for existence of the whole clause. When we find a match for the last element 
off the clause, we know that all the paths that originate from X*  are subsumed by 
thee clause: we retrieve all of them, and examine the next trie. When we reach a 
TiTi with a root greater than the head of C, the search ends. 

Inputt analysis. At this moment, HyLoRes performs a very simple analysis of 
itss input. It checks for the presence of the [J2], {i?),@ and I operators and for 
nominalss in order to know which rules will need checking for applicability. For 
example,, if the I operator does not appear in the input, then the (\) rule is 
switchedd off and never attempted. Most first order provers perform a far more 
detailedd analysis of the input and decide heuristics and settings on account of 
theirr findings. 

Applicationn of the rules. The rules of the underlying resolution calculus (as 
shownn on Figure 4.1) are applied in such a way as to make the sets of clauses 
groww as slowly as possible. For example, the (->A) rule is checked first of all, and 
iff it's applied then no other rule is applied, and also the given clause is not added 
too inuse (the antecedent and consequent clauses are equivalent, but this does not 
showw in our implementation of subsumption checking). The same is true of (A). 
Thenn (RES) is applied, and the empty clause is searched for in the result before 
proceedingg with the rest of the rules. 

Anotherr thing that helps pruning the search space is postponing the creation 
off new nominals (by application of the (R) rule) until the clause set is saturated 
forr the current set of prefixes. Whenever the (R) rule can be applied, the appli-
cationn is postponed until clauses is empty. In a sense, this can be interpreted as 
exhaustingg the possibilities of doing propositional reasoning before doing modal 
reasoning. . 

Paramodulation.. Since we need to do equality reasoning between nominals, 
wee can once more take advantage from experience in first order resolution. In [BG98], 
Bachmairr and Ganzinger develop in detail the modern theory of equational rea-
soningg for first order saturation based provers. Many of the ideas and optimiza-
tionss discussed there can and should be implemented in HyLoRes. In the current 
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version,, paramodulation is done naively, the only "optimization" being the ori-
entationn of equalities so that we always replace nominals by nominals which are 
lowerr in a certain ordering. 

4.66 Testing 

Duringg the development of HyLoRes, we made extensive use of the modal test 
setss described in Chapter 2 to evaluate the performance of the prover and guide 
designn decisions. Some results are shown in Figure 4.5. 

Hand-tailoredd tests. Figure 4.5 (a) represents a set of runs of the Balsiger, 
Heuerdingg and Schwendimann test set [BHSOO], with different criteria for selecting 
thee given clause, and the description logic prover RACER [RAC], version l-6r2, 
includedd as a reference. Even when most of this test set has become trivial for 
maturee modal provers, it still provided a quick way to evaluate the prover in the 
earlyy stages. 

Randomm tests: Random Modal QBF test set. Figure 4.5 (b) shows a run 
off several versions of HyLoRes and other provers over a very easy area of the Ran-
domm Modal QBF test set [Mas99]. The X axis represents the number of clauses in 
thee original QBF formula, and the Y axis represents the average time for solving 
ann instance, with 64 samples/datapoint. The problems range from being all satis-
fiablefiable at the left, to being all unsatisfiable at the right. We benchmarked HyLoRes 
0.55 (no formula indexing, no clause repository), HyLoRes 0.9 (formula indexing, 
clausee repository, backward subsumption still using clause-at-a-time comparison) 
andd HyLoRes 1.0 (now with backward subsumption using set-at-a-time compar-
ison).. We also ran SPASS v. 1.0.3 [SPA] with the standard translation to first 
orderr logic, MSPASS v. 1.0.0t.l.3 [MSP], *SAT version 1.3 [*SA], and RACER 
v.. l-6r2 on this test, to compare with more mature provers; in general the times 
forr these provers only reflect start up times, as revealed by the absence of the 
easy-hard-easyy pattern. This test set allowed us to gauge the progress of HyLoRes 
ass we added optimizations to it, although since QBF derived modal formulas have 
aa very rigid structure, as we have seen in Chapter 2, a good performance on this 
testt set was not a guarantee of good performance overall. 

Randomm tests: Random Modal CNF test set. As explained in Section 2.5, 
thiss test set [PSS03] generates random modal CNF formulas directly. We ran the 
testt for C = 2.5, V = 3 and D = 1; Figure 4.5 (c) represents median time 
elapsedd as a function of (number of clauses/number of variables). The timeout 
valuee was 100 seconds: again, it was too easy for mature provers to compare 
theirr performances, while for HyLoRes there were a few timeouts in the hardest 
area.. Figure 4.5 (d) plots the satisfiable/unsatisfiable fractions in the test we just 
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(a)) (c) 

Numberr of c lauses LJV 

(b)) (d) 

Figuree 4.5: HyLoRes and Modal test sets 

described.. There are zones of the plot in which the sum of the satisfiable and 
unsatisfiablee fractions is less than 1; this is due to timeouts, as the sum represents 
thee fraction of problems solved before the time limit. 

Randomm tests: Random Hybrid CNF test set. An important drawback of 
thesee test sets though, is that they only provide purely modal input. We present 
noww some preliminary tests of the hybrid capabilities of HyLoRes, evaluated using 
hGen,, the generator introduced in Section 2.5. 

Inn Figure 4.6 (a) and (b) we start with a purely modal base case, with C = 2, 
NNpp — 3, D — I, and gradually add nominals to the mix; that is, with Nn = 5 
wee keep p3var = 0 and do one run with pwop = 1, pn0m = 0, one with p^op = 9, 
PnomPnom — 1) a nd one with pprop = 8, pnom = 2. The timeout was 300 seconds. 
Figuree 4.6 (a) shows the median time elapsed, while Figure 4.6 (b) shows the 
proportionn of problems solved. Here we see that even slight increases of the 
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quantityy of nominals the difficulty rises sharply; this highlights the fact that 
optimizingg paramodulation is crucial. Figure 4.6 (c) and (d) shows the effect of 
increasingg the proportion of ©-operators, starting from the same base case. We 
seee that the difficulty changes very little (although the peak moves to the right), 
andd the satisfiable/unsatisfiable transition moves to the right as we increase the 
proportionn of ©-operators. This is to be expected, in a sense, since the presence 
off nominals in a formula triggers the paramodulation rule (which tends to create 
aa state explosion), while the ©-operator triggers the much more benign @-rule, 
whichh just simplifies the given clause. 

Hyfiri<JCNFC=2.N=3.. D=1,UN»1-20 Hyixldd CNF; C=2. N=3. D=1, U N . 1 - 2 0 

(b)) (d) 

Figuree 4.6: Hybrid CNF tests - Adding Nominals and 

4.77 Conclusion 

Thee prototype is not yet meant to be competitive when compared with state of 
thee art provers for modal-like logics like DLP, *SAT, MSPASS or RACER. On 
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thee one hand, the system is still in a preliminary stage of development (only 
veryy simple optimizations for hybrid logics have been implemented), and on the 
otherr hand the hybrid language and the languages handled by the other provers 
aree related but different. H(@,i) is undecidable while the target languages of 
thee other provers are decidable. And even when comparing the fragment %(@) 
forr which HyLoRes implements a decision algorithm, the expressive powers are 
incomparablee (H{@) permits free Boolean combinations of @ and nominals but 
lacks,, for example, the limited form of universal modality available in the T-Box 
off DL provers [AreOO]). 

Theree certainly remain many things to try and improve in HyLoRes. The next 
stepss in its development include 

-- a better treatment of paramodulation; 

-- support for the universal modality A [GP92] (which would allow us to 
performm inference in full Boolean knowledge bases of the description logic 
ACCÖ); ACCÖ); 

-- saving the saturated clause set, if any, for querying; 

-- and improve input analysis and heuristics. 

Butt the main goal we pursued during the implementation of this prototype has 
largelyy been achieved: direct resolution can be used as an interesting, and perhaps 
evenn competitive, alternative to tableaux based methods for modal and hybrid 
logics. . 
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Figuree 4.7: Dependency map for Part II 

Inn this second part we will review the concept of formulas-as-programs, and 
introducee an executable interpretation of DFOL. The interpretation works as a 
specification:specification: the way in which the desired computational effect is to be achieved 
iss not part of the interpretation. This allows us to devote Chapter 6 to define 
aa Hoare calculus for the logic, without worrying about the internal state of the 
languagee engine: if the engine is faithful to the executable program interpretation, 
thee calculus applies to it. After introducing the calculus, in Chapter 7 we will 
introducee a new version of the Dynamo engine, which is certainly a departure 
fromm the state machine of Chapter 5: since we want to be faithful to DFOL 
semantics,, why not use a tableau prover as the engine? This has proved to have 
advantagess and disadvantages, as we will see in Chapter 8. Figure 4.7 gives a 
dependencyy map for this part. 





Chapterr 5 
Thee Executable Program Interpretation 
forr Dynamic First Order Logic 

5.11 Introduction 
Inn this chapter we will introduce the DFOL perspective on the "formulas as pro-
grams1'' paradigm as presented in [AB98]. In essence, by interpreting formulas as 
actionss on a certain data structure, and having such actions respect the semantics 
off the corresponding formulas, we obtain a programming language that possesses 
bothh the power of imperative programming and a declarative semantics. We will 
givee some background on formulas as programs, sketch the computational process 
approximationn to DFOL(U) as proposed in [vE98b], and suggest some extensions. 
Thiss is not how we will ultimately implement Dynamo, but it is provided to give 
somee insight on the use of DFOL extensions for programming. 

5.22 FOL and Programming 

Thee idea of using FOL as a programming language is not new: a language con-
sistingg of formulas in the Horn fragment of FOL was presented in [Kow74], and 
markedd the start of the development of the logic programming field. The benefit 
off having a declarative semantics for a programming language is that it makes 
programss easier to understand, modify and verify, since having a dual reading of 
aa program as a logical formula makes it much simpler to reason about its cor-
rectness.. The problem with the Horn fragment was that it was not expressive 
enoughh for programming purposes. Prolog, the first logic programming language, 
wass then extended in order to reach the desired expressivity, but many of the ex-
tensionss were extralogicai. arbitrary programs cannot be read as logical formulas 
anymore,, and soundness and completeness results have not yet been conclusively 
extendedd to programs including negation. Also, even 'pure1 PROLOG programs 
cann be hard and unintuitive to verify in a rigorous way, in part because of the 

81 1 
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usee of recursion. To remedy the situation without sacrificing too much expres-
sivity,, Apt and Bezem [AB98] proposed a different approach, called formulas as 
programs,programs, where a computation mechanism is suggested that relies exclusively 
onn the basics of first order logic and replaces recursion with (bounded) iteration. 
Thee core idea is to consider the expression v = t, where v is a variable and t is a 
term,, as an assignment if the value of v is not known, and as a test if it is. If t 
iss not a grounded expression, the procedure returns an error. For any valuation 
a,a, we say that a term (or atom) is a-closed if all variables appearing in it have a 
valuee under a; an expression of the form v = t is called an a-assignment; if v is 
aa variable, t is a term, and v is not a-closed but t is. 

Thiss approach was extended in a number of ways: non-recursive procedures, 
sortssorts (ie types), arrays, and bounded quantification (bounded iteration and bounded 
choice).. Recently there has been work on viewing FOL as a constraint logic pro-
grammingg language [AV02], introducing the possibility of storing non-grounded 
atomss as constraints, which greatly reduces the number of cases in which an error 
iss returned. 

5.33 Computational Process Approximations to 
DFOL(U) ) 

Followingg this approach, our process approximation to DFOL(U) results from in-
terpretingg identity statements, in suitable contexts, as assignment actions, and 
existentiall quantification as «nassignment actions. That is, when a variable be-
comess existentially quantified, any value it might have assigned is lost, and it 
becomess free to be assigned again. The reason for this is given by the semantics 
off DFOL(U): let's review what the syntax and semantics of DFOL(U) were. 

5.3.11 DFOL(U) 

Lett a first order signature be given. We assume that variables can be built from a 
sett VAR of initial variables by means of appending indices. Let ƒ and P range over 
thee function and relation symbols, with arities n as specified by the signature. 
Wee assume that terms range over the natural numbers, and that ƒ and P denote 
recursivee functions and predicates on N. As stated in Definition 1.4.12, the terms 
andd formulas of DFOL(U) over this signature are given by: 

TERMSS := vtl tn \ ft (Terms) 
FORMSS := 3v \ Pt \ tx = t2 | -.((0)) | <f> x- <j> 2 \ {fa U <j> 2) (Formulas) 

wheree v € VAR, t,tut2 6 TERMS, t E TERMS x ••• x TERMS, and fafa,<fa € 
FORMS. . 
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Inn Definition 1.4.16 we introduced the semantics of DPL and extensions, and 
hintedd at an alternative way to interpret the semantics of a formula 0, as a 
functionn from assignments to sets of assignments. Let's spell that interpretation 
outt in more detail: 

5.3.1.. DEFINITION. [Functional Interpretation of DFOL(u) in a model M = 
(£>,ƒ)]] For N,NUN2 e N,Mi,*2 <E TERMS, 

(v[tl}---[t(v[tl}---[t nn}Y }Y 

(ƒ«!! •"*») ' 

w. . 
[Ptl-[Ptl- tn]a 

[tl[tl = t 2]8 

PH H 

W1. . 

[<f>i;<h]s [<f>i;<h]s 

[4n[4n u <hh 

:= = 

:= = 

:= = 

:= = 

:= = 

:= = 

:= = 

:= = 

:= = 

*K,..,tft) ) 

Hm~< Hm~< 
0 0 

rr { S} if («; o 
[[ 0 otherwise. 

JJ {s} itt{ = t2 

[[ 0 otherwise. 
K G D V || S' ~„ s} 

|| W if 10]. = 0 
11 0 otherwise. 

(JIM**  1 s' e [0i]J 
[0l],, u [<hh 

e / ( P ) ) 

Wee extend the logic with the following constructs: 

in in 

 = N2;<f>],  iSNx<N2 

otherwise. . 

U[vU[v = t2;<j>] 8 if *f < *| 
otherwise. . 

Inn this interpretation of formulas as functions from valuations to sets of valuations, 
existentiall quantification would require the set [3a;], to consist of all the valuations 
uu such that s ~x u. Since our domain D is usually N, computing this set is not 
possible.. Therefore, by uninitializing the variable, we simply desist from trying 
alll possible values of x, in favor of trying to find those that make the rest of the 
formulaa true. 

Computationn states are partial maps from the set of variables to values in the 
domainn of quantification; if a state s does not have a value for v but does have 
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valuess for all variables occurring in t, then v = t and t = v can be interpreted as 
instructionss to extend s with the pair {v,ts). 

Whatt we want from an executable process interpretation is the following: (1) 
iff the interpretation computes an answer valuation, then that answer is correct 
accordingg to the semantics of DFOL, and (2) if the executable process inter-
pretationn returns a negative answer then there are no answers according to the 
semanticss of DFOL. 

Thiss notion can be formalized as follows. Let A be the set of all possible 
valuations,, ie {s 6 Dx \ X C VAR}. We introduce the notation ts =1 when 
tt is s-closed and t* = t when it is not. A set of computed states may contain 
ann uninformative state •, signifying that at least one computation attempt was 
givenn up. We measure the degree of informativeness of an answer by means of a 
suitablee ordering C on V(A U {•}) defined by: 

AA C B :^ (• € A A A - {•} C B) V (• £ A A A = B). 

Thiss makes (^(.AU {•}),£) into a complete partial order (CPO), with {•} as 
bottomm element. 

Forr szA, let s° := {b € £>VAR | s C b}. Let «° := {•}. Lift this operation to 
subsetss of A U {•} by means of A° := \JsGA s°. 

Then,, a computation procedure F : L —• A -> V(A U {•}), where L is a 
languagee of DFOL, is a faithful approximation of DFOL if for all 0 G L, all 
ss G A' 

Thee computational strengths of procedures F, G : L -> A —• V(A U {•}), 
cann be compared by lifting our C ordering to the level of computation maps, as 
follows: : 

FF Q G := V0 E L Vs € A : F+{s) Q G$(s). 

AA computation procedure G is a better approximation to DFOL than F if F C. G 
andd G is faithful to DFOL. In [vE98b], a computation mechanism faithful to 
DFOLL is presented; we will now give a brief review, and present an improvement 
onn it. 

5.3.2.. DEFINITION. [State] The output a (alt. b , . . . ) of a computation is repre­
sentedd as a triple (a,ga, la) ({b,gb

1l
b),...), where a is a valuation, ga is a list of 

globalglobal variables, meaning those that are not existentially quantified, and la is a 
listt of local or existentially quantified variables. The reason for this is the inter­
actionn between the use of equality as assignment and the treatment of negation: 
intuitively,, we consider the evaluation of -\<j>  to fail if the evaluation of <j>  succeeds 
withoutwithout making global assignments. We want to distinguish between cases in which 
extensionn of the input assignment occurs inside a negated formula from the "nor­
mal"" case in which it occurs in a positive context. We call unsafe those cases 
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inn which extension of the input assignment occurs during evaluation of negated 
formulas,, because they result in, well, unsafe conclusions. For example, we want 
thee formula x = 1 to succeed on the empty assignment e (and assign 1 to i ) , but 
wee do not want ->(x = 1) to fail on e, as it would mean that there is no x that is 
equall to 1. Note that the formula ->(3ar; x = I) must fail on any input; hence the 
needd to distinguish between variables that are local, ie existentially quantified, 
andd global, or free. In cases where a computation would be unsafe or there is 
insufficientt data to perform it, we 'give up' on the computation, and its output 
willl be the • state. Then, our state for the executable process interpretation 
functionn is of type ((A x PfVAR) x P(VAR)) U {•}), and our executable interpre­
tationn function proper is of type FORMS x ((A x P(VAR) x 7>(VAR)) U {•}) - • 
{A{A x -P(VAR) x 7?(VAR)} U {•}, where (Ti U T2) means "either type Tx or type 
T2". . 

5.3.3.. DEFINITION. [Safe states] A state b is safe for (a,ga,la) if b # • and 
ll aaUgUgbb Cdom{a). 

5.3.4.. DEFINITION. [Risky states] A set of states B is risky for (a, ga, la) if B ^ 0, 
butt no member b of B is safe for (a, ga, la). 

5.3.5.. DEFINITION. [Executable process interpretation for DFOL] 

M ( - )) == } 

{ {(o,, ga, la)} if Pti  tn a-closed, Ph  t„ € I(P), 

00 if Pti  U a-closed, Ph  • tn t I(P), 
•• if Pti  tnnot a-closed. 

ttatWa.ffV)ttatWa.ffV) := {(a-{v/va},g°,l*U{v})} 

ff {(a,g",la)} ifM(*,9 c 

M ( a , $ V B )) := I 0 if3b€m(a,9a,nuithbsafefor(atg°,l») 

ff {(a,$Va)} t /M(a, f f
o ,n = 0 

<< 0 if 3 b € Wft(a,ga,la)wih b safe for(a,ga,l 

[[ {•} if M ( a , s V a ) is risky for {a,ga,la) 
Mi;<hMa,9Mi;<hMa,9aa,l,laa)) := U { M 0 > ) | b € M ( « , 3 ° , J a ) 
tt&Ufcl|(a,0V)tt&Ufcl|(a,0V) := M(a,9a,r)uM(a,9a,la) 

Thiss far, we are simply checking a formula against a valuation; the treatment of 
== that follows is what makes our system a computation engine. 
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|[(ii=fe)]](a,*V)) := 

{(a,9{(a,9aa,l,laa)} )} 
0 0 
{(aö{v/q},g°,l{(aö{v/q},g°,laa)} )} 

ifif <i,t2 a-closed, tj = t%, 
ifif *i,<2  a-closed, t" j^t%, 
ifif t\ = t2 an a-assignment with 

h=V,Vh=V,Vaa=ï,t%=Uv<El=ï,t%=Uv<El a a 

{(aUU {u/fl}},  0° U {u},/")}  if h = t2 on a-osst̂ nmcnt with 
tii = v,va =ï,t%=l,v$la 

{(aUU {f/ti},5°,/°)} t/ ii = ( 2 on o-osst̂ nment u»tft 
*22 = t>,»a=t,tf =i,vela 

{(aa U {v/*i},  3° U {v}, la)} if ti = ti an a-assignment with 
É22 = r,v0=t,*ï =l,v#la 

{•}} if ti,t2 not a-closed 
andand not an a-assignment 

5.44 DFOL(U) as a Programming Language 
Wee will give a few examples of DFOL(u) formulas, viewed as programs. The 
formula a 

(x(x > y; z = x) U (x < y; z = y) 

willl check whether z is equal to max(x,y). If we want to assign the maximum of 
xx and y to z, we first unassign it by existential quantification: 

3z;; ((x > y; z = x) U (x < y; z = y)) 

DFOL,, viewed as a programming language, gives a new perspective on a funda­
mentall feature of imperative programming, the destructive assignment command 
xx := t. Take the command x := x + l that increments x. This cannot be rendered 
ass identity, for the identity x = x +1 either gives an error message (in cases where 
thee input valuation is not defined for x) or it fails, on the natural numbers at 
leastt (for there is no n € N with n = n + 1). But if we implement the use of an 
auxiliaryy ('shadow') variable x' and dynamic quantification over both x and x', 
wee can express x := x + 1 with the DFOL formula 

wheree the final 3x' is used for unassigning x' for future uses. 
Iff we assume that each regular variable v comes with a unique shadow v' we 

cann abbreviate this as v < t; we call this safe assignment. 

5.55 Moving Closer to DFOL(U) Semantics 
Inn the first incarnation of our executable interpretation, the program state is ei­
therr a triple (a, <?°, la) or •. This means that if a statement x = t is not a-closed 
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andd not an a-assignment, the result has to be the uninformative state •. For 
example,, if x = 2;x = y is computed in a state e (undefined for every variable), 
thenn the result is {{x/2, J//2}} (there is a single output state that maps both of 
x,x, y to 2). If we interchange the statements, and compute x == y; x = 2 for input 
statee e, the result is the completely uninformative set {•}, while the assignments 
thatt satisfy the two formulas are exactly the same. We believe we can produce 
ann interpretation that is a better approximation to the semantics of DFOL, since 
thee same valuation that satisfies the first formula satisfies also the second one. To 
accomplishh this we extend the states with some further components. The fourth 
componentt is a list of literals Pt\ n, tx = ^ ->Pti • • • tn, ->ti = £2- Since as­
signmentss to global variables inside negated formulas make the computation path 
unsafe,, we will, when in the appropriate mode, save v = t as a constraint rather 
thann perform a global assignment to v. The two execution modes we distinguish 
aree B(uild) and C(onstrain). We will now present the execution mechanism as 
aa set of transition rules; in the rules where the execution mode does not matter 
butt has to remain the same during a given transition step, we will use m as a 
variablee ranging over 2?, C. Also, we will need to keep track of the set of variables 
usedd somewhere in the current list of unresolved literals. If v is used in the list of 
unresolvedd literals, a dynamic quantifier action 3v would sever the literals that 
includee v from the computation path, so we need to keep track of such situations. 
Wee will introduce a new register n° for constraint variables needed by state a. A 
statee a will now look like (a, ga, la, na, L°, m°), where 

•• a is a partial valuation, 

•• ga is the set of global variables, 

•• la is the set of local variables, 

•• n° is the set of variables needed in a stored constraint, 

•• La is the list of literals stored as constraints, 

•• ma is either b or c, the execution mode of the state a. 

Thee role of these components in the state transitions will become clear when 
introducee the transition rules. 

When,, in build mode, we cannot perform an atomic test or cannot execute an 
equalityy statement (either as a test or as an assignment) due to missing values 
inn the input, we store the atom after substituting the values of the current state 
andd add the variables that are still needed to the set of needed variables. When, 
inn constrain mode, we cannot perform an atomic test or execute an equality as 
aa test statement due to missing values in the input, we do the same. Then, if a 
variablee in na is assigned a value, the corresponding literals in La are updated, 
andd evaluated if they become a-closed or o-assignments (a reduction step). This 
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cann cause yet more variables from n° to be assigned values, which triggers yet 
anotherr reduction. 

5.5.11  and 0 propagation 

Forr conceptual clarity, we use an explicit failure state 0. Computation of <j> 
fromm state a fails if all ^-computation paths starting from a end in 0. We will 
sometimess need this to ensure that no further reduction attempts will be made 
onn a. Both 0 and the improper state •, for 'I don't know', are treated as a states 
fromm which no recovery is possible. 

5.5.22 Atomic Predicate Test 

Inn case we cannot perform an atomic test due to missing values in the input, we 
storee the set of needed variables (those for which no values were available), along 
withh the literal. If a is the input valuation and Pt\  • • tn is the predicate, the 
a-instancee of Pti  tn is given by Pt\ • • • t% , and the set of needed variables by: 
variti-.t*).variti-.t*).  A test that fails produces a transition to the failure state. It makes 
noo difference whether we are in build mode or constrain mode. 

PtPtxx • • • tn a-closed and (f l , . . . , %) € I[P) 

(a,g(a,gaa,l,laa,n,naa,L,Laa,m,maa)) Pt-^t (a,ga,la,na,La,ma) 

Pt\Pt\  tn not a-closed 

(a,, g\ l\ na, L\ m°) Pt n (a, ga, la, na U W, L; Pf[ • • • tan, m
a) 

Pti--tPti--tnn a-closed and (*?,.. . ,£) £ I{P) 

WW = ««{*?..£) 

{a,g{a,gaa,l,laa,n,naa,L,Laa,m,maa)) Pt n 0 
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5.5.33 Equality 

Iff an assignment to v makes the valuation grow, then we have to adjust the 
listt of needed variables (by removing v from it), and the list of constraints (by 
performingg the substitution v/d, where d is the computed value for v). However, 
evenn if an equality t\ = ti is an assignment for the current valuation, we need not 
alwayss perform the assignment: we will only do so when the assignment is to a 
locall variable (dynamically bound in the current context), or to a global variable 
whilee we are in build mode. When we are in constrain mode all identities that 
aree not tests will be put on the constraint list. We will use L[v/d] for the result 
off performing substitution [v/d] to every member of L. 

Thee simplest case is the case where t\ = £2 is a test. In this case it makes no 
differencee whether we are in build or constrain mode. Again, we model failure 
explicitlyy by means of a transition to 0. We get: 

t\t\ = *2 o-closed and t* = 1% 

{a,g{a,gaa,l,laa,n,naa,L,Laa,m,maa)) ^ (a, fl°, la, n°, La, ma) 

t\t\ = t? a-closed and t\ # 1% 

{a,g{a,gaa,l,laa,n,naa,L,Laa,m,maa)) ^ 0 

Iff ti = t 2 is an assignment to a variable v that is local to the current context, 
thee assignment is performed, the variable v is removed from the list of needed 
variables,, and the relevant substitution [v/d] is performed on the list elements. 
Itt makes no difference whether we are in build or constrain mode: 

(« « 

(« « 

t t 

99a a 

*i i 

JJa a 

== *2 an a-assignment with t\ = v 

n\Ln\Laa,m,maa)) 'i^P ( a U H ^ y , 

== t? an a-assignment with t<i  = v 

na,L°,ma)) *^t (aU{v/t?}, 5°, 

,v,va a 

ll aa, , 

,v,va a 

ll aa, , 

=T,t=T,taa
22=i,v€l=i,v€l a a 

nnaa-{v},L-{v},Laa[v/q], [v/q], 

nnaa-{v},L-{v},Laa[v/^ [v/^ 

mmaa) ) 

mmaa) ) 

Iff t\ = <2 is an assignment to a variable v that is global to the current context, 
whatt we will do depends on the execution mode. In build mode, we perform the 
assignment,, remove v from the list of needed variables, and carry out the relevant 
substitutionn [v/d] on the list elements. In constrain mode, we save the identity 
onn the list. 
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titi = t2 an a-assignment with tx =v,va = t , t2 =X, v £ la 

(a,g(a,gaa,l,laa,n,naa,L,Laa,b),b) ^ (oU {v/q},ga U {v},l\na - {«},  L*[t;/f§], 6) 

t\t\ = t2 an a-assignment with ti = v, va = t , #j = i > u 4- ̂  

{a,g\l\n\L\c){a,g\l\n\L\c) '•!=£ (a,<A/°,na U {v},L;1« = t},c) 

t\t\ = t2 an a-assignment with t2 = v,va = t , £? =4-i v £ la 

{a,g\l{a,g\laa,n,naa,L,Laa,b),b) '*=$ (aU {v/t\},ga U {v},la,na - {v},L'[v/1fl,b) 

hh = *2 an a-assignment with t2 = v, va = | , tf[  =1, v £ la 

{a,g{a,gaa,l,laa,n,naa,L,Laa,c),c) ^ {a,ga,la,na U M , L ; t ? = ^ ,c) 

Finally,, for input states where t\ = t2 is neither an assignment nor a test, we 
savee the identity on the list. 

titi = t 2 not an a-assignment and not a-closed _ , , 

(a,^ a , / a ,n a ,L a ,m a)) '-*=*? (a,ga,la,na U W,L;t? = *§,m°) 

5.5.44 Predicate Test Reduction 

Forr efficiency reasons, we indicate the results of a reduction resulting in failure 
byy means of a transition to 0. This prevents the futile application of other rules 
too the state: we make sure that there are no transitions from 0. 

Duee to the fact that identity statements make the valuation grow, test predi­
catess on the unresolved literal list may turn into grounded literals (literals with­
outt variables, i.e., 0-closed literals), in which case we can perform the test. It 
doess not matter where a test literal occurs on the list. We indicate this with 
L(PtiL(Pti  - - tn). In the same context, L() indicates the result of removing all occur­
rencess of Pti • • • tn from the list L. 
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Pt\Pt\  t„  grounded and (ti,...,£„) € I(P) 

(a ,^ , /a,n° ,L(Pt1- - - t n) ,ma)) - ^ (a,f l
0,/a,n°,L(),ma) 

Pt\Pt\  tn grounded and ( t i , . . . , tn) £ I(P) 

(a,g(a,gaa,l,laa,n,naa,L{Pt,L{Pt11---t---tnn),m),maa)) - ^ 0 

Pt\Pt\ ---tn grounded and (ti,...,tn) £ I(P) 

{a,g{a,gaa,l,laa,n,naa,L(^Pt,L(^Pt11---t---tnn),m),maa)) - ^ (a,ga,la,na,LQ,ma) 

PtiPti --tn grounded and {ti,...,tn) € I{P) 

{a,g{a,gaa,l,laa,L(-^Pt,L(-^Pt11---t---tnn),m),maa)) - ^ 0 

5.5.55 Equality Test Reduction 

Inn case an equality or inequality on the unresolved literal list is a test for the 
currentt input, the treatment is as for atomic tests. 

h,hh,h grounded and ti = ti 

( a ^ V ^ L ^ t a ^ m ' )) - ^ (a,ga,la,na,LQ,ma) 

ti,tti,t22 grounded and t\ ^ t2 

{a,g{a,gaa,l,laa,n,naa,L{t,L{t11=t=t 22),m),maa)) - ^ 0 

ti,tti,t22 grounded and t\ ^ t2 

( a . ^ V - . n ' S L H i ^ t ^ m0 )) - ^ (a,ga,la,na,LQ,ma) 

ti,tti,t22 grounded and t\ = t2 

{a,g{a,gaa,l,laa,n,naa,L{-,t,L{-,tll 22),m),maa)) -^> 0 

5.5.66 Assignment Reduction 

Iff an equality occurs anywhere in the unresolved literal list that is an assignment 
forr the current input, then it can be used to extend the input valuation, provided 
wee are in build mode. 



92 2 ChapterChapter 5. The Executable Program Interpretation for DFOL 

(a (a 

(a (a 

(a (a 

,9,9a a 

(a (a 

ggaa, , 

,9,9a a 

l\ l\ 

99a a 

ll aa, , 

t\t\ = t2 an a-assignment with t\ = v, va = 

,l,laa,n,naa,L(t,L(t11 22),b)^(aU{v/tZ},g),b)^(aU{v/tZ},gaa,l,la a 

titi = t 2 an a-assignment with t\ = v, va = 

nnaa,L(h,L(h = t2),b) -U {aö{v/t%},gaU{v} 

titi = t 2 an a-assignment with t2 =v,va = 

,Z°,, n«, L{h = t2), b) -^ (a U {v/t\},ga,la 

t\t\ = t2 an a-assignment with t2 = v,va = 

nfl ,L(*ii =  t2),b) - ^ (oU{ ( j / t J } ) 5
0uM 

=t,*S S 
,n,naa--

, n ° --

,'°,n« « 

=4,,, v€l* 

M,I()[t;/<S],6) ) 

'-M,L()[^],&) ) 

=4,, v e la 

{v},L()[v/n),b) {v},L()[v/n),b) 

l -M,L( ))  [«/<?], 6) 

5.5.77 Quantification 

Iff we encounter a quantifier 3u in a state with a list L with at least one literal 
withh v occurring in it, then we are in trouble. The bookkeeping device for the 
sett of needed variables for list reduction is na. In case v € na, there is nothing 
wee can do but go to the state of irrecoverable error. The reason is that there is 
ann unresolved test involving v on the list, and that test cannot be postponed any 
further. . 

vv ena 

(a,g(a,gaa,l,laa,n,naa,L*,m,L*,maa)) -^> • 

Iff 3v is executed in a state (a, oa , / a ,n a ,L a ,m a) , and none of the literals in 
LL needs v, we throw away the old a-value of v (if any), and put v in the local 
variablee register. 

(a a 99a a ll a a nna a TTa a mmaa) ) 

ve ve 
3v 3v 

dom(a),vdom(a),v £ na 

{a-{v/v{a-{v/vaa},g},ga a ii aa u M, nna a mmaa) ) 
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5.5.88 Negat ion 

Ass the treatment of negation is rather involved, some preliminary definitions are 
useful.. Here is a definition of a reduced computation. 

aa —>r b := either a —• b and there is no b ' with b —̂-> b ' 

orr a —• ai —ï  - ^ b, and there is no b ' with b -̂ -> b' . 

Wee define a° by means of: 

(a,, s°, r , na, L Laa,, ma)° := (a, dom{a), 0, na, La, c). 

InIn other words, a° denotes the result of putting the list of global variables of a 
equall to the domain of the valuation, making the list of local variables of a empty, 
andd putting the state in constrain mode. 

Inn terms of —> r we define the set of all outcomes of computations <fi  starting 
fromm a°, as follows: 

O.fo)) := {b | a° -Ur b}. 

Inn other words, Oa(0) is the set of all fully reduced output states that are the 
resultt of executing <f>  in state a0. 

Next,, note that if we take care to always execute formulas in the scope of 
negationn in constrain mode (this is part of the definition of a°), no global assign­
mentt ever takes place (as is easily verified by inspection of the rules). In constrain 
mode,, instead of assigning a new value to a global variable v, we put a constraint 
onn v on the list. In other words, the members b of Oa(0) will all be safe, in the 
sensee that they all will satisfy gb = dom(a). 

Thee members of Oa(<f>)  fall in the following categories: 

•• b is simple if b has the form (6, gb, lb, 0,0, c). A simple state is one with an 
emptyy list of literals. 

•• b is constrained if b has the form (6, gb, lb, n°, L°, c), with na ^ 0, L ^ 0. 

•• b = 0: the failed state. 

•• b = •: the don't know state. 

Inn cases where the set of outcomes Oa(0) contains at least one simple state, we 
knoww that the embedded computation has succeeded, so the computation of -y<j> 
fromm a should fail (we should get an explicit transition to 0): 

bb € Oa(0) with b simple. 
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Iff O a(0) = {0}, we know that the embedded computation has failed, so the 
computationn of - 0 from a should succeed: 

Iff the set Oa(<£) — {0} is non-empty and contains only constrained states, we 
cann dualize it. If I is an atom or identity A, then Ï is its negation ->A; if c is a 
negatedd atom or identity ->A, then c is the unnegated literal A. We call c the 
complementt of c. 

Dualisationn of a list of constrained states means constructing all lists of literals 
thatt result from picking the complement of a literal on the constraint list of each 
off the constrained states, provided no variable in such a literal is in the local 
variablee list. 

Thee reason for the proviso is that negating a constraint with an existentially 
quantifiedd variable cannot be expressed as a literal constraint on variables. At a 
laterr stage we might wish to take such 'universal constraints' on board as well, 
butt here we refrain from doing so, and in such cases we simply admit defeat and 
givee up. The function U from lists of states to V{{»}) indicates whether dualizing 
aa list of states gives rise to universal constraints: 

" " TrnTrn__ . x , L j if for some j with 1 < j < n, var(LbJ) n lhj ^ 0, 
U{bU{buu...,b...,bnn)) := ^ 

otherwise. . 
Extractingg the dual lists of constraints from a list of constrained states is done 
withh D, defined as follows: 

D{hD{hltlt...,..., bn) := {(ci; n)\cje Lb*, var[Cj) n lhj = 0 for 1 < j < n}. 

Sincee a set of states represents the disjunction of all the possible execution 
pathss to the present, and the list of literals in each state is to be read as a 
conjunction,, the dualization is simply the result of negating the whole disjunction 
whilee keeping the disjunctive form. E.g., if bi has constraint list Lx = (Px; Rxy) 
andd b2 has constraint list L2 = (Qx; ->Sxz), and x, y £ lbl, x, z £ Zb2, then 

£>(bi,, b2) = {(^Px; -Qx), (-Px; Sxz), {^Rxy; -Qx), (-.Rxy; Sxz)}. 

Iff L is a list of literals, var[L) is its list of needed variables. 
Wee now use dualization to compute the continuations of a state a, given 

negatedd constrained states b i , . . . , bn. Assume that a has the form (o, ga, la, n°, La, ma) 

Da(b1 ). . . ,bn ) :={(a, f l
0U^rn aUt;aKi ' ) ) i

o; i ' ,m a) |L '€r i (b 1, . . . ,bn ) }UC/(bi ) . . . ,bn ) . . 

wheree vL' is the set of global variables present on V. 
Thee next rule uses dualisation to compute appropriate lists of literals. 
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Finally,, we need a rule to specify the cases where the negation cannot be 
correctlyy computed. This happens when • G Oa(0), while Oa(0) does not contain 
anyy simple states. 

5.5.99 Composition, Union, Bounded Search/Choice 

Nothingg out of the ordinary here. Using a, b, c as shorthand for (a, ga, la,na,La, m°) 
etc,, we get: 

aa —> b 
a a 

a a 

 b b -=> c 

aa  c 

—>  b b —  c 

aa — • a a —y c 

aa ^ {a,ga,la,na,La,ma) ^U b 
;; t° = t ^ ! l ; <° = JV 

(a,5a , ;°,na ,La ,ma)) -*-• • (a,5°,/a ,na ,La ,ma) -*-• b 

11 I 11» . /fc ^ ' 

(a,<7Va,<Z, f l,m°)) U ^ 4 * • (a,g*,la,na,La,m*) ^ 

[a,g[a,g ,i ,n,L , m ) » D = = < < 

( a , sV a , n a , £ a ,m 0 )) - ^ b 
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5.66 Ways of Running the Dynamo Execution 
Process s 

Itt is convenient to define the outcome of a Dynamo computation process as a set 
off reduced states. Let a valuation a be given. Then the state based on a is the 
statee sa given by: 

(a,, dom(a),0,0,0,o). 

Thee result of running <f>  from state sa is given by: 

RRSaSa{(f>){(f>)  := {b | 3a such that sa —> a - ^ b}. 

Inn other words, the result will not contain states with grounded literals on their 
constraintt lists, for such grounded literals represent tests that can be applied, and 
theyy will be applied during the —• steps. 

Inn addition, it may be useful to check the constraint lists for consistency, by 
meanss of applying a rule like the following: 

leLhleL leLhleL 
(a,£V a ,n a ,L a ,m f l)) - ^ 0 

Ass a special case, we have execution from the state of minimal information 
s«,, = (0,0,0,0,0,6). 

Alsoo special is the case where Dynamo execution starts out from a test state 
forr <f), i.e., from an initial valuation a with var[<f>)  C dom(a), where var[<j>)  is the 
listt of variables that occur dynamically free in 0. One should be able to prove 
thatt if execution starts out from a test state for <f>  the states that result from the 
executionn will not be constrained. 

AA final possibility that should be noted here is execution of <f>  from an initial 
statee that imposes a list of constraints L, say with valuation a: 

(a,(a, dom(a), 0, var(Ls), L$,b). 

Thiss can be useful for putting initial constraints on computed solution sets. 

5.77 Faithfulness to DFOL(U) 
Thee new notion of state of a computation requires us to redefine also the notion 
off faithfulness to DFOL(U): now, a state will represent possible valuations in the 
followingg way: 
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rr {b € Dv | a C è,V/ € La(Af K 0} if * g  {#,0}, 
Fa:= ii {•} ifa = «, 

00 if a = 0. 

Noticee that there is no guarantee that Fa ^ 0 even if a / 0; there might be 
noo valuation b that simultaneously satisfies all the ungrounded literals. 

5.7.1.. THEOREM (CONDITIONAL FORWARD PROPERTY). Suppose a—> b, with 
ll aa u gb C dom(a), n° C n6, L6 extends La. Then a<d implies there is a b' y b 

withwith d -£+ti. 

5.7.2.. THEOREM (FAITHFULNESS TO D F O L ( U ) ) . The execution mechanism is 
faithfulfaithful to DFOL(u), in the following sense: for all M, <f>:  if a —> b, b ^ •, 
ll aa U gb C dom(a), then either: 

•• b^ 0 and for all a' e Fa there is ab1 e Fb with o'[0]£*, 

•• b=0and for all a' € Fa, [<£] £* = 0 

Froo/.. By induction on the structure of <f>.  We will show the proof for the case of 
negationn for illustration. 

Assumee that there are a, b such that a —t b, b ^ •, la U gb C dom(a). 
Assumee further that b / 0. Then, we must prove that for all a' G Fa there is a 
tfeFfcwitha'fofótfeFfcwitha'fofó44. . 

Iff b ^ 0, there are two main possibilities: 

•• b = a. This happens when Oa{4>)  = 0. In turn, by inductive hypothesis, 
wee know that if Oa(<f>)  = 0, then Oa>((f>)  = 0 for any a' G Fa. 

 be a{Oa{(t>)  - {0}), with all members of Oa{<f>)  — {0} constrained. We know 
thatt for all members of a ( b i , . . . ,b n) , the variables from the newly added 
constraintss are in the global variable list gb. Since by hypothesis / "U^ C a, 
extendingg a will not produce any simple b € Oa>{<f>)\  all the atoms in the 
literall lists of Oa'(0) ^ ^ De already grounded. Otherwise the elements of 
OOaa'' {(f>)  will not be 0 or • because of the inductive hypothesis. Then, the 
listss of literals in the elements of Dal{Oa>{<j>)  - {0}) will be the same as for 
a,, which means that the new dualized states will simply be extensions of 
thee previous ones. 

Iff b = 0, then this means that there is a simple element of Oa{<j>)  — {0}; 
byy inductive hypothesis, the corresponding element of Oa> {<!>) —  {0} will also be 
simple,, therefore \<j>\^  = 0 -\ 
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5.88 Conclusion 

Wee have presented an interpretation of DFOL formulas as programs, and an ex-
ecutionn mechanism for DFOL(U). This allows us to write imperative programs 
whichh have a declarative semantics, which in turn makes it very simple to verify 
thatt programs perform the tasks for which they are written; however, the treat-
mentt of negation is a bit involved, and universal quantification usually results 
inn the • state. Seeking a way to solve this problem, we decided that since we 
weree trying to approximate the semantics of the logic, we might as well do it 
withh semantic tableaux [Smu68]. In the next chapter we will present a calculus 
designedd for the verification of DFOL programs; later we will present the tableau 
enginee which went into the latest version of Dynamo. 



Chapterr 6 
Hoaree Calculus for DFOL 

6.11 Hoare Calculus 
Inn Chapter 1 we introduced the concept of using logic for program verification: 
wee will expand on the subject now. If we want to be able to use logic to verify 
thee correctness of a program, we will need a language in which properties of the 
programm can be expressed, with a set of rules that allow us to construct well-
formedformed formulas. This is called an assertion language and its wffs are assertions. 
Off course, we also need a proof system: the axioms and rules that let us prove our 
assertions.. This proof system should have the property, naturally, that it only 
allowss us to prove true assertions; ideally it should allow us to prove any true 
assertion. . 

Thee Hoare calculus deals with a logic (the Hoare logic) in which one can for-
mulatee propositions about the correctness of programs. If we call the assignment 
off values to variables a state, and A and B are assertions about a state, a pro-
gramm <f>  satisfies the specification (̂ 4, J5), if for any state g satisfying A the state 
reachedd by executing 0 satisfies B. However, the possibility that a program does 
nott terminate at all must be taken into account, so we distinguish between partial 
correctness: : 

{A}<f>{B}{A}<f>{B}  *=* Vg(M \= 9A=* V/i( M" = • M \= h B)) 

andd total correctness: 

[A]4>[B][A]4>[B] ^ Vg(M h , A = • W»(( ,[*]£< = • M K B) A \<j>\f * 0)) 

Thuss given a specification (A,B), we may consider that the job of the program­
merr is to find a program <f>  such that {.A}0{i?}, or even [J4]0[B] is true. The 
Hoaree calculus provides us with the means to derive true assertions about atomic 
statements,, and to combine them into true assertions about programs. 

99 9 
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6.22 Why the Executable Interpretation of DFOL 
iss particularly adequate for programming 

Thee idea behind the executable interpretation of DFOL is precisely to have a 
programmingg language whose semantics are devoid of side effects or control fea-
tures;; the Hoare calculus for such a language would be clean and simple. We 
presentedd the interpretation in the previous chapter; now it becomes clear why it 
iss important to have a declarative semantics for the language. If we were to have 
thee calculus deal with the program state as defined in Chapter 5, it would be 
tooo cumbersome and impractical. Instead, we can trust the that interpretation 
iss faithful to DFOL and work with the much cleaner semantics of the logic itself. 

Wee will expand on the language presented in Chapter 5 to include explicit 
bindingsbindings (a); we'll also suggest rules for dealing with the hiding operator (3 x (</>)) 
andd with the Kleene star operator at the end of the chapter. 

Ass we stated on 1.4.12, given a signature of function and predicate symbols, 
thee syntax of DFOL(U, cr,^,*) is as follows: 

tt ::= v\ ft (Terms) 
<f><f>  ::= a\3v\Pt\t1=t2\ 3x(<j>)  | -.(0) | fa; fa \ {<f>i  U fa) \ 4>*  (Formulas) 

6.33 The Rules 

Ass we said in Chapter 1, the use of negation as failure forces us to adopt a slightly 
differentt set of correctness criteria. We have then two kinds of correctness rules: 
existentiall and universal. Their meaning is the following: 

MM h {A)4>{B) «=> V<?(M \=g A = » 3h(8[<f>\?  A M h ^ ) ) 

MM \= {A}<f>{B}  <=• V5 (M \=9A = • \/h (Mi" = > M K B)) 

Notee that universal correctness is equivalent to the old partial correctness, but 
existentiall correctness does not guarantee that all terminating executions of <f) 
satisfyy the postcondition. We can see, however, that if <f>  satisfies { J 4}0{B} 

andand (A)(f>(T), then total correctness is achieved. Note also that universal and 
existentiall correctness rules are interdependent for the case of negation. Now, 
wee enunciate the rules of the calculus. This is an adaptation and expansion of a 
calculuss presented by van Eijck and de Vries [vEdV92] for a different extension 
off DFOL. 

Theree are also rules for defined Dynamo constructs, such as bounded iteration 
andd bounded choice. As the constructs are defined in terms of operators for which 
theree is a rule already, these rules are derived from the basic rules too, and are 
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Figuree 6.1: Universal correctness rules: 

Existentiall quantification: 

Substitution: : 

Equality: : 

Predicates: : 

Negation: : 

Sequentiall composition: 

Union: : 

Rulee of consequence: 

Filterr Rule: 

{VxA}3x{A} {VxA}3x{A} 

{Aa}a{A} {Aa}a{A} 

{(*ii = h) - • A}tx = t 2{A} 

{Pt{Pt -» A}Pt{A} 

(A)t(T) (A)t(T) 
{Av{Av B}^(<f>){B} 

{AfaiB}{AfaiB}  \B\MC\ 
{A}{A} Uu;**)  {C} 

{A\MC}{A\MC} {B\MC\ 
{AABjifau^iC} {AABjifau^iC} 

\AT^{B\\AT^{B\ XM\=(A'->A)*ndM\=(B^B') 

{A\<f>{B\{A\<f>{B\  {WUI 
{44 V C}<f>{B} 

calledd admissible rules. All that is needed for them is to prove that they follow 
fromm the basic rules. 

6.3.1.. LEMMA (Dynamo CONSTRUCTS). The following rules are admissible: 

UniversalUniversal correctness: 

ExistentialExistential correctness: 

BoundedBounded iteration 

{A}<t>{A} {A}<t>{A} 
{A)F{A} {A)F{A} 

(A)<t>(A) (A)<t>(A) 
{A)P{A) {A)P{A) 

BoundedBounded search 

{A}J>{B} {A}J>{B} 

{Vve{N,...,M}:A}[f{Vve{N,...,M}:A}[fNN„„ MM<t>{B} <t>{B} 

(A)<t>(B) (A)<t>(B) 
(3ve{N,...,M}:A)[f(3ve{N,...,M}:A)[fNN„„ MM<j>(B) <j>(B) 

Proof.Proof. We first consider universal correctness for the constructs. We show that 
boundedd iteration is admissible by induction on the number of iterations. 
Forr n = 0, we have fl[0°l^ iff g = h. So, {A}(j>n{A} is trivially true. 
U{A}<f>U{A}<f> nn{A}{A} = >  {A}(l> n+1 {A}, then Vn€N,{A}<t>n{A} 

file:///B/MC/
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Figuree 6.2: Existential correctness rules: 

Existentiall quantification: 

Substitution: : 

Equality: : 

Predicates: : 

Negation: : 

Sequentiall composition: 

Union: : 

Rulee of consequence: 

Combinationn Rule: 

(3xA)Bx{A) (3xA)Bx{A) 

(Aa)a(A) (Aa)a(A) 

{A{A A (ti = t2))h = t2(A) 

{A{A A Pt)Pt{A) 

{A)(4n\4>2){C) {A)(4n\4>2){C) 

(A)MC)(A)MC) (B)<h(C) 
(/W5)(^U02)(C) ) 

(AW&)(AW&) XM\=(A'->A)&ndM\=(B^B>) 

{A}<t>{B\{A}<t>{B\ (C)<t>(T) 
(A(A A C)<f>{B) 

Noww we can apply the sequential composition rule: 

n n 

{A}^7${A}{A}^7${A} {A}<f>{A} 
{A}^_^{A} {A}^_^{A} 

n+l l 

Seq.comp p 

wheree the left premise comes from the inductive hypothesis. 
Forr the case of bounded search, we know that 

{Aa}a{A}{Aa}a{A} {A}<j>{B} 
{Aa}(a;<t>){B} {Aa}(a;<t>){B} 

Seq.. comp 

So,, the correctness condition for each disjunct can be expressed as {.A[i/t;]}([i/v];  4>){B}, 
andd then the whole expression can be derived by repeated application of the Union 
rule: : 

{A[N/v]}([N/v];{A[N/v]}([N/v];  <£){£}... {A[M/v)}([M/v] ; <j>){B) 
M M {KT=NA[i/v]}\j{KT=NA[i/v]}\j NN...M){B} ...M){B} 

Union n 

M M Finally,, /\i=N A[i/v] is true under g iff for all values of i between N and M, >4[i/t;] 
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iss true under g. That is, we can apply the Consequence rule to prove 

V»» e {AT,..., M} : A = > / £ „ A[i/v] {f£N A[i/v}} \JN...U{4){B} 

{Vv€{N,...,M}:A}[f{Vv€{N,...,M}:A}[fNN,..,..MM(<j>){B} (<j>){B} 
Cons s 

Noww we show how the existential version of these rules is admissible. We start 
withh bounded iteration, again arguing by induction on the number of iterations: 
Forr n = 0, we have ff[0

0]^ iïïg = h. So, {A)<j> n{A) is trivially true. 
\i{A)<f>\i{A)<f> nn(A)(A) => (A)(j>n+l{A), thenVn€iï,(A)<j>n{A) 
Noww we can apply the sequential composition rule: 

(A)) 0 ; . . . ; 0(A) (A)4>(A) 
T-TT—— -j-jT beq.comp 
((AA)&^j£()&^j£( AA) ) 

n+l l 

wheree the left premise comes from the inductive hypothesis. 
Forr the case of bounded search, we know that 

// v— Seq. corap 

So,, the correctness condition for each disjunct can be expressed as (A[*/u])([i/v]; <I>)(B), 
andd then the whole can be derived by application of the Union rule: 

{A[N/v]){[N/v]{A[N/v]){[N/v] ;; 0) (B) . . . {A[M/v])([M/v]j  tf>)(B) . 

(V*L(V*L NN
AAliM){fliM){f NN......MM(<!>)(B) (<!>)(B) 

Finally,, Vf=jv -̂  [*/*']  ls true under g iff there is a value of i between N and M 
suchh that -4[i/v] is true under g. That is, 

BvGBvG {7V,..., M} : A = » y g „ A[i/v] ( V ^ A[i/v}) \JNm„(4>){B) 
{3v{3v e {AT,..., M} : A) [fN...M{<t>)(B)  ^ ° n S 

Theree are two properties that make a proof calculus useful. The most basic is 
soundness:soundness: it should never produce false statements. The other, complementary 
property,, is completeness: one should be able to obtain every true statement that 
iss expressible in the calculus. Clearly, while not achieving absolute completeness 
iss bad, not achieving soundness is catastrophic. We will now test our calculus for 
thesee two properties. 
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6.44 Soundness 

Soundnesss (Existential rules): 

MM h (A)4>{B) = • Vg{M \=9 A = • 3/i( ,[*]£< A A< K «)), 

thatt is, if we can derive (A)0(.B) in a model M, then for all states g satisfying 
A,A, there must exist a state h such that g[</>l̂  and h satisfies B. 

Soundnesss (Universal rules): 

MM h {A}cf>{B}  => Vg(M \=g A = • V/i( , [ 0 ] * = • M K B)), 

thatt is, if we can derive {A}0{I?} in a model M, then for all states g satisfying 
A,A, all states h satisfying g\<j>\^  must also satisfy B. 

6.4.1.. THEOREM. Soundness of the calculus: The calculus presented in Figures 
6.16.1 and 6.2 is sound. 

Proof.Proof. We argue by induction on the structure of <j>.  That is, if all the axioms 
aree logically valid, and for every model M the application of an inference rule on 
formulass valid in M. results in a formula valid in M, then the derivations obtained 
withh the calculus will always be valid. We start our proof with the axioms and 
ruless for universal correctness. 

•• 3x: Suppose we have derived {VrcAlEblvl}. Then we must prove that if 
theree is an assignment g under which \/x(A) is true, and furthermore there 
iss a successful execution of 3x terminating in assignment h, then A must be 
truee in h. We know that (1) j p a ; ] ^ iff g and h differ at most in the value 
off x, and (2) M. \=g VxA iff no matter what the value of g(x),M. \=g A. 
Therefore,, for all d £ V, if h = g*, then M [= h A. 
Promm (1) and (2), we know that Vh( 9\3x\^,M \=k A). 

 a: Suppose we have derived {j4cr}cr{A}. Then we must prove that if there 
iss an assignment g under which Aa is true, and furthermore there is a 
successfull execution of a terminating in assignment h, then A must be true 
inn h. We know that (1) g\o\^ iff h = go, with a = [£i/xi,.. •, tn/xn],  and 
(2)) M \=g Aa iff M \=g A[ti/xi,..., tn/xn],  so M \=h A, for 
hh = g[t1/xi,...,tn/xn]. 

•• Pi: Suppose we have derived {Pt =>• A}Pt{A}. Then we must prove that 
iff there is an assignment g under which Pt => A is true, and furthermore 
theree is a successful execution of Pt terminating in assignment /i, then A 
mustt be true in h. We know that s [-£**]£* iff h = g and Pt is true in g. As 
hh = g,{M\=hPtAPt->A) = • M \=h A. 
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•• h = h' Analogous to Pt. 

 Suppose we have derived {.A V £}->(0){B}, and that the premises 
themselvess are sound. Then we must prove that if there is an assignment g 
underr which A V B is true, and furthermore there is a successful execution 
off -*((j>)  terminating in assignment h, then B must be true in h. We know 
thatt (1) j ï - 1 ^ ) ] ^ iff g = h and there is no i such that $[0]^. 
(2)M(2)M \=gAVBffi M \=g AOTM \=g B. 
(3)) (A)<f>(T) iff for all g that satisfy A there is an h such that 5[<^]^. 
Byy (3), for those g such that M \=g A, there is no h such that 9[~

,(<£)]ft/<-
Forr those g such that M \=g B, all h such that <,[_,(^)]ft/f will be equal to 
g,g, so M \=h B. 

 fa; fa: Suppose we have derived {A}fa]fa{C}. Then we must prove that 
iff there is an assignment g under which A is true, and furthermore there is 
aa successful execution of fa; fa terminating in assignment h, then C must 
bee true in h. 

Wee know that (1) {A}^i{£} iff for all g under which A is true, all h such 
thatt stijft* will make B true. 
(2)) {B}fa{C} iff for all g under which B is true, all h such that g[fa]^ 
willl make C true. 
(3)) »I0i;^2lh* iff t n e r e i s a11  s u c n ^ a t sl^ilf1 an(* «ï^]^*-
Byy (1) and (3), there is an i such that g[fa]t*, i[fa]h*, and M  \=i  B. 
Byy (2) and (3), M \=h C. 

•• fa U fa: Suppose we have derived {A}^i U fa{C}. Then we must prove 
thatt if there is an assignment g under which A A B is true, and furthermore 
theree is a successful execution of fa U fa terminating in assignment h, then 
CC must be true in h. We know that (1) {>l}0i{C} iff for all g under which 
AA is true, all h such that ^ I ] ^ will make C true. 
(2)) {B}fa{C} iff for all g under which B is true, all h such that g[fa\j* 
willl make C true. 
(3 ) f [ ^ iU^ ] ^ i f lF , [ ^ ] jMor ,M^ . . 
(4)) A* \=g A A £ iff M [=9 4 and jVf ^ £ . 
So,, if , [ * iK \ by (1) and (4), M h , C. 
So,, if ,[*»]£<, by (2) and (4), M \=g C. 

 Filter Rule: Suppose we know that (1){A}${B} and . Then we 
mustt prove that if there is an assignment g under which (AwC) is true, and 
furthermoree there is a successful execution of <f>  terminating in assignment 
h,h, then B must be true in h. We know that (3) (A V C) is true in g iff A is 
truee in g or C is true in g 
Supposee there is a g such that (A V C) is true in g, and assume there is 
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ann h such that j , ^ ] ^ * .  By (2) and (3), A is true in g. Then, by (1), and 
assumption,, B is true in h. 

Existentiall rules: We proceed to show the existential correctness rules to be 
sound,, again by induction on the structure of <j>. 

•• 3x: Suppose we have derived (3x : A)3x(A). Then we must prove that if 
theree is an assignment g under which 3x : A is true, there is a successful 
executionn of 3x terminating in assignment h under which A is true. Let's 
assumee such a g exists. We know that sl^x]^1 iïï g and h differ at most in 
thee value of x. We also know that M \=g {3xA) iff there is a d0 € V such 
thatt A is true in g$>. 
Wee can assume h = g$>, and then we know that 9[3x]j^ , and A is true in 
h. h. 

•• a: Suppose we have derived (Aa)a(A). Then we must prove that if there is 
ann assignment g under which Aa is true, then there is a successful execution 
off a terminating in assignment h under which A is true. Let's assume 
thenn that such a g exists. We know that pl^]^1 iff ft = go. That is, h = 
g[ti/vi,g[ti/vi,...,...,  tn/vn]  always exists. 
Now,, M \=g (Aa) iSM \=g[t t/vi,...,tn/vn]  (A); that is, A is true in h, for 
hh = g[t1/vi,...,tn/vn]. 

 Pi: Suppose we have derived (A A Pt)Pi(A). Then we must prove that 
iff there is an assignment g under which (A A Pt) is true, then there is a 
successfull execution of Pi terminating in assignment h under which A is 
true.. Let's assume then that such a g exists. Now, (A A Pi) is true under g 
ifff M \=g A A M \=g Pi, and g[Pt\^ iff h = g and Pi is true in g. So such 
ann h always exists, and M \=h A. 

 Equality tests: Same as for Pi. 

 ->(0): Suppose we have derived (A)->(0)(A), knowing that {̂ }</»{_L}. Then 
wee must prove that if there is an assignment g under which A is true, then 
theree is a successful execution of ->(0) terminating in assignment h under 
whichh A is true. Let's assume then that such a g exists. We have then that 
(1)) if g makes A true then there is no h such that gl^]^1. 
(2)) j H ^ ) ] ^ iff 9 = h and there is no i such that J^tf*. 
Byy (1) and (2), we have that 3h = g : ^ H ^ ) ] ^ , and as h = g, M (=/, A. 

 (<j>i  U 02): Suppose we have derived (A V B)(<j>i  U 4>2){C), knowing that 
[A)<f>i(C)[A)<f>i(C)  and (B)fa(C). Then we must prove that if there is an assignment 
gg under which A VB is true, then there is a successful execution of (</»i Ufa) 
terminatingg in assignment h under which C is true. Let's assume then that 
suchh a g exists. We have: (1) If g satisfies A, then there is an h such that 
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S[0I]A,, and h satisfies C. 
(2)) If g satisfies JB, then there is an h such that g[^2]/i, and h satisfies C. 
Wee know that (3) ,[(fc U fa)\$* iff ,foifó< or 9\fa\j*. 
Now,, (4) M \=g {A V B) iff A is true in g or 5 is true in g. 
Lett us assume first that A is true in g. Then, by (1), there is an hi such 
thatt s[ 0 i j ^  and C is true. 
Now,, if B is true in g, by (2), there is an h? such that S[02]A? and C is true. 
Then,, by (3) and (4), there is an h such that g[(fa U (h)]^1 and C is true. 

•• 0i; «for Suppose we have derived {A){<j>i  U «foXC), knowing that (A)<f>i(B) 
andd (B)<fo{C). Then we must prove that if there is an assignment g under 
whichh A is true, then there is a successful execution of <j>i;(fa  terminating 
inn assignment h under which C is true. Let's assume then that such a g 
exists.. We have: (1) If g satisfies A, then there is an h such that j,[0i]/»> 
andd h satisfies B. 
(2)) If g satisfies B, then there is an h such that fl[<fo]fc, and h satisfies C. 
(3)) «[0i; foK* iff there is an i such that 9[0i]-" and {[(h]^-
Byy (1), there is an i such that g l ^ i ] ^ that satisfies B. 
Then,, by (2), there is an h such that «[^Ih4 t n a t satisfies C. 
N o w , ! * ® ,, JfcjfcK4 . 

•• Combination Rule: Suppose we have derived (A A C)<f>(B), knowing that 
(A)4>(B)(A)4>(B) and {C}<f>{T}.  Then we must prove that if there is an assignment 
gg under which A A C is true, then there is a successful execution of <f> 
terminatingg in assignment h under which B is true. Let's assume then that 
suchh a g exists. We know that (1) for all g that make A true, all h such 
thatt ? [ 0 ] ^ will make B true. 
(2)) for all g that make C true, there is an h such that ^[0])^. 
(3)) M h , A A C iff M \=9 A and M (=, C*. 
Byy (2) and (3), there is an h such that ff[0]^-
Byy (1) and (3), B is true in h. 

6.55 Completeness 
Wee shall prove completeness of the calculus for formulas in DFOL (cr, U) 

6.5.1.. THEOREM. (Completeness of the calculus): For all models M, and all 
programsprograms <j)  € DFOL(cr, U), 
ijMijM  \= {A}<j>{B}  andM \= {C)<t>{D),  then {A}<j>{B} and{C)<f>{D)  are derivable 
inin H + T, where T = Th{M) (the theorems ofM). 
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Proof.Proof. By simultaneous induction on the structure of (f>. We define the predi-
catess wup(< ,̂ B) (weakest universal precondition) and wep(0, B)(weakest existen-
tiall precondition) as 

MM \=g wupfofl) ^ VM Mt* = • M h* B), 
MM K wep(0,B) <É=> 3ft( glflt1 A M h B), 

andd we prove that the calculus gives the wlp(0, B) for the universal rules and the 
wep(0,, B) for the existential rules. As these predicates are the weakest precon­
dition,, they must be implied by any precondition for the triples to hold; we can 
thenn use the consequence rule to derive any valid Hoare triple we may encounter. 

3x: 3x: 

MM \=g wup(3x, B) ^=> VhiglBx]? = » M\=hB) 

\/h(g\/h(g ~xh = > M[= hB) 

Vdd € V : (M |=^ B) 

MM \=g VxB 

Sincee the wup(3x, B) is equivalent to VxB, we know that for all g, A implies 
wup(3x,, B). Then, by the consequence rule, 

AA -> VxB {4xB}3x{B} 
Cons s {A}3x{B} {A}3x{B} 

Wee can limit ourselves then to prove that the antecedent given by the rules 
iss always the weakest precondition for each rule. 

MM \=g wep(3z, D) <=> 3h(g[3x]£ i AM\=hD) 

3h(g~3h(g~xxhAM\=hAM\=hhD) D) 

3deV:(M^3deV:(MĝigiD) D) 

MM \=g3x(D). 

xx = t: 

MM h 9 wup(x = t,B) <=> \th{ g[x = *]£* = • M \=h B) 

\fh{(g\fh{(g = hAM\=gx = t) => M\= h
B) 

M\=M\= gg(x(x = t)^B 
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MM \=g wep(x = t, D) «=• 3h(g[x = t]^AM \=h D) 

<=3><=3>  h = gAM\=gX~tAM\=hD 

«=>> M\ ĝx~tAD. 

MM \=9 wup{a,B) <=* Vhigia]? => M  \=h B) 

Vh(kVh(k = ga => M  \=h B) 

M\=M\= 99Ba Ba 

MM \=9 wep(a, D) *=>  3h{g[a]^  A M \=h D) 

3h(k3h(k = goAM\=hD) 

MM \=9 Da. 

Assumee M (= {A}^{<t>){B}.  To prove: M h {A}^{<f>){B}. 

Byy inductive hypothesis, we have that 

M\=M\= gg(wep(<f>,T))(wep(<f>,T)) = * Aih, (wep(^ ,T)) 

M\=g{wuM\=g{wuVV  = *

M\=g(wup{-^(cl>),B))M\=g(wup{-^(cl>),B)) *=*  VhigHM*1 => M K B) 

^=>^=> Vh((h = S A -.3i(p[0]^)) = • M K B) 

4=>> V/i((/i = 5 A ^M \=g wep(0, T)) = • M\=hB) 

«=•• Vft(/» = s = * .M (=9 (wep(<£, T) V B)) 

<^=><^=>  M \=g (wep(0, T) V B) 

Wee know that M (= {A}->(<f>){B},  and that this means M \=g {A -> 
wup(i(0),B)),, and therefore A4 (=p (4 -» (wep(0,T) V £)) Then, .M h 
(i44 -+ (wep(0, T) V B)). 
Existentiall case: Assume M \= (G)-^(4){D). To prove: M h (C)-.(<£)(£>) 

A1 |= , (wepH^) , f l ) )) <=» 3h{g[^)\^AM\=hD). 

<=><=> 3h{h = g A -3ï( s[0lï" A M K *>)) 
«=•• .M |=s wup(<£, I J A M ^ Ü 
^  ̂ M\=3 (wup(0, _L) A D) 
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So,, by definition of weakest existential precondition and inductive hypoth-
esis,, M \=g (C)-.(0)(D) =^ M\-g (wup(0, _L) A £>), 
whichh means we can derive M. h (C)-i(0)(J9). 

•• 0i; 02: By induction hypothesis, we have that 

•Mr-{wup(fc,fl)}} 02 {B}, 

A ^ h { w u p ( 0 ! , W U p ( 0 2 , o ) ) }} 0x (WUP(02,B) } 

soo that the sequential composition rule will result in 

{wup(0i,wup(02,JB))}} 0i;02 {B} 

Wee should prove then that M \=s wup(0i; 02, B) —• wup(0i, wup(02, B)). 
Assumee M \=g wup(0i;02,i?). To prove: M \=g wup(0i, wup(02,.B)) 

-- If M( 5 [0i ]^) , the result is trivially true. 

* - I f 3M s [ 0 i ] ^ ) , t h en : : 

** if ^i(/i[02]f^5 the result is again trivially true. 
** if 3z(ft[02]f, then M \=i  B, and then M \=g wup(0i, wup(02, B)) 

Thee existential counterpart is analogous: by induction hypothesis, 

(wep(02)JB))) 02 (fl), 

(wep(01,wep(02,B)))) 0! (wep(02,£)) 

soo that the sequential composition rule will result in 

{wep(0i,wep(02,B))}} 0i ;02 {B}. 

Wee should prove then that wep(0i;02, B) ==>  wep(0i, wep(02,.B)). 
Assumee M \=g wep(0i;02,.B). To prove: M \=g wep(01,wep(02,B)) 
Ass M \=g wep(0i; 02, B), we know that 3i{g[4>i;  0 2 ] ^ A M H B). 
Now,, that means that 3/i(s[01]^ A hlfo]?4), and therefore 
MM \=g wep(0i, wep(02, B)) 

•• 0i U 02= By induction hypothesis, we have that 

Mh{wup(<j>Mh{wup(<j> uuB)}B)} 0! {B}, 

Af(-{wup(02,B)}} 02 {£} 

Byy the Union rule, 

>fl-{wup(0i,B)Awup(02,JB)}} (0!U02) {B} 
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Wee should prove then that M \=g wup(0i U fe, B) ->• ( w u p ^ B ) A 
wup(<£2,B)). . 
So,, assume M \=g wup(0i U <fo,B). To prove: M \=g wup(0i,B) A 
wup(02,, B) 

MM \=9 wup(0! U fo, B) *=* V/i( ff[4>i U <h\V = » M K B ) 
< ^^ Vh((,[0il£* V9 MJW) = • A< K B) 

Assumee 3/i(«,[<£i U (fo]^)- Then, we know that M K B. 
Now,, assume ~>M K wup(</>i, B). If ^ ï l / J 4 , then there is an h such that 
gl&iUfalf?AMgl&iUfalf?AM K  ""B, which contradicts At K W U P ( 0 I U 0 2 , B ) . Similarly 
forr wup(<fe,B), so At K w uP(0i u 02, B) = > At K (wuP(0i>B) A 
wup(^2,, B)), and by inductive hypothesis M \-g (wup(0i, B) A wup(<^2, B)) 
So,, if At f= {^4}0i U <^{B}, then At h (A -+ (wup(0i, B) A wup(02, £))) . 
Noww for the existential part: Assume M \= {A)(<f>i  U 02)(B). To prove: 
M\-{A){tfnU4>2){B). M\-{A){tfnU4>2){B). 

- M K ( w p ( ^ i . B ) )) *=* 3 f c ( , [ ^ i ] ^ A M K B ) , 
MK(weP(<A2,B))) <=• a ^ M ^ A M K B ) 

Byy inductive hypothesis, we have that 

Mt=Mt= aa{wep{4n,B)){wep{4n,B)) => X h9 ( w e p ( ^ , S ) ) 

M\=M\= gg{wep{(h,B)){wep{(h,B)) = * M\-g(wep(ch,B)) 

(wep(^,, B))fr (B) (wepC^, B))<j> 2{B) 
Byy the Union rule, (wep(0i, B) V wep(<^, B))0i U 02(B) 

Too prove: At [= (>1 =>• wep(0i,B) V wep(02, B)). We know that At (= 
(AA -> wep(0i U fa, B)); if we assume there is a g such that M \=g A, we 
mustt prove that M \=g (wep(0i, B) V wep(<fo, B)). 

A < K w e P ( 0 i u & ! , B ) ) 

All K w e P ( 0 i u ^ B ) 

Then,, A4 K A ~> wep(0i, B) V A* K weP(02> B), 

concludingg our proof. 

= >> 3/i(9[<AiU^]f A At K B ) 

= •• 3 / i ( ( f l [ 0 i ] ^ V f f M 3 r ) A A l K B ) 

= >> A< K wep(^i, B) V A! K weP(02' B) 
= ** At K weP(<h> B) V At K weP(^2' B) 
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Wee now have a calculus that allows us to verify both partial and total cor-
rectnesss for DFOL(cr, U) formulas under the executable interpretation presented 
inn Chapter 5. If the execution mechanism of Dynamo is faithful to the executable 
interpretation,, then our calculus is also useful for verification of Dynamo pro-
grams.. In the next chapter, we will present an execution mechanism that is even 
closerr to the semantics of DFOL(cr, U); since we want to respect the semantics of 
aa logic, we will use a theorem prover to run our programs. But first we want to 
proposee two additions to the language that make it much more expressive: local 
variablee declaration and WHILE loops, or in logical terms, the 3 operator and the 
Kleenee star operator. 

6.66 Extending the Language 

Thee calculus as presented deals with the language of DFOL(a, U). We will now 
presentt rules for dealing with two possible extensions to the core language: the 3 
operatorr and the Kleene star operator, which give us the possibility to use local 
variabless and unbounded iteration, respectively. 

6.6.11 The Hiding operator 

Thee semantics of Bx(<f>)  tell us that we can 'hide' the value of the variable x and 
treatt it as if it was unassigned while we execute 0, and recover it afterwards. 
Ann use for the 3 operator is to have local variable declarations; for example the 
formula3z{zz = x\ 3x; x = y\ 3y; y = x) swaps the values of x and y, with z being 
usedd as an auxiliary variable only within the scope of the 3 operator. This means 
thatt any value that z might have had prior to the execution of the formula is 
restoredd when execution terminates. 

Let'ss see how the Hoare calculus rules for that would look: 

{A}<f>{B}{A}<f>{B} . 
xx not tree m B Universall correctness: {ixA}3x(tj>){B} 

[A)<j>{B) [A)<j>{B) 

Existentiall correctness: (3xAJBx(<j>)(B) xx not free in B 

Wee also need an axiom that states that 3 ̂  (0) does not alter the value of x: 

{A&MW{A&MW fre<A) U C/Wm56(0) Q {X} 

withh change(<j>) being the set of variables that can be changed by execution of 
(0)--
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Soundness s 

Soundnesss - Universal rule: 
Supposee we have derived {VxA}3x(<f>){B}, for x not free in B. Then we must 
provee that if there is an assignment g under which A is true, and furthermore 
theree is a successful execution of 3X(< )̂ terminating in assignment /i, then B must 
bee true in h. 

Assumee that there exist g, h such that M \=g A, and ff|3x(0)]h. We must 
provee that M \=h B. We know that {A}0{B} and that x is not free in B; 
now,, if M \=3 VxA, then for any g' ~x g, M \=g> A. Recall that g\3x{<f>)]h  iff 
39',h'(g39',h'(g ~x g',j [(f>]h',h'  ~x h,h(x) = g(x)) Since we have assumed 9|3 * (0 ) ]A , 

thenn we know those g', h' exist. Now, as g' ~x g and M \=g VxA, we know that 
indeedd M \=g> A. By inductive hypothesis, we know then that M \=h> B, and 
sincee h ~x h' and x is not free in B, M ^ B. 
Soundnesss - Existential rule: 
Supposee we have derived (3xAf3x<j)(B), for x not free in B. Then we must 
provee that if there is an assignment g under which SxA is true, then there is a 
successfull execution of Bx(<j>)  terminating in assignment h under which B is true. 
Let'ss assume then that such a g exists. We know that (A)<f>(B), and that x is not 
freee in B. If M \=g 3xA, then there is a d G D such that M \=gi A, for gi = g*. 
Wee also know that <,P*(0)]/, iff 3g',h'{g ~x g1\g> [<f>) h>,h' ~x h,h(x) = g{x)). 
Then,, we can set g1 = gi, and by inductive hypothesis we know there is an h\ 
suchh that g'l^Jh', with M \=h' B, and furthermore g' ~x g. We only need to take 
h(x)h(x) = g(x) and h ~r h' to have an h such that ?px(<^)l/»j and since x is not free 
inn B, M \=h B. 

Completeness s 

Too prove completeness of the calculus including the 3x{(f>)  rule, we simply expand 
thee proof for the core language with the following: 

Completenesss - Universal rule: 
Underr the condition that x not free in B, by induction hypothesis, we have that 

MM f= {wup(<A, B)}4>{B} = • M h {wup(0, B)}(j>{B} 

Wee want to prove that M \= {A}3X{4>){B} implies M (= {A ->• (Vx(wup(<£, B)))). 
Assumee that M (= {A}3x{(j>){B}, and that we have a g such that M h s A- We 
wantt to prove that for any d € D, M \=gd wup(<£, B). By the semantics of 3 and 
thee definition of wup(0, B), we know that for any d € D, either there exist h, h! 
suchh that 0<*[<£]/»' Ah ~x h'AM \=hB (and since x is not free in B, also M \=h> B), 
orr there is no h' such that gg[<£|h'. Now, by definition of wup(<£, B), we have that 
MM \=gd wup(^, B), for arbitrary d € D, and therefore M \=g Vx(wup(</>, B)). 
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Now,, the existential half is the same; we know that 

MM |= [A)3x{<i>){B) 
MM h ( w e p ^ f i ) ) ^ ) 

Now,, we should prove that M \= (A —y (3a;(wep(0, £)))), for x free in B. 
Assumee there is a g such that M \=g A. This means there exists an h such 
thatt jpx^Iftt and that M. \=h B. This again means there exist d 6 D and 
assignmentss h, h' such that gd[<f>]h> A  h ~x h' A M \=h B (and since x is not free 
inn B, also .A4 (=&' B). In other words, Af \=g (3ar(wep(0, B)), and therefore 
MM \=(A-+{3x(wep(<i>,B)))). 

6.6.22 The Kleene star 

Wee have presented a set of rules that allow us to reason about correctness of 
programss in DFOL(<r, U). While this is already a powerful language, it is still 
missingg unbounded iteration. If we add the Kleene star operator, we become 
ableable to express the WHILE statement, achieving Turing completeness. As with 
explicitt bindings, since the Kleene star operator semantics have been defined in 
thiss framework, we can already talk about correctness of programs that include 
it;; we can add it to the executable interpretation later. The Dynamo version of 
WHILEE would be the following: 

(whilee Si S2)° := (---.51°;52°)*;- (S1
0 

Universall correctness: {^4}0*{yt} 

{A}<f>{A}{A}<f>{A} (t =  i)<t>{t  < i) 
Existentiall correctness: {A)<f>*  (A A t < N) 

Soundnesss - Universal: 
Supposee we have derived {A}^*!^}.  Then we must prove that if there is an as-
signmentt g under which A is true, and furthermore there is a successful execution 
off 4>*  terminating in assignment h, then A must be true in h. 
Wee know that: (1) 9[<f>*\^  iff g = hor there is an i such that g{(f>\^  and i{<j>"\^\ 
(2){i4}<£{>t}meanss that for all g under which A is true, all h that verify s[ 0 ] ^ 
alsoo make A true. 
Prooff by induction on the number of iterations of <f>: 

 0 iterations : g = h, so trivially h makes A true whenever g does. 

•• n + 1 iterations: We assume that A is true under g and that there exist 
g\...gg\...gnn such that <,[<£]£* A . . . A g^^]^ and A is true under gn , and 
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wee must prove that if there are gi... yn+isuch that 9[<f>]^  A. . . A9n [<A]^+1, 
thenn A is true under #n+i-
Wee have that A is true under gn, and Sn[<£]£?+1 • By (2), -A is true under gn+i. 

Soundnesss - Existential: 
Wee have that (1) V5 : M \=g A, 3ft : 9[<j>\^  = • M \=h A. 
(2)) Vg:M\=9(t = i),3h :. [<t>\?  A M |= (t < i). 
( 3 ) * * ] ^^ ^ g = hV3i: g[<f>]?  A <[^]f . 
Assumee 3g:M\=g A. To prove: 3ft : g[4>*\^  AM\=h AA{t < N). 
Wee can use strong induction as follows: 
VieN, , 
iff for all j lesser than i, that from any g that satisfies (,4 A t = j) we can execute 
<j>*<j>*  and reach an ft that satisfies (̂ 4 A t < N) means that for any g that satisfies 
(A(A A t = i) we can also execute 0* and reach an ft that satisfies (A A i < N), then 
forr all i € N, for any 5 that satisfies (A/\t = i) there is an ft such that s[^*]j^ 
andd which satisfies (A A t < N). 
So,, assume (4) V« € N, (Vj<i V5 : X \=g {A A t = j ) ==• 3ft : 9[<f>*]^  AM\=h 

{AAt<N)). {AAt<N)). 
Too prove: Vg : .M f=9 (^ A t = t) => 3ft : J0*J^  A M \=h {A A * < N) 
Fromm (1) and (2), we know that 3fti : 9[<f>]%  A M K i iA A *<«)• 
Now,, fti satisfies (3), and by (4), ftl[^AM h , (.4 At<N). 

Completenesss of the Kleene star rules Completeness of rules for unbounded 
iterationn has of course the problem that preconditions might not be first order 
definable.. We introduce the notion of expressive models [vBV92]: 

6.6.1.. DEFINITION. A model (D,I) is expressive if weakest preconditions (<f>,B) 
aree first order definable in it, for every 0, and B. 

Exampless of expressive models are all finite models, as well as the natural num­
bers.. Note however that this is not a common property of models. 

Evenn then, proving completeness of the rules for the Kleene star was possible 
onlyy for the universal correctness rule: 
Forr every expressive model M, assuming M f= {A}(t>*{B}, we must prove M h 
{A}<f>*{B},{A}<f>*{B},  under the assumption that M j= {A}<j>{B}  = > M \- {A}<j>{B}. 
Wee assume there exists an assignment g such that M ^=g A, and an assignment 
ftft such that s[0*]ft(l). 
Iff M |= {A}<j>*{B},  by semantics of *, we have that M (= {A -> B). Consider 
CC = wup(0*, B). It is clear from the premises that M f= (A —)• C). Now, there is 
thee trivial case in which M. ^ . In this case, the only ft that satisfies (1) 
iss ft = g. Also, by inductive hypothesis, M (= {^4}^{_L} =>• M h {^4}0{_L}. 
Then,, we can derive M h { J4}0*{£} : 
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{A}<f>*{A}{A}<f>*{A} A^B 

{AW{B} {AW{B} 

InIn the nontrivial case, there is an assignment h such that 9[0]A. NOW, 

MM \=g A = = • M[=9 wup(^*, B) 

.MM (= f fwup(0\£) <*=>• M\=gBAwup{(<f>;<t>*),B) 

«=*•• M\=gB A wup(</>, wup(<£*, B)) 

< = •• M\=gBA wup(0, C) 

Inn par t i cu la r , M \= {C —>B). As pe r definition of wup , M f= {C}<j>{C}. T h e n , 
byy induc t ion hypothes i s , we have t h a t M \- {C}<j>{C}. T h e n , 

{CMC} {CMC} 
A^CA^C {C}<j>*{C} C^B 

{A}<f>*{B} {A}<f>*{B} 

Thee main problem for proving the completeness of the existential correctness 
ruless lies in that one of the antecedents is an universal correctness statement; we 
can'tt switch focus from universal to existential correctness without going through 
negation. . 

6.77 Conclusion 
Wee have now presented a way to verify Dynamo programs; the calculus has been 
provedd sound and complete for the core language, and rules for extensions have 
beenn proposed. In the next chapter, we will see how to go even closer to the 
semanticss of DFOL, and also propose an executable interpretation for both the 
Kleenee star and the 3 operator. We will also see how infinitary logic may be used 
forr reasoning about DFOL(*). 
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Tableauu Reasoning with DFOL 

7.11 Introduction 
Wee have shown how to make sure the semantics of a formula in DFOL (a, U) 
followw a given specification. In Chapter 5 we introduced an executable program 
interpretationn for formulas in DFOL(u), but we were not quite happy with the 
result;; it gave up all too often, and we had to simulate negation-as-failure, which 
wass a bit involved and did not make it particularly easy to deal with universal 
quantification. . 

Ourr plan now is to introduce an executable interpretation to DFOL(a, U), 
whichh is more faithful to the semantics, and works in a completely different way: 
itt is a tableau calculus. We start by describing a tableau calculus for DFOL (cr, U) 
makingg intensive use of our theory of explicit binding. The explicit bindings 
representt the intermediate results of calculation that get carried along in the 
computationn process. We illustrate with examples from standard first order rea-
soning,, imperative programming, and derivation of postconditions for imperative 
programs.. Later, we develop an infinitary calculus for DFOL(U, a ,3 , *), and pro-
videe a completeness proof, and finally we enunciate some of the relationships with 
existingg calculi. The first calculus that are the subject of this chapter forms the 
computationn and inference engine of Dynamo, our toy programming language for 
theoremm proving and computing with DFOL. 
Lett us consider a signature E; we will call C? the DFOL (a, U) language over E. 
Thee key relation we want to get to grips with in this chapter is the dynamic 
entailmentt relation that is due to [GS91]: 

7.1.1.. DEFINITION. [Entailment in DFOL] cf> dynamically entails ip, notation 
cf>cf> |= 0, if and only if: 

forr all LY, models Ai, all valuations s, u for M, if *[<A]ĵ  then there is 
aa variable state u' for which ulV*]^-

117 7 
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Inn the calculus we will need the function input((f>), the set of variables that 
havee an input constraining occurrence in <f>  (with <j>  € £E) , Let var[t) be the 
variabless occurring in t. The definition of input(<f>) is as follows: 

7.1.2.. DEFINITION. [Input constrained variables of £s formulas] 

input(9) input(9) 

input(9;input(9; <j>) 

input(3v;input(3v; <p) 

input(Pt;input(Pt; <f>) 

input{t\input{t\ = t2',4>) 

input{-i{<j>i);input{-i{<j>i);  <j> 2) 

mptrf((0iU^2); 3̂) ) 

var(rng(0)) var(rng(0)) 

var(rng(0))var(rng(0)) U (input(<f>)\dom(9)) 

input((f>)\{v} input((f>)\{v} 

var(t)var(t) U input((f>) 

var{ti,var{ti, £2} U input((f>) 

input(<f>\)input(<f>\)  U input{4>2) 

input{<j)i;input{<j)i;  fa) U input((f>2]  03)-

Thee following proposition (the DFOL counterpart to the finiteness lemma 
fromm classical FOL) can be proved by induction on formula structure: 

7.1.3.. PROPOSITION. For all £E models M, all valuations s,s',u,u' for M, all 
£ss formulas (j>: 

ss[4>]^[4>]^ and s ~vAR\inptrf(*)  s' irnPlV 3u' w*^  AtVf-

7.22 Tableaux for DFOL(cr, U) 

7.2.11 Adaptation of Tableaux to Dynamic Reasoning 

Inn classical tableau theorem proving, we want to check the entailment relation by 
lookingg for a possibility of making the antecedent <f>  true and the consequent ip 
false.. If that fails, then we conclude that tp does follow from <f>;  and if it succeeds 
wee can build a counterexample from any tableau branch that remains open; see 
[vB86]. . 

Insteadd of the original method of keeping a formula we want to make true 
andd one we want to make false, and two rules for each operator (one for the false 
sidee and one for the true side), we have one formula $ we want to make true, 
andd two (types of) rules for each operator; one for positive and one for negative 
occurrences.. Consider for example the tableau rule for disjunction in classical 
logic;; a tableau splitting rule like V has the node with the disjunction (f>Vij;  above 
thee two branches with the disjuncts <f>  and ip. The rule V serves as the 'true side 
rule',, and is matched by a rule ->V for dealing with the 'false side'. 

/ \\ I 
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InIn the dynamic version of FOL, order matters: the sequencing operator ';' is not 
commutativee in general. Suppose $ were to consist of 3a;; Px and ->Px. Then 
iff we read $ as 3x; Px; ->Px, we should get a contradiction, but if we read $ as 
-<Px;-<Px; 3x; Px then the formula has a model that contains both Ps and non-Ps. 

Supposee $ were to consist of just 3ar; Px; ->(Qx U Sx). Then we can apply 
thee ->U analogue of ->V to $, but we should make sure that the results of this 
application,, -<Qx and -*Sx, remain in the scope of 3x; Px. In other words, the 
resultt should be: 3a:; Px; ~>Qx; -<Sx (or 3x; Px; -<Sx; ~>Qx: being negated formu-
las,, -iQx and ->Sx are interchangeable), with both ->Qx and ->Sx in the dynamic 
scopee of the quantifier 3x. In the tableau calculus to be presented, we will ensure 
thatt negation rules ->o take dynamic context into account, and that all formulas 
comee with an appropriate binding context, to be supplied by explicit bindings. 

Locall Bindings Versus Global Substitutions. As a rule, we don't apply 
bindingss to formulas unless it is needed; in fact, when processing a formula <f> 
withh a binding 0, we store the formula 8; (f> and apply the binding only as needed, 
forr example when processing an atom. We can see tableau theorem proving as 
thee process of building a domain D and finding out whether the requirements 
imposedd on Z) by $ are consistent, by decomposing the formulas into positive 
andd negative facts and seeing that there is no contradiction between them. We 
willl employ an infinite set F8ko of skolem functions, with F^K, n FUN = 0, plus 
aa set of fresh variables X, with VAR n X = 0. Call the extended signature £*, 
andd the extended language £E» . Let TE* be the terms of the extended language, 
andd 7j£R the terms of the extended language without occurrences of members of 
XX (the frozen terms of £E*) . We have then two instances of grounding: ground 
terms,, those without any variables, and frozen terms, without variables from X. 
Wee extend the notion to literals, and call an Cz* literal frozen if it contains only 
frozenn terms. 

Thee variables in X will function as universal tableau variables [Fit96]. Where 
thee bindings of the variables from VAR are local to a tableau branch, the bindings 
off the variables from X are global to the whole tableau. Next to the (local) 
bindingss for the variables VAR of £ E , we introduce (global) substitutions a for 
thee fresh variables X in C&, and extend these to (sequences of) terms and (sets 
of)) formulas in the manner of Definition 1.4.14. A substitution a is a unifier of 
aa set of (sequences of) terms T if trT contains a single term (sequence of terms). 
Itt is a most general unifier (mgu) of T if a is a unifier of T, and for all unifiers p 
off T there is a 6 with er = 0 p. Similarly for formulas. Note that only unifiers 
forr global substitutions (the term maps for the global tableau variables from X) 
willl ever be computed. 

Thee definitions and results on binding extend to bindings with values in T^., 
andd to substitutions (domain C X, values in T^.). Still, the global substitutions 
playy an altogether different role in the tableau construction process, so we use a 
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differentt notation for them, and write (representations for) global substitutions 
as s 

{Xii t -+ t i , . . . ,X n . 

7.2.22 Tableaux for DFOL(<r,U) Formula Sets 

Iff E is a first order signature, a DFOL(<r, U) tableau over E is a finitely branching 
treee with nodes consisting of (sets of) £E* formulas. A branch in a tableau T is 
aa maximal path in T. We will follow custom in occasionally identifying a branch 
BB with the set of its formulas. 

Lett $ be a set of C% formulas. A DFOL(<r, U) tableau for $ is constructed by 
aa (possibly infinite) sequence of applications of the following rules: 

Initializationn The tree consisting of a single node \\ is a tableau for $. 

Bindingg Composition Suppose T is a tableau for $ and B a branch in T. Let 
<f><f>  6 B U $, let 6; p occur in (f>, and let <f/ be the result of replacing 9; p in 
<f><f>  by 6 o p. Then the tree T' constructed from T by extending B by <f>'  is a 
tableauu for <£>. 

Expansionn Suppose T is a tableau for $ and B a branch in T. Let <f>  € B U $ . 
Thenn the tree T ' constructed from T by extending B according to one of 
thee tableau expansion rules presented in subsection 7.2.3, applied to <f>,  is a 
tableauu for $. 

Equalityy Replacement Suppose T is a tableau for <J> and B a branch in T. 
Lett f i = t2 € B U $ or t2 = tx € B u $, and L(t3) e B U $ , where L is 
aa literal. Suppose ^,£3 are unifiable with MGU a. Then T' constructed 
fromm T by applying <r  to all formulas in T, and extending branch <TB with 
L(o"£2)) is a tableau for $. 

Closuree Suppose T is a tableau for $ and B a branch in T, and L, 1/ are literals 
inn B U $. If L, L' are unifiable with MGU a then T' constructed from T 
byy applying <r to all formulas in T is a tableau for $. 

AA tableau branch can be considered a conjunction of formulas: all of them have 
too be true for that particular branch to remain open. Since we want to include 
treatmentt of identities, the closure of a branch is more involved than in classical 
freee variable tableaux. When checking for closure, we can consider variables 
fromm VAR as existentially quantified: occurrence of Pv along branch B does not 
meann that everything has property P, but rather that the element called v has 
P.P. We can freeze the parameters from X by mapping them to fresh parameters 
fromm VAR. Applying a freezing substitution to a tableau replaces references to 
'arbitraryy objects' x, y,..., by 'arbitrary names.' We can then determine closure 
off a branch B in terms of the congruence closure of the set of equalities occurring 



7.2.7.2. Tableaux for DFOL{a,U) 121 

inn a frozen image <rB of the branch. See [BN98], Chapter 4, for what follows 
aboutt congruence closures. 

Iff $ is a set of C%* formulas without parameters from X, the congruence 
closuree of $, notation «$, is the smallest congruence on T that contains all the 
equalitiess in $. In general, « * will be infinite: if a = b is an equality in $, 
andd ƒ is a one-placed function symbol in the language, then « * will contain 
fafa = ƒ6, f fa = ƒ ƒ ft, ƒ ƒ fa = fffb, Therefore, one uses congruence closure 
moduloo some finite set instead. 

Lett S be the set of all sub-terms (not necessarily proper) of terms occurring in 
aa literal in $. Then the congruence closure of $ modulo S, notation CCs($), is 
thee finite set of equalities « $ n ( S x S). We can decide whether t = i! in CCs($); 
[BN98]] gives an algorithm for computing CCs(G), for finite sets of equalities G 
andd terms S, in polynomial time. 

7.2.1.. DEFINITION, t as if is suspended in a frozen £E. formula set $ if t = 
t'' € CCs($). We extend this notation to sequences: t fa r7 is suspended in $ if 
iii « fl5..., tn » fn are suspended in $. 

AA frozen £E* formula set # is closed if either ->(9) G $ (recall that _L is 
ann abbreviation for -"(Q)), or for some t fa t' suspended in $ we have Pt € $, 
-iPf77 G $, or for a pair of terms t\,t2 with ii fa t<i  suspended in $ we have 
tii /  <2 € $

AA tableau T is c/ose<2 if there is a freezing substitution er of T such that each 
off its branches aB is closed. 

7.2.33 Tableau Expansion Rules 

Notee that we can take the form of any £E* formula to be 0; 0, by prefixing or 
suffixingg [] if necessary. The tableau rules have the effect that bindings get pushed 
fromm left to right in the tableaux, and appear as computed results at the open 
endd nodes. 

Conjunctivee Type. Here are the rules for formulas of conjunctive type (type 
aa in the Smullyan typology): 
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9;9; Pt; <f>  0\h= t2; <f> 
11 i 
11 1 

petpet 9tx = 9t2 
0;; <f> 9 o [Qtilv\, <f> 

wheree 9ti = ve VAR, i e {1,2} 

-(0;; (faufa); fa) 9; ((fa)); fa 

-(0;; fa; fa) ((9; fa)) 

-(0;; fa; fa) 0; fa 

9,9, *i = t2, <j> 
l l 1 1 

9t\9t\ — 9t2 

9;9; <j> 

wheree 9t{ £ VAR,iG {1,2} 

0;; --{fa); fa 

-(0;; fa) 

0;; fa 

Calll the formula at the top node of a rule of this kind a and the formulas at 
thee leaves cci,a2. To expand a tableau branch B by an a rule, extend B with 
bothh a\ and ot2. 

Disjunctivee Type. The rules for formulas of disjunctive type (Smullyan's type 

/»)) = 

-(0; ; 

^P9t ^P9t 

Pt;; fa 

-(0;; fa 

-(0;; t i = 

0*11 # 0t2 

== *2; fa 

-(0;; ^) 

0; ; 

0;0 0 

(faL (faL 

ufa ufa 

fa); fa); 

0;fa 0;fa 

fa fa 

;fa ;fa 

-(0;; -

((0;; fa)) 

{fay, {fay, 

((0; ; 

fa) fa) 

« « 

Calll the formula at the top node of a rule of this kind /3, the formula at the 
leftt leaf Pi and the formula at the right leaf fi2. To expand a tableau branch B 
byy a /? rule, either extend B with Pi or with fi2. 

Universall Type. Rule for universal formulas (Smullyan's type 7): 

- (0 ;; 3v; fa 

-i{6o[x/v];-i{6o[x/v]; fa 

Heree x is a universal variable taken from X that is new to the tableau. Call 
thee formula at the top node of a rule of this kind 7(1?), and the formula at the 
leaff 71. To expand a tableau branch B by a 7 rule, extend B with 71. 
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Existentiall Type. Rule for existential formulas (Sraullyan's type 6): 

0 ;;  3 v ;  <f> 
I I 

6o6o [skg.3v.^(xi,... ,xn)/v];  <j> 

Heree x i , . . . , x „ are the universal parameters upon which interpretation of 
3v;3v; (f> depends, and skfl.^.^xi,..., xn) is a skolem constant that is new to the 
tableauu branch.1 

Byy Proposition 7.1.3, {xi,... ,xn}  is a subset of input(9; Bv; <f>),  or, since no 
memberss of X occur in <f>  or in dom(9), a subset of Xninput(0) = X(~)var(rng(9)). 
Promm this set, we only need2 

{x i , . . . ,, xn] := X n var{rng{9 \ {input{<f>)\{v}))). 

Calll the formula at the top node of a rule of this kind ö(v), and the formula 
att the leaf <$i. To expand a tableau branch B by a S rule, extend B with 6\. 

Thee tableau calculus specifies guidelines for extending a tableau tree with 
neww leaf nodes. If  one starts out from a single formula, at each stage only a finite 
numberr of rules can be applied. Breadth first search will get us all the possible 
tableauu developments for a given initial formula, but this procedure is not an 
algorithmalgorithm for tableau proof construction; it doesn't tell us how to choose which 
branchh to expand or what to freeze variables from X to. We'll see the algorithm 
implementingg this calculus in chapter 8. 

7.33 Soundness of the Calculus 
Valuationss for S* models M. = (D, I) are functions in VAR U X —t D. Any such 
functionn g can be viewed as a union s U h of a function s € VAR —>• D and a 
functionn h € X —t D (take s = g \ VAR  and h = g \ X). For satisfaction in 
E** models we use the notation su/»^]^ to be understood in the obvious way. 
InIn terms of this we define the notion that we need to account for the universal 
naturee of the X variables. 

7.3.1.. DEFINITION. Let <j>  € £ s . , M - {D, I) a S* model, s,u e VAR - • D. 

xItt is well-known that this can be optimized so that the choice of skolem constant only 
dependss on 8; 3r; <j>. 

2Inn an implementation, it may be more efficient to not bother about computing input{<j>), 
andd instead work with {iCi,...,zn} : = X n var(rng(d)}. 
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Thenn )\4\M iff for  every h : X - • D there i s a u : VAR UX ^ D with 
SUA[0]^-- We say: s universally satisfies <j>  in M.. 

Forr any tableau T we say that C(T) if there is an E* model M, a branch £ 
off T and a VAR valuation s for M such that every formula <f>  of £? is universally 
satisfiedd by s in M.. 

7.3.2.. LEMMA, ƒƒ S universally satisfies (j>  in M, and a is a substitution on X 
thatthat is safe for <f>,  then s universally satisfies er<f> in Ai. 

Proof.Proof. If ^ [0 ]^ then for every X valuation h in M there is a VAR U X valuation 
uu in M with JU/JMJ^- Thus for every h in M there is a VAR U X valuation u in 
AiAi with 

andd therefore for every h in M there is a VAR U X valuation u in M with 

Sincee or is safe for <j>  we have by the binding lemma that [«r^J^1 = [a; <f>] M, and 
itt follows that s universally satisfies <r<j)  in M. H 

Withh this, we can show that the tableau building rules preserve the C(T) 
relation. . 

7.3.3.. LEMMA (TABLEAU EXPANSION LEMMA). 

1.1. If tableau T for $ yields tableau T' by an application of binding composition, 
thenthen C(T) implies C(T'). 

2.2. If tableau T for $ yields tableau T" by an application of a tableau expansion 
rule,rule, then C(T) implies C(T'). 

3.3. If tableau T for $ yields tableau T' by an application of equality replacement, 
thenthen C(T) implies C(T'). 

4-4- If tableau T for $ yields tableau T1 by an application of closure, then C(T) 
impliesimplies C(T'). 

Proof.Proof. 1. Immediate from the fact that 6; p and 9op have the same interpretation. 
2.. All of the a and /? rules are straightforward, except perhaps for the a 

equalityy rules. The change of $ to 0 o [$ti/v], where Otj = v (i,j € {1,2}, z ̂  j ,) 
reflectss the fact that 9t\ = Ot  ̂ gives us the information to instantiate v. 

Thee 7 rule. Assume ->(0; 3v; <£) is universally satisfied by s in M. We may 
assumee that 9 is safe for 3u; <j>.  If x € X, x fresh to the tableau, then 9 o [x/v] 
willl be safe for <f>,  and ->(9 o [x/v];  <j>)  will be universally satisfied by s in M.. 
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Thee <5 rule. Assume s universally satisfies 9; 3v\ <f>  in M.. By induction on 
tableauu structure, dom(9) C VAR. Define a new model M' where sk* ,^ is 
interpretedd as the function ƒ : Dn -»• D given by 

f(di,...,df(di,...,dnn)) := some d for which <fi  succeeds in M 

forr input state s$[di/xi,..., dn/xn,d/v]. 

Byy the fact that s universally satisfies 9; Sv; <j>  in M and by the way we have 
pickedd xi,...,xn, such a d must exist. Then s will universally satisfy 9 o 
[skö;3t»;^(xi,... .,xn)/v];<f> in M', while universal satisfaction of other formulas 
onn the branch is not affected by the switch from M to M'. 

33 and 4 follow immediately from Lemma 7.3.2. H 

7.3.4.. THEOREM (SOUNDNESS). If<t>,ip€.  £E , and the tableau for <j>\  -i(V') closes, 
thenthen <j>  (= ip-

Proof.Proof. If the tableau for <j>;  ->{ip)  closes, then by the Tableau Expansion Lemma, 
theree are no M, s such that )[<f>;  ~>{ip)] M. Since 0, ip G £%, there are no M, s, u 
withh ,[0; -'(tp)]^- In other words, for every E model M and every pair of variable 
statess s, u for M. with »[0]^ there has to be a variable state u' with «[^J^1. Thus, 
wee have <f>  (= ip in the sense of Definition 7.1.1. H 

7.44 Derived Principles 
Universall Quantification. Immediately from the definition of Vu{0) we get: 

0;Vv(fc);fc c 

( ( 9 o [ x M ^ ) ) ) 

ö;02 2 

wheree x E X new to the tableau 

Blockss Detachment. A sequence of blocks ; . -; 5 where  is 
eitherr ((0«)) or —1(̂ ), yields the set of its components, by a series of applications 
off distribution of the empty substitution over block or negation. This is useful, 
ass the formulas , n) can be processed in any order. In a schema: 

1 n) ) 

) ) 

M M 
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Negationn Splitting. The following rules are admissible in the calculus: 

g6V))) -tex) ((<£;-#))) -0£;x) 
Negationn splitting can be viewed as the DFOL guise of a well known principle 

fromm modal logic: 0(A V B ) - ^ (0^4 V OB). To see the connection, note that 
-i(<£;; ->(V0; x) is semantically equivalent to -"(0; ->(tp U _|(x)))» where ->(<f>;  -••••) 
behavess as a • modality. 

7.55 Some Examples 
InIn the examples we will use VQ, V\, ... as 0-ary skolem terms for v, etcetera. 

Syllogisticc Reasoning. Consider the syllogism: 

\/x{Ax\/x{Ax - • Bx), Vx(5x - • Cx) \= Vx{Ax -»> Car). 

Thiss is an abbreviation of (7.1). 

~>{3x;~>{3x;  Ax;~>Bx),->(3x;Bx;->Cx) (= -i(3x;Ax;->Cx) (7.1) 

Thee DF0L((7, U) tableau for this example, a tableau refutation of 

->(3x;->(3x; Ax; ->Bx); ->(3x; Bx; ->Cx); ((3x; Ax; ->Cx]j 

iss in Figure 7.1. 

Reasoningg about *<\ Consider example (7.2). 

yy <x;^{3x;3y;x < y). (7.2) 

Thiss is contradictory, for first two objects of different size are introduced, and 
nextt we are told that all objects have the same size. The contradiction is derived 
ass follows: 

yy < x; ^{3x; By; x < y) 

yy < x 

^(3x;3y;x^(3x;3y;x < y) 
I I 

^{{xi/x,x^{{xi/x,x22fy];x<y) fy];x<y) 

I I 
{xi{xi i-t y, x2 H> x} 

x x 
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i(3x;; Ax; -<Bx); ->(3:c; 5a;; -iCx); ((3a;; Ax; -<Cx)) 

-^Ax -^Ax 

{x{x H-+ Xi} 
X X 

-i(3a;;.Aa:;; -iJ3ar) 
-i(3a;;; Ba;;->Ca;) 
((3x;; Ax; ->Cx)) 

(([xi/x];Ax;-.Cx)) ) 

AxAx i 

(([x!/x];-iCx)) ) 

-CX! ! 

(([*l/s])) ) 

-i([x/x];;  Ax; -iBx) 

-i([x/x];-i([x/x]; -iSx) 

Sa; ; 

^{[y/x\;Bx;^Cx) ^{[y/x\;Bx;^Cx) 

;^Cx) ;^Cx) 

{x^x{x^xuuyy H-Xi} 
x x 

{x\-txi,yi-txi} {x\-txi,yi-txi} 
x x 

Figuree 7.1: DFOL(cr, U) Tableau for Syllogistic Reasoning (7.1). 
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Computationn of Answer Substitutions. The following example illustrates 
howw the tableau calculus can be used to compute answer substitutions for a query. 

I < 3 ; II = 5 U I = 2 

xx < 3 
x=x= 5Ux=2 

xx = 5 x = 2 

[5/1]] [2/x] 

AA combination with model checking or term rewriting (see [DHK98]) can be 
usedd to get rid of the left branch. Adding the relevant axioms for < would achieve 
thee same. See the next example. 

Moree Reasoning about <. Assume that 1, 2 ,3 , . . . are shorthand for sO, ssO,... 
Wee derive a contradiction from the assumption that 5 < 2 together with two ax-
iomss for <. See Figure 7.2, with arrows connecting the literals that effect closure. 

Computationn of Answer Substitutions, with Variable Reuse. Figure 7.3 
demonstratess how the computed answer substitution stores the final value for x, 
underr the renaming x\. Because of the renaming, the database information for 
X\X\ does not conflict with that for x. 

Closuree by Equality Replacement. This example illustrates closure by means 
off equality replacement, in reasoning about 3x; 3y; x ^ y; 3x; ->(By; x ^ y). Note 
thatt X\,yi,xi serve as names for objects in the domain under construction. What 
thee argument boils down to is: if the name X2 applies to everything, then it cannot 
bee the case that there are two different objects X\,yi. See Figure 7.4. 

Thee first application of equality replacement in Figure 7.4 unifies x with x\ 
andd concludes from x2 = x,x\ ^ y\ that x2 ^ y\. The second application of 
equalityy replacement unifies y with  and concludes from x2 = y, x2 ^ V\ that 
xx22 ƒ x2-

Loopp Invariant Checking. To check that x = y\ is a loop invariant for y :— 
yy + l;x := x *y, assume it is not, and use the calculus to derive a contradiction 
withh the definition of !. Note that y := y + I; x := x * y appears in our notation 
ass [y + l/y];  [x * y/x\. See Figure 7.5. A more detailed account would of course 
havee to use the DFOL definitions of +, * and !. 
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i(3x;; x < 0); 4 < 2; -t(3ar; 3y; sx < sy; - a < j/) 

-i(3»;ajj < 0) 

4 < 2 2 

-i(3a;;; 3y; sx < sy; -<x < y) 
I I 

->Qx/xhx->Qx/xhx < 0) 

->x->x < 0" 
I I 

<[y/a;,, z/y]; sx < sy; ->x < y) 

Figuree 7.2: More Reasoning about <. 
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xx = 0; x = y U y = 2; 3x; x = 2 

xx = 0 

[0/x];; a; = y U t/ = 2; 3x; x = 2 

[0/x];; x = y;3x;x = 2 [0/x]; 2/ = 2; 3x; x = 2 

0=y0=y 2 = y 
[0/x,, O/?/]; 3a;; x = 2 [0/x, 2/y]; 3x; x = 2 

[x[x 11/x,0/y];x/x,0/y];x = 2 [xi/x,2/y];x = 2 

xii = 2 xi = 2 

[xi/x,, 0/j/, 2/xi] [xi/x, 2/y, 2/xi] 

Figuree 7.3: Computation of Answer Substitutions, with Variable Reuse 

Loopp Invariant Detection. This time, we inspect the code [x*(y + l)/x];  [y + 
1/y]1/y] starting from scratch. Since y is the variable that gets incremented, we may 
assumee that x depends on y via an unknown function ƒ. Thus, we start in a 
situationn where fy = x. We check what has happened to this dependency after 
executionn of the code [x * (y + l)/x]; [y + 1/y], by means of a tableau calculation 
forr fy = x; [x * (y + l)/x]; [y + 1/y]; fy = x. See Figure 7.6. The tableau shows 
thatt [x * (y + l)/x]; [y + 1/y] is a loop for the factorial function. 

Postconditionn Reasoning for 'If Then Else'. For another example of this, 
considerr a loop through the following programming code: 

ii := i +  1; if x < a[i]  then x := a[i]  else skip. (7.3) 

Assumee we know that before the loop x is the maximum of array elements a[0] 
throughh a[i].  Then our calculus allows us to derive a characterization of the value 
off x at the end of the loop. Note that the loop code appears in DFOL(<7, U) under 
thee following guise: 

[i[i  + 1/i]; (x <  a[i];  [a[i]/x] U ->x  < a[i\). 

Thee situation of x at the start of the loop can be given by an identity x = m°, 
wheree m is a two-placed function. To get a characterization of x at the end, we 
justt put X = x (X a constant) at the end, and see what we get (Figure 7.7). What 
thee leaf nodes tell us is that in any case, X is the maximum of a[0], ..,a[i + 1], 
andd this maximum gets computed in x. 



7.5.7.5. Some Examples 131 1 

3a;;; 3y; x  ̂ y; 3x; -Gj/; x ^ y 

[x[x 11/x,/x, yi/y}; x^y; 3x; -By; xj^y 

[x2/x,yi/y};^3y;x^y [x2/x,yi/y};^3y;x^y 

^[x^[x22/x,x/y];x^y /x,x/y];x^y 

xx22 = x 

{x{x !->• Xi} 

X2X2 Ï 2/1 

%2/x,y/y];x%2/x,y/y];x £y 

xx22 = y 

{y{y  2/1} 

X2X2 ¥" X2 

X X 

Figuree 7.4: Reasoning With Equality 

xx = y\\ [y + 1/y];  [x * y/x}; x^y\ 

[y\/x];[y\/x];  [y + 1/y}; [x * y/x]; x^y\ 

[y\/x,y+l/y]; [y\/x,y+l/y]; x*y/x];x^y\ x*y/x];x^y\ 

[y[y  + l/y,y\* (y + l)/x];x ^ y\ 

y\*{yy\*{y  + l)^{y + l)l 

Figuree 7.5: Loop Invariant Checking. 
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fyfy = x;[x*(y + l)/x};  [y + 1/y}; fy = x 

fyfy = x 

[fy/x];[fy/x];  [x * (y + l)/x]\ [y + 1/y]; fy = x 

[fy[fy * (y + \)/x]\  [y + 1/y]; fy = x 

[fy[fy *{y + l)/x, y + 1/y]; fy = x 

f(yf(y + l)=fy*(y+l) 

[fy*(y[fy*(y + l)/x,y + l/y] 

Figuree 7.6: Loop Invariant Detection. 

xx — m°; [i  + 1/t]; x < a[i};  [a[i]/x] U ->x  < a[i}\  X = x 

[m°/x);[m°/x); [i  + 1/t']; x < a[i\;  [a[i]/x] U  -uc < a[t]; X = x 

[m°/x,[m°/x, i + 1/t]; a; < a[i]; [a[t]/af] U - * < o[»]; X = x 

[m°/x,[m°/x, i + 1/t]; a; < a[i];  [a[t]/x];  X = a: U \m\jx, i + 1/t]; ->a; < a[t];  X = x 

[m°/x,[m°/x, i + 1/t]; x < o[t]; [a[t]/x];  X 

m?? < a[t + 1] 
[m°/x,[m°/x, i + 1/t]; [a[i]/a;];  X = a; 

[t++ 1/t, a[i + l]/x];X = a; 

XX = a[i + 1] 
[tt + 1/t, a[i + l]/x] 

[m!-/x,i[m!-/x,i + 1/t]; -ix <  o[t]; Jf = x 

imff < o[t + 1], [mS/x, i + 1/t]; X = a: 

-imff < a[i + 1] 

[ml/x,[ml/x, i + 1/t] 

Figuree 7.7: Postcondition Reasoning For (7.3). 

file:///m/jx
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7.66 Completeness 
Completenesss for this calculus can be proved by a variation on completeness 
proofss for tableau calculi in classical FOL. First we define trace sets for DFOL(a, U) 
ass an analogue to Hintikka sets for FOL. A trace set is a set of DFOL(er, u) for-
mulass satisfying the closure conditions that can be read off from the tableau 
rules.. Trace sets can be viewed as blow-by-blow accounts of particular consistent 
DFOL(a,U)) computation paths (i.e., paths that do not close). 

7.6.1.. DEFINITION. A set \& of Cv formulas is a trace set if the following hold: 

i.. -.(0) i $. 

2.. If 0 G $, then 0 £ * . 

3.. If 0; 0 <E * , then dtp e * . 

4.. If a € * then all a{ € \I>. 

5.. If ft e * then at least one & € vl(. 

6.. If 7(u) € * , then 71 (t) € * for all* € T ^R (all terms that do not contain 
variabless from X). 

7.. If S{v) E tf, then 6i(t) € # for some t € T%*R (some term t that does not 
containn variables from X). 

Thiss definition is motivated by the Trace Lemma: 

7.6.2.. LEMMA (TRACE LEMMA). The elements of every trace set ^ are simul-
taneouslytaneously satisfiable. 

Proof.Proof. Define a canonical model A4o in the standard fashion, using congruence 
closuree on the trace set ^ over the set of terms occurring in $, to get a suitable 
congruencee = on terms. Next, define a canonical valuation SQ by means of SQ{V) := 
[v]=[v]=  for members of VAR and 3o(sk?) = [sk°]= for 0-ary skolem terms. Verify that 
ss00 satisfies every member of $ in M.Q. H 

Too employ the lemma, we need the standard notion of a fair computation 
rule.. A computation rule is a function F that for any set of formulas $ and any 
tableauu T, computes the next rule to be applied on T. This defines a partial 
orderr on the set of tableaux for $, with the successor of T given by F. Then 
theree is a (possibly infinite) sequence of tableaux for $ starting from the initial 
tableau,, and with supremum T^. A computation rule F is fair if the following 
holdss for all branches B in T^: 

1.. All formulas of type a, $, 5 occurring on B or in $ were used to expand B, 
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2.. All formulas of type 7 occurring on B or in $ were used infinitely often to 
expandd B. 

7.6.3.. THEOREM (COMPLETENESS). For all </>, V € C^: if'<f>\=  tp then there is 
aa tableau refutation of <j>;-<(ip). 

Proof.Proof. Let To, . . . be a sequence of tableaux for <fi;  -<(tp) constructed with a fair 
computationn rule, without closure rule applications, and with supremum T ^ . 
Definee a freezing map cr,» on T ^ in the standard fashion (see, e.g., [HahOl]). 
InIn particular, let (J3jt)jt>o be an enumeration of the branches of Too, let (<&)j>o 
bee an enumeration of the type 7 formulas of T,», and let Xijk be the variable 
introducedd for the j- th application of 7 formula <fo along branch B^. If (fy)j>o is 
ann enumeration of all the frozen terms of T ^ , we can set c^Xijk) := tj for all 
hh h k > 0. Note that a^ is not, strictly speaking, a substitution since dom(a,

00) 
iss not finite. 

Supposee O-QOTOO contains an open branch. Then from this branch we would get 
aa trace set, which in turn would give a canonical model and a canonical valuation 
forr <j>;  ->(ip), and contradiction with the assumption that <f>  \= ip. Therefore, 
""ooTooo must be closed. 

Sincee the tree T ^ is finitely branching and all formulas having an effect on 
closuree are at finite distance from the root, there is a finite Tn with o"ooTn closed. 
Finally,, construct an MGU <r  for T„ on the basis of the part of (T^ that is actually 
usedused in the closure of Tn, and we are done. H 

7.6.4.. THEOREM (COMPUTATION THEOREM). If<f>  is satisfiable, then all bind-
ingsings 9 produced by open tableau branches B satisfy S[0]^S where Ai is the canon-
icalical model constructed from B, and s the canonical valuation. 

Proof.Proof. Let To, . . . be a sequence of tableaux for <f>  constructed with a fair compu-
tationn rule, without closure rule applications, and with supremum T,». Consider 
«TOOTQO,, where «Too is the canonical freezing substitution. Then since <j>  is satis-
fiable,fiable, «TOOTQC will have open branches (Bk)k>o (the number need not be finite). 
Itt follows from the format of the tableau expansion rules that every open branch 
willl develop one binding. 

AA binding 9 ^ [] occurs non-protected in a formula of the form 9; ip. Check 
thatt the tableau expansion rules on formulas of the forms ((^)) or ->(tp) never yield 
(nontrivial)) non-protected bindings. Check that each application of an a, /?, 7 or 
55 rule to a formula with a non-protected binding extends a branch with exactly 
onee non-protected binding. It follows that every tableau branch £?* has a highest 
nodee where a formula of the form 9 appears. This 9 can be thought of as the 
resultt of pulling the initial binding [] through the initial formula <f>.  For every 
suchh B). and 9 there is a finite Tn with a branch B^ that already contains (a 
generalizationn of) 6. 

Itt can be proved by induction on the length of B^ that sl^l^S for M the 
canonicall model and s the canonical valuation for that branch. H 
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Notee that the computation theorem gives no recipe for generating all correct 
bindingss for a given <f>.  Specifying appropriate computation rules for generating 
thesee bindings for specific sets of DF0L(<7, U) formulas remains a topic for future 
research. . 

Variation:: Using the Calculus with a Fixed Model. Computing with 
respectt to a fixed model is just a slight variation on the general scheme. The 
techniquee of using tableau rules for model checking is well known. Assume that 
aa model M = (£>, I) is given. Then instead of storing ground predicates POt 
(groundd equalities 6t\ = 9t2), we check the model for M =̂ POt (for [flti]^  = 
[0*2]"̂ ),,  and close the branch if the test fails, continue otherwise. Similarly, 
insteadd of storing ground predicates POt (ground equalities 0t\ = #£2) under 
negation,, we check the model for M ^ POt (for \6ti\M # l0t2]

M), and close the 
branchh if the test fails, continue otherwise. 

7.77 Extending the Language 

7.7.11 Local variables: the Hiding operator 

Considerr the language of DFOL(er, U,3), that is, the extension of the logic we 
havee been using with the 3 operator. This extension gives a 'classical' existential 
quantifierr to DFOL, and it is therefore quite straightforward to state tableau rules 
too handle it: 

0;; 3u(^i); <fa 

0;4>i[sk0;4>i[sk66..3vi<l3vi<l ,(xu,(xu...,x„)/v];...,x„)/v]; <fa 

wheree again Xi,...,xn are the universal parameters upon which interpretation 
off 3v; (j>  depends, and s k ^ ^ a ï i , . . . , xn) is a skolem constant that is new to the 
tableauu branch. The rule for the negated hiding operator would be just the same 
ass the 7-rule: 

0;; -.<3vfói)); <h 

-i(0o[x/v];<l>i) -i(0o[x/v];<l>i) 
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wheree a; is a universal variable taken from X that is new to the tableau. In 
fact,, since the difference between the classical and dynamic interpretations of the 
existentiall quantifier lies in this context in the scope of the quantifier, negation 
bringss them to the same form, and the rule for negated 3 operator is the same as 
thee 7 rule. Soundness and completeness for rules involving this operator follow 
fromm soundness and completeness of the 6 and 7 rules. 

7.7.22 Iteration: the Kleene star 

Lett us now add the Kleene star operator, making our language DFOL(<r, U, *); 
Thee intended relational meaning of <f>*  is that (j) gets executed a finite (> 0) 
numberr of times. This extension is then a full-fledged programming language. 

Thee semantic clause for <f>*  runs as follows: 

sWJisWJi44 iff either s = u 

orr 3Sl,..., sn(n > 1) with , [ f l £ , . . . , SJ<C*. 

Itt is easy to see that it follows from this definition that: 

, fo*]**  iff either a = u or 3Sl with , [0 ]£ and Sl{4>*V?  (7.4) 

Note,, however, that (7.4) is not equivalent to the definition of s [</>*]£* 1 for (7.4) 
doess not rule out infinite <f>  paths. 

Lett <fi n be given by: 0° := \\ and 4>n+i := <f>;  (f>n. Now (j)*  is equivalent to 'for 
somee n e N : <f> n\ 

Whatt we will do in our calculus for DFOL(cr, U, *) is take (7.4) as the cue to 
thee star rules. This will allow star computations to loop, which does not pose 
anyy problem, given that we extend our notion of closure to 'closure in the limit' 
(seee below). 

Thee calculus for DFOL((T, U, *) has all expansion rules of the DFOL(a, U) 
calculus,, plus the following a* and /?* rules. 

a*a* expansion rule. Call ip* the star formula of the rule. 

->(0;x) ) 
^(0;^;V*;x) ) 
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/3*/3*  expansion rule. Call rjj*  the star formula of the rule. 

4>\4>\ V\ x 

(f>;(f>; XX (f>;il);ip*;x 

Too see that the a* rule is sound, assume that s universally satisfies -i($; ij)*;  x) 
inn M — (D,I). By (7.4), this means that there is at least one h : X -4 D for 
whichh there is no u with suft!*/'; x]^1 and no u with SUA[</>; tp; tp"; xV^- Thus, s 
universallyy satisfies ->{(p;x)  a nd _,(0;V';V'*;x)  m M. 

Forr the /3* rule, assume that s universally satisfies 4>\ij)*;x  m M.. Then for 
everyy h : X ^ D there are u,u' with . u , , ^ ]  ̂ and „ I^*;x]^-  Then, by (7.4), 
eitherr u\x]tf or there is a ux with „[t/*]^  and „ J ^ ^ x l ^ - Thus, s universally 
satisfiess either <fi;  x or <f>;  ip; ip*;  x in M. 

Closuree in the Limit. To deal with the inflationary nature of the a* and /3* 
ruless (the star formula of the rule reappears at a leaf node), we need a modification 
off our notion of tableau closure. We allow closure in the limit, as follows. 

7.7.1.. DEFINITION. An infinite tableau branch closes in the limit if it contains 
ann infinite star development, i.e., an infinite number of a* or /?* applications to 
thee same star formula. 

Examplee of Closure in the Limit. We will give an example of an infinite 
starr development. Consider formula (7.5): 

->3w->(3i;;; v — 0; (v ^ w; [v + l/f])*; v = w). (7.5) 

Whatt (7.5) says is that there is no object w that cannot be reached in a finite 
numberr of steps from v = 0, or in other words that the successor relation v \-¥ V+l, 
consideredd as a graph, is well-founded. This is the Peano induction axiom: it 
characterizess the natural numbers up to isomorphism. What it says is that any set 
AA that contains 0 and is closed under successor contains all the natural numbers. 
Thee fact that Peano induction is expressible as an ££ formula is evidence that 
£££ has greater expressive power than FOL. In FOL no single formula can express 
Peanoo induction: no formula can distinguish the standard model (N, s) from the 
non-standardd models. In a non-standard model of the natural numbers it may 
takee an infinite number of s-steps to get from one natural number n to a larger 
numberr m. 

Thee expressive power of £s* is the same as that of quantified dynamic logic [Pra76, 
Gol92].. Arithmetical truth is undecidable, so there can be no unitary refutation 
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3w->(3v;3w->(3v; v = 0; (v ̂  w\ [v + l/v])*;  v = w) 

[wi/w]-i(3v;[wi/w]-i(3v;  v = 0; (v ̂  w; [v + l/v])*;  v = w) 

->([UJI/VJ,, 0/v]; (v ^ w; [v + l/v])*; v = w) 

->([wi/w,, 0/v]; v = w) 

^{[w^{[w xx/w,/w, 0/v]; v  ̂ w; [v + l/v]; (v ft w; [v + l/v])*;  v = w) 

I I 

I I 
->([wi/w,->([wi/w,  l/v]; (v ^ w; [v + l/v])*; v  = w) 

^([wi/w,^([wi/w, l/v]; v = w) 

->([wi/w,->([wi/w, l/v];  v  ̂ w; [v + l/v]; (v ̂  w; [v + l/v])*; v  = VJ) 

I I 
11 T^IVI 

^([WX/VJ,, 2/v]; (v ^ w; [v + l/v])*;  v = w) 

->([w\/w,->([w\/w,  2/v]; v = w) 

-i([wi/w,-i([wi/w, 2/v]; v  ^ VJ; [v + l/v]; (u ̂  w; [v + l/v])*; v  = UJ) 

I I 
22 ^ tvi 

-i([wi/w,-i([wi/w, 3/v];  (v T̂  w; [v + l/v])*; v  = VJ) 

->([WI/VJ,, 3/v]; v = w) 

-"([VJI/VJ,, 3/v];v ^ u>; [v + l/v]; (v  ̂ VJ; [v + l/v])*; v  = VJ) 
I I 

3 ^ V J I I 

-I([TVI/VJ,,  4/V]; (V ^ VJ; [v + l/v])*;  v = VJ) 

-I([WI/UJ,, 4/v]; v = w) 

->([VJI/UJ,, 4/v]; v T̂  w; [v + l/v]; (v ^ VJ; [v + l/v])*; v = VJ) 

I I 
44 T̂  TVi 

-I([ÏVI/IÜ,,  5/v]; (v ^ w; [v + l/v])*;  v = VJ) 

x x 

Figuree 7.8: 'Infinite Proof' of the Peano Induction Axiom. 
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systemm for ££. The unitary tableau system for £s is evidence for the fact that 
DFOL(<7,, U) validity is recursively enumerable: all non-validities are detected by 
aa finite tableau refutation. This property is lost in the case of ££: the language 
iss just too expressive to admit of finitary tableau refutations. 

Therefore,, some tableau refutations must be infinitary, and the tableau devel-
opmentt for the negation of (7.5) is a case in point. Let us see what happens if we 
attemptt to refute the negation of (7.5). A successful refutation will identify the 
naturall numbers up to isomorphism. See Figure 7.8. This is indeed a successful 
refutation,, for the tree closes in the limit. But the refutation tree is infinite: it 
takess an infinite amount of time to do all the checks. 

7.7.2.. THEOREM (SOUNDNESS THEOREM FOR C%). The calculus f or 
DFOL(a,DFOL(a, U, *) is sound: 

ForFor all <f>,  ip € C^: if the tableau for <f>] ->(ip)  closes then <f>  f= ip. 

Thee modified tableau method does not always give finite refutations. Still, it 
iss a very useful reasoning tool, more powerful than Hoare reasoning, and more 
practicall than the infinitary calculus for quantified dynamic logic developed in 
[Gol82,, Gol92]. Dynamic logic itself has been put to practical use, e.g. in KIV, a 
systemm for interactive software verification [Rei95]. It is our hope that the present 
calculuss can be used to further automate the software verification process. 

Precondition/postconditionn Reasoning. For a further example of reasoning 
withh the calculus, consider formula (7.6). This gives an C% version of Euclid's 
GCDD algorithm. 

{x{x ^y\{x> y; [x - y/x] Uy>x;[y- x/y]))*]  x = y . (7.6) 

Too do automated precondition-postcondition reasoning on this, we must find a 
triviall correctness statement. Even if we don't know what gcd(x, y) is, we know 
thatt its value should not change during the program. So putting gcd(x, y) equal 
too some arbitrary value and see what happens would seem to be a good start. We 
willl use the correctness statement z = gcd(x, y). The statement that the result 
getss computed in x can then take the form z = x. The program with these trivial 
correctnesss statements included becomes: 

zz = gcd(x,y); 

(x(x ^ y; (x > y; [x - y/x]; z = gcd(x, y) U y > x; [y - x/y]] z = gcd(x, y)))*; 
xx = y\ z = x. 

(7.7) ) 
Wee can now put the calculus to work. Abbreviating 

{x{x  y; [x - y/x]] z = gcd(x, y) U y > x; [y - x/y]] z = gcd(x, y)))* 

ass A*, we get: 
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[gcd{x,[gcd{x, y)/z];x = y;z = x 

xx = y, gcd(x, y) = x 

[gcd(z,, y)/z]; A;A*;x = y\z = x 

x>y x>y 

gcd(x,y)gcd(x,y) =gcA{x-y,y) 

[gcd{x,[gcd{x, y)/z,x - y/x]; A"; 

xx = y; z = x 

y>y> x 

gcd(x,, y) = gcd(:r, y - x) 

[gcd(x,[gcd(x, y)/z,y - x/y]; A'; 

xx = y; z = x 

Thee second split is caused by an application of the rule for U. By the soundness 
off the calculus any model satisfying the annotated program (7.7) will satisfy one 
off the branches. This shows that if the program succeeds (computes an answer), 
thee following disjunction will be true: 

(x(x = yAgcd(x,y) = x) 

VV {x > y A gcd(x, y) = gcd(x - y, y) A <p) 

VV (y > x A gcd(:r, y) = gcd(x, y - x) A ip) 

(7.; ; 

Heree (j>  abbreviates [gcd(x,y)/z,x - y/x];A*;x = y;z = x and ip abbreviates 
[gcd(x,y)/z,y[gcd(x,y)/z,y - x/y]\A*\x = y;z = x. Prom this it follows that the following 
weakerr disjunction is also true: 

(x(x = yAgcd(x,y) = x) 

VV (x>yAgcd(x,y)=gcd{x-y,y)) 

VV {y > xAgcd(x,y) =gcd(x,y-x)) 

Notee that (7.9) looks remarkably like a functional program for GCD. 

(7.9) ) 

7.88 Completeness for DFOL (a, U, *) 

Thee method of trace sets for proving completeness from Section 7.6 still applies. 
Tracee sets for DFOL(er, U, *) will have to satisfy the obvious extra conditions. 
Inn order to preserve the correspondence between trace sets and open tableau 
branches,, we must adapt the definition of a fair computation rule. A computation 
rulee F for £*s is fair if it is fair for £E, and in addition, the following holds for 
alll branches B in T^: 

 All formulas of type a*, /3* occurring on B or in $ were used to expand B. 

Wee can again prove a trace lemma for DFOL(<r, U, *), in the same manner as 
before:: Again, open branches in the supremum of a fair tableau sequence will 
correspondd to trace sets, and we can satisfy these trace sets in canonical models. 
Thee definition of trace sets is extended as follows: 
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7.8.1.. DEFINITION. A set V of ££. formulas is a *-trace set if the following 
hold: : 

•• * is a trace set, 

•• If ft* € $ then at least one ft € $ . 

•• If <f>;  tp*; x € \&, then there is some n > 0 with <fc i/?m; % ^ *& for all m > n. 
Similarlyy for ((<£; ^*; x)). 

•• For all <j>,  if>, x it holds that ->(0; ^*; X) £ * . 

Notee that the final two requirements are met thanks to our stipulation about 
closuree in the limit. In the same manner as before, we get: 

7.8.2.. THEOREM (COMPLETENESS FOR £*). For all <f>,ip  e C*: if <j>  (= tf> then 
thethe tableau for 0; ->(V>) closes. 

Soo we have a complete logic for DFOL(cr, U, *), but of course it comes at a 
price:: we may occasionally get in a refutation loop. However, as our tableau 
constructionn examples illustrate, this hardly affects the usefulness of the calculus. 

7.99 Related Work 
Comparisonn with tableau reasoning for (fragments of) FOL. The present 
calculuss for DFOL can be viewed as a more dynamic version of tableau style rea­
soningg for FOL and for modal fragments of FOL. Instead of just checking for valid 
consequencee and constructing counterexamples from open tableau branches, our 
openn tableau branches yield computed answer bindings as an extra. The con­
nectionn with tableau reasoning for FOL is also evident in the proof method of 
ourr completeness theorems. Our calculus can be used for FOL reasoning via the 
followingg translation of FOL into DFOL: 

(ft-)' ' 
(-4)' (-4)' 

(4>Ai!>y (4>Ai!>y 

(*v^r r 
(3x<t>y (3x<t>y 

{Vx(f>y {Vx(f>y 

== pt 

== -^ 
== ^' ;^ 
== ^u f 
== &;01 
== - i ( 3 x ; ^ # ) 

Itt is easy to check that for every FOL formula <j>  it holds that <fi*  = ((0*)), i.e., all 
FOLL translations are DFOL tests. Moreover, the translation is adequate in the 
sensee that for every FOL formula <j>  over signature E, every E-model Ai, every 
valuationn s for M it holds that M \=t <f>  iff ,[<£']^. 
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Connectionn with Logic Programming. The close connection between tableau 
reasoningg for DFOL and Logic Programming can be seen by developing a DFOL 
tableauu for the following formula set: 

VxA(Q,, x,x)yxVyVz\/i(A(x, y, z) -+ A{\i\x\, y, [t|*])), -BxA{[a\[6|u], [c|[]], x). 

Thiss will give a tableau for the append relation, with a MGU substitution {x i-» 
[a|[&|c|[]]]}} that closes the tableau, where x is the universal tableau variable used 
inn the application of the 7 rule to -i3x.4([aj[&|[]], [c|[]],a;). The example may 
servee as a hint to the unifying perspective on logic programming and imperative 
programmingg provided by tableau reasoning for DFOL. We hope to elaborate this 
themee in future work. 

Comparisonn with other Calculi for DFOL and for DRT. The calculus 
developedd in [vE99a] uses swap rules for moving quantifiers to the front of for-
mulas.. The key idea of the present calculus is entirely different: encode dynamic 
bindingg in explicit bindings and protect outside environments from dynamic side 
effectss by means of block operations. In a sense, the present calculus offers a full 
accountt of the phenomenon of local variable use in DFOL. 

Kohlhasee [KohOO] gives a tableau calculus for DRT (Discourse Representation 
Theory,, see [Kam81]) that has essentially the same scope as the [vE99a] calculus 
forr DPL: the version of DRT disjunction that is treated is externally static, and 
thee DRT analogue of U is not treated. 

Kohlhase'ss calculus follows an old DRT tradition in relying on an implicit 
translationn to standard FOL: see [SE88] for an earlier example of this. Kohlhase 
motivatess his calculus with the need for (minimal) model generation in dynamic 
NLL semantics. In order to make his calculus generate minimal models, he replaces 
thee rule for existential quantification by a 'scratchpaper' version (well-known from 
textbookk treatments of tableau reasoning; see [Hin88] for further background, and 
forr discussion of non-monotonic consequence based on minimal models generated 
withh this rule). First try out if you can avoid closure with a term already available 
att the node. If all these attempts result in closure, it does not follow from this 
thatt the information at the node is inconsistent, for it may just be that we have 
'overburdened'' the available terms with demands. So in this case, and only in 
thiss case, introduce a new individual. 

Thiss 'exhaustion of existing terms' approach has the virtue that it generates 
'small'' models when they exist, whereas the more general procedure 'always in-
troducee a fresh variable and postpone instantiation' may generate infinite models 
wheree finite models exist. Note, however, that the strategy only makes sense for 
aa signature without function symbols, and for a tableau calculus without free 
tableauu variables. 

Kohlhasee discusses applications in NL processing, where it often makes sense 
too construct a minimal model for a text, and where the assumption of mini-
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malityy can be used to facilitate issues of anaphora resolution and presupposition 
handling. . 

Comparisonn with Apt and Bezem's Executable FOL. Apt and Bezem 
presentt what can be viewed as an exciting new mix of tableau style reasoning 
andd model checking for FOL. Our treatment of equality uses a generalization of 
aa stratagem from their [AB98]: in the context of a partial variable map 9, they 
calll v = t a $ assignment if v £ dom{9), and all variables occurring in t are in 
dom(9).dom(9). We generalize this on two counts: 

•• Because our computation results are bindings (term maps) rather than maps 
too objects in the domain of some model, we allow computation of non-
groundd terms as values. 

•• Because our bindings are total, in our calculus execution of t\ = t^ atoms 
neverr gives rise to an error condition. 

Itt should be noted for the record that the first of these points is addressed in 
[AptOO].. Apt and Bezem present their work as an underpinning for Alma-0, a 
languagee that infuses Modula style imperative programming with features from 
logicc programming (see [ABPS98]). In a similar way, the present calculus provides 
logicall underpinnings for Dynamo, a language for programming with an extension 
off DFOL. For a detailed comparison of Alma-0 and Dynamo we refer the reader 
too [vE98b]. 

Connectionn with WHILE, GCL. It is easy to give an explicit binding se­
manticss for WHILE, the favorite toy language of imperative programming from 
thee textbooks (see e.g., [NN92]), or for GCL, the non-deterministic variation on 
thiss proposed by Dijkstra (see, e.g. [DS94]). DFOL is in fact quite closely related 
too these, and it is not hard to see that DFOL(a, U, *) has the same expressive 
powerr as GCL. Our tableau calculus for DFOL(<7, U, *) can therefore be regarded 
ass an execution engine cum reasoning engine for WHILE or GCL. 

Connectionn with PDL, QDL. We can see that there is also a close connection 
betweenn DFOL(<r, U, *) on one hand and propositional dynamic logic (PDL) and 
quantifiedd dynamic logic (QDL) on the other. QDL is a language proposed in 
[Pra76]] to analyze imperative programming, and PDL is its propositional version. 
Seee [Seg82, Par78] for complete axiomatizations of PDL, [Gol92] for an exposition 
off both PDL and QDL, and for a complete (but infinitary) axiomatization of 
QDL,, [HKT84] for an overview, and [Har79] for a a study of QDL and various 
extensions.. In PDL/QDL, programs are treated as modalities and assertions 
aboutt programs are formulas in which the programs occur as modal operators. 
Thus,, if A is a program, (A)<f>  asserts that A has a successful termination ending 
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inn a state satisfying </>.  As is well-known, this cannot be expressed without further 
adoo in Hoare logic. 

Thee main difference between DFOL(cr, U, *) and PDL /QDL is that in the 
formerr the distinction between formulas and programs is abolished. Everything 
iss a program, and assertions about programs are test programs that are executed 
alongg the way, but with their dynamic effects blocked. To express that A has 
aa successful termination ending in a <j>  state, we can just say ((^4; </>)). To check 
whetherr A has a successful termination ending in a 0 state, t ry to refute the 
statementt by constructing a tableau for -*(A; <ft). 

Too illustrate the connection with QDL and PDL, consider MIX,  the first of 
thee two PDL axioms for *: 

[A*]4-*4>A[A][A']4.[A*]4-*4>A[A][A']4. (7.10) 

Writingg this with (A), -i, A, V, and replacing -i<f>  by <f>,  we get: 

->(-,(A*)<l>A(<f>V(A)(A*)<j>)).->(-,(A*)<l>A(<f>V(A)(A*)<j>)).  (7.11) 

Thiss has the following DFOL(er, U, *) counterpart: 

- . ( - . ( A ' ; * ) ; ( * U ( J 4 M * ; 0 ) ) ..  (7-12) 

Forr a refutation proof of (7.12), we leave out the outermost negation. 

- . ( J ! * ; * ) ; ( * U ( 4 A * ; 0 ) ) 

I{A';4>) I{A';4>) 

{<f>U(A;A*;<f>)) {<f>U(A;A*;<f>)) 
I I 

-,</, -,</, 

->(A;A*;</>) ->(A;A*;</>) 

f ^^ (A; A*;*) 
xx x 

Thee tableau closes, so we have proved that (7.12) is a DFOL(cr, U, *) theorem 
(andd thus, a DFOL(cr, U, *) validity). 

Wee will also derive the validity of the DFOL(<7, U, *) counterpart to IND, the 
otherr PDL axiom for *: 

{4,A[A*]{4>^[A]<t>))^[A*)ct>.{4,A[A*]{4>^[A]<t>))^[A*)ct>. (7.13) 

Equivalently,, this can be writ ten with only (^4), -i, A, V, as follows: 

- . ( ^^ A -i{A*)(f A (A)^>) A {A')->4>). (7.14) ) 
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Thee DF0L(<7, U, *) counterpart of (7.14) is: 

- . ( f c i ( j 4 » ; M ; - * ) ; A W ) .. (7.15) 

Wee will give a refutation proof of (7.15) in two stages. First, we show that (7.16) 
cann be refuted for any n > 0, and next, we use this for the proof of (7.15). 

fc-,(ii';*;fc-,(ii';*; 4 - * ) ; ; ! " ; - + (7.16) 

Heree is the case of (7.16) with n = 0: 

^(A*;<f>;A;-«f>) ^(A*;<f>;A;-«f>) 

Bearingg in mind that A is a dynamic action and <p is a test, we can apply the 
rulee of Negation Splitting (Section 7.4) to formulas of the form ->(An; (f>\ A; -xft), 
ass follows: 

Notee that ^(An; <j>;  A; -i<£) can be derived from -.(A*; cj>;  A; -<4>)  by n applications 
off the o:* rule. Using this, we get the following refutation tableau for the case of 
(7.16)) withn = fe + 1: 

- . (A* ;&A; -M£) ) 

Thee left-hand branch closes because of the refutation of 0; ~>(A*;  <j>\  A; -xj>);  Ak; -«l>, 
whichh is given by the induction hypothesis. 

Next,, use these refutations of -K£, A; -uf>, A2; -xj>, ..., to prove (7.15) by 
meanss of a refutation in the limit, as follows: 
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fc-i(j4«;rt4-*M*;-* fc-i(j4«;rt4-*M*;-* 

-.(A'jfcA;-*) ) 

i 4 j i 4 ' ; - ^ ^ 

A ; ^ ^ 
,44 V ; ^ 

, 4 2 ; ^ ^ 
43;4*;-u£ £ 

Thiss closed tableau establishes (7.15) as a DFOL(u, U, *) theorem. That clo-
suree in the limit is needed to establish the DFOL(<r, U, *) induction principle is 
nott surprising. The DFOL *-rules express that * computes a fix-point, while the 
factt that this fix-point is a least fix-point is captured by the stipulation about 
closuree in the limit. The induction principle (7.15) hinges on the fact that * 
computess a least fix-point. 

Goldblattt [Gol82, Gol92] develops an infinitary proof system for QDL with 
thee following key rule of inference: 

Iff  <f>  -»• \Ai\ A%]ij)  is a theorem for every n € N, then cj) -+ [Ai;A 2]ip is a theorem. 
(7.17) ) 

Too see how this is related to the present calculus, assume that one attempts to 
refutee <p ->• [AI;A^IJJ, or rather, its DFOL(cr, U, *) counterpart -i{<t>;  A^\ A\\ -*/>), 
onn the assumption that for any n € N there exists a refutation of <j>;  A\\ A%; -rf. 

<j>;AiiAZ;-*l> <j>;AiiAZ;-*l> 

</>;A</>;A 11;A;A22;->i{> ;->i{> 

<j>;Ai;A<j>;Ai;A 22;A;A22;^ ;^ 

x x 
<l>;<l>;  Ai;A2; A^A^, A^;-iip 

4>;A4>;A11;A;A22;A;A22;A;A22;-'ip ;-'ip 

x x 
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Wee can close off the faA^A^-iip branches by the assumption that there 
existt refutations for these, for every n € N. The whole tableau gives an infinite 
/3**  development, and the infinite branch closes in the limit, so the tableau closes, 
thuss establishing that in the DFOL(a, U, *) calculus validity of -<(0; Ai\ A^; -t̂ >) 
followss from the fact that ->(<£; A\\ A^; -"VO is valid for every n G N. 

7.100 Conclusion 
Startingg out from an analysis of binding in dynamic FOL, we have given a tableau 
calculuss for reasoning with DFOL. The format for the calculus and the role of 
explicitt bindings for computing answers to queries were motivated by our search 
forr logical underpinnings for programming with (extensions of) DFOL. The DFOL 
tableauu calculus presented here constitutes the theoretical basis for Dynamo, a 
toyy programming language based on DFOL. To find the answer to a query, given 
aa formula 4> considered as Dynamo program data, Dynamo essentially puts the 
tableauu calculus to work on a formula <j>,  all the while checking predicates with 
respectt to the fixed model of the natural numbers, and storing values for variables 
fromm the inspection of equality statements. If the tableau closes, this means 
thatt (j>  is inconsistent (with the information obtained from testing on the natural 
numbers),, and Dynamo reports 'false'. If the tableau remains open, Dynamo 
reportss that <j>  is consistent (again with the information obtained from inspecting 
predicatess on the natural numbers), and lists the computed bindings for the 
outputt variables at the end of the open branches. But the Dynamo engine also 
workss for general tableau reasoning, and for general queries. Literals collected 
alongg the open branches together with the explicit bindings at the trail ends 
constitutee the computed answers. We report on the development of Dynamo in 
thee next chapter. 





Chapterr 8 

Implementingg Dynamo 

BeforeBefore enlightenment, the mountain is a mountain. 
WhileWhile seeking enlightenment, the mountain is a floating mirage, 

atat once real and ephemeral, at once there and not there. 
AfterAfter enlightenment, the mountain is a mountain. 

-- Zen folklore 

8.11 Introduction 

Wee have so far presented a way of interpreting DFOL formulas as programs, a 
methodd of verifying correctness of such programs, and a tableau calculus that can 
bee implemented as an engine for the language. What we need now is to do the 
implementation,, so we can use the language for programming and exploring the 
conceptss so far introduced. 

Beforee developing the tableau calculus, we had other implementations of Dy-
namo,namo, based on the state machines described in Chapter 5 but we were having 
aa bit of trouble with negation; when a negated formula succeeded with 'complex 
states',, we put the result back into state form by dualizing the result, which was 
basicallyy applying De Morgan's laws to the set of states (taking into account that 
thee set represents a disjunction and the states conjunctions), so that its nega-
tionn would again be a set of states. This gave us the idea of actually using a 
tableauu calculus to carry out the computations. Now we have a calculus that 
dealss with these matters in a much more natural way, but knows nothing about 
simplee arithmetic; still, we are closer now to DFOL semantics. 

Wee report here on our efforts to bring the two capabilities together; the pur-
posee of this implementation is to test the appropriateness and efficiency of the 
tableauu method for implementation of a programming language. 

149 9 
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Freee Variable Tableaux 
Wee follow the guidelines given in [Fit96] for the handling of universally quantified 
variables:: the formulas in each branch are organized as a list, and we always 
processs the fomula at the head of the list. When the formula is not of type 7, 
thee formula itself is removed from the list, and is replaced by the formulas that 
resultt from applying the corresponding rule. When the 7-rule is applied, the 
formulaa can not be discarded, but is then moved to the end of the list, to enable 
thee other formulas in the branch to be processed. The branches themselves are 
alsoo organized as a list; whenever the 7-rule is applied, the algorithm leaves the 
branchh and goes on to the next one in the list. 

Closingg the Tableau. In its original version, when the algorithm expands 
thee tableau until the 7 rule has been applied a predetermined number of times, 
thee program tries to close all branches, by finding the substitution that will 
closee all of them simultaneously. Essentially, it will sequentially, starting from 
thee empty substitution, find all extensions of the current substitution that close 
thee branch, and try to close the rest of the branches starting from each of the 
extensions.. If no substitution that closes the entire tableau is found, the tableau 
iss considered 'not solved'; either the formula is satisfiable, or the 7 rule will 
havee to be applied a higher number of times, usually starting from scratch. In 
thee Dynamo implementation, the 7 rule is applied at most once per branch (it 
mightt not be needed), and then closure is attempted. If closure is not reached, 
andd at least one branch consists only of atoms, the tableau is open, otherwise 
thee algorithm does another pass through the already expanded tableau and tries 
againn until closure is reached. 

8.22 The Dynamo Engine 

8.2.11 The Programming Language 

DynamoDynamo is implemented in Haskell; compiles under GHC version 5.04. As before, 
wee chose Haskell over other programming languages because of its small semantic 
gapp between the program and its task, its being strongly typed, and the fact that 
itt compiles into an executable program instead of requiring an interpreter. 

8.2.22 The Algorithm 

Thee way we implemented the free variable tableaux is shown in Figure 8.1. 

•• The function init-branch(form) initializes the branch data structure, with 
thee input formula as the only element of the formula list. 
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input:: form: formula; 
input:: query: list of variable schemes 
var:: Branches, New_branches: list of branches 
var:: current: branch 

Branchess := {init-branch(form)}; 
{{  *  Main loop *} 
whilee (close_branches(Branches)= False 

andd all^atomic-branch (Branches) 
New_branchess := 0; 
{{  *  Single step *} 
foreachh current in Branches do 

{{  *  Infer until univ. quant or out 
NewJbranchess := New.branches U s 

Branchess := NewJbranches; 

iff (close-branches (Branches) = True 
thenn return "unsatisfiable" 
elsee return (extract .values (query, 

== False) do 

ofof formulas *} 
inglee .step (current); 

Branches)) ) 

Figuree 8.1: Structure of the Dynamo engine 

•• The function single_step(current) applies the rule that corresponds to the 
typee of formula at the head of the list in the branch; if the type is 7, after 
applyingg the corresponding rule the formula is copied at the end of the for­
mulaa list and the function returns. Otherwise, single_step is applied to all 
thee branches that result from application of the rule, until the formula list 
iss empty or the 7-rule is processed. If the result of applying a rule is a new 
atom,, (ground) closure is checked for. If the branch is found to close, it is 
removedd from the result list. 

•• The function close-branches attempts to close all branches, one by one; 
itt calls close-branch for each branch, and carries a list of all the freez­
ingg substitutions that close all processed branches. If a branch can not be 
closedd by any of the existing freezing substitutions (or an extension of one), 
thee procedure returns False. 

•• The function close-branch (current) attempts to find complementary atoms 
inn the branch, first through the congruence closure and failing that through 
unificationn with a universally quantified variable. It accepts as parameters 
thee list of atoms in the branch, the computed congruence closure, and a 
freezingg substitution, and returns whether the branch can be closed or not, 
andd the substitution that closes it if possible. 

•• The function all^atomicJbranch(branches) looks for a branch made up 
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entirelyy of atoms. Since it is called after a test for closure, the presence of 
suchh a branch always indicates that the tableau will never close. 

•• The function extract_values(query, Branches) extracts the values of the 
requiredd variables from the open tableau branches. 

8.33 Tableau reasoning for DFOL 
Heree we review the main departures from a tableau prover for FOL; the data 
structure,, which had to take into account the handling of equality, and the im­
plementationn of the rules. 

8.3.11 Data Structures 

Thee main data structure in this implementation is the branch. A branch is a tuple 
consistingg of a list of formulas, a list of universally quantified variables present 
inn the branch, a congruence, and a list of atoms. The list of formulas contains 
thee formulas to be processed, the list of universally quantified variables holds 
thee variables that would serve as arguments for skolem functions, the congruence 
keepss track of equalities between terms, and the list of atoms carries the list of 
atomicc facts that is searched for complementary assertions. The program state 
iss a tuple containing the list of branches, and the indexes of the last universal 
variablee and the last skolem function instantiated. The program state is reached 
throughh a state monad, and is therefore transparent to most functions in the 
program. . 

8.3.22 Rules 

Rulee Extensions. Many of the tableau rules of Chapter 7 included both lead­
ingg substitutions and trailing formulas, which were actually optional and could 
bee replaced by a tautology; that had to be made more explicit in the program, 
whichh multiplied the number of rule instances. For example, one of the cases of 
thee /?-rule is: 

9;9; {fa Ufa); fa 

9;9; fa; fa 9; fa; fa 

Inn this case, both 9 and fa are optional; only (fa U fa) is required to be non­
empty,, so the rule has to fire on (9; (fa Ufa); fa), (9; (faUfa)), ((fa Ufa); fa) and 
(faUfa).(faUfa). We solved the problem in part by placing the empty substitution at the 
startt of the input formula, since the rules themselves ensure all resulting formulas 
willl start with a substitution, but the trailing formulas still force us to duplicate 
thee rules. The reason for the trailing formulas is precisely that the rules push a 
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substitutionn through the whole: order is not important in FOL, but it matters a 
lott in DFOL. 

Blocking.. Block formulas, given their nature as assertions, were given special 
treatment:: when a block formula is found, a new tableau is created for it, with 
thee same data as the current branch but only the blocked formula in the formula 
list,, and evaluated. If it results in many branches, the rule creates branches in-
corporatingg the list of atoms of each new branch to copies of the current branch. 
Inn this way we block the dynamic effects that would result from existential quan-
tificationn inside the blocked formula, but keep any atomic checks that were not 
groundedd at the time of evaluation. 

Universall Quantification. A problem with universal quantification is that it 
representss a 'standing order': unlike the other rules, the 7-rule does not consume 
thee formula it processes, and it can be processed again. If a limit to the number 
off times the 7-rule can be applied were known, the logic would be decidable. The 
enginee will run forever on satisfiable problems in which all branches have a 7-type 
formula;; we are looking for ways in which it can be detected that a new application 
off the 7 rule will be redundant. We also need to ensure fairness, as stated in 
Sectionn 7.6; ensuring that for all branches B of the fully expanded (possibly 
infinite)) tableau Tinf, all the a-, j3-, and 5-type formulas present either in B or in 
thee original formula $ are used to expand B, and that all 7-type formulas present 
inn <f>  or B are used to expand B infinitely often. Our computation rule makes 
suree this happens: formulas are kept in a list, a-, /?-, and 5-type formulas are 
alwayss discarded and replaced by the resulting formula(s), while 7-type formulas 
aree put at the end of the list while the formulas resulting from applying the rule 
aree still placed in the head of the list. 

8.44 Extensions to the Calculus 

Afterr implementing the free variable tableau, there was still something to be done: 
wee want the engine to do some computation, and maybe even support equational 
reasoning.. The following is an account of our efforts. 

8.4.11 Indexed Variables 

Havingg indexed variables is very useful for programming, since it enables us to 
writee a program for the general case of a problem; we don't need to write n 
programss to sort arrays of size 2 . . . n. But then we have a problem: 

[4/A]o[8/J[*] I6/l[4]]] = ? 



154 4 ChapterChapter 8. Implementing Dynamo 

Wee must either make sure that the indexes are grounded or allow composition of 
substitutionss to fail when the result would be inconsistent. Since we find it hard 
too figure out why someone would want to assign values to unspecified elements of 
ann array, we chose the first option. In [AB98], the corresponding requirement is 
thatt all indexes have to be grounded, and the term to be substituted for the index 
variablee must be also grounded; we relax the requirement in that the substituting 
termm can be non-grounded. Another idea to consider is to treat bindings of the 
formm [£/u[fc]] and formulas of the form v[k] = t , where k is not grounded, as 
instancess of t\ =t2, that is, add the equality to the list of atoms. 

8.4.22 Teaching Dynamo to Add 

Somethingg that might not be apparent in the description of Chapter 7 is that the 
handlingg of terms does not contemplate interpreted function symbols other than 
=.. While this is a specialized behavior for theorem provers, it is crucial for a 
programmingg language: we want the language to be able to do basic arithmetic, 
suchh as necessary for incrementing a counter or specifying a range. We added 
thenn interpretation of +, - , * and div (integer division) to the language. Still, 
somethingg was missing, since expressions could be indirectly ground (as in x = 
y;y; y = 4; z = x + 2), so we added a lookup to the congruence closure in the term 
evaluation.. Also, formulas of the type <j> 1 and [Xlt2 required evaluation of the 
termss in the rule body. We also included interpretation of <,<,>,< for ground 
terms. . 

8.4.33 What to do with the Equations 

Afterr a formula is determined to be satisfiable, there are two possible outcomes 
forr each branch: either the complete list of atoms has been grounded, found 
consistent,, and discarded, or some values are still to be computed and we are 
leftt with a set of ungrounded atoms. Now, this set itself could be unsatisfiable 
(considerr the atoms {o > 6, b > c, c > a], or a set of equations). We have 
nott included equation solving in Dynamo; possible solutions include coupling 
ann algorithm for equation solving to the tableau algorithm [ABC+02], calling 
ann external program to solve the equation system, and encouraging potential 
programmerss to try and make their programs give values to their variables; we're 
aimingg for a language with an imperative flavor after all. 

8.55 Example runs 

Wee will show now some examples that highlight improvements of the implemen-
tationn over previous versions of the engine and over the calculus as presented. 
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8.5.1.. EXAMPLE. [Blocks puzzle] Let's consider a classical AI puzzle [Ram87]: 
wee have a pile of three blocks, which are either green or red. The bottom block is 
red,, and the top block is green; we don't know the color of the middle brick. The 
questionn is: Is there a green brick on top of a red brick? The Dynamo version of 
thee puzzle is as follows: 

[juanhQbanaann dynamo] $ cat tes ts /a ipuzz le 
/** program puzzle ;*/ 

begin n 
G 1 ; R 3 ; ; 
00 1 2; 0 2 3; 
nott (some  k;!(G  k);!(R  k  )); 
nott (some  x; G x  ;some  y; R y ; 0 x y ) ; 

end d 

?? ()  true 

Here,, the Gx and Rx predicate represents being green and red, respectively, 
andd Oxy represents "block x is over block y". We state the facts about the 
dispositionn and coloring of the blocks, and that a block is either green or red. 
Then,, we state that there never is a green brick on top of a red brick, and call 
Dynamo: Dynamo: 

[juanhCbanaann dynamo]$ ./dynamo tes ts /a ipuzz le 

Input: : 
G-[C1]};R{[3]};0{[1,2]};0<[2,3]}; ; 
!(Exx k;!(G{[k]}); !(R{[k]})); 
!(Exx x;G-C[x]};Ex y;R{[y]};0{[x,y]>) 

Endd of input 

Formulaa is False 
Elapsedd time: 3.0e-2 

Previouss versions of Dynamo would just return the • state, since by design they 
don'tt deal with universal quantification. 

8.5.2.. EXAMPLE. [Computation of Answer Substitutions] In the example on 
Chapterr 7, we hinted that while the tableau engine itself did not know about 
thee semantics of <, the left branch could be eliminated by model checking or 
termm rewriting, or adding the relevant axioms for <, We do a limited form of 
modell checking (interpretation of < ,<= ,<=,< for ground terms), so here is how 
thee problem looks like in Dynamo: 
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[juanhGbanaann dynamo]$ cat tests/union 

/** program union;*/ 

begin n 

x<3; ; 
begin n 
x=55 or x=2 

end d 
end d 

?? (x) true 

andd how Dynamo reacts: 

[juanhflbanaann dynamo]$ ./dynamo tests/union 

Input: : 
<{[x,3]};x==55 U x==2 

Endd of input 

Formulaa is True 
"x=2" " 
[<{[x,3]}] ] 

Elapsedd time: 0.0 

Thee line under " i = 2" tells us that the condition x < 3 is still active: we 
probablyy need to remove 'constraint' atoms once the constraint is fulfilled by the 
model. . 

8.5.3.. EXAMPLE. [More computed answers: the Eight Queens Problem] This is 
actuallyy a classical Dynamo example program: all versions have been able to 
solvee it. What makes it special in this case is that the engine had to be able 
too add and substract, address values in an array, and evaluate terms in the rule 
body.. We found that there are a lot of things to improve on the new engine: 
thee old Dynamo solved the problem in 5.3 seconds, while the current Dynamo 
tookk 37.3 seconds. We take comfort that the new engine, while more ponderous, 
cann tackle many more problems than the previous ones, and that this is but a 
proof-of-conceptt implementation. 

[juanhQbanaann dynamo]$ cat tests/8queens 
/** program Nqueens(f[]) ;*/ 
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begin n 
nn = 8; 
somee k; k := 0; 
doo ii times 
begin n 

kk := k + 1; 
findd r in [1 
begin n 

rr = f [ k ] ; 
nott (find i in 

(ff [ i ] = r or 
end d 

end d 
end d 

n]]  with 

[11 . . k-1] with 
ff [ i ] = r + (k - i ) or f [ i ] = r - (k 

?? ( fD) true 

[juanhtbanaann dynamo]$ ./dynamo t«ita/8qu««ns 

Input: : 
n—8;Exx k;[(k,0)];Do  n timaa ([(k,+([k, l3))3 ;Choos« ( r : - l . .n ) with r—«W; 
KChooi**  ( i : - l . . - (Dt ,13) ) 

withh [[[[«[i3—r33  U [[«[13—+([r,-([k,13)3)33 U [ [«[ i3—([r ,-( [k,13)3)3333)) 
Endd of input 

Formula a 
«[83-3 3 
«[83-3 3 
«[83-6 6 
«[83-4 4 
«[83-6 6 
«[83-4 4 
«[83-6 6 
«[83-6 6 
«[83-6 6 
«[83-4 4 
«[83-6 6 
«[83-6 6 
«[83-4 4 
«[83-4 4 
«[83-6 6 
«[83-6 6 
«[83-4 4 
«[83-3 3 
«[83-3 3 
«[83-3 3 
«[83-8 8 
«[83-3 3 
«[83-7 7 
«[83-6 6 
«[83-4 4 
«[83-6 6 
«[83-4 4 
«[83-6 6 
«[83-7 7 
«[83-8 8 
«[83-3 3 

iaa True 
;;  «[73-6 
;;  «[73-6 
;;  «[73-2 
;;  «[73-2 
;;  «[73-7 
;;  «[73-7 
;;  «[73-4 
;;  «[73-3 
;;  «[73-2 
;;  «[73-2 
;;  «[73-3 
;;  «[73-3 
;;  «[73-2 
;;  «[73-6 
;;  «[73-8 
;;  «[73-3 
;;  «[73-7 
;;  «[73-6 
;;  «[73-7 
;;  «[73-6 
;;  «[73-2 
;;  «[73-1 
;;  «[73-4 
;;  «[73-7 
;;  «[73-2 
;;  «[73-2 
;;  «[73-1 
;;  «[73-1 
;;  «[73-2 
ii  «[73-2 
;;  «[73-6 

«[63-4 4 
«[63-2 2 
«[63-4 4 
«[63-7 7 
«[63-2 2 
«[63-6 6 
«[63-7 7 
«[63-6 6 
«[63-4 4 
«[63-8 8 
«[63-1 1 
«[63-1 1 
«[63-6 6 
«[63-1 1 
«[63-4 4 
«[63-6 6 
«[63-3 3 
«[63-7 7 
«[63-2 2 
«[63-2 2 
«[63-6 6 
«[63-7 7 
«[63-2 2 
«[63-2 2 
«[63-8 8 
«[63-8 8 
«[63-6 6 
«[63-8 8 
«[63-4 4 
«[63-4 4 
«[63-8 8 

«[53-2 2 
«[53-8 8 
«[533 "7 
«[63-3 3 
«[63-6 6 
«[63-2 2 
«[63-1 1 
«[63-7 7 
«[63-6 6 
«[63-6 6 
«[63-6 6 
«[53-8 8 
«[63-8 8 
«[53-6 6 
«[63-1 1 
«[63-8 8 
«[63-8 8 
«[53-1 1 
«[63-8 8 
«[53-8 8 
«[63-3 3 
«[63-6 6 
«[63-6 6 
«[63-4 4 
«[63-6 6 
«[63-1 1 
«[63-8 8 
«[63-4 4 
«[63-1 1 
«[63-1 1 
«[63-4 4 

«M3-8 8 
«[43-6 6 
«[43-3 3 
«[43-6 6 
«[43-3 3 
«[43-6 6 
«[43-3 3 
«[43-1 1 
«[43-8 8 
«[43-1 1 
«[43-8 8 
«[43-6 6 
«[43-6 6 
«[43-2 2 
«[43-3 3 
«[43-1 1 
«[43-2 2 
«[43-4 4 
«[43-6 6 
«[43-1 1 
«[43-1 1 
«[43-8 8 
«[43-8 8 
«[43-8 8 
«[43-7 7 
«[43-4 4 
«[43-2 2 
«[43-2 2 
«[43-8 8 
«[43-7 7 
«[43-1 1 

«[33-6 6 
«[33-4 4 
«[33-8 8 
«[33-8 8 
«[33-1 1 
«[33-1 1 
«[33-6 6 
«C33-4 4 
«[33-3 3 
«[33-3 3 
«[33-2 2 
«[33-2 2 
«[33-1 1 
«[33-8 8 
«[33-6 6 
«[33-4 4 
«[33-6 6 
«[33-2 2 
«[33-1 1 
«[33-7 7 
«[33-7 7 
«[33-2 2 
«[33-1 1 
«[33-1 1 
«[33-1 1 
«[33-7 7 
«[33-7 7 
«[33-7 7 
«[33-6 6 
«[33-6 6 
«[33-7 7 

«[23-7 7 
«[23-7 7 
«[23-6 6 
«[23-6 6 
«[23-4 4 
«[23-3 3 
«[23-2 2 
«[23-2 2 
«[23-1 1 
«[23-6 6 
«[23-4 4 
«[23-4 4 
«[23-3 3 
«[23-3 3 
«[23-2 2 
«[23-2 2 
*D3-1 1 
«[23-8 8 
«[23-4 4 
«[23-4 4 
«[23-4 4 
«[23-4 4 
«[23-3 3 
«[23-3 3 
«[23-3 3 
«[23-3 3 
«[23-3 3 
«[23-3 3 
«[23-3 3 
«[23-3 3 
«[23-2 2 

«[13-1; ; 
ff  [13-1; 
«[13-1; ; 
«[13-1; ; 
«[13-8; ; 
«[13-8; ; 
«[13-8; ; 
ff [13-8; 
«[13-7; ; 
«[13-7; ; 
«[13-7; ; 
«[13-7; ; 
«[13-7; ; 
«[13-7; ; 
«[13-7; ; 
«[13-7; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
«[13-6; ; 
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;; f[73-8 
;; f [7]-2 
;; f [73-3 
;; f [7]-7 
;; f [73-6 
;; *C7]-2 
;; l [7 ] -6 
;; i [7 ] -4 
ii *[73-« 
;; *[73»8 
ii *[7]-4 
;; JE7>3 
;; *[7]«6 
;; f [7] -4 
;; *[7]-6 
;; t C7] -3 
;; *[73-8 
;; f [7]-6 
;; *C7]-i 
;; * [7>7 
;; t[7] -3 
;; f [7]-6 
;; t[7] «7 
;; f [7]-2 
;; f [7]-6 
;; f[7]«8 
;; t [7] -3 
;; f [73-1 
;; *C7]-3 
;; *[73-6 
;; *[7]-3 
;; f [7]-6 
;; f [73-3 
;; f [7 ] -6 
;; f [73-1 
;; f [73-6 
;; f [7]-3 
;; *[7]-4 
;; i [ 7 > 2 
ii *C73-1 
;; *[7]-4 
;; f [7]-a 
;; *[7]«5 
;; f [7]-7 
;; f [7]-7 
;; t [7] -7 
;; *[73-8 
;; f [7]-8 
;; f [7]-7 
;; *[73-2 
;; t[7] -8 
;; f [7] -4 
;; t [7] -7 
;; *[73-7 
;; f [73-6, 
;; fC7]-l, 
;; f [ 7 > 3 , 
;; f[73-7; 
;; *[73-6; 
;; fC7]-6; 
;; f [7]-7; 

;; i [«]-B 
;; f [6]-7 
;; f [6]-7 
;; f [6] -2 
;; f [6]-2 
;; f[63-6 
;; f[63-8 
;; f [6]-6 
;; f [e ] -8 
;; f [63-1 
;; f [6 ] - l 
;; f [63-1 
;; t[63-8 
;; *C6]-2 
;; *C6]-i 
;; i [6 ] -7 
;; f [63-4 
;; f E6] «8 
;; t [63 -3 
;; *[63-3 
;; f [63-7 
.. f [63-2 

ff [6]-2 
*[63-7 7 
«« [6]-2 
ff [6]-6 
*[63-l l 
ff [6]-5 
ff [6]-8 
ff [6]-7 
ff [63-1 
ff [63 -3 
ff [63-1 
ff » ] «8 
ff [6]-8 
ff [6]-8 
ff [63-1 
tt [63 -2 
ff [6]-6 
ff [6]-4 
*[63-l l 
ff [63-7 
ff [63-7 
i [ 6 ] - l l 
ff [6]-6 
ff [6]-6 
tt [63 -4 
ff [63-1 
ff [63-1 
ff C6]-7 
*[63-2 2 
ff [6]-7 
ff [6]-4 
*[63-6. . 
f [6 ] -4 . . 
ff [6]-6, 
f[63-8; ; 
f[63-4; ; 
f [6]-8; ; 
f [6]-8; ; 
ff [63-1; 

ii f [6 ] -3 
ii f [6]-3 
;; *C53-2 
ii *[53-8 
;; i [6 ] -7 
;; f [6]-3 
.. f [5]-2 

ff [6]-8 
11 [6] -3 
ff [6]-3 
ff [5]-3 
ff [5] "8 
*[53-2 2 
ff [5]-8 
ff [5]-7 
tt [53 -4 
ff [5]-7 
ff [5]-3 
ff [5]-8 
ff [63 -6 
ff [5] «2 
ff [6]-7 
ff [53-6 
ff [63-1 
ff [5]-5 
ff [53-1 
ff [53-6 
ff [5]-2 
ff [5]-2 
ff [63-1 
tt [6] -7 
i [B] - l l 
i [63-7 7 
*[63-l l 
ff [53-6 
U63-6 6 
*[63-6 6 
ff [5]-8 
ff [53-1 
tt [6] -6 
ff [5]-5 
ff [6]-6 
*[53-4 4 
ff [6]-4 
ff [6]-8 
ff [5]-8 
ff [63-1 
ff [5]-6 
ff [6]-8 
ff [63-1 
ff C6]-4 
ff [53-1, 
f[B]-6, , 
ï [53-3; ; 
ff [63-1; 
ff t6]-8; 
ff [63-4; 
ff [63-1; 
*[63-3; ; 
*[63-l; ; 
ff [5]-3; 

ii f [43-1; 
;; U43-6; 
;; f [43-4; 
;; 1M3-6; 
;; *C4]-1; 
;; tC4]-l; 
;; * M - 4 ; 
;; * M - 3 ; 
;; t [4]- l ; 
;; f [4]-6; 
;; f [43-6; 
;; f[43-4; 
;; *[43-7; 
;; *[43«6; 
,, f [43-4; 

ff [43-1; 
*[43-l; ; 
ff [43-7; 
f[43-6; ; 
*[43-8; ; 
f[43-8; ; 
ff [43 -5; 
ff [43-3; 
ff [43-3i 
ff [43-8; 
ff [43-3; 
f[43-2; ; 
f[43-8; ; 
ff [43-6; 
ff [43-3; 
ff [43-2; 
11 [43-6; 
ff [43-5; 
1M3-6; ; 
i [43-3; ; 
i [43-3; ; 
t[43-8; ; 
1C43-6; ; 
11 [43-7; 
ff [4]-8; 
*[43-8; ; 
ff [43-1; 
*[43-l; ; 
*[43-2; ; 
ff [43-1; 
ff [43-2; 
i [43-7; ; 
ff [43-7; 
f[43-B; ; 
f[43-4; ; 
ff [43-1; 
f[43-8; ; 
f[43-8; ; 
tt [43-1; 
f[43-8; ; 
f[43-6; ; 
f[43-7; ; 
ff [43-3; 
ff [43-1; 
ff [43-4; 
11 [43 -8; 

f [33 -7 ; ; 
tt [33-8; 
tt [33-8; 
tt [33-4; 
t [ 3 ] - 4 ; ; 
ff [33-4; 
ff  [ 33 -1 ; 
ff  [ 33 -1 ; 
ff [33-4; 
ff [33-2; 
( [33-2 ; ; 
f [33-2 ; ; 
ff  [33-1 ; 
ff  [33-1 ; 
EE [33-8; 
f [33-8 ; ; 
ll [33-6; 
tt [33  - 4 ; 
f [33-4; ; 
ff [33-5; 
ff [33-6; 
ff  [33-1 ; 
ff  [33-1 ; 
t [33-5; ; 
t [ 3 3 - l ; ; 
ff [33-6; 
ff [33-5; 
r [33-3; ; 
ff  [33-1 ; 
r [33-8; ; 
r [33-8; ; 
t [33-8; ; 
[ [33-8; ; 
ff [33-7; 
f [33-7; ; 
[ [33-7; ; 
E[3]-6; ; 
t [33-7; ; 
[ [33-4; ; 
t [33-2; ; 
ff [33-2; 
f [33-8; ; 
[ [33-8; ; 
[ [33-8; ; 
[ [33-4; ; 
[ [33-4; ; 
[ [33-2; ; 
[ [33-2; ; 
[ [33-2; ; 
[ [33-8; ; 
[ [33-7; ; 
[ [33-2; ; 
[ [33-2; ; 
E[33-6; ; 
[ [33-5; ; 
[ [33-3; ; 
[ [33-1 ; ; 
[ [33-8; ; 
[ [33-7; ; 
! [33-7; ; 
! [33-6; ; 

ff [23-2 
ff [23-1 
i [23- l l 
*[23-l l 
*[23-8 8 
tt [23-8 
J[23-7 7 
ff [23-7 
ff [23-7 
ff [23-7 
t[23-7 7 
ff [23-7 
ff [23-3 
ff [23-3 
*[23-3 3 
tt [23-2 
ff [23-2 
ff [23-2 
ff [23-2 
ff [23-1 
ff [23-1 
ff [23-8 
ff [23-8 
ff [23-8 
ff [23-7 
ff [23-7 
ff [23-7 
ff [23-7 
ff [23-6 
ff [23-6 
ff [23-6 
ff [23-2 
ff [23-2 
ff [23-2 
ff [23-2 
l [23-2 2 
ff [23-2 
1E23-1 1 
ff [23-8 
ff [23 "7 
ï[23-7 7 
f[23-6 6 
ff [23-6 
ff [23-6 
ff [23-6 
ff [23-6 
*[23-6 6 
*[23-6 6 
ff [23-6 
ff [23-5 
ff [23-5 
ff [23-5 
ff [23-5. 
tt [23 -8 , 
ff [23-7; 
ff [23-7; 
ff [23-6; 
ff [23-6; 
f[23-5; ; 
f[23-6; ; 
f[23-4; ; 

.. *[ l3-6; 
,, f[13-5; 

f [ l3 -5 ; ; 
<[13-5; ; 
f [ l3 -5 ; ; 
ff [13-5; 
f [ l3 -5 ; ; 
ff [13-6; 
ff [13-6; 
ff [13-6; 
f[13-5; ; 
ff [13-5; 
ff [13-5; 
f[13-5; ; 
U13-5; ; 
U13-S; ; 
*[ l3-5; ; 
l [ l3 -6 ; ; 
*[13-5; ; 
J[ l3-4; ; 
i [ l 3 -4 ; ; 
f[13-4; ; 
f [ l3 -4 ; ; 
f [ l3 -4 ; ; 
f[13-4; ; 
l [13-4; ; 
*[ l3-4; ; 
*[ l3-4; ; 
*[13-4; ; 
f [ l3 -4 ; ; 
* [ l3-4; ; 
f[13-4; ; 
«[13-4; ; 
f[13-4; ; 
f[13-4; ; 
*[ l3-4; ; 
f[13-4; ; 
ï [13-3; ; 
ff [13-3; 
ff [13-3; 
ff [13-3; 
ff [13-3; 
f[13-3; ; 
ff [13-3; 
ff [13-3; 
ff [13-3; 
f[13-3; ; 
U13-3; ; 
*[13-3; ; 
i [13-3; ; 
* [ l3-3; ; 
J[13-3; ; 
tt[13-3; [13-3; 
ff [13-2; 
ff [13-2; 
t[13-2; ; 
ff [13-2; 
f[13-2; ; 
f[13-2; ; 
*[13-2; ; 
«[13-2; ; 

Elapsedd time: 37.31 
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8.66 Conclusion 
Wee have now provided a platform on which to experiment on the concepts pre-
sentedd in Chapters 5, 6 and 7; this opens the way to cross-checking the contents 
off these chapters, and even as it is their culmination it serves as a background 
too their study. Implementation is the true test for theories; teaching a tableau 
proverr to do simple arithmetic can be hard. Also, we found that the use of a 
theoremm prover as a language engine demands a major increase in its capabilities 
too be worthwhile. 

Nextt steps for Dynamo include adding equational reasoning capabilities, get-
tingg it to run faster, adding data types, the 3 operator and the Kleene star, and 
implementingg a tool to verify Dynamo programs using the calculus presented in 
Chapterr 6. 





Partt  III 

Conclusions s 





Chapterr 9 
Conclusion n 

ComputersComputers are useless; 
theythey can only give you answers. 

-Pablo-Pablo Picasso 

Wee started out this journey with the intention of improving both the under-
standingg and the landscape of automated reasoning tools for a variety of logics; 
inn the course of this work, a translator from multi-modal logic into first order 
logic,, a hybrid logic resolution theorem prover, a hybrid logic test set generator 
andd a DFOL programming language were designed and implemented. 

9.11 On Empirical Evaluation 
andd Modal-like Satisfiability Testing 

Inn Part I of the thesis we focused on putting modal logic to work; in particular, we 
weree interested in different ways of implementing solvers for the modal satisfiabil-
ityy problem. We saw how empirical evaluation is useful not only for comparison 
off competing reasoning tools, but also for guidance and evaluation in the develop-
mentt of said tools, as well as evaluation of the test sets themselves. We also saw 
thee importance of having a proper test set in the case of HyLoRes development; 
hadd we developed hGen first, the urgency of improving paramodulation treatment 
wouldd have been much more apparent. We also saw two different ways of putting 
aa particular logic to work: having a tool to translate it into a logic that has tools 
alreadyy developed for it, in this case FOL, or writing a tool from scratch. Each 
methodd has its advantages and disadvantages: the translation method can be 
veryy easy to do in a naive way, but improving it requires tweaking the translation 
withh an eye on the workings of the tool we want to work with, which will require 
substantiallyy more involvement and is always limited. The custom tool way also 
hass its own compromises: on the one hand, one has complete control over the 
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innerr workings of the tool, but on the other hand it tends to be a much bigger 
effort. . 

9.22 On DFOL programming 

InIn Part II, we concentrated on one thing we can do with one logic, and all the 
wayss in which we can look at it. We took DPL, extended it until it was expressive 
enoughh for programming, and stated an executable program interpretation for it. 
Wee reviewed the first two versions of the Dynamo engine, and decided that getting 
closerr to DFOL semantics would be simpler if we abandoned the state machine 
approachh and used a tableau prover for the engine instead. In the meantime, 
wee provided a Hoare calculus for verification of Dynamo programs, which being 
inspiredd in the semantics of the logic instead of the program state, is the same for 
anyy incarnation of the Dynamo engine. In the end, we implemented Dynamo, in 
thee course of which we learned that while a theorem prover has no trouble with the 
conceptt of negation-as-failure, things like simple arithmetic and equality reasoning 
requiree the engine to be significantly enlarged. Another desired functionality, the 
Kleenee star, had to be postponed; the study of how to do unrestricted looping 
andd still produce meaningful results falls out of the scope of the present work. 
Onee thing that can be done is take advantage of the lazy processing engine of 
Haskell,, and report models as they appear. 

9.33 Threaded through: 
Haskelll and Scientific Programming 

Thee translators from modal to first order logic, HyLoRes, hGen, and all versions of 
Dynamo,Dynamo, all share a common property: they have been written in Haskell. The 
mainn benefit of programming in Haskell was that since we did not have to worry 
aboutt all the little details of how we wanted our computation carried out, we 
hadd more time to consider optimizations to the bigger details of the algorithms 
andd data structures; it is also less trouble to change them in order to experiment. 
Ultimately,, if one wants a really fast program and can devote the time and re-
sourcess to developing it, the imperative way will always work better, although 
itt is always superseded by hardware-specific machine coding, which in turn is 
bestedd by task-specific hardware design. There is something else to be said for 
thiss ordering, which is that the insights gained for each approach are increasingly 
different:: the tasks performed and therefore the knowledge required focus more 
andd more on where the data goes and how cleverly it is stored, recalled and up-
dated.. But all these optimizations are vulnerable to improvements in algorithm 
quality;quality; developing better heuristics and better data organization usually results 
inn more dramatic results than fine-tuning your loops or using custom hardware, 
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andd more importantly, gives a better insight on the nature of the problem. 

9.44 Equality Reasoning 

Anotherr thing that became a common theme between the two parts of this thesis 
iss the need for equality reasoning treatment. Both in HyLoRes and in the Dynamo 
engine,, we found some manifestation of equality being a stone in our shoe. Were 
thesee stones equal? Well... since tableaux and resolution are dual methods, the 
problemss posed by equality are perforce different; also, in Dynamo we want the 
solutionn to the set of equations, while in HyLoRes we do not have interpreted 
functionn symbols and are looking for contradictory statements. 

9.55 One Logic to Find them, one Logic to Bind 
them? ? 

Thee two main threads in this work are not parallel, but come together in a 
placee slightly outside this thesis. DFOL is, after all, a dynamic logic: it has 
tests,, which either fail or succeed, and other operators bring us from states to 
(setss of) states. Furthermore, Hoare logic can be expressed in terms of First 
Orderr Dynamic Logic [Har79], so in a sense all the logics covered here belong 
too the family of 'modal-like' logics. In fact, there is a way to express the Hoare 
calculuss we introduced entirely in DFOL, since the meaning of both existential 
andd universal correctness triples can be encoded in it: we can write {A}0{i?} as 
A*A*  —• (<f>  Bm), and {A)<j>(B)  as A* —y (<f>;B*),  where •* is a translation from 
FOLL to DFOL. So it is revealed; the formulas of DFOL can be seen as modalities, 
wheree the 'worlds' in a model are the assignments, and the transitions are of course 
regulatedd by the usual semantics of DFOL: tests represent transitions to either 
thee failure state or the current state, an assignment to a variable v represents a 
transitionn to a v-variant of the current state, and so on. 

9.66 Final Remarks 

AA theory is useful only when it is used; it is our hope that the tools developed in 
thee course of preparing this work make the involved logics more useful than they 
alreadyy are, by providing a testing lab to try out ideas and see how they work. 
Andd how well they do. 

Onn the course of this study, then, some tools apt for studying and experi­
mentingg with nonclassical logics have been developed: 

•• HyLoRes: http://www.science.uva.nl/~juanh/hylores 

http://www.science.uva.nl/~juanh/hylores
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•• Dynamo: http://www.science.uva.nl/~juanh/dynamo 

•• hGen: http://www.science.uva.nl/~juanh/hGen 

http://www.science.uva.nl/~juanh/dynamo
http://www.science.uva.nl/~juanh/hGen
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Samenvatting g 

Formelee logica is de studie van noodzakelijke waarheden en systematische meth-
odenn met als doel deze waarheden helder uit te drukken en rigoreus te demonstr-
eren.. Dit proefschrift gaat over de automatisering van de conclusies die mogelijk 
zijnn gemaakt door zekere logica's, over de evaluatie van deze automatiserings 
methodenn en mogelijke toepassingen hiervoor. 

Dee afgelopen jaren is de efficiëntie van het automatische bewijzen van stellin-
genn voor modale logica enorm toegenomen, tegelijkertijd is het gebied van eval-
uatiee van deze stelling bewijzers gerijpt. We zullen een aantal van de strategieën 
zienn die gebruikt worden om middelen voor automatisch redeneren voor deze 
logicass te ontwikkelen en zien wat de rol is van empirische beoordeling in dit pro-
ces.. We zullen ook zien hoe Dynamic Predicate Logic (DPL) geïnterpreteerd kan 
wordenn als programmeer taal, en hoe programma's die geschreven zijn in die taal 
gemakkelijkk formeel gecontroleerd kunnen worden. Uiteindelijk zullen we zien hoe 
automatischh redeneren gebruikt kan worden als een motor voor berekeningen. 
Ditt werk gaat dan over middelen: hun ontwikkeling, beoordeling en mogelijke 
toepassingen. . 

Ditt proefschrift is ingedeeld in twee hoofd gedeeltes. Deel I, Evaluation in 
Modall and Hybrid Theorem Proving, gaat over de huidige en bestaande pogingen 
opp het gebied van stelling bewijsvoering in modale en hybride logica en het belang 
vann beoordeling in het ontwerp en vergelijking van stelling bewijzers evenals in 
dee beoordeling van de standaarden zelf. In Hoofdstuk 2 zullenn we de evolutie van 
dee standaardisering in modale logica stelling bewijsvoering bespreken en zullen 
wee een hybride logica standaard introduceren. In Hoofdstuk 3 spreken we over 
dee verschillende methoden voor het vertalen van modale logica naar First Order 
Logicc (FOL), over het voordeel te gebruiken van de jaren van ontwikkeling die 
zijnn gegaan in FOL stelling bewijsvoering en over hoe verschillende methoden te 
vergelijken.. In Hoofdstuk 4 beschrijven we andere kijk op stelling bewijsvoer-
ingg in niet klassieke logica: ontwikkeling van jouw eigen gespecialiseerde stelling 
bewijzer.. We beschrijven de theorie en implementatie van HyLoRes, een oploss-
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ingg gebaseerde stelling bewijzer voor hybride logica; we beschrijven ook hoe het 
testenn een onaangetast deel van de ontwikkeling was. 

InIn Deel II, Programming with Dynamic First Order Logic, onderzoeken wij 
hett gebruik van Dynamic First Order Logic (DFOL) als een programmeer taal. 
Inn Hoofdstuk 5 geven we enige achtergrond van het concept model 'formules als 
programma's';; we introduceren het concept van een uitvoerbare interpretatie van 
DFOL(U),, en beschrijven twee steeds betrouwbaar wordende benaderingen van de 
interpratie.. In Hoofdstuk 6 leggen we uit waarom DFOL(U, a) een goede kandi-
daatt is voor een programmeer taal en beschrijven we een Hoare calculus daarvoor. 
Inn Hoofdstuk 7 beschrijven we een reken tabel voor DFOL(U,a) die zelfs een 
beteree benadering geeft voor de uitvoerbare interpretatie van DFOL(U, er) en kan 
gebruiktt worden als een programmeer taal moter en in Hoofdstuk 8 beschrijven 
wee de implementatie van zo'n moter en laten we een aantal voorbeeld runs. 

Inn Deel III, Conclusie, kijken we terug op wat er geleerd is in de delen I en II, 
watt ze gemeenschappelijk hebben en waar ze elkaar ontmoeten. 



Abstract t 

Formall logic is the study of necessary truths and of systematic methods for clearly 
expressingg and rigorously demonstrating such truths. This thesis is about the 
automationn of the inferences made possible by certain logics, about the evaluation 
off these automation methods, and some possible uses for them. 

Thee last few years have seen a huge increase in the efficiency of theorem 
proverss for modal and modal-like logics, and together with it the field of evaluation 
off these theorem provers has matured considerably. We will see some of the 
strategiess used to develop automatic reasoning tools for these logics, and the role 
off empirical evaluation in this process. We will also see how Dynamic Predicate 
Logicc (DPL) can be interpreted as a programming language, and how programs 
writtenn in that language can be easily subjected to formal verification. Finally, we 
willl see how automated reasoning can actually be used as a computation engine. 
Thiss work is then about tools: their development, evaluation, and possible uses. 

Thiss thesis is organized in two main parts. Part I, Evaluation in Modal and 
Hybridd Theorem Proving, deals with current and existing efforts in the field of 
modall and hybrid logic theorem proving, and the importance of evaluation in 
thee design and comparison of theorem provers as well as in the evaluation of the 
benchmarkss themselves. In Chapter 2 we'll review the evolution of benchmarking 
inn modal logic theorem proving, and introduce a hybrid logic benchmark. In 
Chapterr 3 we talk about the different methods for translating Modal Logic to 
Firstt Order Logic (FOL), to take advantage of the years of development that went 
intoo FOL theorem proving, and how different methods compare. In Chapter 4 we 
describee another approach to theorem proving in non-classical logics: developing 
yourr own specialized theorem prover. We describe the theory and implementation 
off HyLoRes, a resolution-based theorem prover for hybrid logics; we also describe 
howw testing was an integral part of development. 

InIn Part II, Programming with Dynamic First Order Logic, we explore the use 
off Dynamic First Order Logic (DFOL) as a programming language. In Chap-
terr 5 we give some background to the 'formulas as programs' paradigm; we in-
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troducee the concept of an executable interpretation of DFOL(U), and describe 
twoo increasingly faithful approximations to the interpretation. In Chapter 6 we 
explainn why DFOL(U,a) is a good candidate for a programming language and 
describee a Hoare calculus for it. In Chapter 7 we describe a tableau calculus for 
DFOL(U,CT)) which gives an even better approximation to the executable inter-
pretationn of DFOL(U, a) and can be used as a programming language engine, and 
inn Chapter 8 we describe the implementation of such an engine and show some 
examplee runs. 

InIn Part III, Conclusion, we reflect on what was learned from Parts I and II, 
whatt they had in common, and where they meet. 
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