
Buildingg Logic Toolboxes

ILLCC Dissertation Series DS-2003-03

INSTITUTEE FOR LOGIC, LANGUAGE AND COMPUTATION

Forr further information about ILLC-publications, please contact

Institutee for Logic, Language and Computation
Universiteitt van Amsterdam
Plantagee Muidergracht 24

10188 TV Amsterdam
phone:: +31-20-525 6051

fax:: +31-20-525 5206
e-mail:: i l lc@science.uva.nl

homepage:: ht tp: / /www.i l lc .uva.nl /

mailto:illc@science.uva.nl
http://www.illc.uva.nl/

Buildingg Logic Toolboxes

ACADEMISCHH PROEFSCHRIFT

terr verkrijging van de graad van doctor aan de
Universiteitt van Amsterdam

opp gezag van de Rector Magnificus
prof.mr.. P.F. van der Heijden

tenn overstaan van een door het college voor
promotiess ingestelde commissie, in het openbaar

tee verdedigen in de Aula der Universiteit
opp donderdag 4 december 2003, te 12.00 uur

door r

Juann Martin Heguiabehere

geborenn te Buenos Aires, Repüblica Argentina.

Promotor:: Prof.dr. D.J.N, van Eijck

Co-promotor:: Dr. M. de Rijke

Faculteitt der Natuurwetenschappen, Wiskunde en Informatica

Copyrightt © 2003 by Juan Martin Heguiabehere

Printedd and bound by PrintPartners Ipskamp.

ISBN:: 90-5776-115-7

Contents s

Acknowledgmentss ix

11 Introduction 1
1.11 What is Logic good for? 1
1.22 Working with Logic 1
1.33 The Road Ahead 2
1.44 A Plethora of Logics 3

1.4.11 First Order Logic 4
1.4.22 Restrictions 5
1.4.33 Extensions 10

1.55 The Correctness Problem 16
1.5.11 Alma-0 : Executable First Order Logic 16
1.5.22 DFOL and correctness 16
1.5.33 Dynamo 17

1.66 The Role of Evaluation 18

11 Evaluation in Modal and Hybrid Theorem Proving 19

22 How Long is a Ruler? 23
2.11 Fitness criteria for modal test sets 23
2.22 Real-world Problems 26
2.33 Hand-tailored Problems 26
2.44 Random Problems: Modal QBF 27

2.4.11 The Random Modal QBF Test Set 27
2.55 Random problems: Random CNF 37

2.5.11 3SAT 37
2.5.22 Random Modal CNF 37
2.5.33 Random Hybrid CNF 38

v v

2.66 Conclusion 43

33 Modal Theorem Proving:
Translationss into First Order Logic 45
3.11 Introduction 45
3.22 Resolution Theorem Proving in a Nutshell 46
3.33 Translations from Modal Logic to First Order Logic 48

3.3.11 The Relational Translation 48
3.3.22 The Functional Translation 50
3.3.33 The Tree Model Property 51
3.3.44 The Layered Translation 52

3.44 Comparing the approaches: Experimental results 54
3.55 Conclusion 59

44 Modal and Hybrid Theorem Proving - Direct Resolution 61
4.11 Resolution for Modal-Like Logics 61
4.22 The Rules 62
4.33 The Given Clause Algorithm 64
4.44 Implementation 64
4.55 The Gory Details 67

4.5.11 Data Structures 67
4.5.22 Optimizations 69

4.66 Testing 72
4.77 Conclusion 74

III Programming with Dynamic First Order Logic 77

55 The Executable Program Interpretation
forr Dynamic First Order Logic 81
5.11 Introduction 81
5.22 FOL and Programming 81
5.33 Computational Process Approximations to DFOL(U) 82

5.3.11 Dynamic FOL 82
5.44 DFOL(U) as a Programming Language 86
5.55 Moving Closer to DFOL Semantics 86

5.5.11 and 0 propagation 88
5.5.22 Atomic Predicate Test 88
5.5.33 Equality 89
5.5.44 Predicate Test Reduction 90
5.5.55 Equality Test Reduction 91
5.5.66 Assignment Reduction 91
5.5.77 Quantification 92

VI I

5.5.88 Negation 93
5.5.99 Composition, Union, Bounded Search/Choice 95

5.66 Ways of Running the Dynamo Execution Process 96
5.77 Faithfulness to DFOL(U) 96
5.88 Conclusion 98

66 Hoare Calculus for DFOL 99
6.11 Hoare Calculus 99
6.22 Why the Executable Interpretation of DFOL is particularly ade-

quatee for programming 100
6.33 The Rules 100
6.44 Soundness 104
6.55 Completeness 107
6.66 Extending the Language 112

6.6.11 The Hiding operator 112
6.6.22 The Kleene star 114

6.77 Conclusion 116

77 Tableau Reasoning with DFOL 117
7.11 Introduction 117
7.22 Tableaux for DFOL(a,U) 118

7.2.11 Adaptation of Tableaux to Dynamic Reasoning 118
7.2.22 Tableaux for DFOL(a, U) Formula Sets 120
7.2.33 Tableau Expansion Rules 121

7.33 Soundness of the Calculus 123
7.44 Derived Principles 125
7.55 Some Examples 126
7.66 Completeness 133
7.77 Extending the Language 135

7.7.11 Local variables: the Hiding operator 135
7.7.22 Iteration: the Kleene star 136

7.88 Completeness for DFOL(CT,U,*) 140
7.99 Related Work 141
7.100 Conclusion 147

88 Implementing Dynamo 149
8.11 Introduction 149
8.22 The Dynamo Engine 150

8.2.11 The Programming Language 150
8.2.22 The Algorithm 150

8.33 Tableau reasoning for DFOL 152
8.3.11 Data Structures 152
8.3.22 Rules 152

vii i

8.44 Extensions to the Calculus 153
8.4.11 Indexed Variables 153
8.4.22 Teaching Dynamo to Add 154
8.4.33 What to do with the Equations 154

8.55 Example runs 154
8.66 Conclusion 159

IIII Conclusions 161

99 Conclusion 163
9.11 On Empirical Evaluation

andd Modal-like Satisfiability Testing 163
9.22 On DFOL programming 164
9.33 Threaded through:

Haskelll and Scientific Programming 164
9.44 Equality Reasoning 165
9.55 One Logic to Find them, one Logic to Bind them? 165
9.66 Final Remarks 165

Bibliographyy 167

Samenvattingg 177

Abstractt 179

vni i

Acknowledgments s

MisMis amigos son gente cumplidora
queque acuden cuando saben que yo espero
sisi les roza la muerte, disimulan,
queque para ellos la amistad es lo primero.

-- "Malas companias", Joan Manuel Serrat

Oncee an engineer, always an engineer. It's very hard to get rid of some habits,
andd even harder to abandon one's worldview; that might be why when I arrived
att the ILLC what I set to do was to build tools. It was truly fortunate for me that
myy supervisors, Jan van Eijck and Maarten de Rijke, not only tolerated but even
encouragedd my impulse to transform theories into computer programs. A few of
thosee programs were deemed good enough to be mentioned in the rest of this
book;; as such, they occupy enough space already and I will say no more about
themm here.

Theree are lots of people I have to thank, and I hope I remember all of them.
Firstt of all my parents: they were my first great teachers, and continue to be.

Whenn one moves to another continent, several things are left behind: most
notoriouslyy family and friends. When I arrived, however, some friends were here
already.. Thanks to Carlos, to Juan Manuel and Susanne, to Alejandro and Iris,
too Nacho and Ana, to Barbara, and to Roberto, for giving a Buenos Aires fla-
vorr to some places in Europe. Especially to Carlos, who even went so far as to
becomee a Ph.D. student in the ILLC and avail himself of many great friends in
Amsterdamm before I even thought of leaving home. Said friends became imme-
diatelyy my friends too, as could be expected, and it was a group that always
grew,, never diminishing even if some members moved away. For shared friend-
ship,, cinema, food, evenings, travel, parties, and good times in general, I want
too thank Nikos Massios, Claudia Bedini, Gabriel Infante Lopez, Rosella Gen-

IX X

nari,, Piero Spinnato, Caterina Caracciolo, Marta Garcia Matos, Jon Calsamiglia,
Catarinaa Dutilh-Novaes, Shai Berger, Stasinos Konstantopoulos, Balder ten Cate,
Joostt Joosten, Marco Vervoort, Raffaella Bernardi, Patrick Blackburn, Renata
Wasserman,, Stefan Schlobach, Valentin Jijkoun, Detlef Prescher, Karin Muller,
Alinee Honingh, Neta Spiro, Gabriele Musillo, Breanndan O Nuallain, Bernadette
Martinez,, Mónica Naef, Andrea Rocco, Miranna Portal, Alessandra Palmigiano,
Marcoo Aiello, Claudiaa Rosetti, Jelle Gerbrandy, Elena Brosio, Carla Piazza, Mas-
simoo Pranceschet, and Miguel Valero Espada. It has been good to meet you all.

Farr but not lost, I want to also thank those friends who remained in Argentina
andd kept writing, who reclaimed my presence every now and then, and obligingly
showedd up whenever I went back for a short holiday. Thanks to Fernando for
dispellingg the illusion that you can't spend time with your friends just because
theyy are not on the same country; to Silvia, for having her birthday fall during
myy visits; to Ricardo for teaching me how to make pizza; to Leo for the 'slinky
effect'' and so many odysseys in Campana; to Alejandro for reappearing after
soo many years; to Alf for keeping his sanity whilst working for a corporation;
too Gaby, for putting up with more engineers than recommended by the Public
Healthh Authority; to Sergio, for sending me pictures of a strangely familiar goofy
person;; to Juan José, for remaining close even after moving to Silicon Valley;
andd to Gabriel, Javier, Adrio, and Sebas, for years of dungeons and dragons and
musicc and books.

Comingg back to the subject of the thesis, I want to thank again Balder, Bre-
anndan,, Carlos and Rosella for the stimulating work we did together and for
allowingg me to use material from it here; Aline for helping me with the samenvat-
ting;; Marco Vervoort, for his very handy timetable for making sure a promotion
happenss when and as planned; Ria Rettob and Marjan Veldhuisen for all their
help. .

Finally,, I wish to thank my supervisors, Maarten and Jan, for taking the risk
off allowing a relative outsider to the field (me) to come into the ILLC, for giving
mee the right mix of guidance and freedom, for being there whenever I needed
helpp of any sort, and for all I learned with them.

Amsterdamm Juan Heguiabehere
October,, 2003.

x x

Chapterr 1

Introduction n

TheThe purpose of computing is insight,
notnot numbers.

-- Richard Hamming

1.11 What is Logic good for?

Formall logic is the study of necessary truths and of systematic methods for clearly
expressingg and rigorously demonstrating such truths.

Whenn confronted with a modeling task, logic can be used to capture a situation
(aa property of the world, a machine state, a cognitive state, the state of a database,
. . .) ;; given the inference mechanisms allowed by the logic, we can then derive
implicitt or explicit information about the situation being modeled. During its
longg history, logic has been used to analyze phenomena ranging from planning
inn robotics or scheduling in railways to natural language processing [CGM+97,
BBKdN98,, CGV02]. The value of logic as a tool comes from its power to validate
complexx assertions; if the premises are true and our reasoning is correct, our
conclusionn is guaranteed to be also true.

Inn this thesis we are interested in "classical" logics, that is, in logics that work
onn exact ("crisp") input and that only admit two truth values: true and false.
Whilee this may not always be the best choice, it is very much the norm for the
settingss in which we are interested in in this thesis: modal and hybrid satisfiability
testingtesting and dynamic first order logic theorem proving.

1.22 Working with Logic

Logicc is useful in any context in which the notion of inference is relevant. In
particular,, logic can be used to certify that computer programs perform their

1 1

2 2 ChapterChapter 1. Introduction

assignedd task (if formally stated) [Hoa69], or that reactive systems have the de-
siredd behavior, or that a theory is consistent. Sometimes, however, the task of
determiningg whether or not a statement follows from a theory is so huge as to be
intractablee for humans; this led to the development of programs to automate the
inferencee tasks [Rob65, DP60, Smu68]. More specifically, automated tools exist
too support the following reasoning tasks (among others)

 satisfiability checking: the task of determining whether a given formula or
sett of formulas in a certain logic is possibly true.

 validity checking: the task of determining whether a given formula or set of
formulass in a certain logic is necessarily true.

 model checking: the task of determining whether a given formula in a certain
logicc is true, given a model.

 model generation: the task of finding out which model, if any, makes a given
formulaa true.

Butt there is also a further reason to develop general-purpose automated reasoning
tools:: Having a computer program carry out the reasoning tasks lets us experi-
mentt with theories, concentrate on the modeling tasks, handle bigger problems
thann we could on our own. Ideas become more tangible, and if a tool is well
implemented,, it is possible that people will use it for things the authors never
dreamedd of. In a sense, having a reasoning tool empowers a logic to come out
off the books and get its hands dirty (hopefully for a clean cause). This thesis is
thenn about automated reasoning tools: how one can make a tool for automated
reasoning,, how to tell if it is any good, how to make it better, and how it can be
useful. .

InIn this thesis we will focus almost exclusively on satisfiability checking. The
purposee of this work is to explore some of the algorithms that enable computers
too perform automated satisfiability checking, as well as their implementation and
assessment.. We will discuss some of the ways in which logic can be put to use
throughh automated reasoning, and the importance of testing in the evolution of
automatedd reasoning tools.

1.33 The Road Ahead

Thee rest of this thesis is organized in two main parts. Part I, Evaluation in Modal
andd Hybrid Theorem Proving, deals with current and existing efforts in the field
off modal and hybrid logic theorem proving, and the importance of evaluation in
thee design and comparison of theorem provers as well as in the evaluation of the
benchmarkss themselves. In Chapter 2 we'll review the evolution of benchmarking

1.4-1.4- A Plethora of Logics 3 3

inn modal logic theorem proving, and introduce a hybrid logic benchmark. In
Chapterr 3 we talk about the different methods for translating Modal Logic to
Firstt Order Logic (FOL), to take advantage of the years of development that went
intoo FOL theorem proving, and how different methods compare. In Chapter 4 we
describee another approach to theorem proving in non-classical logics: developing
yourr own specialized theorem prover. We describe the theory and implementation
off HyLoRes, a resolution-based theorem prover for hybrid logics; we also describe
howw testing was an integral part of development.

Inn Part II, Programming with Dynamic First Order Logic, we explore the use
off Dynamic First Order Logic (DFOL) as a programming language. In Chap-
terr 5 we give some background to the 'formulas as programs' paradigm; we in-
troducee the concept of an executable interpretation of DFOL(U, a), and describe
twoo increasingly faithful approximations to the interpretation. In Chapter 6 we
explainn why DFOL(U, a) is a good candidate for a programming language and
describee a Hoare calculus for it. In Chapter 7 we describe a tableau calculus for
DFOL(U,<j)) which gives an even better approximation to the executable inter-
pretationn of DFOL(U, a) and can be used as a programming language engine, and
inn Chapter 8 we describe the implementation of such an engine and show some
examplee runs.

InIn Part III, Conclusion, we reflect on what was learned from Parts I and II,
whatt they had in common, and where they would meet.

Partss of Chapter 2 were originally published in [HdROl] and [AH03]; Chapter 3
containss material from [AGHdROO]; Chapter 4 is an extension of [AH02a]. Most
off Chapter 7 was originally published in [vEHNOl].

Beforee embarking on our trip, we will review the notions and notation required
forr reading the material in later chapters. In addition, the next few sections
providee the reader with an overview that should help situate the logics and issues
investigatedd in this thesis.

1.44 A Plethora of Logics

Wee present now the general logical framework in which this work is set. Outside of
propositionall logic [GvMWOO], the best known logic, the one which has the most
toolss developed for it, is First Order Logic (FOL). The satisfiability problem for
firstt order logic is undecidable, in spite of which a myriad of reasoning tools exist;
seee [CAS]. These tools have reached impressive levels of optimization, but the fact
remainss that the underlying problem is undecidable. So, if the problem at hand
cann be stated in terms of a less expressive logic which has a decision procedure,
that'ss already an improvement (at least in principle). Also, sometimes FOL does
nott offer the right perspective for the task at hand, so that a logic with the
samee expressive power, yet different syntax or semantics, will be better suited.
Specifically,, the following three logics will play a leading role in this thesis:

44 Chapter 1. Introduction

Figuree 1.1: Relationships between the logics introduced

•• first order logic [Fit96].

•• modal and hybrid logic [BdRVOl].

•• dynamic first order logic [GS91].

Butt we will encounter even more logics. In Figure 1.1 we provide a diagrammatic
overvieww of the logics we will shortly introduce. The labels on the arrows indicate
somee aspect of the relation between the logics involved.

Wee will now provide formal definitions as well as some examples and discus­
sionss that should help understand their raison d'etre.

1.4.11 First Order Logic

Firstt order logic, by far the most widely studied logic, was first formulated in 1879
byy Frege. It provides a formal framework for quantified expressions of the form
'alll computers use Windows' or 'there is a computer that does not crash'. Even
thoughh it cannot quantify over properties, its satisfiability problem is already
undecidable:undecidable: for some sentences of FOL, it is not possible to ascertain whether
theyy could be true or not. We will now introduce the logic proper.

1.4.1.. DEFINITION. [Syntax] Let REL be a countable set of relational symbols,
eachh with its own arity, let FUN be a countable set of function symbols, each with
itss own arity, and let CON and VAR be countable sets of constant and variable
symbolss respectively. We call S = (REL, FUN, CON, VAR) a signature. The well-
formedd terms over this signature are defined as follows:

TERMSS :=c | x \ f(h,...,tn),

1.4-1.4- A Plethora of Logics 5 5

wheree c G CON,x G VAR, ƒ G FUN with arity n, and *1 (. . . ,tn € TERMS. The
well-formedd formulas over the signature are

FORMSS : = T | J l fa , . . . , ^) \-^<j> \ (fcAfc) | 3x f» ,

wheree R G REL with arity n, t i , . . . ,£n e TERMS, x G VAR and ^,^1,^2 €
FORMS.. We take V,—•, *+ and V as defined symbols.

1.4.2.. DEFINITION. [Semantics of FOL]: A model over a signature S is a pair
AiAi = (D,I), where D is a nonempty set, called the domain of /A, and ƒ is an
interpretation;interpretation; to every ƒ € FUN of arity n, it associates a function ƒ/ : £>n —• D,
andd to every ƒ£ G REL of arity n, a relation # / C Dn . To every element c of
CON,, it associates an element of D. An assignment in a model M = (£>, /) is
aa mapping g : VAR —y D. Given an assignment g for M, x G VAR and m E D,
wee define g^ (an x-variant of y) by ff^(x) = m and 5^(2/) = Q{V)I f° r V ¥" x-
Now,, given a model .M and an assignment g every term in the language can be
evaluatedd to an element of D\

I(x)I(x) = g{x)

I{f(tI{f(t uu......77U))U)) = /(ƒ)(/(*!),-..,/(*»)).

Andd the satisfiability relation, then, is as follows:

 t= ~T[g] always
M\=R(tM\=R(tuu...,t...,tnn)[g])[g] iff I{R){I(t 1)t...,I{tn))

M\=^[g]M\=^[g] iff M£<t>[g]

MM h <f>i A fo[?] iff M N 4n\s\ and JU (= fofr]
MM \= 3ar(^)[^] iff X |= 0[<&] for some m E D.

1.4.22 Restrictions

SometimesSometimes the full expressive power of FOL is not necessary; in those cases, we
mightt be able to model our problem using logics that are less expressive but more
tractable.. It is also possible that a logic is as complex as FOL, but is better suited
att describing the situation at hand. In this subsection we review a small number
off restrictions of first order and second order logic.

6 6 ChapterChapter 1. Introduction

Modall Logic. Modal logic is a powerful and flexible tool for working with re-
lationall structures [BdRVOl]. It's very well behaved, robustly decidable [Var97],
andd allows us to reason about relational structures such as those found in math-
ematics,, computer science and linguistics. Modal and modal-like logics such as
temporall logic, description logic, and feature logic, have had a long history in
artificiall intelligence, both as an area of foundational research and as a source
forr useful representation formalisms and reasoning methods [FHMV95, HS97],
andd the recent advent of agent-based technologies and the Semantic Web have
dramaticallyy increased the need for efficient automated reasoning methods for
modall logic [FHMV95, PSHvH02]. But there are things that can't be expressed
inn modal logic: the gains in decidability have a price in expressiveness.

1.4.3.. DEFINITION. [Syntax] Let REL be a countable set of relational symbols,
andd PROP a countable set of propositional variables. The well-formed formulas
off the modal language MC in the signature (REL, PROP) are

FORMSS := T j p | -.0 | <j> x A <fa \ [R]<f>

wheree p € PROP, R € REL and 4>,<j> r,<j> 2 6 FORMS.

Thee operator (R) is defined as -<[R]->, i.e. they are dual operators.

1.4.4.. DEFINITION. [Semantics] Given a signature {REL, PROP), a (modal) model
MM is a triple M = <M, {i^}, V) such that M is a non-empty set, {Ri} is a set
off binary relations on M, and V : PROP ->• Pow(M).

Lett M = {M,{Ri},V) be a model, m € M. Then the satisfiability relation
iss defined as follows:

M,m\\-M,m\\- T always
M,m\\-M,m\\- p iff m e V(p),p e PROP
M,m\\-M,m\\- -«fi iff M,m\y-<j)
M,m\\-M,m\\- ^ iA^2 iff M,m\\- <f>\ and M,m\\- <p2

M,m\\-M,m\\- [R\4> iff Vm'.(i?(m,m') ==> M,m' Ih <j>)

Modall logic allows us then to talk about properties of elements of a given domain,
whichh are themselves connected to each other by one or more relations. What
wee can't do with modal logic, however, is tell these elements apart; two different
elementss of the same model can satisfy the same set of modal formulas and
thereforee be indistinguishable to the logic. Now, we could go back to FOL, but
wee can also see if we can add expressive power to the modal language and still
preservee decidability. This has been carried out in a number of ways, as we shall
seee below.

1-4-1-4- A Plethora of Logics 7 7

Hybridd Logics. In hybrid logics, the relational structures of modal logics are
kept,, but we add the capability to refer to individual elements of M, thus going
beyondd the expressive power of modal logic. Some of the additions increase
thee complexity of the satisfiability problem, while others go so far as making it
undecidable,, but basically hybrid logics can be tailored so that their expressivity
andd complexity are matched to the problem at hand. Hybrid logics can be said to
spann the expressivity and complexity gap between modal logic and FOL; see [HyL]
forr a thorough introduction and extensive bibliography. Still, hybrid logics are
nott the only way in which one can extend modal logic; we'll look at some more
wayss later.

1.4.5.. DEFINITION. [Syntax] Let REL be a countable set of relational symbols,
PROPP a countable set of propositional variables, NOM a countable set of nominals,
andd SVAR an infinite, countable set of state variables. We assume that these sets
aree pairwise disjoint. We call SSYM = NOM U SVAR the set of state symbols, and
ATOMM = PROP U NOM U SVAR the set of atoms. The well-formed formulas of
thee hybrid language H[@,l) in the signature (REL, PROP, NOM, SVAR) are

FORMSS :=T | a \ -nf> | & A fa I [R]<f> I ®,<P I \x.fa

wheree a € ATOM, x <= SVAR, s € SSYM, R € REL and <j>, fa, fa e FORMS.
Notee that all types of atomic symbol (i.e., proposition symbols, nominals and

statee variables) are formulas. Further, note that the above syntax is simply that
off ordinary (multi-modal) propositional logic extended with clauses for @s<j> and
\x.<f>.\x.<f>. Finally, the difference between nominals and state variables is simply that
nominalss cannot be bound by I, whereas state variables can.

Thee notions of free and bound variable are defined as in first order logic, with
II as the only binding operator. A sentence is a formula containing no free state
variables. .

Thee basic hybrid language is %, basic modal logic extended with nominals.
Furtherr extensions are usually named by listing the added operators; we are
interestedd in the logics ft(@) and W(@,l), which also adds state variables.

1.4.6.. DEFINITION. [Semantics] A (hybrid) modelMisa. tripleM = {D,{Ri}, V)
suchh that D is a non-empty set, {Ri} is a set of binary relations on D, and
VV : PROP U NOM -> Pow(D) is such that for all nominals i € NOM, V(i) is a
singletonn subset of D.

Ann assignment g for M is a mapping g : SVAR -> D. Given an assignment g,
g^g^ is defined as for FOL. Assignments are not needed when dealing with H(@).

Lett M. = (D,{Ri},V) be a model, m € D, and g an assignment. For any
atomm a, let [V,p](a) = {g{a)} if a is a state variable, and V(a) otherwise. Then
thee satisfiability relation is defined as follows:

file:///x.fa

88 Chapter 1. Introduction

M,g,M,g, mlh T always
M,g,m\\-M,g,m\\- a iff m € [V,#](a), a € ATOM
Ai,5,, mlh -i0 iff M,g,m\y- <f>
M,g,M,g, mlh 0i A 02 iff -M,<?, m lh 0i and M,g,m lh 02

M,S,mlhh [fl]0 iff Vm'.(fl(m,m') = > M,5 ,m ' l h0)
.M,, ff, m lh @s0 iff M, s, m' lh 0, where [V, s](s) = {m'}
M,g,m\\-M,g,m\\- ix.(f> iff M , 5 ^ , m l h 0 .

Namedd elements can now be distinguished, and we can express properties
whichh were not expressible before: the formula (|x. [#]->#) is true in every element
off a model if and only if the accessibility relation R for that model is irreflexive,
somethingg not expressible in modal logic.

Proposit ionall Dynamic Logic. While Propositional Dynamic Logic(PDL) is
aa modal logic, by all accounts, it is not a restriction of first order logic (as modal
andd hybrid logic), but rather a restriction of second order logic. Propositional
Dynamicc Logic deals with actions as modalities; usually, the represented actions
aree atomic programs, and the elements of the domain therefore reflect the relevant
statee of the computer running them. With this interpretation in mind, many
naturall operators on programs (i.e., relations) suggest themselves, such as U (non-
deterministicc choice), ; (sequential composition), and the Kleene star * (iteration).
Seee [HKT84] for a thorough introduction. Here's a brief overview of the standard
repertoiree of PDL operators, with their intended meanings:

[a]A[a]A After every execution of a, A holds
ai;; a2 Do ai and then do a2

aiai U a2 Do either ai or a2 non-deterministically
a** repeat a some finite number (possibly zero) of times
A?A? Test A; continue if A is true, otherwise fail.

1.4.7.. DEFINITION. [Syntax] Let AP be a set of atomic programs, and PROP a
sett of atomic formulas. Then the formulas A and the programs a are defined as:

FORMSS := 1 | p | Ax -+ A2 \ [a]A,
PROGSS :=7r | ai,a2 | a i U a2 \ a* \ AI

wheree p <E PROP, w £ AP, A, Au A2 € FORMS, and a , au a 2 £ PROGS.

1.4.8.. DEFINITION. [Semantics] A model for this language would be a structure
off the form M = (S, {RQ : a e PROGS}, V) with Ra a binary relation on S for
eachh program a and V : PROP -> 5 a valuation. We want to consider models
thatt reflect the intended meanings of the program combinations; a model is con-
sideredd standard if the Ra satisfy the following conditions:

1.4-1.4- A Plethora of Logics 9 9

tfa-tfa- = (Ra)' = l)k<u(Ra)k,

RRA?A? = {{s,s)}\s\=A},

Thee semantics of a PDL formula, then, are as follows:

M,s\\-M,s\\- _L never
M,s\\-M,s\\- p iff seV{p)
M,s\\-M,s\\- Ai-*A2 iff M,s IK J4I implies M,s lh J42

A4,, s lh [a]>l iff SÜQ ̂ implies .M, t f= J4

Combinatoryy PDL. Next we consider an extension of PDL: Combinatory
PDLL [PT85, PT91], which adds nominals and the universe program. This brings
aboutt a huge increase in expressive power, accompanied by undecidability. The
mainn insight behind Combinatory PDL was the search for a dynamic logic that
wouldd allow for an axiomatic definition of the intersection between two modalities;
thiss is particularly relevant for parallel, or concurrent, computing [Pel85].

1.4.9.. DEFINITION. [Syntax] Let AP and PROP be the sets of atomic programs
andd atomic formulas, as in PDL, and NOM be the set of names. The letter
vv & NOM U PROP U AP will be called the universe program. Then the formulas
FORMSS and programs PROGS of the language are defined as:

FORMSS := _L | p \ n \ Ax -> A2 | [a]A,
PROGSS :=TT I 1/ J oi ;o2 I 01U02 I a* I A?

wheree p € PROP,7r 6 AP,n 6 N O M , ^ , ^ , ̂ € FORMS, anda ,a i , a2 €
PROGS. .

1.4.10.. DEFINITION. [Semantics] A model for CPDL is a quadruple M = (M, R, x, V),
wheree M is a non-empty set (the set of states), and the other three are functions:

RR : PROGS -»- Pow{M2),
XX : NOM - • M,
VV : FORMS -+ Pow(M),

RR satisfies the following requirements:

RRyy = M 2,
RaUpRaUp = fi«U RB,
Ra,0Ra,0 = RaRfi = {(s, t) I 3v(sRaV A vRpt)},
Ra*Ra* = (Ray = \Jk<„(Ra)k,
RAIRAI = {(«,»)} I » h A}

10 0 ChapterChapter 1. Introduction

wheree sRQt is (s,t) 6 Ra.
Givenn this model, the semantics of CPDL are as follows:

M,s\\-M,s\\- J. never
M,s\\-M,s\\- n iff s = x(n), for n E NOM
M,s\\-M,s\\- p iSseVip)
M,s\\-M,s\\- Ai - • A2 iff M,s\\- Ai implies M,s\\-A2

M,M, s lh [a]A iff sRat implies M,t\=A

1.4.33 Extensions
Afterr having reviewed a number of restrictions of first order and second order
logic,, we will now examine some extensions of first order logic that play an im­
portantt role in this thesis.

Dynamicc First Order Logic

Dynamicc Predicate Logic (DPL) was introduced by Groenendijk and Stokhof [GS91]
ass a first step towards a compositional, non-representational theory of discourse
semantics.. Like we did with hybrid logics, we will now present the family of
dynamicc first order logics, obtained by using DPL as a base logic and extending
itt with additional operators, some of which we will use to arrive at an useful
executablee program interpretation.

Thee difference between DPL and first order logic proper resides mostly in their
semantics,, in that the meaning of a DPL sentence is not captured by its truth
conditionss but by the way it changes the information state of the interpreter; a
sentencee takes us from one state of information to another, and its meaning is
givenn by how it does so [GS91]. This feature of DPL makes it very straightforward
too supply it with an executable program interpretation, with the advantage that
anyy programming language based on such an interpretation will have a clear and
naturall semantics.

Forr example, the FOL formula </>i A <j> 2 is true in a model M under an as­
signmentt g iff both 0i and <fo are true under that assignment, while in DPL the
formulaa <f>\,<f> 2 (sequential composition, the DPL analogue to A) carries us from
ann assignment s to an assignment u iff there is an assignment t such that <f>i car­
riess us from s to t and <j> 2 carries us from t to u. We will now formally introduce
DPL. .

1.4.11.. DEFINITION. [Syntax of DPL] Let PRED be a countable set of predicate
symbols,, each with its own arity, and let CON and VAR be countable sets of
constantt and variable symbols respectively. The DPL language is then given by
thee following production rules:

TERMSS := v\c
FORMSS := 3v | Pt \tx = t2\ - . (» | &; 02

1.4-1.4- A Plethora of Logics 11 1

wheree v € VAR, c E CON, P E PRED, *, t1} t2 E TERMS, and <f>, <j> u fa E FORMS.

DPLL has been extended with a variety of operators, some([Vis98, GS90]) coming
fromm the original linguistic perspective and some [vEHNOl] from the 'formulas as
programs'' perspective; a survey of extensions of DPL can be found in [tCvEHOl].
Inn this work we will consider the logics resulting of the extension of DPL with
operatorss for nondeterministic choice (0 U <j>), explicit substitutions (a), local
variablee declaration (3v(<f>)) and iteration ((/>*), as well as the inclusion of function
symbolss in the signature. We will give the name Dynamic First Order Logic
(DFOL)) to the extension of DPL with function symbols.

1.4.12.. DEFINITION. [DFOL and Extensions] Given a signature for FOL, the
syntaxx for DFOL and extensions is the appropriate fragment of the following:

TERMSS := v\c\ j_{tx, ...,tn) (Terms)
FORMSS := 3v\Pt\ti = t2\ ->(<f>) \ <f>i\ <fo I (<Ai U fa) j (Formulas)

\(<kirnh)\3v{4)\ff\»\i\4^ \(<kirnh)\3v{4)\ff\»\i\4^

wheree v E VAR,c E CON,P € PRED,/ € FUN,*i,t2,-..,*n € TERMS, and
<f>,<f>, 0i, <h € FORMS. We will write t for (#i, . . . , tn). The names for the extensions
aree given as DFOL(X), where X is a subset of {u, n,3,cr,a,"}. A substitution a
iss a function VAR —y TERMS that makes only a finite number of changes, i.e.,
aa has the property that dom(a) = {v E VAR | a{v) ^ v} is finite. We will use
rng(a)rng(a) for {o~{v) \ v E dom(cr)}. During the rest of this work, we will use the
letterss p, 9, a to denote substitutions. An explicit form (or: a representation) for
substitutionn a is a sequence

WM/vi,...,a{vWM/vi,...,a{vnn)/v)/vnn],],

wheree {vi,...,vn} = dom(a), (i.e., a(vi) ^ vi; for only the changes are listed),
andd i ^ j implies vt ^ Vj (i.e., all variables in the domain are mentioned only
once).. We will use \\ for the empty substitution, i.e. the substitution that has
emptyy domain and therefore changes nothing. We will call these representations
bindings.bindings. A definition we will need is the one of syntactic composition of bindings:

1.4.13.. DEFINITION. [Syntactic composition] The syntactic composition of two
bindingss 9 and p (notation 9 o p) is defined in the following way:
Lett 0 = [h/vi,..., tn/vn] and p = [ri/wu..., rm/wm] be binding representations.
Thenn $ o p is the result of removing from the sequence

[9{ri)/wi,[9{ri)/wi,...,..., 9{r m)/wm, h/vu..., tn/vn]

thee binding pairs 6(ri)/wi for which 0(rj) = Wi, and the binding pairs tj/vj for
whichh Vj E {wi,..., wm}.

12 2 ChapterChapter 1. Introduction

Wee will omit parentheses where it doesn't create syntactic ambiguity, and
alloww the usual abbreviations: we write _L for ->([]), ~>Pt for ~>(Pt), h ^ t2 for
-,(ti-,(ti = t2), 0i U 02 for (0i U 02). Similarly, (0 -> ip) stands for -i(0; ->(^)), Vv(0)
forr -.(3Ü; -(0)), 0" for (0 ^ j _ 0) and UM..JV 0 for (([M/v]; 0) U • • • U ([JV/v]; 0)),

n n

assumingg M, iV € N and M < N. A formula 0 is a literal if 0 is of the form Pt
orr -'Pt, or of the form ti = *2 or ti ^ t2. The complement 0 of a formula 0 is
givenn by: 0 :— ift if 0 has the form -i(V>) and 0 := ->(0) otherwise. We abbreviate
-i-ii (0) as ((0)), and we will call formulas of the form ((0)) block formulas.

Wee can think of formula 0 as built up from units U by concatenation. For
formulaa induction arguments, it is sometimes convenient to read a unit U as the
formulaa U\ [] (recall that [] is the empty binding), thus using [] for the 'true'
formula.. This formula has the same semantics as U; see Definition 1.4.16. In
otherr words, we will silently add the [] at the end of a formula list when we need
itss presence in recursive definitions or induction arguments on formula structure.

Bindingg in DFOL(CT, U)

Thee extension of DFOL that we will be using as the core of most of Part II is
DFOL(a,, U); DFOL augmented with nondeterministic choice and simultaneous
bindings.. Here follow some definitions and results that we will need later on.

Bindingss 9 are lifted to (sequences of) terms and (sets of) formulas in the
familiarr way:

1.4.14.. DEFINITION. [Binding in DFOL(CT, U)]

))

0(3u;0))

0(*i=*2;0))

Ö((0!U02);03))
0H0i);02))

== /»(t i)-Ö(<„)
== Sop

== (0op)0

== 3v; 0'0 where 0' = 0\{t/v \ t £ TERMS}

== Pet;9(f>

== 9ti = et2',6<f>

== 0(0 i ;03)U0(02;03)

-- -(00i);002

Notee that it follows from this definition that

Ö(((01));02)) = ((Ö01));^02.

Thus,, binding distributes over block: this accounts for how ((•
namicc binding effects.

•))) insulates dy-

1.4-1.4- A Plethora of Logics 13 3

Thee composition 9- p of two bindings 9 and p has its usual meaning of k9 after
p',, which we get by means of 9 p(v) := 9(p(v)). It can be proved in the usual
way,, by induction on term structure, that the definition has the desired effect,
inn the sense that for all t € T, for all binding representations 9, p: (9 o p)(t) =
9(p(t))9(p(t)) = (9-p)(t).

Heree is an example of how to apply a binding to a formula:

[a/x]Px;[a/x]Px; (Qx U 3x; ->Px); Sx

== Pa; [a/x] (Qx U 3x; ->Px); Sx

== Pa; {[a/x]Qx; Sx U [a/x]3x; ^Px; Sx)

== Pa; (Qa; Sa; [a/x] U 3x; -iPx; Sx)

Thee binding definition for DFOL fleshes out what has been called the 'folklore
ideaa in dynamic logic' (Van Benthem [vB96]) that syntactic binding [t/v] works
semanticallyy as the program instruction v := t (Goldblatt [Gol92]), with seman-
ticss given by s[v := t]** iff u = s[[t\%*fv\. To see the connection, note that
vv := t can be viewed as DFOL shorthand for 3v; v = t, on the assumption that
vv £ var(t). To generalize this to the case where v € var(t) and to simultaneous
binding,, auxiliary variables must be used. The fact that we have simultaneous
bindingg represented in the language saves us some bother about these.

Inn standard first order logic, sometimes it is not safe to apply a binding to a
formula,, because it leads to accidental capture of free variables. The same applies
here.. Applying binding [x/y] to 3a;; Rxy is not safe, as it would lead to accidental
capturee of the free variable y. The following definition defines safety of binding.

1.4.15.. DEFINITION. [Binding 9 is safe for <f>]

99 is safe for p

99 is safe for p; <j>

99 is safe for Pt; <f>

99 is safe for ti = t2; 0

99 is safe for 3v; cf>

99 is safe for - ^ I) ; <fo
99 is safe for (<f>x U fa); fa

always s

99 o p is safe for <j>

99 is safe for <f>

99 is safe for <f>

vv ^ var[rng 91) and & is safe for 0

wheree 0' = 9\{t/v \ t € TERMS}

99 is safe for fa and 9 is safe for fa

99 is safe for fa; fa and 9 is safe for fa; fa

Notee that there are ^ with \\ not safe for <f>. E.g., [] is not safe for [y/x]3y; Rxy,
becausee [y/x] is not safe for 3y; Rxy.

Givenn a first order signature and a model M = (D, I), the semantics of DFOL is
givenn as a binary relation on the set DVAR, the set of all variable maps (valuations)
inn the domain of the model. We impose the usual non-empty domain constraint

14 4 ChapterChapter 1. Introduction

off FOL: any DFOL model M = {D,J) has D ^ 0. If s,u e DVAR, we use
ss % u to indicate that s, u differ at most in their value for v, and s ~x u to
indicatee that s, u differ at most in their values for the members of X. If s € DVAR

andd v,v' 6 VAR, we use s[v'/v] for the valuation u given by u(v) = s(v'), and
u(w)u(w) = S(ÏÜ) for all w € VAR with w ^ v.

M.M. \=-s Pt indicates that s satisfies the predicate Pt in M, according to the
standardd truth definition for classical first order logic, [t]^4 gives the denotation
off t in M under s. If a is a substitution and s a valuation (a member of £)VAR),
wee will use s^ for the valuation u given by u(v) — {(^(v)]^. Then, the semantics
off DPL and its extensions is defined inductively:

1.4.16.. DEFINITION. [Semantics of extensions of DPL]

33[3v]?[3v]? iff s ~ r u

8 fP t] ^^ iff s = u and M K p*

ss\h=t\h=t22\^\^ iff s = u and fa)? = [t2\?

,H0)K** iff a = u and -a t with,[0]*1

.fyüfe]?? ̂ 3* «•*• . M ? and t[02]f
.feiUfc]*** iff . fo i l? or .[fclJ*

.foinfctf** iff . fo i l* and . [f c]*

*P«(0)I^^ iff 3 ^ « ' *•*• * ~«»' ,« ~»«'» .'[0]»'> a n d M " = M "
.[a\?.[a\? iff u = S(T

ss[a]?[a]? iff 5 = uff

WX?WX? iff s = u o r 3 t s.t. M? andt [0*]^

Wee will denote by \<f\? the set of all assignments u such that JÎ IU" 1-

Thee connection between syntactic binding and semantic assignment is formally
spelledd out in the following:

1.4.17.. LEMMA (BINDING LEMMA FOR DFOL(a,U)). For all models M, all
M.M. -valuations s, u, all formulas <f>, all bindings 9 that are safe for <j>:

Proof.Proof. Induction on the structure of <f>. H

Immediatelyy from this we get the following:

1.4.18.. PROPOSITION. DFOL(a, U) has greater expressive power than DFOL(a, u)
withwith quantification replaced by definite assignment v := d.

1.4-1.4- A Plethora of Logics 15 5

Proof.Proof. If </> is a DFOL(cr, U) formula without quantifiers, every binding 9 is safe
forr <j>. By the binding lemma for DFOL(cr, U), <f> is equivalent to a DFOL(cr, U)
formulaa without quantifiers but with trailing bindings. It is not difficult to see
thatt both satisfiability and validity of quantifier free DFOL(CT, U) formulas with
bindingg trails is decidable, while DPL is known to be as expressive as FOL [GS91],
whichh is undecidable. H

Inn fact, the tableau system presented in Chapter 7 constitutes a decision
algorithmm for satisfiability or validity of quantifier free DF0L(<7, U) formulas,
whilee the trailing bindings summarize the finite changes made to input valuations.

Thee Lattice of DPL Extensions. The following figure represents the lattice
off all possible extensions of DPL with operators from {U, fl,", a, <7,3} (union, in-
tersection,, converse, simultaneous substitution, converse substitution, hiding) [tCvEHOl].
Itt indicates which operators can be defined in terms of which; the labels on the ar-
rowss indicate counterexamples to equal expressivity, i.e., formulae from the lower
languagee that don't have a counterpart in the upper language.

DPL,DFOL(DPL,DFOL(

3xU3y 3xU3y

DFOL(a) DFOL(a) DFOL(U),DFOL{U,~) DFOL(U),DFOL{U,~) DFOL{6) DFOL{6)

DFOL{',a),DFOL{',a) DFOL{',a),DFOL{',a)
tFOL{a,a),DFOL{-,a,a) tFOL{a,a),DFOL{-,a,a)

3xU3jf f

DFOL{U,",DFOL{U,", a), DFOL{U,', a)
DFOL(U,DFOL(U, a, a),DFOL(U,', a, a)

3\x(x=y;3y\Rxy) 3\x(x=y;3y\Rxy)

DFOL{XDFOL{X C {U,rV,cr,<7,3})
wheree X n { n , 3 } / 0

3xU3t/ /

DFOL{U,a) DFOL{U,a)

Notee that all 64 combinations of the six operators are present in the diagram.
Thee diagram makes immediately clear which extensions of DPL are closed un-
derr converse: precisely those which are in the same node of the lattice as the
correspondingg version of DPL with converse operator. Adding Kleene star gives
ann isomorphic lattice for DFOL(*) and its extensions: none of the distinctions
collapsee because the same counter-examples to equal expressivity still work.

16 6 ChapterChapter 1. Introduction

1.55 The Correctness Problem
Howw do we know if a program will always perform the task it was written to carry
out?? We can do some trial runs for which we know the intended output, but that
iss not a guarantee of correctness; the process is only informative if the program
fails,, or if we can run it on every possible input, which is usually not feasible.
Butt we can turn to logic for an answer: in general, the purpose of a program is
too achieve a desired state transformation, and a specification is a "declarative"
descriptionn of such a transformation. That is, it specifies the desired net effect
off a transformation without concerning itself about how this effect is achieved in
aa particular implementation. The classical method of Hoare [Hoa69] presents a
specificationn as a pair (A, B) of expressions in a FOL over an underlying data
structure,, meaning that the task of the required program is to bring the data
structuree from any state satisfying A to a state satisfying B. Then, a way of
checkingg whether a program fulfills a specification is to have a language that lets
uss talk about specifications and programs and a calculus that lets us reason in
thatt language. If we can prove that the calculus preserves correctness and covers
alll the possible correct combinations, then we can check any program against its
specifications,, or use the calculus to help build the program.

1.5.11 Alma-0 : Executable First Order Logic

Thee correctness analysis of a program in the manner just described is made much
simplerr if the programming language has a faithful translation into logical for-
mulas:: this is one of the insights behind the Alma-0 programming language (see
[AB98,, ABPS98]). Alma-0 extends a subset of Modula-2 (an imperative program-
mingg language) with a number of declarative constructs inspired by the logic
programmingg paradigm. A translation is given from the extensions into FOL,
andd the semantics of the extensions is then stated in terms of an executable in-
terpretationn of FOL [AptOO, Ver03]. We will give more details on this perspective
inn Chapter 5, where we give the executable program interpretation of DFOL.

1.5.22 DFOL and correctness

InIn the usual correctness reasoning, we distinguish between partial and total cor-
rectness,, the difference being that total correctness ensures termination. In
DFOL,, negation is expressed as a test of failure to terminate successfully; there-
fore,, even for partial correctness we must examine at the same time both cor-
rectnesss and termination. We distinguish two main kinds of correctness rules
forr DFOL: universal and existential. The existential rules guarantee termination
andd the existence of at least one output state which satisfies the postcondition,
whilee universal rules are equivalent to partial correctness: i.e. they guarantee that
alll resulting states will satisfy the postcondition but do not guarantee successful

1.5.1.5. The Correctness Problem 17 7

termination.. We express existential correctness by (A)<j>(B), and universal cor-
rectnesss as {v4}</>{5}. Total correctness is proved when we derive both universal
correctnesss and existential correctness for the same program, although T will suf-
ficefice as the postcondition for the existential case. Of course, existential correctness
mightt result in a different precondition, but then the conjunction of the universal
andd existential preconditions will guarantee total correctness. Formally, the two
kindss of correctness boil down to the following:

MM \= (A)4>(B) <=> Vfl(M \=9A = • 3h{9[<f,\^ AM\=h B))

MM \= {A}(j>{B} <=• Vg[M^ tA=* W» (gmt4 = • M \=h B))

1.5.33 Dynamo

DynamoDynamo is an imperative programming language whose semantics are defined in
termss of DFOL(U,cr), in a similar manner as Alma-0 is defined in terms of an
executablee interpretation of FOL. The Hoare calculus for DFOL(U, a) mentioned
abovee is then directly applicable to Dynamo. Dynamo programs have a purely
declarativee dynamic semantics. There are no side effects, and no control features.
Seee Van Eijck[vE98a, vE99b] for a more thorough introduction.

Figuree 1.2 introduces the Dynamo syntax by means of a translation to the
languagee of DFOL. The translation fixes the intended meaning of every Dynamo
construct. .

Figuree 1.2: Translation from Dynamo to DFOL.

({5 i ; . . . ;5n})° °
({Si\...\S({Si\...\Snn})° })°
(true)0 0

(false)0 0

(*ii = * 2)°
(Pi)° °
(somee v)°
(somee vi,...,vn)°
(v:=t)° (v:=t)°

(v(v + +y
(findd v in [ALM] with 5)°
(doo N times S)°
(iff Si 52 e lse S3)°
(le tt vi =*!••• vn = tn in S)°
(nott S)°

C ° -- . C o
—— O i , . . . , O n

== S? U . . . U S°

== 0
== - D
== h = t2

== Pt
== 3v
== 3vi;...;3vn

== [t/v]
== [{v + i)M
==

 UM..N S°
== {S°)N

== (-.-.S?;SS)UhS?;SS)
== [ti/vu--',tn/vn];S°
== -5°

18 8 ChapterChapter 1. Introduction

1.66 The Role of Evaluation
Usually,, theoretical studies are not enough to provide sufficient insight on the
effectivenesss and behavior of complex systems such as satisfiability solvers. For
onee thing, worst-case complexity analysis is never influenced by optimisations,
whichh as we will see have a very strong influence on the behavior of satisfiability
solvers.. As a complement, then, empirical evaluations have to be used. In the area
off prepositional satisfiability checking there is large and rapidly expanding body
off experimental knowledge; see e.g., [GvMWOO]. In contrast, empirical aspects of
modall satisfiability checking have only recently drawn the attention of researchers.
Wee now have a number of test sets, some of which have been evaluated extensively
[BFH+92,, HS96, GS96, HS97, HPSSOO]. In addition, we also have a clear set of
guideliness for performing empirical testing in the setting of modal logic; these
weree proposed by Horrocks, Patel-Schneider, and Sebastiani [HPSSOO], building
onn work by Heuerding and Schwendimann [HS96]. We contend that empirical
testingg is an integral part not only of the design and evaluation of theorem provers,
butt also of the tests themselves, and can (and should) strongly influence the
developmentt of both.

Wee will now start Part I, with an overview of empirical evaluation in modal
andd hybrid logics.

Partt I

Evaluationn in Modal and Hybrid
Theoremm Proving

19 9

21 1

Heree we will survey current and past methods of evaluating modal and hybrid
theoremm provers, as well as some ways of approaching the satisfiability problem
inn modal and hybrid logics. We will introduce first the indirect method: trans-
latingg formulas from our logic into FOL, and then performing resolution on the
translatedd formulas, and then the direct method: developing our own theorem
prover.. Also, we make explicit the role of empirical evaluation in the development
off theorem provers.

Chapterr 2
Howw Long is a Ruler?

TheThe police protects us from the bandits.
WhoWho protects us from the police?

Comparingg theorem provers

Ourr aim in this chapter is to discuss empirical evaluation methods for modal
theoremm provers, and see if an evaluation method for hybrid logic provers can be
developed,, given the strong link between modal and hybrid logic. Now, empiri-
call comparison of theorem provers is conceptually simple: given a representative
samplee of the problems they are meant to solve, a criterion for comparison is es-
tablishedd such as mean run time, and the performances are compared. However,
somee complications arise when trying to define what 'representative' problems
are,, and perhaps 'real life' problems are too few or still too difficult. In that
case,, artificial problems must be supplied, and there are several criteria that the
testt sets must comply with. Since our goal is to develop an evaluation method
forr hybrid logics, it's only natural that we study the existing efforts for modal
logic.. Heuerding and Schwendimann [BHSOO] stated a set of criteria for evaluat-
ingg modal theorem proving benchmarks, which was later expanded by Horrocks,
Patel-Schneiderr and Sebastiani [HPSSOO]. We will start, in Section 2.1 by giving
ann overview of these criteria. We will then review the existing modal test sets,
particularlyy with respect to these criteria, in Sections 2.3, 2.4 and 2.5. Finally,
wee will discuss a new test methodology for hybrid logic, also in Section 2.5.

2.11 Fitness criteria for modal test sets

Too be able to assess the quality of test methodologies for modal theorem proving,
wee will review a number of 'common sense' criteria that have been proposed in
thee literature.

23 3

24 4 ChapterChapter 2. How Long is a Ruler?

Reproducibility.. Reproducibility of experiments is fundamental in science;
anybodyy should be able to run the same experiment to confirm the result. Ap-
pliedd to theorem proving, this means that the formulas used, or the algorithm to
generatee them, must be made available. In the case of random generation, this
wouldd include the 'seeding' of the random generator. Also, if the generating al-
gorithmm is provided, variants of the test can be developed, for example to extend
thee target logic [AH03].

Representativeness.. Ideally, a test set should cover as much as possible of the
inputt space, and span the whole range of sources of difficulty. Of course, there is
noo complete catalogue of sources of difficulty, so a test set should at least cover
aa large area of inputs. If the problems are limited to a narrow area of the input
space,, we run the risk of not assessing the real capabilities of the provers if they
aree to be run on arbitrary formulas.

Validd vs. not valid balance. Uncertainty with respect to the satisfiability of
thee formulas in the test should be maximum: the provers should not a priori have
anyy information as to whether the formula is satisfiable or not, and furthermore
theree should be about as many satisfiable as unsatisfiable formulas in the set;
satisfiablee and unsatisfiable formulas might present different sources of difficulty,
andd we want a fast answer from our prover in either case.

Difficulty.. The set should provide a challenge to the provers being tested; if
thee problems are too easy, the resource consumption will reflect mostly startup
costs,, which do not scale with problem difficulty. Also, some problems should be
tooo hard for the current provers: as the proving techniques evolve, this helps the
testt remain current.

Termination.. The test should terminate in a reasonable amount of time, with
aa meaningful result. If all inputs are too hard, there will be no information gained
evenn if the benchmark can be run in a short time.

Thesee criteria give rise to the following, more specialized considerations:

Parameterisation.. One way to achieve a good coverage of the input space is
too make the generating algorithm accept parameters that allow the problems to
spann large areas of the input space. There should be enough parameters to allow
forr a good coverage, but not so many that covering a specific part of the input
spacee would take an inordinate amount of experiments.

2.1.2.1. Fitness criteria for modal test sets 25 5

Control.. It is very useful for the generating algorithm to have parameters
thatt control monotonically features of the problems like valid/not valid balance,
modal/propositionall balance, difficulty, etc. Monotonicity is very important: it
allowss us to leave out uninteresting areas of the input space, and to control the
problemm features independently of other parameters.

Modall vs. prepositional balance. A modal prover should be adept at both
propositionall and 'purely modal' reasoning tasks; therefore, a test set should
providee enough challenge for both aspects of modal reasoning.

Dataa organization. It should be possible to summarize the results of the
benchmark,, and to plot them to see the qualitative behavior of the evaluated
provers. .

Focuss on narrow problems. Special ad-hoc sets may serve to measure the
behaviorr of the systems with respect to specific difficulty sources; even though
theyy do not provide a complete assessment of the capabilities of theorem provers,
theyy are a good complement of a test set that spans large areas of the input space.

Redundancy.. Ideally, many of the formulas in a complex problem should play
aa part in determining its satisfiability status; that is, it should not be decided by
aa small subset of the formulas. While a solver that recognizes redundancy in a
sett is desirable, redundant problems should not be a significant part of the test
suite,, as they can be rendered trivial by the handling of the redundancy.

Triviality.. When a small part of a formula dictates the satisfiability of the
whole,, independently of the rest, the formula is said to be trivial. Trivial problems
shouldd not be a significant component of the test set, even if recognizing trivial
problemss is of course a desirable capability of theorem provers.

Artificiality.. If there is an application in mind for the systems, problems gen-
eratedd should be of a similar nature to those coming from application inputs.
Otherwise,, the results of the test may not reflect the suitability of the systems for
thee task at hand. Note that 'real life' problems might not fulfill any of the other
criteria,, and indeed a specific system might be the best for the problem type at
hand,, and not for the general case.

Size.. The problems should not be too big with respect to their difficulty; we
aree not as interested in processing of big files as in algorithm efficiency.

266 Chapter 2. How Long is a Ruler?

2.22 Real-world Problems

Whenn the logic at hand is used for real-world applications, there is a source
off problems whose representativity cannot be contested. They are, after all,
thee problems the provers should excel at, if we want them to be useful as well
ass interesting objects of study. Common downsides of this kind of input often
includee not having enough real-world problems to provide sufficient testing, and
thatt as provers advance old inputs usually become trivial to solve.

Inn the following sections, we will come back to these criteria as we discuss the
meritss of the different test methodologies.

2.33 Hand-tailored Problems

Thee Balsiger, Heuerding and Schwendimann test set

Thee Balsiger, Heuerding and Schwendimann test set [BHSOO] was used in the
TANCSS '98 comparison, and represents one of the first attempts at having a
comprehensivee test set for the comparison of modal theorem provers. It consists
off nine classes of provable formulas and nine classes of unprovable formulas, pa-
rameterizedd by a number in N. The performance score of a prover in each class is
givenn by the highest numbered problem in that class that the prover can solve in
lesss than 100 seconds. There are nine different types of problem, each with both
aa satisfiable and an unsatisfiable class associated to it. The purpose of parame-
terizationn was to have a test set which could present harder problems as provers
becamee more advanced; the complexity of each formula in a class is expected to
bee exponential on its parameter. There is a base problem for each class, which
iss then made more complex using several techniques, and there was an effort to
makee the problems resistant to simple optimization.

However,, dramatic advances in the field yielded provers which could solve any
formulaa in most of the categories; the increase in complexity from instance to
instancee was not exponential any more [HPSS00]. Nevertheless, the test remains
veryy useful for development of modal theorem provers, as it gives a quick way to
evaluatee improvements to the program, and performance in the different classes
mightt confirm whether optimizations work as planned or not.

Extendingg the set for hybrid logics Extending the test set to create hybrid
formulass is in principle possible, but as we have seen, there would be a poor
coveragee of the problem space and the tricks to 'hide' the formulas are sooner or
laterr rendered harmless by optimization.

24-24- Random Problems: Modal QBF 27 7

2.44 Random Problems: Modal QBF
Otherr than the previously described test set, all empirical test sets for modal
logicc are parameterised random formula generators. The first random generation
techniquee used in testing modal decision procedures, the random 3CNFDfn test
methodology,, was proposed in [GS96]; its subsequent development is described
in,, for instance, [HPSSOO], and the latest version is presented in [PSS03]. After
havingg gone through a series of revisions, this methodology is considered to be
welll understood. In between revisions of 3CNFnm, the random modal quantified
Booleann formula test set was proposed by Massacci [Mas99], and used in the 1999
andd 2000 editions of the TANCS system performance comparisons [TAN]. We'll
examinee the Modal QBF set now, and the 3CNF test set family in Section 2.5.

2.4.11 The Random Modal QBF Test Set

Thee random modal QBF test set is based on the idea of randomly generating
quantifiedd boolean formulas (QBFs) and then translating these into modal logic.
Lett us explain these two steps in more detail.

Generatingg QBFs

Recalll that QBFs have the following shape [GJ79]: Qi^ i . . . Qnu„ CNF{vi,..., vn).
Thatt is, QBFs are prenex formulas built up from proposition letters, using the
booleans,, and Vvj3 and 3v 0 (where v is any proposition letter).

Whatt is involved in evaluating a QBF? We start by peeling off the outermost
quantifier;; if it's 3v, we choose one of the truth values 1 or 0 and substitute it
forr the newly freed occurrence of v; if it's \fv, substitute both 1 and 0 for the
newlyy freed occurrences of v. In short, while evaluating QBFs we are generating
aa tree, where existential quantifiers increase the depth, and universal quantifiers
forcee branching.

InIn the random modal QBF test set, 4 parameters play a role: c, d, v, k:

•• The parameter c is the number of clauses of the randomly generated QBF.

•• The parameter d is the alternation depth of the randomly generated QBF;
itt is not the modal depth of the modal translation. (More on this below.)

•• The parameter v is the number of variables used per alternation.

•• And A; is the number of different variables used per clause.

Thee QBF-validity problem is the problem of deciding whether a QBF without
freee variables is valid; it is known to be PSPACE-complete [GJ79]. For every
fixedfixed valued of d we can capture the problems in ££ in the polynomial hierarchy;
PSPACEE can only be reached by an unbounded value of d.

28 8 ChapterChapter 2. How Long is a Ruler?

Here'ss a concrete example. Using d = 3 and u = 4we can generate

44 4 4 4

VV «34«33«32«31 3 «24«23^22«21 V «14^13^12^11 3 «Q4«03«02«01y CNF(v0l, . . . , V^).

3 3

Eachh clause in CNF(v0i,... , u34) has fc different variables (default 4) and each
iss negated with probability 0.5. The first and the third variable (if it exists) are
existentiallyy quantified. The second and fourth variable are universally quantified.
Thiss aims at eliminating trivially unsatisfiable formulas. Other literals are either
universall or existentially quantified variables with probability 0.5. The depth of
eachh literal is randomly chosen from 1 to d.

Byy increasing the parameter d from odd to even, a layer of existential quanti-
fiersfiers is added at the beginning of the formula, and, conversely, when d increases
fromm even to odd, a layer of universal quantifiers is added. The impact of increas-
ingg d on the shape of the QBF trees may be visualized as in Figure 2.1, for the
casee where v = 2.

*** MM
d-l,...d-l,... 2 3

Figuree 2.1: The shape of QBF trees for v = 2

Translatingg QBFs into Modal Logic

Thee QBF that is produced by the random generator is translated into the basic
modall logic as introduced in 1.4.3, using a variant of an encoding that is originally
duee to Ladner [Lad77]. The core idea underlying the translation is to capture,
byy means of a modal formula, the 'peel off quantifiers and substitute' evaluation
processs for a given input QBF. The translation forces branching in the structure
off the possible model whenever a universal quantifier is found in the original
formula,, keeps the branches separate, and makes sure there are enough modal
levelss in the model. It forces the structure of the possible model to be a tree, and
thee resulting formula is satisfiable iff the original formula is.

Here'ss a detailed example. The formula (j> = Vï^B^Vi («i V ~^v2 V ^v3 V -1V4)
(generatedd with parameters v = 2, d= 1, c= 1, default encoding) translates into
thee conjunction of the following formulas.

É É

24. 24. RandomRandom Problems: Modal QBF 29 9

•• The matrix (/> must be true everywhere in the model: Am=i n m (u i v """̂ V
->t>33 V -1^4), where dm is a sequence of m occurrences of the • operators.

•• Keep values of proposition letters forever, adding one per level, in order of
quantifierr appearance:

"" A J L I O 3 " ^ V DHO) A n m (^ 4 V D(»4))) A
"" Am=i(DT7t(D(^3 V ü (- ^))) A D m (D (^ 3 V D(t*)))) A

-- D(D(D(i, 2 V ü(-it^)))) A D (D (D (^ 2 V n(v 2))))

•• Force branching on universally quantified variables: Ou4 AO-iu4 A D(Ot>3) A
• (O-1V3) . .

•• Force tree depth (note that the first two levels are covered by the previous
twoo formulas): 0(D(0(T)))) A D(D(D(0(T))))).

Thee parameters c, k, v and d that are used in the generation process are
relatedd to the final modal formula in the following way. The (maximum) number
off clauses is c • k + (v • (d + l))2 + [v (d+ 1)/2J. The (maximum) number of
propositionn letters is v (d + 1). And the (maximum) modal depth is v - (d + 1).
Thesee maximums obtain when c is high enough compared to v (d+1) to cover all
thee possible proposition letters. The file size for the translated formula is linear
inn c, and polynomial in v and d, but usually we are not interested in very big
valuess of the last two, so this is not much of a problem.

Fitnesss of the test set

Somee of the fitness criteria (reproducibility, representativeness, parameterisation
forr example) can be evaluated by an analysis of its description; others like diffi­
culty,, termination or size require empirical testing. We benchmarked a few theo­
remm provers, aiming not to evaluate the state of the field (we left some prominent
systemss out, for example) but to evaluate the test set itself.

Settings s

Too evaluate the QBF test set, we used 3 satisfiability solvers for modal logic. First,
wee used the general first order prover SPASS [SPA], version 1.0.3, extended with
thee layered translation of modal formulas into first order formulas as presented
inn [AGHdROOj. Second, we used MSPASS version V 1.0.0t.l.2.a [MSP]. And,
third,, we used *SAT version 1.3 [Tac99].

Ourr experiments were run on a Pentium III 800 MHz with 128 MB of memory,
runningg RedHat Linux 7.0.

Forr our measurements we had to translate the modal QBF files to the formats
off the various provers we were using, and in one case we were also were converting

30 0 ChapterChapter 2. How Long is a Ruler?

thee formulas from modal to first order logic. We checked that the resulting file
sizess were linear in c, even though the linear coefficient varied from one solver to
another. .

Ourr main measurements concerned both CPU time elapsed (with a 10800 sec-
ondd timeout) and a time independent measure: the number of clauses generated
forr SPASS plus layering and for MSPASS, and the number of unit propagations
forr +SAT.1

Findings s

Wee first ran the standardized tests provided by the TANCS competition: 64
instancess randomly generated with c = 20, v = 2, d = 2, and default settings for
thee remaining parameters. See Figure 2.2.

_.. 1 1 1 1 1 — i 1 0 J I , , , , , — i — 1 _
WW 2 0 30 4 0 W 60 10 20 30 40 50 00

ProcJ«mm instance ProoHm mstance

Figuree 2.2: The standardized tests provided by TANCS, used for SPASS,
MSPASS,, and *SAT. (Left): clauses generated/unit propagations per problem
instance,, log scale. (Right): CPU time (seconds) per problem instance, log scale.

Whilee the number of clauses generated by resolution provers and the num-
berr of unit propagations in *SAT are not directly comparable as a performance
measurement,, they do give an indication of the relative difficulty of a problem
(orr problem set). As such, we can see that the difficulty of a problem varies with
thee method used to solve it. The correlation between time elapsed and clauses
generated/unitt propagations varies widely between the methods. In fact, for this
testt the *SAT times are so low as to be completely dominated by startup costs
andd don't really inform us about relative problem difficulty.

Nextt we ran a number of sweeps, with each of three provers, with v = 2
andd increasing d from 1 to 4 (and to 5 in the case of *SAT), while increasing

11 Unit propagations came out to be a less than perfect indicator of resource consumption in
thee general case, although for this benchmark it was roughly as informative as the number of
assignmentss found.

2.4-2.4- Random Problems: Modal QBF 31 1

cc from 1 to 100 (or to the maximum number of clauses allowed by the rest of
thee parameters, whichever was lower). The resulting CPU times and the number
off clauses generated/unit propagations are depicted in Figure 2.3; the curves
forr d = 1, d = 2 do not extend to the right-hand side of the plots, as the
formulass being generated with these settings are simply too small to be be able
too accommodate a larger number of different clauses.

Severall things are worth noting about Figure 2.3. First, the sets display an
easy-hard-easyy pattern familiar from propositional satisfiability testing [GvMWOO],
Thee shape of the curves is strongly dependent on the solver used. Moreover,
thee patterns seem to vary from not-too-hard-hard-easy in some cases (SPASS,
dd — 1, d — 2, d = 4) to not-too-hard-hard-hard in others (SPASS, d = 4;
MSPASS,, d — 3, d = 4) to not-too-hard-hard-not-too-hard in yet others (SPASS,
dd = 3;*SAT, d = 2, d = 3, d = 4, d = 5).

Second,, for both SPASS and MSPASS we see that curves cross each other; this
iss most clearly visible in (a), where the number of clauses generated by SPASS
aree displayed,but it also shows up in (b) where the CPU times for SPASS are
shown.. Hence, for SPASS (and to a lesser extent for MSPASS) the d parameter
doess not influence the difficulty of the problems being generated in a monotonie
way. .

Third,, the time elapsed (displayed in (b), (d), and (f)) has a very strong
dependencee on file size: after the hard region has been crossed and the elapsed
timee tends to decrease, it actually starts going up again. The impact of input
filefile size and I/O is most noticeable for MSPASS (plot (d)); but even in the case
off *SAT, where the number of unit propagations remains more or less constant
afterr the hard region has been traversed, the CPU times start going up: this
increasee is entirely due to input file size and I/O2. In Figure 2.4 we have plotted
thee growth of the input file size against c, and against d. The file size can be
approximatedd by 11500+e*485, while the preprocessing performed by the layered
translationn brings this up to 20000 + c * 930. Remarkably, the translated file for
MSPASSS is smaller than the original input file. (For the purposes of illustration,
wee have also indicated what the input file size would be for the first order prover
BLIKSEMM [Bli].)

Whenn we increased the v parameter, we saw similar curve shapes as for v = 2.
InIn Figure 2.5 we have displayed results of running *SAT with v = 2 (top) and
withh v = 3 (bottom). Notice that the humps indicating the hard regions are
higherr for v = 3 than for v = 2, indicating that the problems are harder; hence,
thee CPU times are not as strongly dominated by file size and I/O aspects as in
thee case where v = 2. The fact that the hard regions are 'wider' than for v = 2
indicatess that we are not only getting harder problems, but also that the fraction
off hard problems is increasing.

2Ourr filesystem runs over a network: performance in local filesystems is very likely to be
muchh better.

32 2 ChapterChapter 2. How Long is a Ruler?

3;; V=2, D = l - 4 . C= l -100

•SAT:: V = 2 . D = 1 - 5 , C 1 - 1 0 0 "SAT;; V=2, D-1-5, C-1-100

ft ft
^ n E ^ mm f*niMJjmift iniinnrwnif r—'"

V"V*S, ,

200 30 «0
N u n » »» of clausat

700 SO 90 100 100 20 30 40 50 700 80 90 100

(e)) (f))

Figuree 2.3: SPASS, MSPASS, and *SAT on QBF test sets, v = 2, d = 1 . . . 4
(5),, 64 samples/point. (Left): clauses generated/unit propagations, log scale.
(Right):: CPU time in seconds, log scale.

2.4-2.4- Random Problems: Modal QBF 33 3

Alt»motionn flaplti

Figuree 2.4: Size of the input files. (Left): as a function of the number of clauses.
(Right):: as a function of the alternation depth.

*SAT:: V=2. D=1-S. C=1-100 'SAT;; V=2, 0 . 1 - 5 , C-1 -1

Figuree 2.5: *SAT results for v = 3, d — 1 . . .5 , 64 samples/point. (Left): unit
propagations,, log scale. (Right): CPU time in seconds, log scale.

34 4 ChapterChapter 2. How Long is a Ruler?

(a)) (b) (c)

Figuree 2.6: SPASS, MSPASS and *SAT results for i; = 2 (3), d = 1 - 6 (7), 64
samples/point,, (a): SPASS with v = 2. (b): MSPASS with v = 2, 3. (c): *SAT
withh v = 2, 3. Log scales are used in (a), (b) and (c).

Lett us return to the phenomenon observed in Figure 2.3, where it was found
thatt the d parameter does not monotonically control difficulty. We can observe
thiss even clearer when we plot d along the rr-axis, as in Figure 2.6. Note that the
phenomenonn is strongly prover dependent: it clearly shows up for SPASS (with
thee layered translation) as shown in (a); it is somewhat visible with MSPASS
(b),, but not at all with *SAT (c). Further experimental work has shown that
thiss 'staircase phenomenon' is also present with larger values of v for SPASS.
Thee phenomenon is related to the special way in which QBFs grow: existential
quantifierss are added to the original QBF when d is increased from odd to even,
universall quantifiers when d is increased from even to odd; see Figure 2.1. The
formerr simplifies matters for SPASS with the layered translation, while the latter
makess matters considerably harder for that solver.3

Onee central concern with any test set, synthetic or not, is parameterization:
too which extent can we choose the difficulty of the problem and of exploring the
inputt space? In the QBF test set the difficulty can easily be controlled: the v
parameterr controls it monotonically, the d parameter also with some caveats. It
seems,, however, that v and d do not control truly independent dimensions of the
problemm space. More precisely, combinations of v and d for which the value of
vv (d+ 1) coincides have very similar curves, as can be seen in Figure 2.7. This
suggestss that v (d + 1) is the dimension along which the QBF problem space
shouldd be explored, instead of either v or d independently. (As an aside, it is clear
fromm Figure 2.7 that with increasing values of v (d + 1), the truly hard region
forr a given setting of parameters moves to the right as we increase the number of
clauses.))

Ann important aspect that we have not discussed so far is the satisfiable vs.
non-satisfiablee fraction. The parameter c does indeed allow us to control the

3Notee that the staircase phenomenon will not be observed if one only performs the stan-
dardizedd TANCS test as this test only involves a single value of d.

2.4-2.4- Random Problems: Modal QBF 35

•SAT:: V=2-4. D=1-5, 0=1-100

>> 10 s

»?»? ^x*x
** \x*

ftft 1****

«A< <
xNxx ^

++++ + ' x ^ ^
xx _

—— V2D1 (4)

-- V 2 D 2 (6)

•• V 2 D 3 (8)

—— - V2D4(10)

•• V2D5(12)

- f -- V3D1 (6)

++ V 3 D 2 (9)

++ V3D3(12)

- f -- V3D4(15)

++ V3D5(18)

- « -- V4D1 (8)

V4D2(12))

V4D3(16))

V 4 D 44 (20) iVV *v. xv V m*«?* x x V4D3

((. - , ~ S - - _ +-t++">x^ W t * . t + V .

."V' '

400 50 60
Numberr of clauses

Figuree 2.7: *SAT results for v = 2-4, d = 1-5, and c = 1-100, 64 samples/point.
Thee numbers in brackets indicate the value of v (d + 1).

satisfiabilityy fraction: it goes from 1 to 0 monotonically with c. However, there
aree remarkably few values of c for which the satisfiable fraction is 1; see Figure 2.8.
Inn line with Figure 2.8 (a), we have found satisfiable fractions of about 20% in
manyy repeated runs of the standardized 20/2/2 TANCS test (see Figure 2.2).
Moreover,, there is a heavy 'tail' of unsatisfiable problems, as indicated by the
curvess in Figure 2.7. And contrary to intuition, the constrainedness of problems
doess not seem to depend very strongly on the d parameter; for a fixed v, increasing
dd from odd to even doesn't shift the satisfiable fraction graph by any noticeable
amount.. The constrainedness of the underlying models, then, remains unchanged
despitee the addition of more variables and the increase in depth.

Finally,, recall that a modal formula is trivially satisfiable iff it is satisfiable

Figuree 2.8: *SAT results for d = 1-4 (5), c = 1-50, 64 samples/point. (Left):
Satisfiablee fraction for v = 2. (Middle): Satisfiable fraction for v = 3. (Right):
Satisfiablee fraction for v = 4.

36 6 ChapterChapter 2. How Long is a Ruler?

onn a model with a single node [HPSSOO, HS97]. Clearly, trivial satisfiability is
nott a problem for modal QBF test sets. Because of the highly structured form
off the randomly generated QBFs, the resulting modal formulas always contain
O-subformulas,, thus avoiding trivial satisfiability.

Evaluatingg the evaluator

Thee general criteria for evaluating modal test methodologies put forward in Sec-
tionn 2.1, boil down to demanding a reproducible sample of an interesting portion
off the input space with appropriate difficulty. To conclude this section, here's a
brieff discussion of these criteria as they relate to our setting.

Byy its very nature, reproducibility is guaranteed for the modal QBF test set.
Thee modal QBF test set seems to represent just a restricted area of the whole
inputt space; that is, it scores low on representativeness. There are three reasons
forr this. First, the QBF test set provides poor coverage of the satisfiable region;
mostt of the hard modally encoded QBF-formulas generated with values of v and d
thatt are within reach of today's tools, are unsatisfiable, as suggested by Figure 2.8.
Second,, the modally encoded QBFs are of a very special shape, which seems to
leadd to the so-called staircase phenomenon for some solvers. And third, the v and
dd parameters end up being substantially overlapping and interrelated as part of
thee translation of QBFs into modal formulas. A strong point in favor of the QBF
testt set is that it is possible to generate hard problems with a large modal depth
whichh are still within reach of today's modal satisfiability solvers; in this respect
thee QBF random test methodology fares better than, for instance, the 3CNFam

testt methodology, as reported in [PSS03].

Thee levels of difficulty offered by the modal QBF test set are certainly suffi-
cient,, as they range from next to trivial to too hard for today's systems. Related
too this, the tests terminate and provide information in a reasonable amount of
time. .

Inn conclusion, then, the random modal QBF test methodology provides useful
testt sets that should, however, not be used as the sole measure in the evaluation
off modal satisfiability solvers.

Randomm QBF and Hybrid Logic. It would be possible to fit nominals and
tee ©-operator into a random QBF translation framework, but there is no natural
wayy to fit the | operator. QBF does not actually capture the complexity class of
thee W(@, I) logic, which is undecidable, and we have just seen that the coverage
off the input space is not so thorough even in the modal case. We have to keep
looking. .

2.5.2.5. Random problems: Random CNF 37 7

2.55 Random problems: Random CNF

2.5.11 3SAT

Thee satisfiability problem for prepositional logic has been widely investigated,
sincee it has many applications such as timetabling, code optimization, or cryp-
tography.. It is known that random CNF clauses of three or more literals capture
thee complexity of the satisfiability problem for the logic [GJ79], and that random
CNFF problems of more than 3 literals can be linearly encoded into CNF formu-
lass of exactly 3 literals each. Therefore, even though there are many real-world
problemss and test sets available for propositional logic, one of the best known
andd most used test sets for propositional logic is Random 3SAT: a conjunction of
LL clauses of 3 random propositional literals each, chosen from a set of iV differ-
entt propositional variables. Since Propositional 3CNF has become the de facto
standardd random test set for propositional satisfiability testing [GvMWOO], devel-
opingg a modal version of the test set has naturally received a lot of attention. We
willl see now how propositional 3SAT has been expanded into modal and hybrid
CNFF formula generation.

2.5.22 Random Modal CNF

InIn this test set, the formulas to be checked for satisfiability are randomly generated
CNFnmm formulas. A CNFDfn formula is a conjunction of CNFGm clauses, where
eachh clause is a disjunction of a certain number of either propositional or modal
literals.. A literal is either an atom or its negation, and modal atoms are formulas
off the form O^C, where C is a CNFDm clause. A 3CNFam formula is a CNFDm

formulaa where all clauses have exactly 3 literals.
Thee latest version [PSS03] of this generator accepts five main parameters: the

maximumm modal depth D, the number of propositional variables N, the number
off modalities m, the number of clauses L, and the probability p of an atom
occurringg at depths less than d being purely propositional. Although the usual
numberr of literals per clause is 3, the generator gives a great degree of control
overr the clause size. In fact, both modal/propositional balance and clause size
probabilityy distributions can be specified either as constants or as a function of
modall depth.

Givenn these parameters, a CNFDfB formula of depth D is a set of L clauses,
eachh made up of a number (chosen randomly according to the clause size proba-
bilityy distribution) of distinct modal CNF disjuncts, each consisting of either

•• a proposition from the set {P i , . . . , P/v}, or

•• (if D > 0) a disjunct D rC, where Dr e {D^ . . . , Dm}, and C is a CNFDm

clausee of depth (D — 1).

38 8 ChapterChapter 2. How Long is a Ruler?

Thee way this test method works is the following: all the parameters but L are
fixed,fixed, and then a range for L is selected that covers the transition from 'only
satisfiablee formulas generated' to 'only unsatisfiable formulas generated'. For
valuesvalues of L covering this range, a tuple of the parameters' values is defined. A
fixedfixed number of formulas (usually a hundred or more) is generated and given as
inputt to the prover under test, generally with a time limit. Satisfiability rates,
median/90t/ll percentile of CPU time elapsed, and other possible indicators are
plottedd against either L or L/N.

Thee original 3CNFam test set had a series of problems with respect to the fit-
nesss criteria we introduced [HS97, HPSSOO]. One concerned redundancy: as the
originall generator did not check for repetition of propositional variables inside
thee same clause, the generated formulas could contain propositional tautologies.
Thiss made the effective size of a problem much smaller. The same problem was
detectedd for the modal atoms [GGST98]. The other problem was triviality: for
certainn values of the generator's parameters, the formulas generated contained
enoughh purely propositional clauses that they could be solved without recourse
too modal reasoning. This methodology has now gone through a series of improve-
ments,, and is believed to be fully compliant with the fitness criteria.

CNFF and hybrid logics The random modal CNF generation is very appealing
too us as a method for generating hybrid formulas: it is simple to expand, its
trivialityy issues are under control, and (at least for modal logic) it provides the
mostt coverage of the input space. We decided to use the CNFDfn test set as a
basee for our hybrid test set;

Wee used the latest version of the generator [PSS03] to develop a test set for
hybridd logics to benchmark the HyLoRes prover [AH02b].

2.5.33 Random Hybrid CNF

Whyy is a new test set necessary? In Chapter 4 we will introduce HyLoRes,
aa theorem prover for hybrid logics based on direct resolution [AH02b]. We made
extensivee use of empirical testing to evaluate our development work on the basic
algorithm,, but the available test sets were not sufficient to evaluate the prover
onn the aspect that was most distinguishing of HyLoRes, that is, its ability to deal
withh hybrid formulas. We had a few handcrafted hybrid formulas, but in order to
doo some exploration of the hybrid satisfiability space we needed a more thorough
tool.. We decided to expand the algorithm presented in the latest version of the
modall CNF test set to generate hybrid logic formulas.

Basicc Idea. We decided to make as few changes as possible to the algorithm
describedd in [PSS03], and add the @, | and A (universal modality) operators.
Thiss requires us to talk not about modal depth, but about operator depth, which

2.5.2.5. Random problems: Random CNF 39 9

iss defined as the level of nesting of a specific operator, independently of the others.
Forr example, the formula

@»,, (Pi V |xi.(p2 V Oi fo V @Xlm) V Oiipa V pa)))

hass modal depth 1, ©-depth 2, and 4-depth 1. Also, instead of propositions we
usee atoms of hybrid logic, that is, propositions, nominals, and state variables.

Parameters.. The program accepts as parameters:

•• The maximum nesting of operators, D (generalizes modal depth)

•• The number of prepositional variables, nominals, and state variables, iVp, Nn

andd Nx

 The number of modalities, Nm

 The number of clauses, L
•• The distribution of probabilities for clause size (a list [/i,... , / n] , with fc

thee relative frequency of clauses of size i)

•• The probability for a disjunct of being non-atomic, Pop

•• The relative frequencies of modalities, ©-operators, 4- operators, and the
universall modality as main operator in non-atomic disjuncts, Pmod, Pdovmi Pau
andd puniv

•• The relative frequencies of propositions, nominals and state variables when
thee disjunct is an atom, pvrop,pnom, and psvar

•• The probability for any literal of appearing negated, pneg

•• The number of instances to generate, numinst
Givenn these parameters, a hybrid CNF formula of depth D is a set of L clauses,
eachh made up of (a number between 1 and n chosen with relative frequencies
[fi,[fi,...,..., ƒ„] of) distinct hybrid CNF disjuncts, each consisting of either

•• a proposition from the set {Pi , . . . , P/vp}> or
•• a nominal from the set {n i , . . . , n^ n } , or
•• a state variable from the set {x\,..., Xffx}, or
•• (if D > 0)

-- a disjunct DrC, where •,. € {d i , . . . , Ejvm}, and C is a random hybrid
CNFF clause of depth (D - 1), or

-- a disjunct @nC, where n € {ni , . . . , nNn}, and C is a random hybrid
CNFF clause of depth (D - 1), or

-- a disjunct ixr op C, where xr € {xi,...,xpfx}, op is one of {@, • , A}
andd C is a random hybrid CNF clause with depth (D — 1), or

-- a disjunct AC, where C is a random hybrid CNF clause of depth
(D - l) . .

400 Chapter 2. How Long is a Ruler?

Algorithmm Used. The algorithm used to generate the formulas is as follows:

genn .clauses (params)
forr i := 1 to L do Cli := gen_cl(params);
returnn (AÏLi Clt);

gen_cl(params))
ndd := rndJength(params.C);
nopp := rnd_numops(nd, params);
Atomss := rnd_atoms(params, nd — nop);
Opss := rnd_opsd(nop, params);
OCC := {};
foreachh op^ in Ops

OCC := OC U {op» (gen_cl(params{depth := depth — 1))}
return(VV OC V V Atoms);

rnd_numops(nd,, params)
iff (params.depth = 0) then 0
elsee rnd-fc d(nd, params.pop);

rnd^atoms(params,, nat)
iff (nat = 0) then {}
elsee Atoms := rnd^atoms (params, nat — 1);

atomm := rnd_atom(Atoms, params);
return(Atomss U atom);

rnd-ops(n,, params)
iff (n = 0) then {}
elsee Ops := rnd_ops(params, n — 1);

opp := rnd_op(params);
return(Opss U op);

Figuree 2.9: Test generation structure

Thee outline of the algorithm used to generate hybrid CNF formulas is given in
Figuree 2.9. The function rnd-atom(v4£oms, params) returns a random atom not
inn the set Atoms, respecting the relative frequencies of the different types of atom
ass given in params. rndJfc(nd, params.pop) takes as arguments the number of
disjunctss nd and the proportion of non-atomic disjuncts in a clause, params.pop.
Iff prop = nd params.pop is an integer, it returns prop, otherwise it returns [prop]
withh probability prop—[prop\, or [prop\ otherwise (probability \prop] —prop).

file:///prop

2.5.2.5. Random problems: Random CNF 41 1

Thiss prevents the accidental creation of clauses in which all disjuncts are atomic,
whichh has been a source of triviality in early modal CNF test set generators [HS97,
HPSSOO,, PSS03]. rnd-op(params) returns an operator according to the relative
frequenciess stated in params, optionally enforcing maximum nesting per operator.
AA special case is the l operator, which always precedes another operator; the
reasonn is explained later.

Differencess with the random modal CNF generator. In the presence of
multiplee modalities, the satisfiability operator and the universal modality, the
notionn of modal-depth becomes rather involved. In hGen, we work instead with a
globall notion of depth defined as operator nesting (this together with the prob-
abilitiess for each operator, allows strict control over the generation of formulas
forr fragments of %(@, |,A) defined in terms of operator nesting). Clause size
probabilityy distribution is kept constant. This departs from the generator pre-
sentedd in [PSS03]: in that generator, it is possible to select a different clause size
distributionn and modal/propositional balance for each modal depth; we are not
convincedd such a feature can be meaningfully generalized to hybrid logic in a
practicall way. We calculate the maximum nesting per operator from its probabil-
ityy of appearance and the total depth D; whether the calculated depths should
bee enforced or not can be set from the command line. Since we're generating
binderss and variables, we ensure that every appearing variable is bound, and we
forcee bound variables to appear.

Neww redundancy sources. The extended expressivity of the target languages
thatt hGen can handle introduces new redundancy sources; the following cases are
handledd by hGen.

Forr all 0, lxi-(xi V (j>) is a tautology, and conversely for all <j>, lxi.(-<Xi V (j>) is
equivalentt to 4̂ t-< -̂ Such formulas are never generated by hGen. Moreover, the 4-
operatorr does not cause its argument clause to be evaluated at another element
inn the model, allowing for formulas of operator depth > 0 that still require no
modell exploration. hGen introduces 4- only in expressions of the form ^ (- ^ O ^ ,
4^t(_,)@n>^)) or iXi(->)A<j). Otherwise the clause would be equivalent to one in
whichh all the atomic disjuncts are outside of the scope of the 4- (since we're
banningg the bound variable from appearing at the same level it is bound in),
effectivelyy altering the clause size. There are two cases to consider when we want
too place the | operator, the difference being whether we are enforcing maximum
nestingg to be per operator or global: if global, then no further considerations
aree necessary, but if the maximum nesting is enforced per operator, then it can
happenn that all possible occurrences of @, Dj and A have already appeared when
wee select the I, in which case it will be replaced by an atom.

Withh respect to the @ operator, for any <j>, @ni (ni V 0) is a tautology, and
©nit -1"!! V <f>) is equivalent to @m<j>. Again, such formulas are not generated by

42 2 ChapterChapter 2. How Long is a Ruler?

hGen:: when generating the argument clause for an operator of the form @„C, the
nominall n is never chosen by rnd_atoms.

Implementation.. hGen is implemented in Haskell; it can be compiled with
GHCC 5.04 [GHC]. The use of random generators (an eminently imperative task)
inn the context of a purely functional language is transparently handled through a
Statee monad; we keep the random seed as the state, and all functions that need
too generate random numbers are monadic. See [Wad95] for more about monads
inn functional programming.

Usingg hGen as a modal test set. Since we are extending the language of
thee formulas generated with the modal CNF algorithm, it is important to verify
thatt constraining the generator to modal formulas produced similar results to
thosee obtained with the generator from [PSS03]. We decided to run a series of
benchmarkss and see if the results compared, in terms of mean difficulty, location
off the easy-hard-easy pattern, and shape of the satisfiability fraction plot.

Experimentall setting. We used a 1.6 GHz Pentium 4 computer running Linux
Redd Hat 7.3 for the tests, and fixing all the parameters but L, we ran the tests
forr L/N going from 1 to 80, with 50 instances per data point, for N going from 3
too 8. Modal depth was fixed at 1. We set the parameters of the generator to only
producee modal formulas, and checked whether the runs showed any variations
withh respect to runs of the Modal CNF test set for equivalent parameter sets.
Thee prover we used for this benchmark was *SAT [*SA]; we ran the tests with a
timeoutt of 300 seconds.

Results.. The results are displayed in Figure 2.10. The first row displays the
satisfiable/unsatisfiablee fractions; the second row shows the median of the CPU
timee used for every data point, and the third row shows the 90th percentile of
thee CPU times. The experiment confirmed that, for equivalent parameter sets,
thee behavior of both test sets was very similar, in terms of location of the sat-
isfiable/unsatisfiablee transition and overall difficulty4. We are aware that the
numberr of problems per data point (50) is not the best, and maybe 100 samples
perr data point would give more accurate results and smoother curves; this can
bee considered preliminary testing.

Off course, the Modal CNF test set allows for specification of clause size proba-
bilityy distribution and modal/propositional balance as a function of modal depth,
whilee the hybrid CNF generator only accepts constant distributions, so the rela-
tionshipp between the test sets is more one of overlap than one of inclusion. One
intriguingg thing that can be seen in the 90th percentile graphs is a second "hump"

44 Our filesystem is networked, which means it takes longer for files to load; this accounts for
thee steady increase in solve times as a function of L/N. We apologize for the inconvenience

2.6.2.6. Conclusion 43 3

inn the graph, for N — 8, around L/N = 50, in both plots. We plan to further
investigatee the phenomenon.

Satisfiable/unsatisfiablee fraction (Hybrid CNF) Satisfiable/unsatisfiable fraction (Modal CNF)

Mediann times (Modal CNF)
•SAT:: C-3. lta3-«. 0 . 1 . UN.1-B0

90""" percentile times (Hybrid CNF) 90"" percentile times (Modal CNF)

Figuree 2.10: Results of the comparison between Hybrid and Modal CNF

2.66 Conclusion

Wee have given an overview of the different empirical test methodologies for modal
theoremm provers, and we have seen that since there are many criteria, each test set

44 4 ChapterChapter 2. How Long is a Ruler?

hass its own place. The Heuerding and Schwendimann test set focuses on narrow
problemss and can be used with developing modal theorem provers, although it
cannott distinguish between mature provers; the random modal QBF test set
providess nontrivial doable problems of a good modal depth, however the coverage
off the input space is poor, and the results obtained with it might not carry over to
otherr areas of the input space; finally, the random CNFDfn generator can produce
formulass that range all over the input space, and we think is the one to use
forr empirical comparison of mature modal theorem provers. We will be using
alll the modal test sets, however, to estimate the relative merits of the different
translationss from modal logic into FOL in Chapter 3. We also introduced a new
testt set generator, based on modal CNFam that produces random hybrid CNF
formulas;; this test set will be useful for testing HyLoRes in Chapter 4.

Chapterr 3
Modall Theorem Proving:

Translationss into First Order Logic

NotNot knowing is like not seeing.
-Old-Old Spanish proverb

3.11 Introduction

Forr many years, the main logic used in automated theorem proving has been clas-
sicall logic. However, as we have seen in Chapter 1, for some applications other
logicss may be more suitable, be it because they express more naturally the con-
ceptss at hand, or because the full expressive power of classical logic is not needed,
orr not sufficient. Sometimes, then, we want to work with other logics; we have
inn that case the choice of developing tools which are specific to the logic, usu-
allyally from scratch, or take advantage of the wealth of tools available for classical
FOL,, if a suitable translation from our logic exists. Broadly speaking, there are
threee general strategies for modal theorem proving: (1) develop purpose-built cal-
culii and tools [PS98, *SA]; (2) translate modal problems into automata-theoretic
problems,, and use automata-theoretic methods to obtain answers [PSV02]; and
(3)) translate modal problems into first order problems, and use general first order
toolss [MSP]. The advantage of indirect methods such as (2) and (3) is that they
alloww us to re-use well-developed and well-supported tools instead of having to
developp new ones from scratch.

Inn this chapter we focus on the third option: translation-based theorem prov-
ingg for modal logic, where modal formulas and reasoning problems are translated
intoo first order formulas and into reasoning problems to be fed to first order the-
oremm provers. Since most of the state of the art first order theorem provers are
basedd on resolution, one aspect we will pay particular attention to is the inter-
actionn between the translated formulas and the mechanics of resolution-based
theoremm proving. The rest of this chapter is organized as follows: first, we will

45 5

466 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

introducee the basics of resolution-based theorem proving; then, we will recall
thee relational translation from modal logic to FOL[vB83], and we'll show how
wee run into trouble if we want to perform resolution on the resulting formulas.
Thenn we will discuss an alternative strategy for improving the effectiveness of FO
proverss on (translated) modal input:the functional translation [ONdRGOO], which
hass been integrated with the SPASS first order theorem prover, resulting in the
MSPASSS theorem prover [MSP]. Finally, we will introduce an improvement on
thee relational translation: the layered translation [AGHdROO], and show its effects
onn resolution-based theorem proving.

3.22 Resolution Theorem Proving in a Nutshell
Resolutionn theorem proving was invented by Robinson [Rob65]; the basic idea
behindd it is to derive new formulas from a set of given ones, by applying certain
inferenceinference rules, in the hope of arriving at a contradiction. We refer to [BG01] for a
detailedd exposition. When no more formulas can be inferred, and a contradiction
hass not been derived, the conclusion is that the formula is satisfiable; we have then
arrivedd at a saturation. When implementing a resolution-based theorem prover,
aa key problem that has to be solved is finding a good strategy for choosing, at
eachh step, which formulas to process and which inference rules to use in order to
minimizee the search space.

Thee resolution rule. The resolution principle for prepositional logic is stated
ass follows:

AA V B ^AVC
BvC BvC

Thee rationale for the resolution rule is that for both A V B and ->A V C to be
truee in the same model, either B will have to be true (when A is false) or C will
havee to be true (when A is true). Since A will be either true or false, we can infer
BwCBwC (the resolvent of A V B and ->A V C) from these premises. This extends
too first order logic in the following way:

AA V C ^B\/D
(C(C V D)a

wheree a is the mgu of the atomic formulas A and B, and factoring:

CvAvB CvAvB
(CC V A)a

wheree a is the most general unifier (mgu) of the atomic formulas A and B. For-
mulass are assumed to be in clause form. That is, a conjunction of clauses, which

3.2.3.2. Resolution Theorem Proving in a Nutshell 47 7

aree defined as quantifier-free disjunctions of literals. A literal is an expression
AA (positive literal) or ->A (negative literal), where A is an atomic formula, or
atom.atom. An atom is an expression P(h,...,tn), where P is a predicate symbol of
arityy n and t\,... ,tn are terms. All variables are implicitly universally quanti-
fied;fied; any variables originally existentially quantified are replaced by skolem terms;
thatt is, terms of the form / (x i , . . . ,xn), where ƒ does not otherwise appear in
thee formula and x\,...,xn are universally quantified at the position where the
existentiall quantifier appears. The search for a contradiction consists of system-
aticallyy applying the inference rules until either a contradiction is found or no
furtherr rules can be applied. Resolution with factoring is refutationally complete
forr first order logic without equality; that is, a contradiction can be inferred from
anyy unsatisfiable set of clauses [BG01].

Reasoningg with equality. Improving the behavior of resolution-based meth-
odss with respect to the equality predicate has naturally received a lot of attention,
givenn the relevance of reasoning with equality in mathematics, logic and computer
science.. In principle, a set of formulas can be expanded with a series of axioms
aboutt equality to ensure the properties of equality are respected (monotonicity,
symmetry,, transitivity, reflexivity), but this usually results in the generation of
excessivee numbers of unnecesary clauses. Robinson and Wos [RW69] discovered
anotherr way of dealing with equality: treating it as part of the logical language,
andd developing dedicated inference rules for first order logic with equality. An
examplee of this is the paramodulation rule:

wheree D \p is the subterm of D at position p, and D[t]p denotes the result of
replacingg in D this subterm by p. The addition of paramodulation to resolution
andd factoring has been proved refutation complete, under the presence of the
reflexivityy axiom x ~ x [Bra75].

Givenn that all the rules presented generate new clauses, therefore extending
thee search space, a very important aspect of resolution theorem proving is do-
ingg an efficient search. Also, some of the generated clauses will be redundant,
andd some will make preexisting clauses redundant. Accordingly, for most refuta-
tionall provers, a substantial part of the program is devoted to guiding the proof
effortt and discarding redundant clauses to prune the search space. While the
worst-casee complexity is not affected, the average case performance gains can be
dramaticc [BG01, VorOl].

488 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

3.33 Translations from Modal Logic to First Or-
derr Logic

Afterr our quick reminder of basic facts on first order resolution, we turn to map-
pingg modal logic into FO formulas, keeping in mind that our goal is to use a first
orderr prover to determine their satisfiability status.

3.3.11 The Relational Translation

Ourr first step will be to define suitable first order languages that we can translate
to.. Let Index be an index set. Consider the language MC as presented in
Definitionn 1.4.3, with REL = {R}, and the multi-modal language MMC, with
RELL = {Ra | a G Index}. The vocabulary of the first order language TO\ has
unaryy relation symbols P corresponding to the proposition letters in PROP, and
aa single binary relation symbol R. Instead of a single binary relation symbol R,
thee vocabulary of the first order language TÖ2 has binary relation symbols Ra,
forr every a € Index.

Modelss for MC and MMC can also be viewed as models for the corresponding
firstfirst order languages Tö\ and Fö2, respectively. To interpret the unary relation
symbols,, we simply look up the values of the corresponding proposition letters in
thee valuation.

3.3.1.. DEFINITION. [Relational Translation] The relational translation ST{<p) of
uni-modall formulas (f> into first order formulas of Tö\, is defined as follows. Let
xx be an individual variable.

STSTxx(p)(p) = P(x) (3.1)

STSTxx(-*t>)(-*t>) = -^STx(<j>)

STSTXX(4>ATP)(4>ATP) = STx{<f*)ASTx{i>)

STSTxx(0<f>)(0<f>) = 3y(RxyASTy(<t>)). (3.2)

Inn (3.1), P is the unary relation symbol corresponding to the proposition letter
p;; in (3.2), the variable y is fresh. Observe how (3.2) reflects the truth definition
forr the modal operator O. The translation ST is easily extended to a translation
takingg multi-modal formulas into FÖ2, by using the relation symbol Ra instead
off just R in the translation of the modal operator (a).

Forr example, the modal formula ü(p -> Op) translates into the first order formula
Vyy (Rxy - • (Py -¥ 3z (Ryz A Pz))).

Onee can show that a modal formula is satisfiable if and only if its relational
translationn is [vB83]. This effectively embeds the modal languages considered here
intoo first order languages, and, thus, opens the way to solving modal problems by
firstfirst order means. The resulting first order fragments can be described as follows.

3.3.3.3. Translations from Modal Logic to First Order Logic 49 9

3.3.2.. DEFINITION. [Modal Fragment] Let x be an individual variable. The
modalmodal fragment MF of Tö\ is built up from unary atoms Px, using negation,
conjunction,, and guarded quantifications of the form 3y(Rxy A a[x (-• y\) and
VyVy (Rxy ~¥ a[x •-)• y\), where y is fresh, and a[x *-¥ y] is the result of replacing
alll free occurrences of x in a by y, and a(x) 6 MF only has x free. Observe that
thee relational translation maps modal formulas into MF. The modal fragment of
TÖ2TÖ2 is defined analogously.

Wee have seen a method to verify (un)satisfiability of formulas in FOL, and a way
off translating modal formulas into FOL: we will now see how the two interact.

3.3.3.. EXAMPLE. Consider the formula D(p -¥ Op) again; it is clearly satisfiable.
Provingg this in first order logic amounts to showing that the translation of the
formula,, Vy(Rxy —>• (Py —> 3z(Ryz A Pz))) is satisfiable, or equivalently, that
thee following set of clauses is satisfiable.

1.. {-.H(c,y), -P(y) , R(yJ(y))}

2.. {^R(c,z), -iP(z), P(f(z))}.

Thee clauses have two resolvents (fn is ƒ applied n times):

3.. H f e c) , ^P(c), -P(/ (c)) , P(f2(c))}

4.. {-.*(c, ƒ(*)), R(f(z)J2(z)), ^R(c,z), --P(*)}.

Clausess 2 and 4 resolve to produce

5.. {^R(c,/2(2)), W a (z) , ƒ»(*)), -*(*,ƒ(*)), -*(c ,*) , -PCs)}.
Clausess 2 and 5 resolve again to produce an analogue of 5 with even higher
term-complexity,, etc. None of the clauses is redundant and can be deleted; in
thee limit our input set has infinitely many resolvents. This shows that standard
resolutionn does not necessarily terminate for relational translations of satisfiable
modall formulas.

Whatt went wrong in Example 3.3.3? First, to obtain the resolvent in step 3,
aa positive and negative binary literal were resolved; note that these literals (or
rather:: the modal operators from which they derive) live at different modal depths
inn the original modal formula ü(p -*• Op). This resolution step is useless: the
negativee ^-literal derives from the D-operator which occurs at modal depth 0,
andd the positive i?-literal comes from the O-operator which occurs at modal
depthh 1. Unless we explicitly stipulate so (by means of axioms), different modal
depthss are completely independent and should not resolve. A similar comment
cann be made about the resolvent obtained in step 4, where a positive and negative
unaryy literal corresponding to the two occurrences of the proposition letter p were
resolvedd upon.

AA number of solutions have been proposed for this problem: we'll review
herehere the functional translation [ONdRGOO] and the layered relational transla­
tionn [AGHdROO].

500 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

3.3.22 The Functional Translation

Thee functional translation is based on an alternative semantics of modal logic.
Thee fundamental idea is to represent each binary relation as a set of (partial
orr total) functions. It appeared simultaneously and independently in a number
off publications: see [Ohl88, LFdC88, Her89, Zam89, AE92]. We give a short
introductionn of the translation as presented in [ONdRGOO]

3.3.4.. PROPOSITION. For any binary relation R on a non-empty set W there is
aa set AFR of accessibility functions, that is, a set of partial functions 7 : W —> W,
suchsuch that

Vz,, y (R(x, y) <=ï (37 e AFR 7(x) = y))).

Too avoid quantification over function symbols, a list notation is introduced, in
whichh any term ^(x) is written as [xj]. [•, •] denotes the functional application
operationn which is defined to be a mapping from a domain W to the set of
alll partial functions over W. So complex terms of the form 7m(- • • (72(71(2))))
becomee terms of the form [[[[£7i]72] • • -]7m]- Of course, when the accessibility
relationn R is not serial, it cannot be properly represented by any set of total
functions.. As the target logic for the translation demands total functions ([2:7] is
aa first order term and will always have an interpretation), a special element _L is
adjoinedd to the domain W of the model at hand. Now, every function 7 will map
thee elements which have no successor under R to the special element X, and a
speciall 'dead end' predicate, deRl is introduced, defined as follows:

3.3.5.. DEFINITION. The dead-end predicate, representing the absence of succes­
sors,, is defined as

Vx{deVx{deRR{x){x) «=>> V 7(7 e AFR -> [37] = X)).

3.3.6.. THEOREM. Let Rbea binary relation on a set W, and let W1- =
Then,Then, the following defines R in terms of a set AFR of total functions 7 : W1- —•
WW : :

Vz,, y{W (R(x, y) <F=Ï (^deR{x) A 3 7 (7 e AFR A [xj] = y)))),

wherewhere deR is defined in 3.3.5

3.3.7.. DEFINITION. A functional frame is a 4-tuple T — {W, de, AF, [•, •]), where
WW is a non-empty set, de is a subset of W, AF is a set of total functions 7 : W —)•
W,W, and [•, •] : W x AF -* W the functional application operation.
AA functional model is a pair J = (ƒ", P), where T is a functional frame, and P is
aa valuation. The new truth definition for the diamond operator is

S,, w \= O A iff w <£ de and 3j{AF (J, [wy] \= A)),

andd dually for the box operator.

3.3.3.3. Translations from Modal Logic to First Order Logic 51 1

3.3.8.. DEFINITION. Following [Sch97], we choose as our target a many-sorted
logicc with a sort hierarchy and set declarations for function symbols [Wal94]. In
thiss logic, a sort symbol can be viewed as a unary predicate and it denotes a
subsett of the domain. For the functional translation we introduce the sorts W
andd AF. The variables x, y,z,..., are assumed to be of the sort W\ the functional
variabless are denoted by Ai, A2,..., and are of sort AF. The sort of the operator
[-,, •] is W x AF -*• W. The functional translation FT(t,A) is defined as follows:

P(t) P(t)
->FT(t,A) ->FT(t,A)
FT{t,FT{t, A) V FT(t, B)
FT(t,A)AFT{t,B) FT(t,A)AFT{t,B)

ƒƒ 37(AF(FT([*y],A))) if R is serial,
ii -ide{t) A3y(AF(FT(t-y,A))), otherwise

ƒƒ V7 (AF(FT([ti\, A))) if Ris serial,
ii ->de(*) -+V-y(AF(FT{tj,A))), otherwise

Whilee the functional translation results in great improvements for theorem prov­
ingg over the relational translation, as seen for example in Figure 4.5(b), we believe
wee can improve the performance for theorem proving without departing so much
fromm the inspiration behind the relational translation.

Wee will boost the performance of resolution procedures on the relational trans­
lationn of modal formulas by making literals living at different modal depths syn­
tacticallyy different. The mathematical justification for these ideas is provided
byy a strong form of the tree model property, as we will explain in the following
section. .

3.3.33 The Tree Model Property

Too increase the performance of general first order theorem provers on 'modal
input',, we will feed them with information about its modal character. More
precisely,, we will aim to encode by syntactic means the fact that basic modal
logicc enjoys a very strong form of the tree model property. In recent years, the
latterr has been identified as one of the semantic key features explaining the good
logicall and computational behavior of many modal logics; see [GraOl, Var97] for
twoo very accessible presentations.

First,, by a tree T we mean a relational structure (T, 5) where T, the set of
nodes,, contains a unique r eT (called the root) such that Vt € T(S*rt); every
elementt of T distinct from r has a unique 5-predecessor; and S+ is acyclic; that
is,, Vt(->S+tt). (Here, S+ and 5* denote the transitive and reflexive, transitive
closuree of 5, respectively.)

FT(t,p)FT(t,p) =
FT(t,-*A)FT(t,-*A) =

FT{t,A\/B)FT{t,A\/B) =

FT{t,AAB)FT{t,AAB) =

FT{t,OA)FT{t,OA) =

FT{t,UA)FT{t,UA) =

522 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

AA tree model (for the uni-modal language MC) is a model M = {W, R, V),
wheree (W, R) is a tree. A tree-like model for the multi-modal language M.M.C is a
modell (W, {Ra \ a € Index}, V) such that (W, \Ja Ra) is a tree. A logic L has the
treetree model property if every L-satisfiable formula is satisfiable at the root of a tree
orr tree-like model for L. Observe that the tree model property is incomparable
too the finite model property; there are modal logics where the former fails but
thee latter holds, and vice versa. For example, the logic %(@) has the finite model
propertyy but not the tree model property, and the fixed point logic with chop
(FLC)) has the tree model property but not the finite model property [LS02].

3.3.9.. PROPOSITION. [BdRVOlJ

1.1. The basic uni-modal logic of the language /AC has the tree model property.

2.2. The basic multi-modal logic of the language M.M.C has the tree model prop-
erty. erty.

Manyy modal logics, including K and K(m), enjoy stronger versions of the tree
modell property, where the degree of the tree model can be bounded by the size
off the formula [BdRVOl]. But K and K(m) enjoy an even stronger version of
thee tree model property. The key notion here is that of layering, both w.r.t.
treee models and w.r.t. formulas. Tree (or tree-like) models come with a lay-
eringg induced by the depth of the nodes. Likewise, the parse tree of a modal
formulaa induces a natural formula layering, where new layers begin immedi-
atelyy below nodes labeled by modal operators. For instance, in D(p —• Op),
thee • occurs in layer 0, while the O occurs in layer 1, with its argument in
layerr 2. Next, the modal depth, mdepth(0), of a uni-modal or multi-modal
formulaa 0 is defined as follows. Proposition letters p have mdepth(p) = 0;
mdepth(-'V)) = mdepth(^); mdepth(V'Ax) = max(mdepth(V>),mdepth(x)), while
mdepth(O^)) = mdepth((a)V>) = 1 + mdepth(V0-

3.3.10.. PROPOSITION. Let (f> be a modal formula, and M be a tree (or tree-like)
modelmodel with root w such that M.,w f= <f>.

LetLet ip be a subformula of <j> which occurs in formula layer I and which has
modalmodal depth k. To determine the truth value ofip we only need to consider nodes
atat tree depth i, where I <i < k + l.

Inn words: there is a direct correlation between formula layers and layers in a
treee (or tree-like) model; as a consequence, literals occurring at different formula
layerss should not resolve and need not be combined.

3.3.44 The Layered Translation

Fromm Uni-Modal to First Order. The key idea behind our improved trans­
lationn of modal formulas into first order formulas is to label unary and binary

3.3.3.3. Translations from Modal Logic to First Order Logic 53

relationss according to the number of modal operators nested within a modal for-
mula.. For instance, the formula p is translated into PQX, while the formula Op
becomess 3y (RixyAPiy). The index 1 of the relation symbols Ri and Pi measures
thee modal depth of the modal formula.

Too motivate the translation of uni-modal M.L formulas into an intermedi-
atee multi-modal language, consider the following examples, where we use new
operatorss and new proposition letters each time we change modal depth:

OOpp H* <>xOiP%

D(pp - • Op) i-> D i (p i -> 02 p 2) .

Iff we then apply the relational translation (Definition 3.3.1) to the intermedi­
atee multi-modal representations, we obtain 3y {R\xy A 3z [R^yz A P<iz)) and
Vyy (R\xy -+ {P\y —• 3z (R^yz A P2Z))), respectively. Observe that the prob­
lematicc derivation from the relational translation of ö(p -» Op) in Example 3.3.3
iss no longer possible with the new first order translation.

Too make things precise, we need an intermediate multi-modal language M.M.Cy

whosee collection of modal operators is {0< | i > 0}.

3.3.11.. DEFINITION. Let <f> be a uni-modal formula. Let n be a natural number.
Thee translation Tr(4>, n) of <j> into the intermediate modal language MMC is
definedd as follows:

Tr(p,n)Tr(p,n) := pn

Tr(^ip,n)Tr(^ip,n) := -.2V(>,n)

Tr{tpATr{tpAXX,n),n) := TVty.n) A Tr{X,n)

Tr{Oil),n)Tr{Oil),n) := On+17V(</>,n + 1).

Ourr next aim is to show that the intermediate translation Tr preserves satisfia­
bility. .

3.3.12.. PROPOSITION. Let 4> be a uni-modal formula. If <j> is satisfiable, then so
isis its intermediate multi-modal translation Tr((f>,0).

Proof.Proof. By Proposition 3.3.9 we may assume that <f> is satisfiable at the root w of
aa tree model JA — (W, R, V). Since M, is a tree model, for every state v € W
theree exists a unique path of .R-steps from the root w to v\ let d(w, v) denote the
lengthh of this path.

Wee define a model J\f = (W, {Rn+i \ n > 0}, V) for the intermediate multi­
modall language M.M.C, by taking its universe to be W, the universe of M.. Its
relationss are defined by stipulating that Rn+i(u,v) holds iff d(w,u) = n and
R(u,R(u, v) both hold. We complete the definition of J\f by defining the valuation V:
forr every proposition letter p and every state v € W such that d(w, v) = n, we
putt v € V'(Tr(p,n)) iff v € V(p).

544 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

Wee leave it to the reader to show that for every uni-modal formula <£, every
statee u and every n such that d(w, v) v) = n, we have M, v |= <f> iff JV, v (= Tr(4>, n).
Promm this the lemma follows. H

3.3.13.. PROPOSITION. Let <f>be a uni-modal formula. If its intermediate multi-
modalmodal translation Tr(4>, 0) is satisfiable, then so is <j>.

Proof.Proof. Let Tr(<j>, 0) be satisfied at some state w in some model M for the in-
termediatee multi-modal language M.M.C. As before we may assume that M. is
aa tree-like model with root w. We define a uni-modal model M which differs
fromm M in that it has only one relation (R) and in its valuation. The relation
RR consists of all pairs (u, v) such that (u, v) € Rn+i and d(w, u) = n, where
d(w,u)d(w,u) is the length of the path from w to u (in M). The valuation V' of our
modell M is defined as follows: for every proposition letter p, for every v such
thatt d(w, v) = n, we put v € V(j>) iff v G V(7V(p, n)), where V is .M's valuation.
Onee can then show that if d(w1 v) = n, then M,v (= 7V(0,n) iff jV, v (= 0. This
impliess the lemma. H

3.3.14.. DEFINITION. The layered relational translation is the composition of Tr
andd ST.

3.3.15.. THEOREM. Let (j> be a uni-modal formula. Then <f> is satisfiable iff its
layeredlayered relational translation ST(Tr((f>,0)) is.

Wee contend that the layered translation greatly improves the performance of
resolutionn procedures for the satisfiability problem of translated modal formulas.

3.44 Comparing the approaches: Experimental
results s

Wee will now see how the different translations compare, in terms of the efficiency
forr resolution theorem proving. We will compare the layered translation approach
withh both the relational translation and the functional translation, using the test
setss reviewed in Chapter 2. We do the comparisons separately to better appreciate
thee differences: the formulas that result from the relational translation take so
longg to solve that showing results for the three translations together would not
permitt a correct appreciation of the difference between formulas created with
thee layered and functional translations. Before going into the test results, we
commentt on the problem sets and theorem provers used in our experiments.

Thee Problem Sets To evaluate our tree-based heuristics, we have run a
seriess of tests on a number of problem sets. To compare the relational and layered
translations,, we used the Heuerding and Schwendimann test set and the modal

3.4-3.4- Comparing the approaches: Experimental results 55 5

QBFF test set; provers take too long with the relational translation of Modal CNF
formulas.. For the comparison between the functional and layered translation, we
foundd that easy modal CNF runs were feasible, so we used the modal CNF for
thatt test.
Thee Theorem Provers. The comparisons between the layered and relational
translationss were performed on a Sun ULTRA II (300MHz) with 1Gb RAM,
underr Solaris 5.2.5, with SPASS version 1.0.3 and MSPASS version V 1.0.0t.l.3.
SPASSS [SPA] is an automated theorem prover for full sorted first order logic
withh equality that extends superposition by sorts and a splitting rule for case
analysis;; it has been in development at the Max-Planck-Institut fur Informatik
forr a number of years. MSPASS [MSP] is an enhancement of SPASS (Version
l.O.Ot)) with a translator of modal formulae, formulae of description logics, and
formulaee of the relational calculus into sorted first order logic with equality. For
thee comparison between the layered and functional translations, a Pentium IV
PCC with 256MB RAM running RedHat Linux 7.3 was used.

SPASSS was invoked with the auto mode switched on; no sort constraints were
built,, and both optimized and strong Skolemization were disabled.

Layeredd vs Relational: Heuerding and Schwendimann. Table 3.1 dis-
playss the maximum number of problems of the Heuerding and Schwendimann
testt set solved in less than 100 seconds each, the standard timeout for this test,
byy the layered and relational translations. We see that he layered translation
outperformedd the relational translation, being able to solve harder instances in
almostt all categories. Interestingly, categories kjphjp and k.ph-n are known to be
propositionallypropositionally hard; in these categories, the effect of layering is not expected to
bee very noticeable, and indeed these are the only categories in which the layered
translationn does not improve upon the relational translation (apart from kJinjp,
whichh is too easy for both).

Translation n

relational l
layered d

branch h
PP «
33 3
88 8

d4 4
PP n
33 1
111 7

dum m
PP n
33 1
211 21

grz z
PP n
55 0
211 21

lin n
PP n
211 4
211 5

path h
PP n
44 2
77 4

ph h
PP n
55 5
55 5

poly y
PP n
55 4
133 14

t4p p
PP n
00 0
133 6

Tablee 3.1: Comparison using the Heuerding and Schwendimann test set.

Layeredd vs Relational: Modal QBF. To explore the behavior of our heuris-
ticss in a larger portion of the landscape of the K-satisfiability problem, we gen-
eratedd sets of 10 random modal QBF problems for different sets of parameters.
Tablee 3.2 compares the average time in CPU seconds and number of clauses gen-
eratedd for the two translations: layered and relational. "C/V/D" in the first
columnn denotes the number of clauses, the number of variables, and the depth
usedd in the generation. Columns labeled by "M" show the orders of magnitude

566 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

C/V/D D

5/2/1 1
10/2/1 1
15/2/1 1
5/2/2 2

10/2/2 2
15/2/2 2
5/2/3 3

10/2/3 3
15/2/3 3
5/2/4 4

10/2/4 4
15/2/4 4
5/2/5 5

10/2/5 5
lb/2/5 lb/2/5
5/3/1 1

10/3/1 1
15/3/1 1
5/3/2 2

10/3/2 2
lb/3/2 lb/3/2
5/3/3 3

10/3/3 3
15/3/3 3

Average e Timee M
Layeredd Relational
0.53469 9
0.41734 4
0.10859 9
0.66141 1
0.78297 7
0.75656 6
36.048 8
58.996 6
94.192 2
20.362 2
33.084 4
35.068 8
1136.1 1

2896 6
3758.2 2
7.1862 2
9.752 2

14.066 6
7.0931 1
8.3192 2
9.3902 2
1445.2 2
4045.1 1
4865.4 4

9.62222 1
3.99099 1

0.131722 0
450.444 3
370.099 3
147.388 2

N/AA N/A
N/AA N/A

2094.44 1
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A

2047.99 2
2324.22 2
1506.88 2

N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A

Averagee Clauses M
Layered d

726 6
546 6

10 0
437 7
500 0
473 3

10714 4
15395 5
20786 6
3121 1
4971 1
5358 8

48546 6
91767 7

106870 0
4372 2
5390 0
6687 7
1804 4
2221 1
2687 7

52153 3
107800 0
119150 0

Relational l
56955 1
23677 1

100 0
270299 2
223066 2
113688 1
N/AA N/A
N/AA N/A

457988 0
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A

1059600 1
1081100 1
726055 1
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A
N/AA N/A

Tablee 3.2: Comparison using the Modal QBF test set.

off the difference between the preceding two columns, i.e., round(—1 *log(N/N')).
Wee used a time out of 3 hours on a shared machine; N/A indicates that a value
iss not available due to a time out.

Ass can easily be seen from Table 3.2, our improved translation method out-
performedd the relational translation in every case, both in computing time (CPU
time)) and number of clauses generated; this is not only an average behavior but
itt was observed in each instance. For some configurations the drop in computing
timee is as much as three orders of magnitude. The average number of clauses
generatedd was nearly always smaller by at least one order of magnitude.

Inn Figure 3.1 we display a sample from our experimental results: 64 instances
off the 10/3/1 configuration. The top curve indicates the CPU time needed by the
relationall translation, and the bottom one the CPU time needed by the layered
translation.. Note that the relational translation can be very sensitive to certain
hardd problems, which results in significant differences between easy and hard
instances;; the layered method responds in a much more controlled way to hard

3.4-3.4- Comparing the approaches: Experimental results 57

Teslinp-qW-cnl-K4-C10-V3-Dl l

rvwj j Ti Ti
. .

CC 'J

. .

' M ^ M 7 ^^ 5S?f**
\r*«« y "^ V

• •

=..;; : . _
1QQ 20 30 40 50 60

Formulaa number

Figuree 3.1: Relational vs Layered: Time elapsed.

(a)) (b) (c)
Figuree 3.2: Easy-hard-easy.

problems.. Interestingly, the curves follow each other, even at many orders of
magnitudee of difference. This shows that our heuristics do not change the nature
off the problem: they simply make it much easier for the resolution prover.

Thee latter phenomenon can also be observed more globally. The plots in
Figuree 3.2 were obtained with V = D = 2, while C ranged from 2 to 40. Fig-
uress 3.2 (a) and (b) show the number of clauses generated and the CPU time
needed,, respectively, for the relational and layered method, while 3.2 (c) plots
thee proportion of satisfiable instances as C increases. The curves for the rela-
tionall and layered methods are very similar, with the layered method lacking
thee sharp lows and highs that seem to be characteristic for the relational method.
Bothh display a clear easy-hard-easy behavior, but the layered translation improves
performancee by several orders of magnitude. Note that the biggest improvements
aree achieved in the satisfiable region, i.e., for C < 26.

Oncee we were confident that the layered method consistently displayed a good
behaviorr and a significant improvement over the relational translation, we ran the
standardizedd tests provided by TANCS (64 instances randomly generated with
thee 20-clauses/2-variables/2-depth parameters); see Figure 3.3 for the outcomes.

Finally,, to obtain the results in Figure 3.4 we generated 64 instances of prob-
lemss for 2 and 3 variables with depths ranging from 1 to 6, again with a time out
off 3 hours. The figure shows the average values we obtained. We ran the same

588 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

Figuree 3.3: Standard TANCS test 20/2/2.

testss with the relational instead of the layered translation, but even for mod-
eratee depths the computing time and number of clauses exceeded the available
resources. .

-—-— - C15tima, V=3

Figuree 3.4: The Staircase Effect

Layeredd vs Functional: Modal CNF. We performed a comparison of the
layeredd and functional translations using the Random Modal CNF test set. We
generatedd a set for C = 3, D = 1, N = 3, L = 1 — 60, and the results are shown
inn Figure 3.5. Figure 3.5 (a) shows the satisfiable/unsatisfiable proportion as a
functionn of L/N. Which was of course identical for both translations, since we
feedd them the same formulas and there were no timeouts. Figure 3.5 (b) shows
thee mean CPU time used by each prover on the formulas, also as a function of
L/N L/N

Onee thing which is apparent from this figure is that for both translations the
peakk difficulty does not correspond to the point of maximum uncertainty with
respectt to satisfiability; this could be a characteristic of resolution-based modal
theoremm proving, since it does not happen with other provers [PSS03].

3.5.3.5. Conclusion 59 9

OO 10 20 30 40 50 60 70 êO 90 100
UN N

(a)) Satisfiable/Unsatisfiable fractions

00 10 20 30 40 50 60 70 80 90 100
UN N

(b)) Mean CPU time

Figuree 3.5: Layered - Functional translations comparison.

3.55 Conclusion

Wee have reviewed different ways of translating modal formulas into first order
logic,, and seen how the translation method affects the performance of first order
theoremm provers when checking the satisfiability of those formulas.

600 Chapter 3. Modal Theorem Proving: Translations into First Order Logic

Layeredd vs Relational. Layering proved to be very useful: a simple improve-
mentt to the relational translation means that a modal formula will take orders of
magnitudee less effort to check for satisfiability.

Layeredd vs Functional. The functional translation enjoys a wider applicabil-
ityy than that of the layered translation; since it does not depend on the strong
versionn of the tree model property we are using, it can be applied to modal logics
thatt do not have it, such as S4. The price to pay in this case is the replacement
off relation symbols with functions: the translated formulas are not in the modal
fragmentt any more.

Otherr layering inspired techniques. Other variations on the tree model
propertyy and layering have been explored. In [PSV02], a very competitive automata-
basedd method of checking modal satisfiability is presented, which is based on the
automatonn accepting all tree models of the formula. In [BGdR03], the tree model
propertyy is used to encode modal satisfiability problems into constraint satisfac-
tionn problems, and an algorithm to solve them is proposed; initial experiments
showw the approach to be promising.

Chapterr 4
Modall and Hybrid Theorem Proving -

Directt Resolution

"The"The problem, Mendieta,
isis that nature is as wicked

asas it is wise."
Robertoo Fontanarrosa

4.11 Resolution for Modal-Like Logics

Designingg resolution methods that can directly (without translation into large
backgroundd languages) be applied to modal logics, received quite some atten-
tionn in the late 1980s and early 1990s; see for example [Min89, EdC89]. Given
thee simplicity of prepositional resolution and the fact that modal languages are
sometimess viewed as "simple extensions of propositional logic," we might expect
modall resolution to be as simple and elegant. However, direct resolution for
modall languages proved to be a difficult task. Intuitively, in basic modal lan-
guagess the resolution rule has to operate inside the box and diamond operators
too achieve completeness. This leads to more complex systems, less elegant re-
sults,, and poorer performance, ruining the "one-dumb-rule" spirit of resolution.
Inn [AdNdROl] a resolution calculus for hybrid logics addressing these problems
wass introduced: the hybrid machinery is used to "push formulas out of modali-
ties"" and in this way, feed them into a simple and standard resolution rule.

Inn this chapter we describe HyLoRes, an automated theorem prover based on
thee calculus introduced in [AdNdROl], with special emphasis on implementation
details.. Indeed, the aim of this chapter is to give a fairly detailed account and
assessmentt of the main optimizations that went into HyLoRes.

Thee Logic. We will use the language of hybrid logic as introduced in Definitions
1.4.55 and 1.4.6 ; we present the syntax again for ease of reference. The well-formed

61 1

622 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

formulass of the hybrid language W(@, 4,) in the signature (REL, PROP, NOM, SVAR)

are e
FORMSS : = T | a | -nf> \ fa /\fa \ [R]<f> \ @s<j> \ \x.fa

wheree a € ATOM, x e SVAR, s 6 SSYM, R € REL and fa fa, fa € FORMS.

4.22 The Rules

Wee will now describe the resolution calculus implemented in HyLoRes. We need
aa normal form that guarantees formulas will have a unique representation with
respectt to negation, so we define the following rewriting procedure nf on formu-
lass of /H(@1i). Let 4> be a formula in ?{(<§>, |) , nf((f>) is obtained by repeated
applicationn of the rewrite rules nf until none is applicable:

-<@tv>> s
-i\x.ifi-i\x.ifi ~*

—1—1^>> "V-+

@t^1p @t^1p
ix.-iip ix.-iip

* *

ClausesClauses are sets of formulas in this normal form. To determine the satisfiability
off a sentence <j> e %(@) we first notice that 0 is satisfiable iff @t<j> is satisfiable,
forr a nominal t not appearing in <j>. Define the clause set CISet corresponding to
(j>(j> to be ClSet(<j>) = {{@tnf (<f>)}}. Next, let ClSef(fa) - the saturated clause set
correspondingg to 0 - be the smallest set containing ClSet(fa and closed under
thee rules shown in Figure 4.1.

CW{@CW{@tt(faKfa)}(faKfa)} ClU{@t->(faAfa)}
ClU{@ClU{@ttfa}fa} Ctö{@tnfhfa),®tnfhfa)}
CICI U {@tfa}

(R E S)) C7iU{@<^} C/2U{@r^}
Cl\Cl\ U CI2

Chö{@Chö{@tt[R]<f>}[R]<f>} Cl 2ö{@^[RU} ciu{@HR]<i>} for n npw

CICI U{@nnf (-,<!>)}

Clö{@t@Clö{@t@ss<j>} <j>}
WW ClU{@s<f>}

(S Y M) ^ i MM (R E F) C f U ^ > (PARAM) <*"<«*> ?»"ƒ« '» KK 'ciu{@st}
 K ' CI v ; Ch U Cl2 U {<f>{t/s)}

Figuree 4.1: Resolution calculus for the logic ?{(@)

file:///x.fa

4.2.4.2. The Rules 63 3

Lett us briefly explain the rules. The (RES) rule is the known resolution rule.
Too understand the ([R]) rule, keep in mind the relational translation of the O
operator,, from Definition 3.3.1:

S T . H O f l)) = --(3y (Rxy A STy(<f>)))

Or,, equivalently,
ST,(-"(O0))) = V» hRxy V -5Ty(0))

Here,, x plays the role of t. In essence, what happens with this rule is that
thee "hidden" universally quantified variable y, which should only be unified to R-
successorss of x, is both created and unified behind the scenes, when an il-successor
off x is available, and resolution is applied. /2-successors of x are created by the
{(R)){(R)) rule, which can be seen as a form of skolemization which only introduces
constants.. This way, unification is controlled, to the point that free variables are
nott needed in the calculus. The (A) and (V) rules break down complex formulas
intoo their components; the calculus can resolve on complementary formulas of
arbitraryy complexity, which can save time but is not in itself a complete method.
Thee (@) rule simplifies formulas into equivalent formulas to achieve a unique
representation,, much like the transformation into negation normal form does for
negation,, and the (SYM), (REF) and (PARAM) rules all deal with equality
betweenn nominals: since nominals can only be true of one element in the model,
wheneverr we encounter a formula of the form @,t, that can only be true if s and
tt are true on the same element of the model. Hence, (SYM) represents symmetry
(iff s and t denote the same element of the model, formulas true in s will also
bee true in £), (REF) represents reflexivity (every nominal is true in the element
off the model it denotes), and (PARAM) is the paramodulation rule, adapted to
equalityy between nominals.

Thee computation of ClSef((f>) is in itself a sound and complete algorithm for
checkingg satisfiability of W{@), in the sense that 0 is unsatisfiable if and only if
thee empty clause {} is a member of ClSetf{4>) [AdNdROl].

Thee X operator. To be able to account for hybrid sentences using 4. we need
onlyy extend the calculus with the rule

CICI U {@tXx<f>}
ww ciu{@t<t>(x/t)Y

Thee full set of rules is a sound and complete calculus for checking satisfiability of
sentencess in H(@,|) [AdNdROl].

4.2.1.. EXAMPLE. We prove that ix.{R)(x Ap) ->> p is a tautology. Consider the
clausee set corresponding to the negation of the formula:

644 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

1.. {Qi(UMtfMxAp))A^p)} by (A)
2.. {@ilxHRHx*P)h{@i^P} by (|)
3.. { Q H f l H i A p) } , { a ^ p } by« f l»
4.. {©*-.[iïl-.j},{© i(iAp)} I{enp} by (A)
5.. {©jl}, {@jp}, {@i^p} by (PARAM)
6.. {©#}, {©i^p} by (RES)
7-- { } "

Heree we see the calculus in action; the underlining reflects the operators or
formulass that trigger the rule. In step 2, we see how the variable x is bound to
thee nominal in which the 4- operator is evaluated. In step 3, the (R) rule creates a
neww nominal j , "connects" it to i through R, and creates a clause that states that
thee argument of (R) is true in j . Step 5 shows us the effect of paramodulation:
sincee i and j refer to the same element in the model, formulas satisfied on j must
alsoo be satisfied on i, and vice versa.

4.33 The Given Clause Algorithm

HyLoRess implements a version of the "given clause" algorithm [VorOl], which
iss the underlying framework of many current state of the art resolution-based
theoremm provers [SPA, Bli, Hil03]; our version is shown in Figure 4.2. A brief
explanationn of the functions on that figure follows:

•• normalize(A) applies nf to formulas in A and handles trivial tautologies
andd contradictions.

•• computeComplexity(A) determines length, modal depth, number of literals,
etc.. for each of the formulas in A; these values are used by select to pick
thee given clause.

•• infer (given, A) applies the resolution rules to the given clause and each
clausee in A. If the rules (A), (V), ((R)) or (J,) are applicable, no other
rulee is applied as the clauses obtained as conclusions by their application
subsumee the premises.

•• simplify(A,B) performs subsumption deletion, returning the subset of A
whichh is not subsumed by any element in B.

•• notRedundantfgiven^ is true if none of the rules (A), (V), (->[#]) or (|) was
appliedd to given.

4.44 Implementation

HyLoRess is implemented in Haskell (ca. 3500 lines of code), and compiled with the
Glasgoww Haskell Compiler (GHC) Version 5.04. We use Happy 1.13 to generate
thee parser. GHC produces fairly efficient C code which is afterward compiled into
ann executable file. Thus, users need no additional software to use the prover. The

4-4-4-4- Implementation 65 5

input:: init: set of clauses
var:: new, clauses, inuse: set of clauses
var:: given: clause

clausess := {}; inuse := {}; new := normalize(init)
ifif {} 6 new then return "unsatisfiable"
clausess := computeComplexity(new)
whilee clauses ^ {} do

{{ * Selection of given clause *}
givenn := select (clauses); clauses := clauses - {given}

{{ * Inference *}
neww := infer(given, inuse); new := normalize(new)
iff {} G new then return "unsatisfiable"

{{ * Subsumption deletion *}
neww := simplify (new, inuse U clauses)
inusee := simplify (inuse, new)
clausess := simplify (clauses, new)

{{ * Initialization for next cycle *}
iff notRedundant(given) then

inusee := inuse U {given}
clausess := clauses U computeComplexity(new)

returnn "satisfiable"

Figuree 4.2: Structure of the given clause algorithm.

HyLoRess site (http://www.illc.uva.nl/~juann/HyLoRes) provides executables
forr Solaris (tested under Solaris 8) and Linux (tested under Red Hat 7.0 and
Mandrakee 8.2). The original Haskell code is also made publicly available under
thee GPL license [GNU].
Wee will see now how HyLoRes handles the formula from Example 4.2.1 :

4.4.1.. EXAMPLE. Input file:

begin n
KCdownn (xl dia (xl & pi))) -> pi)
end d

Execution: :

http://www.illc.uva.nl/~juann/HyLoRes

666 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

(juanh©banaann 149) hy lo res - f t e s t . f r m - r
Inpu t : :

{[©(NO,, (-P1 ft Down(Xl, - [R1] - (P1 ft X I))))] }
Endd of input

Given:: (1 , [ö(N0, (-P1 ft Down(Xl, - [R1] - (P1 ft X I))))])
CON:: {[©(NO, -PI)][©(NO, Down(Xl, - [R1] - (P1 ft X l)))] >
Given:: (2 , [©(NO, - P I)])
Given:: (3 , [©(NO, Down(Xl, - [R1] - (P1 ft X I)))])
ARR:: {[©(NO, - [R1] - (P1 ft NO))]}
Given:: (4 , [©(NO, - [R1] - (P1 ft NO))])
DIA:: {[©(N-2, (PI ft NO))] [©(NO, - [R l] - N - 2)] }
Given:: (5 , [Q(N-2, (PI ft NO))])
CON:: {[©(N-2, P I)] [©(N-2, NO)]}
Given:: (6 , [©(N-2, NO)])
PARR (0 , - 2) : {[©(N-2, (PI ft N-2))] [©(N-2, - [R1] - (P1 ft N-2))]
[©(N-2,, Down(Xl, - [R1] - (P1 ft X I)))] [©(N-2, - P I)]
[©(N-2,, (-P1 ft Down(Xl, - [R1] - (P1 ft X I))))] }
Given:: (7 , [©(N-2, P I)])
Given:: (8 , [©(N-2, - P I)])
RES:: (7 , [])

Thee formula i s u n s a t i s f i a b l e
Clausess genera ted : 11
Elapsedd t ime : 0.0

Heree we see the prover giving a step by step account of the clause chosen as given,
thee rules applied to it, and the results. Lines starting with CON, ARR, DIA, PAR
andd RES respectively indicate application of the (A), (4-), ((#)) , (PARAM) and
(RES)) rules, with the remainder of the corresponding lines showing the result
off applying such rules. A number is assigned to each clause when it becomes
thee given clause; it is shown when the clause is displayed. In the case of the
(PARAM)) rule, the nominals involved are shown between brackets, and in the
casee of the (RES) rule, the numbers of the clauses involved are shown before the
correspondingg resolvent. We see that the proof follows closely the steps given
inn Example 4.2.1, except that the paramodulation rule actually generates more
clausess than previously shown.

Inn addition to HyLoRes, a graphical interface called xHyLoRes implemented in
Tcl /Tkk was developed. It uses HyLoRes in the background and provides full file
accesss and editing capabilities, and a more intuitive control of the command line
parameterss of the prover, in the manner of Spin/XSpin [XS]. A screenshot of
xHyLoRess can be seen in Figure 4.3.

4-5.4-5. The Gory Details 67 7

X-axhvloress 1.0-20 Feb 2002 .. D X

Hee i Edit Help Options s

begin n
'' <>(nl v (pi s Ip l)) .

n l :: (< >true -> pi) ;
II <nl: o p l)
end d

X-«« Options .;; a x]

Printt rules
Printss the internal state
Timeoutt in seconds

Selectt order

OKK J Cancell ||

Given:: (13, [9(H-1, P1),&(H-1, [Rl]-T)|)

RES:: (9, [S(H-1, [R1]-T),8(H-1, Hi)]J(10. I»(H-1, IR1]-T)))

Given:: (12, [9(H-1, -[RlJ-H-l), »(H-1, PI)])

Given:: (16, [9(N-1, IR1]-T)])

BOX:: (12, |9(H-1, -T),9(H-1, PI)))

Given:: (17, [»(K-1, Pi))}

RES:: (9, [8(H-1, Hl)])(10, [])

Thee formula i s unsaCisfiable
Clausess generated: 17
Elapsedd t ine : 0.0

Figuree 4.3: A screenshot of xHyLoRes.

4.55 The Gory Details

4.5.11 Data Structures
Thee design of HyLoRes is modular with respect to the internal representation of
thee different kinds of data. We have used the Edison package [OkaOl] (a library
off efficient data types provided with GHC) to implement most of the data types
representingg sets. The basic data types we created are as follows.

Statee and Output Monads. Functional programming does not allow for
globall variables or side effects; in a function, all input must be passed as an
argumentt and all consequences must be part of the returned value. For some
applications,, this can result in functions having very long and unintuitive lists of
arguments,, and contrived output types. In Haskell, a particular data type called
monadd is used to overcome this problem. The internal state of the given clause
algorithmm (the sets clauses, inuse and new, the data structures used for sub-
sumptionn checking, the control information, etc) is represented as a combination

688 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

off a state and an output monads [Wad95]; the former provides transparent access
too the internal state of the program from the monadic functions that perform
inference,, while the latter handles all printing services with no need of further
parameterss in the function signatures. In addition, the use of monads allows the
additionn of further structure (hashing functions, etc.) to optimize search, with
minimumm re-coding. We have already experienced the advantages of the monad
architecturee as we have been able to test different data structures and improve
thee performance of some of the most expensive functions with great ease.

Formulas.. We took advantage of the possibility of defining recursive data types
inn Haskell, with the result that the data type definition closely resembles the
definitionn given in Section 1.4.5:

dataa Formula
== Taut | Nom Int I Prop Int | Var Int I Neg Formula I Con [Formula]

II At Int Formula | Atv Int Formula I Down Int Formula
II Box Int Formula

derivingg (Ord, Eq)

Thee integers in the definition represent the different elements of their correspond-
ingg sets, i.e. Nom 1 represents the element n\ in the set NOM, and so on. Con-
junctionss are stored as the Con constructor plus a list of conjuncts, to allow for
n-aryy conjunctions.

Clausess and Sets of clauses. The given clause algorithm at the heart of Hy-
LoRess deals with three main repositories of clauses: clauses, that holds the eligible
candidatess por processing; inuse, that holds the clauses which can interact with
thee given clause, and new, where the clauses that result from the application of
thee rules go. The different clause sets and their clauses have different access pat-
ternss and aggregate information and need a different data type for each, clauses
usess the UnbalancedSet type provided by the Edison library which is specially
optimizedd for search; as in every cycle the given clause has to be selected from
thiss set, the comparison of clause scores is given as the ordering function, so the
givenn clause can be selected without having to examine the whole set. The ele-
mentss of clauses are tuples containing the clause proper (represented also as an
UnbalancedSet),, a complexity measure which depends on the chosen order for
clausee selection, and the clause number.

Inn new, clauses are stored as UnbalancedSets while new itself is a list of
clauses,, as all its elements have to be processed one by one in each cycle, inuse
iss a list of pairs composed of the clause number and a clause represented also as
aa list, as both clauses and formulas in clauses need to be accessed one by one in
everyy cycle.

4-5.4-5. The Gory Details 69 9

4.5.22 Optimizations

Thee first implementation of HyLoRes was very naive and as a result was terribly
inefficient.. We then proceeded to adapt and apply well established first order
resolutionn optimizations to the hybrid environment, with encouraging results.

Orderedd resolution with selection. HyLoRes actually implements a version
off ordered resolution with selection [BG01], where the application of the (RES)
andd ([#]) rules are restricted to certain selected formulas in the clause. Ordered
resolutionn with selection greatly reduces the size of the saturated set, preventing
thee generation of certain clauses, without compromising the completeness of the
calculus.. Interestingly, the proof of completeness of ordered resolution with se-
lectionn for %(@, I) [AG03] closely follows the proof in [BG01], based on a step
byy step construction of a Herbrand model for any consistent input clause set.
Oncee more, hybrid logics seem to provide the appropriate framework to merge
firstt order and modal ideas.

Formulaa indexing. Formulas are indexed using a mapping between formulas
andd integers, in which indexes for positive and negative occurrences of the same
formulaa will be equal except for the sign. As the (RES) rule involves searching
forr complementary formulas, searching for clauses to resolve with is made more
efficientt by storing the clauses in inuse as ordered lists of the indexes. This
indexingg is much simpler than in the case of first order, as clauses do not have
freee variables.

Subsumptionn checking. Whenever a clause A follows from another clause B
inn the clause set, A is said to be subsumed by B, and can be ignored, reducing the
searchh space while maintaining correctness. We consider two main types of sub-
sumptionn checking: forward subsumption (when new clauses are redundant w.r.t.
oldd clauses) and backward subsumption (when old clauses are redundant w.r.t.
neww clauses) .Finding out which clauses can be discarded is one of the - or perhaps
"the"" - most expensive operations in resolution based theorem provers [Vor95].
HyLoRess uses a simple version of subsumption checking where a clause C\ sub-
sumess a clause Ci if C\ C C2. Version 0.5 of the prover implemented this test
veryy inefficiently, checking the subset relation element by element, and clause by
clause.. In the latest prototype, a set-at-a-time subsumption checking algorithm
whichh uses a clause repository structured as a trie [Vor95] was implemented, with
dramaticc improvements (see Section 4.6). We also noticed that while forward sub-
sumptionn is essential, many times backward subsumption does not really make a
difference.. This is also the case for some first order logic provers; see [RSV01].

Thee clause repository is organized as a list of tries, in the following manner.
Thee clauses are inserted and queried as ordered lists of integers. The repository

700 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

iss a list of tries, in which each node represents a formula and each path that ends
inn a leaf node represents a clause.

4.5.1.. EXAMPLE. The set of clauses

{{ {1,2,3}, {1,2,4}, {1,2,8}, {1,4,5}, {1,4,7,8},

{1,4,7,9,10},, {2,3,9}, {2,7,9}, {2,7,8,10}, {2,7,8,11} }

iss stored as shown in Figure 4.4.

1 < <

2 < <

11 < r - "

44 "\.

^r^r 3

" ^^ 7 ^ -
77 " \

^ 3 3

- ^^ 4

^ ^ 8 8

-** J

11 "—

-** y

00 ~-^.

9 9

-** o
y y

** 1U
l l l

-** JU

Figuree 4.4: Trie representation for a set of clauses

Whenn inserting a clause, if its head is the root of any of the visible tries then we
insertt its tail into that trie, otherwise we add a branch to the current node and
insertt the clause there. In this way, all clauses are represented as a path from
onee of the root nodes to a leaf, so that all the clauses that are extensions of a
particularr path are stored as branching from it. The fact that the formulas in the
clausee are ordered gives us the possibility to optimize search, both by having a
uniquee representation and by knowing when it will be useless to keep searching.
Thee clause repository holds both the clauses in inuse and the ones in clauses, so
ass to check for (forward or backward) subsumption against just one set of clauses,
whichh also eliminates the cost of transferring clauses from one trie to the other
whenn a clause is moved from clauses to inuse. Subsumption checking has then
becomee very efficient, and indeed it brought a speed up of about two orders of
magnitudee to the prover.

Inn forward subsumption, the clauses in new are checked one by one for sub-
sumptionn by the clauses in inuse or clauses, as follows: for each clause C in new,
forr each of the visible tries T, in the repository, if the root of T; is in the checked
clause,, all the branches of T, are successively checked for the elements of the
clausee that are greater than the root. If we reach the end of any branch, then the
clausee is subsumed by the repository and the search stops. If we find any element

4.5.4.5. The Gory Details 71 1

nott present in C, none of the clauses represented by the current path subsumes
CC and we can proceed to the next trie. If the root of the next trie is greater than
thee maximum element in C, no match will be possible and the search ends.

Inn backward subsumption, the clauses in new are checked one by one for
subsumptionn of the clauses in inuse or clauses, as follows: for each clause C in
new,new, for each of the visible tries T» in the repository whose root is less than or
equall to the head of the clause (the smallest element), if the root of 7* is equal
too the head of C, we check the branches of Ti for existence of the elements in the
taill of C, and if the root of Ti is less than the head of C we check the branches of
TiTi for existence of the whole clause. When we find a match for the last element
off the clause, we know that all the paths that originate from X* are subsumed by
thee clause: we retrieve all of them, and examine the next trie. When we reach a
TiTi with a root greater than the head of C, the search ends.

Inputt analysis. At this moment, HyLoRes performs a very simple analysis of
itss input. It checks for the presence of the [J2], {i?),@ and I operators and for
nominalss in order to know which rules will need checking for applicability. For
example,, if the I operator does not appear in the input, then the (\) rule is
switchedd off and never attempted. Most first order provers perform a far more
detailedd analysis of the input and decide heuristics and settings on account of
theirr findings.

Applicationn of the rules. The rules of the underlying resolution calculus (as
shownn on Figure 4.1) are applied in such a way as to make the sets of clauses
groww as slowly as possible. For example, the (->A) rule is checked first of all, and
iff it's applied then no other rule is applied, and also the given clause is not added
too inuse (the antecedent and consequent clauses are equivalent, but this does not
showw in our implementation of subsumption checking). The same is true of (A).
Thenn (RES) is applied, and the empty clause is searched for in the result before
proceedingg with the rest of the rules.

Anotherr thing that helps pruning the search space is postponing the creation
off new nominals (by application of the (R) rule) until the clause set is saturated
forr the current set of prefixes. Whenever the (R) rule can be applied, the appli-
cationn is postponed until clauses is empty. In a sense, this can be interpreted as
exhaustingg the possibilities of doing propositional reasoning before doing modal
reasoning. .

Paramodulation.. Since we need to do equality reasoning between nominals,
wee can once more take advantage from experience in first order resolution. In [BG98],
Bachmairr and Ganzinger develop in detail the modern theory of equational rea-
soningg for first order saturation based provers. Many of the ideas and optimiza-
tionss discussed there can and should be implemented in HyLoRes. In the current

722 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

version,, paramodulation is done naively, the only "optimization" being the ori-
entationn of equalities so that we always replace nominals by nominals which are
lowerr in a certain ordering.

4.66 Testing

Duringg the development of HyLoRes, we made extensive use of the modal test
setss described in Chapter 2 to evaluate the performance of the prover and guide
designn decisions. Some results are shown in Figure 4.5.

Hand-tailoredd tests. Figure 4.5 (a) represents a set of runs of the Balsiger,
Heuerdingg and Schwendimann test set [BHSOO], with different criteria for selecting
thee given clause, and the description logic prover RACER [RAC], version l-6r2,
includedd as a reference. Even when most of this test set has become trivial for
maturee modal provers, it still provided a quick way to evaluate the prover in the
earlyy stages.

Randomm tests: Random Modal QBF test set. Figure 4.5 (b) shows a run
off several versions of HyLoRes and other provers over a very easy area of the Ran-
domm Modal QBF test set [Mas99]. The X axis represents the number of clauses in
thee original QBF formula, and the Y axis represents the average time for solving
ann instance, with 64 samples/datapoint. The problems range from being all satis-
fiablefiable at the left, to being all unsatisfiable at the right. We benchmarked HyLoRes
0.55 (no formula indexing, no clause repository), HyLoRes 0.9 (formula indexing,
clausee repository, backward subsumption still using clause-at-a-time comparison)
andd HyLoRes 1.0 (now with backward subsumption using set-at-a-time compar-
ison).. We also ran SPASS v. 1.0.3 [SPA] with the standard translation to first
orderr logic, MSPASS v. 1.0.0t.l.3 [MSP], *SAT version 1.3 [*SA], and RACER
v.. l-6r2 on this test, to compare with more mature provers; in general the times
forr these provers only reflect start up times, as revealed by the absence of the
easy-hard-easyy pattern. This test set allowed us to gauge the progress of HyLoRes
ass we added optimizations to it, although since QBF derived modal formulas have
aa very rigid structure, as we have seen in Chapter 2, a good performance on this
testt set was not a guarantee of good performance overall.

Randomm tests: Random Modal CNF test set. As explained in Section 2.5,
thiss test set [PSS03] generates random modal CNF formulas directly. We ran the
testt for C = 2.5, V = 3 and D = 1; Figure 4.5 (c) represents median time
elapsedd as a function of (number of clauses/number of variables). The timeout
valuee was 100 seconds: again, it was too easy for mature provers to compare
theirr performances, while for HyLoRes there were a few timeouts in the hardest
area.. Figure 4.5 (d) plots the satisfiable/unsatisfiable fractions in the test we just

4-6.4-6. Testing 73 3

(a)) (c)

Numberr of c lauses LJV

(b)) (d)

Figuree 4.5: HyLoRes and Modal test sets

described.. There are zones of the plot in which the sum of the satisfiable and
unsatisfiablee fractions is less than 1; this is due to timeouts, as the sum represents
thee fraction of problems solved before the time limit.

Randomm tests: Random Hybrid CNF test set. An important drawback of
thesee test sets though, is that they only provide purely modal input. We present
noww some preliminary tests of the hybrid capabilities of HyLoRes, evaluated using
hGen,, the generator introduced in Section 2.5.

Inn Figure 4.6 (a) and (b) we start with a purely modal base case, with C = 2,
NNpp — 3, D — I, and gradually add nominals to the mix; that is, with Nn = 5
wee keep p3var = 0 and do one run with pwop = 1, pn0m = 0, one with p^op = 9,
PnomPnom — 1) a nd one with pprop = 8, pnom = 2. The timeout was 300 seconds.
Figuree 4.6 (a) shows the median time elapsed, while Figure 4.6 (b) shows the
proportionn of problems solved. Here we see that even slight increases of the

744 Chapter 4- Modal and Hybrid Theorem Proving - Direct Resolution

quantityy of nominals the difficulty rises sharply; this highlights the fact that
optimizingg paramodulation is crucial. Figure 4.6 (c) and (d) shows the effect of
increasingg the proportion of ©-operators, starting from the same base case. We
seee that the difficulty changes very little (although the peak moves to the right),
andd the satisfiable/unsatisfiable transition moves to the right as we increase the
proportionn of ©-operators. This is to be expected, in a sense, since the presence
off nominals in a formula triggers the paramodulation rule (which tends to create
aa state explosion), while the ©-operator triggers the much more benign @-rule,
whichh just simplifies the given clause.

Hyfiri<JCNFC=2.N=3.. D=1,UN»1-20 Hyixldd CNF; C=2. N=3. D=1, U N . 1 - 2 0

(b)) (d)

Figuree 4.6: Hybrid CNF tests - Adding Nominals and

4.77 Conclusion

Thee prototype is not yet meant to be competitive when compared with state of
thee art provers for modal-like logics like DLP, *SAT, MSPASS or RACER. On

4-7.4-7. Conclusion 75 5

thee one hand, the system is still in a preliminary stage of development (only
veryy simple optimizations for hybrid logics have been implemented), and on the
otherr hand the hybrid language and the languages handled by the other provers
aree related but different. H(@,i) is undecidable while the target languages of
thee other provers are decidable. And even when comparing the fragment %(@)
forr which HyLoRes implements a decision algorithm, the expressive powers are
incomparablee (H{@) permits free Boolean combinations of @ and nominals but
lacks,, for example, the limited form of universal modality available in the T-Box
off DL provers [AreOO]).

Theree certainly remain many things to try and improve in HyLoRes. The next
stepss in its development include

-- a better treatment of paramodulation;

-- support for the universal modality A [GP92] (which would allow us to
performm inference in full Boolean knowledge bases of the description logic
ACCÖ); ACCÖ);

-- saving the saturated clause set, if any, for querying;

-- and improve input analysis and heuristics.

Butt the main goal we pursued during the implementation of this prototype has
largelyy been achieved: direct resolution can be used as an interesting, and perhaps
evenn competitive, alternative to tableaux based methods for modal and hybrid
logics. .

Partt II

Programmingg with Dynamic
Firstt Order Logic

77 7

79 9

Executable e
Interpretation n

Hoare e
Calculus s

Improved d
Engine e

Implementation n

Figuree 4.7: Dependency map for Part II

Inn this second part we will review the concept of formulas-as-programs, and
introducee an executable interpretation of DFOL. The interpretation works as a
specification:specification: the way in which the desired computational effect is to be achieved
iss not part of the interpretation. This allows us to devote Chapter 6 to define
aa Hoare calculus for the logic, without worrying about the internal state of the
languagee engine: if the engine is faithful to the executable program interpretation,
thee calculus applies to it. After introducing the calculus, in Chapter 7 we will
introducee a new version of the Dynamo engine, which is certainly a departure
fromm the state machine of Chapter 5: since we want to be faithful to DFOL
semantics,, why not use a tableau prover as the engine? This has proved to have
advantagess and disadvantages, as we will see in Chapter 8. Figure 4.7 gives a
dependencyy map for this part.

Chapterr 5
Thee Executable Program Interpretation
forr Dynamic First Order Logic

5.11 Introduction
Inn this chapter we will introduce the DFOL perspective on the "formulas as pro-
grams1'' paradigm as presented in [AB98]. In essence, by interpreting formulas as
actionss on a certain data structure, and having such actions respect the semantics
off the corresponding formulas, we obtain a programming language that possesses
bothh the power of imperative programming and a declarative semantics. We will
givee some background on formulas as programs, sketch the computational process
approximationn to DFOL(U) as proposed in [vE98b], and suggest some extensions.
Thiss is not how we will ultimately implement Dynamo, but it is provided to give
somee insight on the use of DFOL extensions for programming.

5.22 FOL and Programming

Thee idea of using FOL as a programming language is not new: a language con-
sistingg of formulas in the Horn fragment of FOL was presented in [Kow74], and
markedd the start of the development of the logic programming field. The benefit
off having a declarative semantics for a programming language is that it makes
programss easier to understand, modify and verify, since having a dual reading of
aa program as a logical formula makes it much simpler to reason about its cor-
rectness.. The problem with the Horn fragment was that it was not expressive
enoughh for programming purposes. Prolog, the first logic programming language,
wass then extended in order to reach the desired expressivity, but many of the ex-
tensionss were extralogicai. arbitrary programs cannot be read as logical formulas
anymore,, and soundness and completeness results have not yet been conclusively
extendedd to programs including negation. Also, even 'pure1 PROLOG programs
cann be hard and unintuitive to verify in a rigorous way, in part because of the

81 1

82 2 ChapterChapter 5. The Executable Program Interpretation for DFOL

usee of recursion. To remedy the situation without sacrificing too much expres-
sivity,, Apt and Bezem [AB98] proposed a different approach, called formulas as
programs,programs, where a computation mechanism is suggested that relies exclusively
onn the basics of first order logic and replaces recursion with (bounded) iteration.
Thee core idea is to consider the expression v = t, where v is a variable and t is a
term,, as an assignment if the value of v is not known, and as a test if it is. If t
iss not a grounded expression, the procedure returns an error. For any valuation
a,a, we say that a term (or atom) is a-closed if all variables appearing in it have a
valuee under a; an expression of the form v = t is called an a-assignment; if v is
aa variable, t is a term, and v is not a-closed but t is.

Thiss approach was extended in a number of ways: non-recursive procedures,
sortssorts (ie types), arrays, and bounded quantification (bounded iteration and bounded
choice).. Recently there has been work on viewing FOL as a constraint logic pro-
grammingg language [AV02], introducing the possibility of storing non-grounded
atomss as constraints, which greatly reduces the number of cases in which an error
iss returned.

5.33 Computational Process Approximations to
DFOL(U))

Followingg this approach, our process approximation to DFOL(U) results from in-
terpretingg identity statements, in suitable contexts, as assignment actions, and
existentiall quantification as «nassignment actions. That is, when a variable be-
comess existentially quantified, any value it might have assigned is lost, and it
becomess free to be assigned again. The reason for this is given by the semantics
off DFOL(U): let's review what the syntax and semantics of DFOL(U) were.

5.3.11 DFOL(U)

Lett a first order signature be given. We assume that variables can be built from a
sett VAR of initial variables by means of appending indices. Let ƒ and P range over
thee function and relation symbols, with arities n as specified by the signature.
Wee assume that terms range over the natural numbers, and that ƒ and P denote
recursivee functions and predicates on N. As stated in Definition 1.4.12, the terms
andd formulas of DFOL(U) over this signature are given by:

TERMSS := vtl tn \ ft (Terms)
FORMSS := 3v \ Pt \ tx = t2 | -.((0)) | <f> x- <j> 2 \ {fa U <j> 2) (Formulas)

wheree v € VAR, t,tut2 6 TERMS, t E TERMS x ••• x TERMS, and fafa,<fa €
FORMS. .

5.3.5.3. Computational Process Approximations to DFOL{\J) 83 3

Inn Definition 1.4.16 we introduced the semantics of DPL and extensions, and
hintedd at an alternative way to interpret the semantics of a formula 0, as a
functionn from assignments to sets of assignments. Let's spell that interpretation
outt in more detail:

5.3.1.. DEFINITION. [Functional Interpretation of DFOL(u) in a model M =
(£>,ƒ)]] For N,NUN2 e N,Mi,*2 <E TERMS,

(v[tl}---[t(v[tl}---[t nn}Y }Y

(ƒ«!! •"*») '

w. .
[Ptl-[Ptl- tn]a

[tl[tl = t 2]8

PH H

W1. .

[<f>i;<h]s [<f>i;<h]s

[4n[4n u <hh

:= =

:= =

:= =

:= =

:= =

:= =

:= =

:= =

:= =

*K,..,tft))

Hm~< Hm~<
0 0

rr { S} if («; o
[[0 otherwise.

JJ {s} itt{ = t2

[[0 otherwise.
K G D V || S' ~„ s}

|| W if 10]. = 0
11 0 otherwise.

(JIM** 1 s' e [0i]J
[0l],, u [<hh

e / (P))

Wee extend the logic with the following constructs:

in in

 = N2;<f>], iSNx<N2

otherwise. .

U[vU[v = t2;<j>] 8 if *f < *|
otherwise. .

Inn this interpretation of formulas as functions from valuations to sets of valuations,
existentiall quantification would require the set [3a;], to consist of all the valuations
uu such that s ~x u. Since our domain D is usually N, computing this set is not
possible.. Therefore, by uninitializing the variable, we simply desist from trying
alll possible values of x, in favor of trying to find those that make the rest of the
formulaa true.

Computationn states are partial maps from the set of variables to values in the
domainn of quantification; if a state s does not have a value for v but does have

844 Chapter 5. The Executable Program Interpretation for DFOL

valuess for all variables occurring in t, then v = t and t = v can be interpreted as
instructionss to extend s with the pair {v,ts).

Whatt we want from an executable process interpretation is the following: (1)
iff the interpretation computes an answer valuation, then that answer is correct
accordingg to the semantics of DFOL, and (2) if the executable process inter-
pretationn returns a negative answer then there are no answers according to the
semanticss of DFOL.

Thiss notion can be formalized as follows. Let A be the set of all possible
valuations,, ie {s 6 Dx \ X C VAR}. We introduce the notation ts =1 when
tt is s-closed and t* = t when it is not. A set of computed states may contain
ann uninformative state •, signifying that at least one computation attempt was
givenn up. We measure the degree of informativeness of an answer by means of a
suitablee ordering C on V(A U {•}) defined by:

AA C B :^ (• € A A A - {•} C B) V (• £ A A A = B).

Thiss makes (^(.AU {•}),£) into a complete partial order (CPO), with {•} as
bottomm element.

Forr szA, let s° := {b € £>VAR | s C b}. Let «° := {•}. Lift this operation to
subsetss of A U {•} by means of A° := \JsGA s°.

Then,, a computation procedure F : L —• A -> V(A U {•}), where L is a
languagee of DFOL, is a faithful approximation of DFOL if for all 0 G L, all
ss G A'

Thee computational strengths of procedures F, G : L -> A —• V(A U {•}),
cann be compared by lifting our C ordering to the level of computation maps, as
follows: :

FF Q G := V0 E L Vs € A : F+{s) Q G$(s).

AA computation procedure G is a better approximation to DFOL than F if F C. G
andd G is faithful to DFOL. In [vE98b], a computation mechanism faithful to
DFOLL is presented; we will now give a brief review, and present an improvement
onn it.

5.3.2.. DEFINITION. [State] The output a (alt. b , . . .) of a computation is repre­
sentedd as a triple (a,ga, la) ({b,gb

1l
b),...), where a is a valuation, ga is a list of

globalglobal variables, meaning those that are not existentially quantified, and la is a
listt of local or existentially quantified variables. The reason for this is the inter­
actionn between the use of equality as assignment and the treatment of negation:
intuitively,, we consider the evaluation of -\<j> to fail if the evaluation of <j> succeeds
withoutwithout making global assignments. We want to distinguish between cases in which
extensionn of the input assignment occurs inside a negated formula from the "nor­
mal"" case in which it occurs in a positive context. We call unsafe those cases

5.3.5.3. Computational Process Approximations to DFOL(U) 85 5

inn which extension of the input assignment occurs during evaluation of negated
formulas,, because they result in, well, unsafe conclusions. For example, we want
thee formula x = 1 to succeed on the empty assignment e (and assign 1 to i) , but
wee do not want ->(x = 1) to fail on e, as it would mean that there is no x that is
equall to 1. Note that the formula ->(3ar; x = I) must fail on any input; hence the
needd to distinguish between variables that are local, ie existentially quantified,
andd global, or free. In cases where a computation would be unsafe or there is
insufficientt data to perform it, we 'give up' on the computation, and its output
willl be the • state. Then, our state for the executable process interpretation
functionn is of type ((A x PfVAR) x P(VAR)) U {•}), and our executable interpre­
tationn function proper is of type FORMS x ((A x P(VAR) x 7>(VAR)) U {•}) - •
{A{A x -P(VAR) x 7?(VAR)} U {•}, where (Ti U T2) means "either type Tx or type
T2". .

5.3.3.. DEFINITION. [Safe states] A state b is safe for (a,ga,la) if b # • and
ll aaUgUgbb Cdom{a).

5.3.4.. DEFINITION. [Risky states] A set of states B is risky for (a, ga, la) if B ^ 0,
butt no member b of B is safe for (a, ga, la).

5.3.5.. DEFINITION. [Executable process interpretation for DFOL]

M (-)) == }

{ {(o,, ga, la)} if Pti tn a-closed, Ph t„ € I(P),

00 if Pti U a-closed, Ph • tn t I(P),
•• if Pti tnnot a-closed.

ttatWa.ffV)ttatWa.ffV) := {(a-{v/va},g°,l*U{v})}

ff {(a,g",la)} ifM(*,9 c

M (a , $ V B)) := I 0 if3b€m(a,9a,nuithbsafefor(atg°,l»)

ff {(a,$Va)} t /M(a, f f
o ,n = 0

<< 0 if 3 b € Wft(a,ga,la)wih b safe for(a,ga,l

[[{•} if M (a , s V a) is risky for {a,ga,la)
Mi;<hMa,9Mi;<hMa,9aa,l,laa)) := U { M 0 >) | b € M (« , 3 ° , J a)
tt&Ufcl|(a,0V)tt&Ufcl|(a,0V) := M(a,9a,r)uM(a,9a,la)

Thiss far, we are simply checking a formula against a valuation; the treatment of
== that follows is what makes our system a computation engine.

86 6 ChapterChapter 5. The Executable Program Interpretation for DFOL

|[(ii=fe)]](a,*V)) :=

{(a,9{(a,9aa,l,laa)})}
0 0
{(aö{v/q},g°,l{(aö{v/q},g°,laa)})}

ifif <i,t2 a-closed, tj = t%,
ifif *i,<2 a-closed, t" j^t%,
ifif t\ = t2 an a-assignment with

h=V,Vh=V,Vaa=ï,t%=Uv<El=ï,t%=Uv<El a a

{(aUU {u/fl}}, 0° U {u},/")} if h = t2 on a-osst̂ nmcnt with
tii = v,va =ï,t%=l,v$la

{(aUU {f/ti},5°,/°)} t/ ii = (2 on o-osst̂ nment u»tft
*22 = t>,»a=t,tf =i,vela

{(aa U {v/*i}, 3° U {v}, la)} if ti = ti an a-assignment with
É22 = r,v0=t,*ï =l,v#la

{•}} if ti,t2 not a-closed
andand not an a-assignment

5.44 DFOL(U) as a Programming Language
Wee will give a few examples of DFOL(u) formulas, viewed as programs. The
formula a

(x(x > y; z = x) U (x < y; z = y)

willl check whether z is equal to max(x,y). If we want to assign the maximum of
xx and y to z, we first unassign it by existential quantification:

3z;; ((x > y; z = x) U (x < y; z = y))

DFOL,, viewed as a programming language, gives a new perspective on a funda­
mentall feature of imperative programming, the destructive assignment command
xx := t. Take the command x := x + l that increments x. This cannot be rendered
ass identity, for the identity x = x +1 either gives an error message (in cases where
thee input valuation is not defined for x) or it fails, on the natural numbers at
leastt (for there is no n € N with n = n + 1). But if we implement the use of an
auxiliaryy ('shadow') variable x' and dynamic quantification over both x and x',
wee can express x := x + 1 with the DFOL formula

wheree the final 3x' is used for unassigning x' for future uses.
Iff we assume that each regular variable v comes with a unique shadow v' we

cann abbreviate this as v < t; we call this safe assignment.

5.55 Moving Closer to DFOL(U) Semantics
Inn the first incarnation of our executable interpretation, the program state is ei­
therr a triple (a, <?°, la) or •. This means that if a statement x = t is not a-closed

5.5.5.5. Moving Closer to DFOL(U) Semantics 87 7

andd not an a-assignment, the result has to be the uninformative state •. For
example,, if x = 2;x = y is computed in a state e (undefined for every variable),
thenn the result is {{x/2, J//2}} (there is a single output state that maps both of
x,x, y to 2). If we interchange the statements, and compute x == y; x = 2 for input
statee e, the result is the completely uninformative set {•}, while the assignments
thatt satisfy the two formulas are exactly the same. We believe we can produce
ann interpretation that is a better approximation to the semantics of DFOL, since
thee same valuation that satisfies the first formula satisfies also the second one. To
accomplishh this we extend the states with some further components. The fourth
componentt is a list of literals Pt\ n, tx = ^ ->Pti • • • tn, ->ti = £2- Since as­
signmentss to global variables inside negated formulas make the computation path
unsafe,, we will, when in the appropriate mode, save v = t as a constraint rather
thann perform a global assignment to v. The two execution modes we distinguish
aree B(uild) and C(onstrain). We will now present the execution mechanism as
aa set of transition rules; in the rules where the execution mode does not matter
butt has to remain the same during a given transition step, we will use m as a
variablee ranging over 2?, C. Also, we will need to keep track of the set of variables
usedd somewhere in the current list of unresolved literals. If v is used in the list of
unresolvedd literals, a dynamic quantifier action 3v would sever the literals that
includee v from the computation path, so we need to keep track of such situations.
Wee will introduce a new register n° for constraint variables needed by state a. A
statee a will now look like (a, ga, la, na, L°, m°), where

•• a is a partial valuation,

•• ga is the set of global variables,

•• la is the set of local variables,

•• n° is the set of variables needed in a stored constraint,

•• La is the list of literals stored as constraints,

•• ma is either b or c, the execution mode of the state a.

Thee role of these components in the state transitions will become clear when
introducee the transition rules.

When,, in build mode, we cannot perform an atomic test or cannot execute an
equalityy statement (either as a test or as an assignment) due to missing values
inn the input, we store the atom after substituting the values of the current state
andd add the variables that are still needed to the set of needed variables. When,
inn constrain mode, we cannot perform an atomic test or execute an equality as
aa test statement due to missing values in the input, we do the same. Then, if a
variablee in na is assigned a value, the corresponding literals in La are updated,
andd evaluated if they become a-closed or o-assignments (a reduction step). This

888 Chapter 5. The Executable Program Interpretation for DFOL

cann cause yet more variables from n° to be assigned values, which triggers yet
anotherr reduction.

5.5.11 and 0 propagation

Forr conceptual clarity, we use an explicit failure state 0. Computation of <j>
fromm state a fails if all ^-computation paths starting from a end in 0. We will
sometimess need this to ensure that no further reduction attempts will be made
onn a. Both 0 and the improper state •, for 'I don't know', are treated as a states
fromm which no recovery is possible.

5.5.22 Atomic Predicate Test

Inn case we cannot perform an atomic test due to missing values in the input, we
storee the set of needed variables (those for which no values were available), along
withh the literal. If a is the input valuation and Pt\ • • tn is the predicate, the
a-instancee of Pti tn is given by Pt\ • • • t% , and the set of needed variables by:
variti-.t*).variti-.t*). A test that fails produces a transition to the failure state. It makes
noo difference whether we are in build mode or constrain mode.

PtPtxx • • • tn a-closed and (f l , . . . , %) € I[P)

(a,g(a,gaa,l,laa,n,naa,L,Laa,m,maa)) Pt-^t (a,ga,la,na,La,ma)

Pt\Pt\ tn not a-closed

(a,, g\ l\ na, L\ m°) Pt n (a, ga, la, na U W, L; Pf[• • • tan, m
a)

Pti--tPti--tnn a-closed and (*?,.. . ,£) £ I{P)

WW = ««{*?..£)

{a,g{a,gaa,l,laa,n,naa,L,Laa,m,maa)) Pt n 0

5.5.5.5. Moving Closer to DFOL(U) Semantics 89 9

5.5.33 Equality

Iff an assignment to v makes the valuation grow, then we have to adjust the
listt of needed variables (by removing v from it), and the list of constraints (by
performingg the substitution v/d, where d is the computed value for v). However,
evenn if an equality t\ = ti is an assignment for the current valuation, we need not
alwayss perform the assignment: we will only do so when the assignment is to a
locall variable (dynamically bound in the current context), or to a global variable
whilee we are in build mode. When we are in constrain mode all identities that
aree not tests will be put on the constraint list. We will use L[v/d] for the result
off performing substitution [v/d] to every member of L.

Thee simplest case is the case where t\ = £2 is a test. In this case it makes no
differencee whether we are in build or constrain mode. Again, we model failure
explicitlyy by means of a transition to 0. We get:

t\t\ = *2 o-closed and t* = 1%

{a,g{a,gaa,l,laa,n,naa,L,Laa,m,maa)) ^ (a, fl°, la, n°, La, ma)

t\t\ = t? a-closed and t\ # 1%

{a,g{a,gaa,l,laa,n,naa,L,Laa,m,maa)) ^ 0

Iff ti = t 2 is an assignment to a variable v that is local to the current context,
thee assignment is performed, the variable v is removed from the list of needed
variables,, and the relevant substitution [v/d] is performed on the list elements.
Itt makes no difference whether we are in build or constrain mode:

(« «

(« «

t t

99a a

*i i

JJa a

== *2 an a-assignment with t\ = v

n\Ln\Laa,m,maa)) 'i^P (a U H ^ y ,

== t? an a-assignment with t<i = v

na,L°,ma)) *^t (aU{v/t?}, 5°,

,v,va a

ll aa, ,

,v,va a

ll aa, ,

=T,t=T,taa
22=i,v€l=i,v€l a a

nnaa-{v},L-{v},Laa[v/q], [v/q],

nnaa-{v},L-{v},Laa[v/^ [v/^

mmaa))

mmaa))

Iff t\ = <2 is an assignment to a variable v that is global to the current context,
whatt we will do depends on the execution mode. In build mode, we perform the
assignment,, remove v from the list of needed variables, and carry out the relevant
substitutionn [v/d] on the list elements. In constrain mode, we save the identity
onn the list.

90 0 ChapterChapter 5. The Executable Program Interpretation for DFOL

titi = t2 an a-assignment with tx =v,va = t , t2 =X, v £ la

(a,g(a,gaa,l,laa,n,naa,L,Laa,b),b) ^ (oU {v/q},ga U {v},l\na - {«}, L*[t;/f§], 6)

t\t\ = t2 an a-assignment with ti = v, va = t , #j = i > u 4- ̂

{a,g\l\n\L\c){a,g\l\n\L\c) '•!=£ (a,<A/°,na U {v},L;1« = t},c)

t\t\ = t2 an a-assignment with t2 = v,va = t , £? =4-i v £ la

{a,g\l{a,g\laa,n,naa,L,Laa,b),b) '*=$ (aU {v/t\},ga U {v},la,na - {v},L'[v/1fl,b)

hh = *2 an a-assignment with t2 = v, va = | , tf[=1, v £ la

{a,g{a,gaa,l,laa,n,naa,L,Laa,c),c) ^ {a,ga,la,na U M , L ; t ? = ^ ,c)

Finally,, for input states where t\ = t2 is neither an assignment nor a test, we
savee the identity on the list.

titi = t 2 not an a-assignment and not a-closed _ , ,

(a,^ a , / a ,n a ,L a ,m a)) '-*=*? (a,ga,la,na U W,L;t? = *§,m°)

5.5.44 Predicate Test Reduction

Forr efficiency reasons, we indicate the results of a reduction resulting in failure
byy means of a transition to 0. This prevents the futile application of other rules
too the state: we make sure that there are no transitions from 0.

Duee to the fact that identity statements make the valuation grow, test predi­
catess on the unresolved literal list may turn into grounded literals (literals with­
outt variables, i.e., 0-closed literals), in which case we can perform the test. It
doess not matter where a test literal occurs on the list. We indicate this with
L(PtiL(Pti - - tn). In the same context, L() indicates the result of removing all occur­
rencess of Pti • • • tn from the list L.

5.5.5.5. Moving Closer to DF0L(\J) Semantics 91 1

Pt\Pt\ t„ grounded and (ti,...,£„) € I(P)

(a ,^ , /a,n° ,L(Pt1- - - t n) ,ma)) - ^ (a,f l
0,/a,n°,L(),ma)

Pt\Pt\ tn grounded and (t i , . . . , tn) £ I(P)

(a,g(a,gaa,l,laa,n,naa,L{Pt,L{Pt11---t---tnn),m),maa)) - ^ 0

Pt\Pt\ ---tn grounded and (ti,...,tn) £ I(P)

{a,g{a,gaa,l,laa,n,naa,L(^Pt,L(^Pt11---t---tnn),m),maa)) - ^ (a,ga,la,na,LQ,ma)

PtiPti --tn grounded and {ti,...,tn) € I{P)

{a,g{a,gaa,l,laa,L(-^Pt,L(-^Pt11---t---tnn),m),maa)) - ^ 0

5.5.55 Equality Test Reduction

Inn case an equality or inequality on the unresolved literal list is a test for the
currentt input, the treatment is as for atomic tests.

h,hh,h grounded and ti = ti

(a ^ V ^ L ^ t a ^ m ')) - ^ (a,ga,la,na,LQ,ma)

ti,tti,t22 grounded and t\ ^ t2

{a,g{a,gaa,l,laa,n,naa,L{t,L{t11=t=t 22),m),maa)) - ^ 0

ti,tti,t22 grounded and t\ ^ t2

(a . ^ V - . n ' S L H i ^ t ^ m0)) - ^ (a,ga,la,na,LQ,ma)

ti,tti,t22 grounded and t\ = t2

{a,g{a,gaa,l,laa,n,naa,L{-,t,L{-,tll 22),m),maa)) -^> 0

5.5.66 Assignment Reduction

Iff an equality occurs anywhere in the unresolved literal list that is an assignment
forr the current input, then it can be used to extend the input valuation, provided
wee are in build mode.

92 2 ChapterChapter 5. The Executable Program Interpretation for DFOL

(a (a

(a (a

(a (a

,9,9a a

(a (a

ggaa, ,

,9,9a a

l\ l\

99a a

ll aa, ,

t\t\ = t2 an a-assignment with t\ = v, va =

,l,laa,n,naa,L(t,L(t11 22),b)^(aU{v/tZ},g),b)^(aU{v/tZ},gaa,l,la a

titi = t 2 an a-assignment with t\ = v, va =

nnaa,L(h,L(h = t2),b) -U {aö{v/t%},gaU{v}

titi = t 2 an a-assignment with t2 =v,va =

,Z°,, n«, L{h = t2), b) -^ (a U {v/t\},ga,la

t\t\ = t2 an a-assignment with t2 = v,va =

nfl ,L(*ii = t2),b) - ^ (oU{ (j / t J }) 5
0uM

=t,*S S
,n,naa--

, n ° --

,'°,n« «

=4,,, v€l*

M,I()[t;/<S],6))

'-M,L()[^],&))

=4,, v e la

{v},L()[v/n),b) {v},L()[v/n),b)

l -M,L()) [«/<?], 6)

5.5.77 Quantification

Iff we encounter a quantifier 3u in a state with a list L with at least one literal
withh v occurring in it, then we are in trouble. The bookkeeping device for the
sett of needed variables for list reduction is na. In case v € na, there is nothing
wee can do but go to the state of irrecoverable error. The reason is that there is
ann unresolved test involving v on the list, and that test cannot be postponed any
further. .

vv ena

(a,g(a,gaa,l,laa,n,naa,L*,m,L*,maa)) -^> •

Iff 3v is executed in a state (a, oa , / a ,n a ,L a ,m a) , and none of the literals in
LL needs v, we throw away the old a-value of v (if any), and put v in the local
variablee register.

(a a 99a a ll a a nna a TTa a mmaa))

ve ve
3v 3v

dom(a),vdom(a),v £ na

{a-{v/v{a-{v/vaa},g},ga a ii aa u M, nna a mmaa))

5.5.5.5. Moving Closer to DFOL(U) Semantics 93 3

5.5.88 Negat ion

Ass the treatment of negation is rather involved, some preliminary definitions are
useful.. Here is a definition of a reduced computation.

aa —>r b := either a —• b and there is no b ' with b —̂-> b '

orr a —• ai —ï - ^ b, and there is no b ' with b -̂ -> b' .

Wee define a° by means of:

(a,, s°, r , na, L Laa,, ma)° := (a, dom{a), 0, na, La, c).

InIn other words, a° denotes the result of putting the list of global variables of a
equall to the domain of the valuation, making the list of local variables of a empty,
andd putting the state in constrain mode.

Inn terms of —> r we define the set of all outcomes of computations <fi starting
fromm a°, as follows:

O.fo)) := {b | a° -Ur b}.

Inn other words, Oa(0) is the set of all fully reduced output states that are the
resultt of executing <f> in state a0.

Next,, note that if we take care to always execute formulas in the scope of
negationn in constrain mode (this is part of the definition of a°), no global assign­
mentt ever takes place (as is easily verified by inspection of the rules). In constrain
mode,, instead of assigning a new value to a global variable v, we put a constraint
onn v on the list. In other words, the members b of Oa(0) will all be safe, in the
sensee that they all will satisfy gb = dom(a).

Thee members of Oa(<f>) fall in the following categories:

•• b is simple if b has the form (6, gb, lb, 0,0, c). A simple state is one with an
emptyy list of literals.

•• b is constrained if b has the form (6, gb, lb, n°, L°, c), with na ^ 0, L ^ 0.

•• b = 0: the failed state.

•• b = •: the don't know state.

Inn cases where the set of outcomes Oa(0) contains at least one simple state, we
knoww that the embedded computation has succeeded, so the computation of -y<j>
fromm a should fail (we should get an explicit transition to 0):

bb € Oa(0) with b simple.

94 4 ChapterChapter 5. The Executable Program Interpretation for DFOL

Iff O a(0) = {0}, we know that the embedded computation has failed, so the
computationn of - 0 from a should succeed:

Iff the set Oa(<£) — {0} is non-empty and contains only constrained states, we
cann dualize it. If I is an atom or identity A, then Ï is its negation ->A; if c is a
negatedd atom or identity ->A, then c is the unnegated literal A. We call c the
complementt of c.

Dualisationn of a list of constrained states means constructing all lists of literals
thatt result from picking the complement of a literal on the constraint list of each
off the constrained states, provided no variable in such a literal is in the local
variablee list.

Thee reason for the proviso is that negating a constraint with an existentially
quantifiedd variable cannot be expressed as a literal constraint on variables. At a
laterr stage we might wish to take such 'universal constraints' on board as well,
butt here we refrain from doing so, and in such cases we simply admit defeat and
givee up. The function U from lists of states to V{{»}) indicates whether dualizing
aa list of states gives rise to universal constraints:

" " TrnTrn__ . x , L j if for some j with 1 < j < n, var(LbJ) n lhj ^ 0,
U{bU{buu...,b...,bnn)) := ^

otherwise. .
Extractingg the dual lists of constraints from a list of constrained states is done
withh D, defined as follows:

D{hD{hltlt...,..., bn) := {(ci; n)\cje Lb*, var[Cj) n lhj = 0 for 1 < j < n}.

Sincee a set of states represents the disjunction of all the possible execution
pathss to the present, and the list of literals in each state is to be read as a
conjunction,, the dualization is simply the result of negating the whole disjunction
whilee keeping the disjunctive form. E.g., if bi has constraint list Lx = (Px; Rxy)
andd b2 has constraint list L2 = (Qx; ->Sxz), and x, y £ lbl, x, z £ Zb2, then

£>(bi,, b2) = {(^Px; -Qx), (-Px; Sxz), {^Rxy; -Qx), (-.Rxy; Sxz)}.

Iff L is a list of literals, var[L) is its list of needed variables.
Wee now use dualization to compute the continuations of a state a, given

negatedd constrained states b i , . . . , bn. Assume that a has the form (o, ga, la, n°, La, ma)

Da(b1). . . ,bn) :={(a, f l
0U^rn aUt;aKi ')) i

o; i ' ,m a) |L '€r i (b 1, . . . ,bn) }UC/(bi) . . . ,bn) . .

wheree vL' is the set of global variables present on V.
Thee next rule uses dualisation to compute appropriate lists of literals.

5.5.5.5. Moving Closer to DFOL(u) Semantics 95 5

Finally,, we need a rule to specify the cases where the negation cannot be
correctlyy computed. This happens when • G Oa(0), while Oa(0) does not contain
anyy simple states.

5.5.99 Composition, Union, Bounded Search/Choice

Nothingg out of the ordinary here. Using a, b, c as shorthand for (a, ga, la,na,La, m°)
etc,, we get:

aa —> b
a a

a a

 b b -=> c

aa c

—> b b — c

aa — • a a —y c

aa ^ {a,ga,la,na,La,ma) ^U b
;; t° = t ^ ! l ; <° = JV

(a,5a , ;°,na ,La ,ma)) -*-• • (a,5°,/a ,na ,La ,ma) -*-• b

11 I 11» . /fc ^ '

(a,<7Va,<Z, f l,m°)) U ^ 4 * • (a,g*,la,na,La,m*) ^

[a,g[a,g ,i ,n,L , m) » D = = < <

(a , sV a , n a , £ a ,m 0)) - ^ b

96 6 ChapterChapter 5. The Executable Program Interpretation for DFOL

5.66 Ways of Running the Dynamo Execution
Process s

Itt is convenient to define the outcome of a Dynamo computation process as a set
off reduced states. Let a valuation a be given. Then the state based on a is the
statee sa given by:

(a,, dom(a),0,0,0,o).

Thee result of running <f> from state sa is given by:

RRSaSa{(f>){(f>) := {b | 3a such that sa —> a - ^ b}.

Inn other words, the result will not contain states with grounded literals on their
constraintt lists, for such grounded literals represent tests that can be applied, and
theyy will be applied during the —• steps.

Inn addition, it may be useful to check the constraint lists for consistency, by
meanss of applying a rule like the following:

leLhleL leLhleL
(a,£V a ,n a ,L a ,m f l)) - ^ 0

Ass a special case, we have execution from the state of minimal information
s«,, = (0,0,0,0,0,6).

Alsoo special is the case where Dynamo execution starts out from a test state
forr <f), i.e., from an initial valuation a with var[<f>) C dom(a), where var[<j>) is the
listt of variables that occur dynamically free in 0. One should be able to prove
thatt if execution starts out from a test state for <f> the states that result from the
executionn will not be constrained.

AA final possibility that should be noted here is execution of <f> from an initial
statee that imposes a list of constraints L, say with valuation a:

(a,(a, dom(a), 0, var(Ls), L$,b).

Thiss can be useful for putting initial constraints on computed solution sets.

5.77 Faithfulness to DFOL(U)
Thee new notion of state of a computation requires us to redefine also the notion
off faithfulness to DFOL(U): now, a state will represent possible valuations in the
followingg way:

5.7.5.7. Faithfulness to DF0L(U) 97 7

rr {b € Dv | a C è,V/ € La(Af K 0} if * g {#,0},
Fa:= ii {•} ifa = «,

00 if a = 0.

Noticee that there is no guarantee that Fa ^ 0 even if a / 0; there might be
noo valuation b that simultaneously satisfies all the ungrounded literals.

5.7.1.. THEOREM (CONDITIONAL FORWARD PROPERTY). Suppose a—> b, with
ll aa u gb C dom(a), n° C n6, L6 extends La. Then a<d implies there is a b' y b

withwith d -£+ti.

5.7.2.. THEOREM (FAITHFULNESS TO D F O L (U)) . The execution mechanism is
faithfulfaithful to DFOL(u), in the following sense: for all M, <f>: if a —> b, b ^ •,
ll aa U gb C dom(a), then either:

•• b^ 0 and for all a' e Fa there is ab1 e Fb with o'[0]£*,

•• b=0and for all a' € Fa, [<£] £* = 0

Froo/.. By induction on the structure of <f>. We will show the proof for the case of
negationn for illustration.

Assumee that there are a, b such that a —t b, b ^ •, la U gb C dom(a).
Assumee further that b / 0. Then, we must prove that for all a' G Fa there is a
tfeFfcwitha'fofótfeFfcwitha'fofó44. .

Iff b ^ 0, there are two main possibilities:

•• b = a. This happens when Oa{4>) = 0. In turn, by inductive hypothesis,
wee know that if Oa(<f>) = 0, then Oa>((f>) = 0 for any a' G Fa.

 be a{Oa{(t>) - {0}), with all members of Oa{<f>) — {0} constrained. We know
thatt for all members of a (b i , . . . ,b n) , the variables from the newly added
constraintss are in the global variable list gb. Since by hypothesis / "U^ C a,
extendingg a will not produce any simple b € Oa>{<f>)\ all the atoms in the
literall lists of Oa'(0) ^ ^ De already grounded. Otherwise the elements of
OOaa'' {(f>) will not be 0 or • because of the inductive hypothesis. Then, the
listss of literals in the elements of Dal{Oa>{<j>) - {0}) will be the same as for
a,, which means that the new dualized states will simply be extensions of
thee previous ones.

Iff b = 0, then this means that there is a simple element of Oa{<j>) — {0};
byy inductive hypothesis, the corresponding element of Oa> {<!>) — {0} will also be
simple,, therefore \<j>\^ = 0 -\

988 Chapter 5. The Executable Program Interpretation for DFOL

5.88 Conclusion

Wee have presented an interpretation of DFOL formulas as programs, and an ex-
ecutionn mechanism for DFOL(U). This allows us to write imperative programs
whichh have a declarative semantics, which in turn makes it very simple to verify
thatt programs perform the tasks for which they are written; however, the treat-
mentt of negation is a bit involved, and universal quantification usually results
inn the • state. Seeking a way to solve this problem, we decided that since we
weree trying to approximate the semantics of the logic, we might as well do it
withh semantic tableaux [Smu68]. In the next chapter we will present a calculus
designedd for the verification of DFOL programs; later we will present the tableau
enginee which went into the latest version of Dynamo.

Chapterr 6
Hoaree Calculus for DFOL

6.11 Hoare Calculus
Inn Chapter 1 we introduced the concept of using logic for program verification:
wee will expand on the subject now. If we want to be able to use logic to verify
thee correctness of a program, we will need a language in which properties of the
programm can be expressed, with a set of rules that allow us to construct well-
formedformed formulas. This is called an assertion language and its wffs are assertions.
Off course, we also need a proof system: the axioms and rules that let us prove our
assertions.. This proof system should have the property, naturally, that it only
allowss us to prove true assertions; ideally it should allow us to prove any true
assertion. .

Thee Hoare calculus deals with a logic (the Hoare logic) in which one can for-
mulatee propositions about the correctness of programs. If we call the assignment
off values to variables a state, and A and B are assertions about a state, a pro-
gramm <f> satisfies the specification (̂ 4, J5), if for any state g satisfying A the state
reachedd by executing 0 satisfies B. However, the possibility that a program does
nott terminate at all must be taken into account, so we distinguish between partial
correctness: :

{A}<f>{B}{A}<f>{B} *=* Vg(M \= 9A=* V/i(M" = • M \= h B))

andd total correctness:

[A]4>[B][A]4>[B] ^ Vg(M h , A = • W»((,[*]£< = • M K B) A \<j>\f * 0))

Thuss given a specification (A,B), we may consider that the job of the program­
merr is to find a program <f> such that {.A}0{i?}, or even [J4]0[B] is true. The
Hoaree calculus provides us with the means to derive true assertions about atomic
statements,, and to combine them into true assertions about programs.

99 9

100 0 ChapterChapter 6. Hoare Calculus for DFOL

6.22 Why the Executable Interpretation of DFOL
iss particularly adequate for programming

Thee idea behind the executable interpretation of DFOL is precisely to have a
programmingg language whose semantics are devoid of side effects or control fea-
tures;; the Hoare calculus for such a language would be clean and simple. We
presentedd the interpretation in the previous chapter; now it becomes clear why it
iss important to have a declarative semantics for the language. If we were to have
thee calculus deal with the program state as defined in Chapter 5, it would be
tooo cumbersome and impractical. Instead, we can trust the that interpretation
iss faithful to DFOL and work with the much cleaner semantics of the logic itself.

Wee will expand on the language presented in Chapter 5 to include explicit
bindingsbindings (a); we'll also suggest rules for dealing with the hiding operator (3 x (</>))
andd with the Kleene star operator at the end of the chapter.

Ass we stated on 1.4.12, given a signature of function and predicate symbols,
thee syntax of DFOL(U, cr,^,*) is as follows:

tt ::= v\ ft (Terms)
<f><f> ::= a\3v\Pt\t1=t2\ 3x(<j>) | -.(0) | fa; fa \ {<f>i U fa) \ 4>* (Formulas)

6.33 The Rules

Ass we said in Chapter 1, the use of negation as failure forces us to adopt a slightly
differentt set of correctness criteria. We have then two kinds of correctness rules:
existentiall and universal. Their meaning is the following:

MM h {A)4>{B) «=> V<?(M \=g A = » 3h(8[<f>\? A M h ^))

MM \= {A}<f>{B} <=• V5 (M \=9A = • \/h (Mi" = > M K B))

Notee that universal correctness is equivalent to the old partial correctness, but
existentiall correctness does not guarantee that all terminating executions of <f)
satisfyy the postcondition. We can see, however, that if <f> satisfies { J 4}0{B}

andand (A)(f>(T), then total correctness is achieved. Note also that universal and
existentiall correctness rules are interdependent for the case of negation. Now,
wee enunciate the rules of the calculus. This is an adaptation and expansion of a
calculuss presented by van Eijck and de Vries [vEdV92] for a different extension
off DFOL.

Theree are also rules for defined Dynamo constructs, such as bounded iteration
andd bounded choice. As the constructs are defined in terms of operators for which
theree is a rule already, these rules are derived from the basic rules too, and are

6.3.6.3. The Rules

Figuree 6.1: Universal correctness rules:

Existentiall quantification:

Substitution: :

Equality: :

Predicates: :

Negation: :

Sequentiall composition:

Union: :

Rulee of consequence:

Filterr Rule:

{VxA}3x{A} {VxA}3x{A}

{Aa}a{A} {Aa}a{A}

{(*ii = h) - • A}tx = t 2{A}

{Pt{Pt -» A}Pt{A}

(A)t(T) (A)t(T)
{Av{Av B}^(<f>){B}

{AfaiB}{AfaiB} \B\MC\
{A}{A} Uu;**) {C}

{A\MC}{A\MC} {B\MC\
{AABjifau^iC} {AABjifau^iC}

\AT^{B\\AT^{B\ XM\=(A'->A)*ndM\=(B^B')

{A\<f>{B\{A\<f>{B\ {WUI
{44 V C}<f>{B}

calledd admissible rules. All that is needed for them is to prove that they follow
fromm the basic rules.

6.3.1.. LEMMA (Dynamo CONSTRUCTS). The following rules are admissible:

UniversalUniversal correctness:

ExistentialExistential correctness:

BoundedBounded iteration

{A}<t>{A} {A}<t>{A}
{A)F{A} {A)F{A}

(A)<t>(A) (A)<t>(A)
{A)P{A) {A)P{A)

BoundedBounded search

{A}J>{B} {A}J>{B}

{Vve{N,...,M}:A}[f{Vve{N,...,M}:A}[fNN„„ MM<t>{B} <t>{B}

(A)<t>(B) (A)<t>(B)
(3ve{N,...,M}:A)[f(3ve{N,...,M}:A)[fNN„„ MM<j>(B) <j>(B)

Proof.Proof. We first consider universal correctness for the constructs. We show that
boundedd iteration is admissible by induction on the number of iterations.
Forr n = 0, we have fl[0°l^ iff g = h. So, {A}(j>n{A} is trivially true.
U{A}<f>U{A}<f> nn{A}{A} = > {A}(l> n+1 {A}, then Vn€N,{A}<t>n{A}

file:///B/MC/

102 2 ChapterChapter 6. Hoare Calculus for DFOL

Figuree 6.2: Existential correctness rules:

Existentiall quantification:

Substitution: :

Equality: :

Predicates: :

Negation: :

Sequentiall composition:

Union: :

Rulee of consequence:

Combinationn Rule:

(3xA)Bx{A) (3xA)Bx{A)

(Aa)a(A) (Aa)a(A)

{A{A A (ti = t2))h = t2(A)

{A{A A Pt)Pt{A)

{A)(4n\4>2){C) {A)(4n\4>2){C)

(A)MC)(A)MC) (B)<h(C)
(/W5)(^U02)(C))

(AW&)(AW&) XM\=(A'->A)&ndM\=(B^B>)

{A}<t>{B\{A}<t>{B\ (C)<t>(T)
(A(A A C)<f>{B)

Noww we can apply the sequential composition rule:

n n

{A}^7${A}{A}^7${A} {A}<f>{A}
{A}^_^{A} {A}^_^{A}

n+l l

Seq.comp p

wheree the left premise comes from the inductive hypothesis.
Forr the case of bounded search, we know that

{Aa}a{A}{Aa}a{A} {A}<j>{B}
{Aa}(a;<t>){B} {Aa}(a;<t>){B}

Seq.. comp

So,, the correctness condition for each disjunct can be expressed as {.A[i/t;]}([i/v]; 4>){B},
andd then the whole expression can be derived by repeated application of the Union
rule: :

{A[N/v]}([N/v];{A[N/v]}([N/v]; <£){£}... {A[M/v)}([M/v] ; <j>){B)
M M {KT=NA[i/v]}\j{KT=NA[i/v]}\j NN...M){B} ...M){B}

Union n

M M Finally,, /\i=N A[i/v] is true under g iff for all values of i between N and M, >4[i/t;]

6.3.6.3. The Rules 103 3

iss true under g. That is, we can apply the Consequence rule to prove

V»» e {AT,..., M} : A = > / £ „ A[i/v] {f£N A[i/v}} \JN...U{4){B}

{Vv€{N,...,M}:A}[f{Vv€{N,...,M}:A}[fNN,..,..MM(<j>){B} (<j>){B}
Cons s

Noww we show how the existential version of these rules is admissible. We start
withh bounded iteration, again arguing by induction on the number of iterations:
Forr n = 0, we have ff[0

0]^ iïïg = h. So, {A)<j> n{A) is trivially true.
\i{A)<f>\i{A)<f> nn(A)(A) => (A)(j>n+l{A), thenVn€iï,(A)<j>n{A)
Noww we can apply the sequential composition rule:

(A)) 0 ; . . . ; 0(A) (A)4>(A)
T-TT—— -j-jT beq.comp
((AA)&^j£()&^j£(AA))

n+l l

wheree the left premise comes from the inductive hypothesis.
Forr the case of bounded search, we know that

// v— Seq. corap

So,, the correctness condition for each disjunct can be expressed as (A[*/u])([i/v]; <I>)(B),
andd then the whole can be derived by application of the Union rule:

{A[N/v]){[N/v]{A[N/v]){[N/v] ;; 0) (B) . . . {A[M/v])([M/v]j tf>)(B) .

(V*L(V*L NN
AAliM){fliM){f NN......MM(<!>)(B) (<!>)(B)

Finally,, Vf=jv -̂ [*/*'] ls true under g iff there is a value of i between N and M
suchh that -4[i/v] is true under g. That is,

BvGBvG {7V,..., M} : A = » y g „ A[i/v] (V ^ A[i/v}) \JNm„(4>){B)
{3v{3v e {AT,..., M} : A) [fN...M{<t>)(B) ^ ° n S

Theree are two properties that make a proof calculus useful. The most basic is
soundness:soundness: it should never produce false statements. The other, complementary
property,, is completeness: one should be able to obtain every true statement that
iss expressible in the calculus. Clearly, while not achieving absolute completeness
iss bad, not achieving soundness is catastrophic. We will now test our calculus for
thesee two properties.

104 4 ChapterChapter 6. Hoare Calculus for DFOL

6.44 Soundness

Soundnesss (Existential rules):

MM h (A)4>{B) = • Vg{M \=9 A = • 3/i(,[*]£< A A< K «)),

thatt is, if we can derive (A)0(.B) in a model M, then for all states g satisfying
A,A, there must exist a state h such that g[</>l̂ and h satisfies B.

Soundnesss (Universal rules):

MM h {A}cf>{B} => Vg(M \=g A = • V/i(, [0] * = • M K B)),

thatt is, if we can derive {A}0{I?} in a model M, then for all states g satisfying
A,A, all states h satisfying g\<j>\^ must also satisfy B.

6.4.1.. THEOREM. Soundness of the calculus: The calculus presented in Figures
6.16.1 and 6.2 is sound.

Proof.Proof. We argue by induction on the structure of <j>. That is, if all the axioms
aree logically valid, and for every model M the application of an inference rule on
formulass valid in M. results in a formula valid in M, then the derivations obtained
withh the calculus will always be valid. We start our proof with the axioms and
ruless for universal correctness.

•• 3x: Suppose we have derived {VrcAlEblvl}. Then we must prove that if
theree is an assignment g under which \/x(A) is true, and furthermore there
iss a successful execution of 3x terminating in assignment h, then A must be
truee in h. We know that (1) j p a ;] ^ iff g and h differ at most in the value
off x, and (2) M. \=g VxA iff no matter what the value of g(x),M. \=g A.
Therefore,, for all d £ V, if h = g*, then M [= h A.
Promm (1) and (2), we know that Vh(9\3x\^,M \=k A).

 a: Suppose we have derived {j4cr}cr{A}. Then we must prove that if there
iss an assignment g under which Aa is true, and furthermore there is a
successfull execution of a terminating in assignment h, then A must be true
inn h. We know that (1) g\o\^ iff h = go, with a = [£i/xi,.. •, tn/xn], and
(2)) M \=g Aa iff M \=g A[ti/xi,..., tn/xn], so M \=h A, for
hh = g[t1/xi,...,tn/xn].

•• Pi: Suppose we have derived {Pt =>• A}Pt{A}. Then we must prove that
iff there is an assignment g under which Pt => A is true, and furthermore
theree is a successful execution of Pt terminating in assignment /i, then A
mustt be true in h. We know that s [-£**]£* iff h = g and Pt is true in g. As
hh = g,{M\=hPtAPt->A) = • M \=h A.

6.4-6.4- Soundness 105 5

•• h = h' Analogous to Pt.

 Suppose we have derived {.A V £}->(0){B}, and that the premises
themselvess are sound. Then we must prove that if there is an assignment g
underr which A V B is true, and furthermore there is a successful execution
off -*((j>) terminating in assignment h, then B must be true in h. We know
thatt (1) j ï - 1 ^)] ^ iff g = h and there is no i such that $[0]^.
(2)M(2)M \=gAVBffi M \=g AOTM \=g B.
(3)) (A)<f>(T) iff for all g that satisfy A there is an h such that 5[<^]^.
Byy (3), for those g such that M \=g A, there is no h such that 9[~

,(<£)]ft/<-
Forr those g such that M \=g B, all h such that <,[_,(^)]ft/f will be equal to
g,g, so M \=h B.

 fa; fa: Suppose we have derived {A}fa]fa{C}. Then we must prove that
iff there is an assignment g under which A is true, and furthermore there is
aa successful execution of fa; fa terminating in assignment h, then C must
bee true in h.

Wee know that (1) {A}^i{£} iff for all g under which A is true, all h such
thatt stijft* will make B true.
(2)) {B}fa{C} iff for all g under which B is true, all h such that g[fa]^
willl make C true.
(3)) »I0i;^2lh* iff t n e r e i s a11 s u c n ^ a t sl^ilf1 an(* «ï^]^*-
Byy (1) and (3), there is an i such that g[fa]t*, i[fa]h*, and M \=i B.
Byy (2) and (3), M \=h C.

•• fa U fa: Suppose we have derived {A}^i U fa{C}. Then we must prove
thatt if there is an assignment g under which A A B is true, and furthermore
theree is a successful execution of fa U fa terminating in assignment h, then
CC must be true in h. We know that (1) {>l}0i{C} iff for all g under which
AA is true, all h such that ^ I] ^ will make C true.
(2)) {B}fa{C} iff for all g under which B is true, all h such that g[fa\j*
willl make C true.
(3) f [^ iU^] ^ i f lF , [^] jMor ,M^ . .
(4)) A* \=g A A £ iff M [=9 4 and jVf ^ £ .
So,, if , [* iK \ by (1) and (4), M h , C.
So,, if ,[*»]£<, by (2) and (4), M \=g C.

 Filter Rule: Suppose we know that (1){A}${B} and . Then we
mustt prove that if there is an assignment g under which (AwC) is true, and
furthermoree there is a successful execution of <f> terminating in assignment
h,h, then B must be true in h. We know that (3) (A V C) is true in g iff A is
truee in g or C is true in g
Supposee there is a g such that (A V C) is true in g, and assume there is

1066 Chapter 6. Hoare Calculus for DFOL

ann h such that j , ^] ^ * . By (2) and (3), A is true in g. Then, by (1), and
assumption,, B is true in h.

Existentiall rules: We proceed to show the existential correctness rules to be
sound,, again by induction on the structure of <j>.

•• 3x: Suppose we have derived (3x : A)3x(A). Then we must prove that if
theree is an assignment g under which 3x : A is true, there is a successful
executionn of 3x terminating in assignment h under which A is true. Let's
assumee such a g exists. We know that sl^x]^1 iïï g and h differ at most in
thee value of x. We also know that M \=g {3xA) iff there is a d0 € V such
thatt A is true in g$>.
Wee can assume h = g$>, and then we know that 9[3x]j^ , and A is true in
h. h.

•• a: Suppose we have derived (Aa)a(A). Then we must prove that if there is
ann assignment g under which Aa is true, then there is a successful execution
off a terminating in assignment h under which A is true. Let's assume
thenn that such a g exists. We know that pl^]^1 iff ft = go. That is, h =
g[ti/vi,g[ti/vi,...,..., tn/vn] always exists.
Now,, M \=g (Aa) iSM \=g[t t/vi,...,tn/vn] (A); that is, A is true in h, for
hh = g[t1/vi,...,tn/vn].

 Pi: Suppose we have derived (A A Pt)Pi(A). Then we must prove that
iff there is an assignment g under which (A A Pt) is true, then there is a
successfull execution of Pi terminating in assignment h under which A is
true.. Let's assume then that such a g exists. Now, (A A Pi) is true under g
ifff M \=g A A M \=g Pi, and g[Pt\^ iff h = g and Pi is true in g. So such
ann h always exists, and M \=h A.

 Equality tests: Same as for Pi.

 ->(0): Suppose we have derived (A)->(0)(A), knowing that {̂ }</»{_L}. Then
wee must prove that if there is an assignment g under which A is true, then
theree is a successful execution of ->(0) terminating in assignment h under
whichh A is true. Let's assume then that such a g exists. We have then that
(1)) if g makes A true then there is no h such that gl^]^1.
(2)) j H ^)] ^ iff 9 = h and there is no i such that J^tf*.
Byy (1) and (2), we have that 3h = g : ^ H ^)] ^ , and as h = g, M (=/, A.

 (<j>i U 02): Suppose we have derived (A V B)(<j>i U 4>2){C), knowing that
[A)<f>i(C)[A)<f>i(C) and (B)fa(C). Then we must prove that if there is an assignment
gg under which A VB is true, then there is a successful execution of (</»i Ufa)
terminatingg in assignment h under which C is true. Let's assume then that
suchh a g exists. We have: (1) If g satisfies A, then there is an h such that

6.5.6.5. Completeness 107 7

S[0I]A,, and h satisfies C.
(2)) If g satisfies JB, then there is an h such that g[^2]/i, and h satisfies C.
Wee know that (3) ,[(fc U fa)\$* iff ,foifó< or 9\fa\j*.
Now,, (4) M \=g {A V B) iff A is true in g or 5 is true in g.
Lett us assume first that A is true in g. Then, by (1), there is an hi such
thatt s[0 i j ^ and C is true.
Now,, if B is true in g, by (2), there is an h? such that S[02]A? and C is true.
Then,, by (3) and (4), there is an h such that g[(fa U (h)]^1 and C is true.

•• 0i; «for Suppose we have derived {A){<j>i U «foXC), knowing that (A)<f>i(B)
andd (B)<fo{C). Then we must prove that if there is an assignment g under
whichh A is true, then there is a successful execution of <j>i;(fa terminating
inn assignment h under which C is true. Let's assume then that such a g
exists.. We have: (1) If g satisfies A, then there is an h such that j,[0i]/»>
andd h satisfies B.
(2)) If g satisfies B, then there is an h such that fl[<fo]fc, and h satisfies C.
(3)) «[0i; foK* iff there is an i such that 9[0i]-" and {[(h]^-
Byy (1), there is an i such that g l ^ i] ^ that satisfies B.
Then,, by (2), there is an h such that «[^Ih4 t n a t satisfies C.
N o w , ! * ® ,, JfcjfcK4 .

•• Combination Rule: Suppose we have derived (A A C)<f>(B), knowing that
(A)4>(B)(A)4>(B) and {C}<f>{T}. Then we must prove that if there is an assignment
gg under which A A C is true, then there is a successful execution of <f>
terminatingg in assignment h under which B is true. Let's assume then that
suchh a g exists. We know that (1) for all g that make A true, all h such
thatt ? [0] ^ will make B true.
(2)) for all g that make C true, there is an h such that ^[0])^.
(3)) M h , A A C iff M \=9 A and M (=, C*.
Byy (2) and (3), there is an h such that ff[0]^-
Byy (1) and (3), B is true in h.

6.55 Completeness
Wee shall prove completeness of the calculus for formulas in DFOL (cr, U)

6.5.1.. THEOREM. (Completeness of the calculus): For all models M, and all
programsprograms <j) € DFOL(cr, U),
ijMijM \= {A}<j>{B} andM \= {C)<t>{D), then {A}<j>{B} and{C)<f>{D) are derivable
inin H + T, where T = Th{M) (the theorems ofM).

108 8 ChapterChapter 6. Hoare Calculus for DFOL

Proof.Proof. By simultaneous induction on the structure of (f>. We define the predi-
catess wup(< ,̂ B) (weakest universal precondition) and wep(0, B)(weakest existen-
tiall precondition) as

MM \=g wupfofl) ^ VM Mt* = • M h* B),
MM K wep(0,B) <É=> 3ft(glflt1 A M h B),

andd we prove that the calculus gives the wlp(0, B) for the universal rules and the
wep(0,, B) for the existential rules. As these predicates are the weakest precon­
dition,, they must be implied by any precondition for the triples to hold; we can
thenn use the consequence rule to derive any valid Hoare triple we may encounter.

3x: 3x:

MM \=g wup(3x, B) ^=> VhiglBx]? = » M\=hB)

\/h(g\/h(g ~xh = > M[= hB)

Vdd € V : (M |=^ B)

MM \=g VxB

Sincee the wup(3x, B) is equivalent to VxB, we know that for all g, A implies
wup(3x,, B). Then, by the consequence rule,

AA -> VxB {4xB}3x{B}
Cons s {A}3x{B} {A}3x{B}

Wee can limit ourselves then to prove that the antecedent given by the rules
iss always the weakest precondition for each rule.

MM \=g wep(3z, D) <=> 3h(g[3x]£ i AM\=hD)

3h(g~3h(g~xxhAM\=hAM\=hhD) D)

3deV:(M^3deV:(MĝigiD) D)

MM \=g3x(D).

xx = t:

MM h 9 wup(x = t,B) <=> \th{ g[x = *]£* = • M \=h B)

\fh{(g\fh{(g = hAM\=gx = t) => M\= h
B)

M\=M\= gg(x(x = t)^B

6.5.6.5. Completeness 109 9

MM \=g wep(x = t, D) «=• 3h(g[x = t]^AM \=h D)

<=3><=3> h = gAM\=gX~tAM\=hD

«=>> M\ ĝx~tAD.

MM \=9 wup{a,B) <=* Vhigia]? => M \=h B)

Vh(kVh(k = ga => M \=h B)

M\=M\= 99Ba Ba

MM \=9 wep(a, D) *=> 3h{g[a]^ A M \=h D)

3h(k3h(k = goAM\=hD)

MM \=9 Da.

Assumee M (= {A}^{<t>){B}. To prove: M h {A}^{<f>){B}.

Byy inductive hypothesis, we have that

M\=M\= gg(wep(<f>,T))(wep(<f>,T)) = * Aih, (wep(^ ,T))

M\=g{wuM\=g{wuVV = *

M\=g(wup{-^(cl>),B))M\=g(wup{-^(cl>),B)) *=* VhigHM*1 => M K B)

^=>^=> Vh((h = S A -.3i(p[0]^)) = • M K B)

4=>> V/i((/i = 5 A ^M \=g wep(0, T)) = • M\=hB)

«=•• Vft(/» = s = * .M (=9 (wep(<£, T) V B))

<^=><^=> M \=g (wep(0, T) V B)

Wee know that M (= {A}->(<f>){B}, and that this means M \=g {A ->
wup(i(0),B)),, and therefore A4 (=p (4 -» (wep(0,T) V £)) Then, .M h
(i44 -+ (wep(0, T) V B)).
Existentiall case: Assume M \= (G)-^(4){D). To prove: M h (C)-.(<£)(£>)

A1 |= , (wepH^) , f l))) <=» 3h{g[^)\^AM\=hD).

<=><=> 3h{h = g A -3ï(s[0lï" A M K *>))
«=•• .M |=s wup(<£, I J A M ^ Ü
^ ̂ M\=3 (wup(0, _L) A D)

1100 Chapter 6. Hoare Calculus for DFOL

So,, by definition of weakest existential precondition and inductive hypoth-
esis,, M \=g (C)-.(0)(D) =^ M\-g (wup(0, _L) A £>),
whichh means we can derive M. h (C)-i(0)(J9).

•• 0i; 02: By induction hypothesis, we have that

•Mr-{wup(fc,fl)}} 02 {B},

A ^ h { w u p (0 ! , W U p (0 2 , o)) }} 0x (WUP(02,B) }

soo that the sequential composition rule will result in

{wup(0i,wup(02,JB))}} 0i;02 {B}

Wee should prove then that M \=s wup(0i; 02, B) —• wup(0i, wup(02, B)).
Assumee M \=g wup(0i;02,i?). To prove: M \=g wup(0i, wup(02,.B))

-- If M(5 [0i]^) , the result is trivially true.

* - I f 3M s [0 i] ^) , t h en : :

** if ^i(/i[02]f^5 the result is again trivially true.
** if 3z(ft[02]f, then M \=i B, and then M \=g wup(0i, wup(02, B))

Thee existential counterpart is analogous: by induction hypothesis,

(wep(02)JB))) 02 (fl),

(wep(01,wep(02,B)))) 0! (wep(02,£))

soo that the sequential composition rule will result in

{wep(0i,wep(02,B))}} 0i ;02 {B}.

Wee should prove then that wep(0i;02, B) ==> wep(0i, wep(02,.B)).
Assumee M \=g wep(0i;02,.B). To prove: M \=g wep(01,wep(02,B))
Ass M \=g wep(0i; 02, B), we know that 3i{g[4>i; 0 2] ^ A M H B).
Now,, that means that 3/i(s[01]^ A hlfo]?4), and therefore
MM \=g wep(0i, wep(02, B))

•• 0i U 02= By induction hypothesis, we have that

Mh{wup(<j>Mh{wup(<j> uuB)}B)} 0! {B},

Af(-{wup(02,B)}} 02 {£}

Byy the Union rule,

>fl-{wup(0i,B)Awup(02,JB)}} (0!U02) {B}

Completeness Completeness 111 1

Wee should prove then that M \=g wup(0i U fe, B) ->• (w u p ^ B) A
wup(<£2,B)). .
So,, assume M \=g wup(0i U <fo,B). To prove: M \=g wup(0i,B) A
wup(02,, B)

MM \=9 wup(0! U fo, B) *=* V/i(ff[4>i U <h\V = » M K B)
< ^^ Vh((,[0il£* V9 MJW) = • A< K B)

Assumee 3/i(«,[<£i U (fo]^)- Then, we know that M K B.
Now,, assume ~>M K wup(</>i, B). If ^ ï l / J 4 , then there is an h such that
gl&iUfalf?AMgl&iUfalf?AM K ""B, which contradicts At K W U P (0 I U 0 2 , B) . Similarly
forr wup(<fe,B), so At K w uP(0i u 02, B) = > At K (wuP(0i>B) A
wup(^2,, B)), and by inductive hypothesis M \-g (wup(0i, B) A wup(<^2, B))
So,, if At f= {^4}0i U <^{B}, then At h (A -+ (wup(0i, B) A wup(02, £))) .
Noww for the existential part: Assume M \= {A)(<f>i U 02)(B). To prove:
M\-{A){tfnU4>2){B). M\-{A){tfnU4>2){B).

- M K (w p (^ i . B))) *=* 3 f c (, [^ i] ^ A M K B) ,
MK(weP(<A2,B))) <=• a ^ M ^ A M K B)

Byy inductive hypothesis, we have that

Mt=Mt= aa{wep{4n,B)){wep{4n,B)) => X h9 (w e p (^ , S))

M\=M\= gg{wep{(h,B)){wep{(h,B)) = * M\-g(wep(ch,B))

(wep(^,, B))fr (B) (wepC^, B))<j> 2{B)
Byy the Union rule, (wep(0i, B) V wep(<^, B))0i U 02(B)

Too prove: At [= (>1 =>• wep(0i,B) V wep(02, B)). We know that At (=
(AA -> wep(0i U fa, B)); if we assume there is a g such that M \=g A, we
mustt prove that M \=g (wep(0i, B) V wep(<fo, B)).

A < K w e P (0 i u & ! , B))

All K w e P (0 i u ^ B)

Then,, A4 K A ~> wep(0i, B) V A* K weP(02> B),

concludingg our proof.

= >> 3/i(9[<AiU^]f A At K B)

= •• 3 / i ((f l [0 i] ^ V f f M 3 r) A A l K B)

= >> A< K wep(^i, B) V A! K weP(02' B)
= ** At K weP(<h> B) V At K weP(^2' B)

112 2 ChapterChapter 6. Hoare Calculus for DFOL

Wee now have a calculus that allows us to verify both partial and total cor-
rectnesss for DFOL(cr, U) formulas under the executable interpretation presented
inn Chapter 5. If the execution mechanism of Dynamo is faithful to the executable
interpretation,, then our calculus is also useful for verification of Dynamo pro-
grams.. In the next chapter, we will present an execution mechanism that is even
closerr to the semantics of DFOL(cr, U); since we want to respect the semantics of
aa logic, we will use a theorem prover to run our programs. But first we want to
proposee two additions to the language that make it much more expressive: local
variablee declaration and WHILE loops, or in logical terms, the 3 operator and the
Kleenee star operator.

6.66 Extending the Language

Thee calculus as presented deals with the language of DFOL(a, U). We will now
presentt rules for dealing with two possible extensions to the core language: the 3
operatorr and the Kleene star operator, which give us the possibility to use local
variabless and unbounded iteration, respectively.

6.6.11 The Hiding operator

Thee semantics of Bx(<f>) tell us that we can 'hide' the value of the variable x and
treatt it as if it was unassigned while we execute 0, and recover it afterwards.
Ann use for the 3 operator is to have local variable declarations; for example the
formula3z{zz = x\ 3x; x = y\ 3y; y = x) swaps the values of x and y, with z being
usedd as an auxiliary variable only within the scope of the 3 operator. This means
thatt any value that z might have had prior to the execution of the formula is
restoredd when execution terminates.

Let'ss see how the Hoare calculus rules for that would look:

{A}<f>{B}{A}<f>{B} .
xx not tree m B Universall correctness: {ixA}3x(tj>){B}

[A)<j>{B) [A)<j>{B)

Existentiall correctness: (3xAJBx(<j>)(B) xx not free in B

Wee also need an axiom that states that 3 ̂ (0) does not alter the value of x:

{A&MW{A&MW fre<A) U C/Wm56(0) Q {X}

withh change(<j>) being the set of variables that can be changed by execution of
(0)--

6.6.6.6. Extending the Language 113 3

Soundness s

Soundnesss - Universal rule:
Supposee we have derived {VxA}3x(<f>){B}, for x not free in B. Then we must
provee that if there is an assignment g under which A is true, and furthermore
theree is a successful execution of 3X(<)̂ terminating in assignment /i, then B must
bee true in h.

Assumee that there exist g, h such that M \=g A, and ff|3x(0)]h. We must
provee that M \=h B. We know that {A}0{B} and that x is not free in B;
now,, if M \=3 VxA, then for any g' ~x g, M \=g> A. Recall that g\3x{<f>)]h iff
39',h'(g39',h'(g ~x g',j [(f>]h',h' ~x h,h(x) = g(x)) Since we have assumed 9|3 * (0)]A ,

thenn we know those g', h' exist. Now, as g' ~x g and M \=g VxA, we know that
indeedd M \=g> A. By inductive hypothesis, we know then that M \=h> B, and
sincee h ~x h' and x is not free in B, M ^ B.
Soundnesss - Existential rule:
Supposee we have derived (3xAf3x<j)(B), for x not free in B. Then we must
provee that if there is an assignment g under which SxA is true, then there is a
successfull execution of Bx(<j>) terminating in assignment h under which B is true.
Let'ss assume then that such a g exists. We know that (A)<f>(B), and that x is not
freee in B. If M \=g 3xA, then there is a d G D such that M \=gi A, for gi = g*.
Wee also know that <,P*(0)]/, iff 3g',h'{g ~x g1\g> [<f>) h>,h' ~x h,h(x) = g{x)).
Then,, we can set g1 = gi, and by inductive hypothesis we know there is an h\
suchh that g'l^Jh', with M \=h' B, and furthermore g' ~x g. We only need to take
h(x)h(x) = g(x) and h ~r h' to have an h such that ?px(<^)l/»j and since x is not free
inn B, M \=h B.

Completeness s

Too prove completeness of the calculus including the 3x{(f>) rule, we simply expand
thee proof for the core language with the following:

Completenesss - Universal rule:
Underr the condition that x not free in B, by induction hypothesis, we have that

MM f= {wup(<A, B)}4>{B} = • M h {wup(0, B)}(j>{B}

Wee want to prove that M \= {A}3X{4>){B} implies M (= {A ->• (Vx(wup(<£, B)))).
Assumee that M (= {A}3x{(j>){B}, and that we have a g such that M h s A- We
wantt to prove that for any d € D, M \=gd wup(<£, B). By the semantics of 3 and
thee definition of wup(0, B), we know that for any d € D, either there exist h, h!
suchh that 0<*[<£]/»' Ah ~x h'AM \=hB (and since x is not free in B, also M \=h> B),
orr there is no h' such that gg[<£|h'. Now, by definition of wup(<£, B), we have that
MM \=gd wup(^, B), for arbitrary d € D, and therefore M \=g Vx(wup(</>, B)).

114 4 ChapterChapter 6. Hoare Calculus for DFOL

Now,, the existential half is the same; we know that

MM |= [A)3x{<i>){B)
MM h (w e p ^ f i)) ^)

Now,, we should prove that M \= (A —y (3a;(wep(0, £)))), for x free in B.
Assumee there is a g such that M \=g A. This means there exists an h such
thatt jpx^Iftt and that M. \=h B. This again means there exist d 6 D and
assignmentss h, h' such that gd[<f>]h> A h ~x h' A M \=h B (and since x is not free
inn B, also .A4 (=&' B). In other words, Af \=g (3ar(wep(0, B)), and therefore
MM \=(A-+{3x(wep(<i>,B)))).

6.6.22 The Kleene star

Wee have presented a set of rules that allow us to reason about correctness of
programss in DFOL(<r, U). While this is already a powerful language, it is still
missingg unbounded iteration. If we add the Kleene star operator, we become
ableable to express the WHILE statement, achieving Turing completeness. As with
explicitt bindings, since the Kleene star operator semantics have been defined in
thiss framework, we can already talk about correctness of programs that include
it;; we can add it to the executable interpretation later. The Dynamo version of
WHILEE would be the following:

(whilee Si S2)° := (---.51°;52°)*;- (S1
0

Universall correctness: {^4}0*{yt}

{A}<f>{A}{A}<f>{A} (t = i)<t>{t < i)
Existentiall correctness: {A)<f>* (A A t < N)

Soundnesss - Universal:
Supposee we have derived {A}^*!^}. Then we must prove that if there is an as-
signmentt g under which A is true, and furthermore there is a successful execution
off 4>* terminating in assignment h, then A must be true in h.
Wee know that: (1) 9[<f>*\^ iff g = hor there is an i such that g{(f>\^ and i{<j>"\^\
(2){i4}<£{>t}meanss that for all g under which A is true, all h that verify s[0] ^
alsoo make A true.
Prooff by induction on the number of iterations of <f>:

 0 iterations : g = h, so trivially h makes A true whenever g does.

•• n + 1 iterations: We assume that A is true under g and that there exist
g\...gg\...gnn such that <,[<£]£* A . . . A g^^]^ and A is true under gn , and

6.6.6.6. Extending the Language 115 5

wee must prove that if there are gi... yn+isuch that 9[<f>]^ A. . . A9n [<A]^+1,
thenn A is true under #n+i-
Wee have that A is true under gn, and Sn[<£]£?+1 • By (2), -A is true under gn+i.

Soundnesss - Existential:
Wee have that (1) V5 : M \=g A, 3ft : 9[<j>\^ = • M \=h A.
(2)) Vg:M\=9(t = i),3h :. [<t>\? A M |= (t < i).
(3) * *] ^^ ^ g = hV3i: g[<f>]? A <[^]f .
Assumee 3g:M\=g A. To prove: 3ft : g[4>*\^ AM\=h AA{t < N).
Wee can use strong induction as follows:
VieN, ,
iff for all j lesser than i, that from any g that satisfies (,4 A t = j) we can execute
<j>*<j>* and reach an ft that satisfies (̂ 4 A t < N) means that for any g that satisfies
(A(A A t = i) we can also execute 0* and reach an ft that satisfies (A A i < N), then
forr all i € N, for any 5 that satisfies (A/\t = i) there is an ft such that s[^*]j^
andd which satisfies (A A t < N).
So,, assume (4) V« € N, (Vj<i V5 : X \=g {A A t = j) ==• 3ft : 9[<f>*]^ AM\=h

{AAt<N)). {AAt<N)).
Too prove: Vg : .M f=9 (^ A t = t) => 3ft : J0*J^ A M \=h {A A * < N)
Fromm (1) and (2), we know that 3fti : 9[<f>]% A M K i iA A *<«)•
Now,, fti satisfies (3), and by (4), ftl[^AM h , (.4 At<N).

Completenesss of the Kleene star rules Completeness of rules for unbounded
iterationn has of course the problem that preconditions might not be first order
definable.. We introduce the notion of expressive models [vBV92]:

6.6.1.. DEFINITION. A model (D,I) is expressive if weakest preconditions (<f>,B)
aree first order definable in it, for every 0, and B.

Exampless of expressive models are all finite models, as well as the natural num­
bers.. Note however that this is not a common property of models.

Evenn then, proving completeness of the rules for the Kleene star was possible
onlyy for the universal correctness rule:
Forr every expressive model M, assuming M f= {A}(t>*{B}, we must prove M h
{A}<f>*{B},{A}<f>*{B}, under the assumption that M j= {A}<j>{B} = > M \- {A}<j>{B}.
Wee assume there exists an assignment g such that M ^=g A, and an assignment
ftft such that s[0*]ft(l).
Iff M |= {A}<j>*{B}, by semantics of *, we have that M (= {A -> B). Consider
CC = wup(0*, B). It is clear from the premises that M f= (A —)• C). Now, there is
thee trivial case in which M. ^ . In this case, the only ft that satisfies (1)
iss ft = g. Also, by inductive hypothesis, M (= {^4}^{_L} =>• M h {^4}0{_L}.
Then,, we can derive M h { J4}0*{£} :

116 6 ChapterChapter 6. Hoare Calculus for DFOL

{A}<f>*{A}{A}<f>*{A} A^B

{AW{B} {AW{B}

InIn the nontrivial case, there is an assignment h such that 9[0]A. NOW,

MM \=g A = = • M[=9 wup(^*, B)

.MM (= f fwup(0\£) <*=>• M\=gBAwup{(<f>;<t>*),B)

«=*•• M\=gB A wup(</>, wup(<£*, B))

< = •• M\=gBA wup(0, C)

Inn par t i cu la r , M \= {C —>B). As pe r definition of wup , M f= {C}<j>{C}. T h e n ,
byy induc t ion hypothes i s , we have t h a t M \- {C}<j>{C}. T h e n ,

{CMC} {CMC}
A^CA^C {C}<j>*{C} C^B

{A}<f>*{B} {A}<f>*{B}

Thee main problem for proving the completeness of the existential correctness
ruless lies in that one of the antecedents is an universal correctness statement; we
can'tt switch focus from universal to existential correctness without going through
negation. .

6.77 Conclusion
Wee have now presented a way to verify Dynamo programs; the calculus has been
provedd sound and complete for the core language, and rules for extensions have
beenn proposed. In the next chapter, we will see how to go even closer to the
semanticss of DFOL, and also propose an executable interpretation for both the
Kleenee star and the 3 operator. We will also see how infinitary logic may be used
forr reasoning about DFOL(*).

Chapterr 7

Tableauu Reasoning with DFOL

7.11 Introduction
Wee have shown how to make sure the semantics of a formula in DFOL (a, U)
followw a given specification. In Chapter 5 we introduced an executable program
interpretationn for formulas in DFOL(u), but we were not quite happy with the
result;; it gave up all too often, and we had to simulate negation-as-failure, which
wass a bit involved and did not make it particularly easy to deal with universal
quantification. .

Ourr plan now is to introduce an executable interpretation to DFOL(a, U),
whichh is more faithful to the semantics, and works in a completely different way:
itt is a tableau calculus. We start by describing a tableau calculus for DFOL (cr, U)
makingg intensive use of our theory of explicit binding. The explicit bindings
representt the intermediate results of calculation that get carried along in the
computationn process. We illustrate with examples from standard first order rea-
soning,, imperative programming, and derivation of postconditions for imperative
programs.. Later, we develop an infinitary calculus for DFOL(U, a ,3 , *), and pro-
videe a completeness proof, and finally we enunciate some of the relationships with
existingg calculi. The first calculus that are the subject of this chapter forms the
computationn and inference engine of Dynamo, our toy programming language for
theoremm proving and computing with DFOL.
Lett us consider a signature E; we will call C? the DFOL (a, U) language over E.
Thee key relation we want to get to grips with in this chapter is the dynamic
entailmentt relation that is due to [GS91]:

7.1.1.. DEFINITION. [Entailment in DFOL] cf> dynamically entails ip, notation
cf>cf> |= 0, if and only if:

forr all LY, models Ai, all valuations s, u for M, if *[<A]ĵ then there is
aa variable state u' for which ulV*]^-

117 7

118 8 ChapterChapter 7. Tableau Reasoning with DFOL

Inn the calculus we will need the function input((f>), the set of variables that
havee an input constraining occurrence in <f> (with <j> € £E) , Let var[t) be the
variabless occurring in t. The definition of input(<f>) is as follows:

7.1.2.. DEFINITION. [Input constrained variables of £s formulas]

input(9) input(9)

input(9;input(9; <j>)

input(3v;input(3v; <p)

input(Pt;input(Pt; <f>)

input{t\input{t\ = t2',4>)

input{-i{<j>i);input{-i{<j>i); <j> 2)

mptrf((0iU^2); 3̂))

var(rng(0)) var(rng(0))

var(rng(0))var(rng(0)) U (input(<f>)\dom(9))

input((f>)\{v} input((f>)\{v}

var(t)var(t) U input((f>)

var{ti,var{ti, £2} U input((f>)

input(<f>\)input(<f>\) U input{4>2)

input{<j)i;input{<j)i; fa) U input((f>2] 03)-

Thee following proposition (the DFOL counterpart to the finiteness lemma
fromm classical FOL) can be proved by induction on formula structure:

7.1.3.. PROPOSITION. For all £E models M, all valuations s,s',u,u' for M, all
£ss formulas (j>:

ss[4>]^[4>]^ and s ~vAR\inptrf(*) s' irnPlV 3u' w*^ AtVf-

7.22 Tableaux for DFOL(cr, U)

7.2.11 Adaptation of Tableaux to Dynamic Reasoning

Inn classical tableau theorem proving, we want to check the entailment relation by
lookingg for a possibility of making the antecedent <f> true and the consequent ip
false.. If that fails, then we conclude that tp does follow from <f>; and if it succeeds
wee can build a counterexample from any tableau branch that remains open; see
[vB86]. .

Insteadd of the original method of keeping a formula we want to make true
andd one we want to make false, and two rules for each operator (one for the false
sidee and one for the true side), we have one formula $ we want to make true,
andd two (types of) rules for each operator; one for positive and one for negative
occurrences.. Consider for example the tableau rule for disjunction in classical
logic;; a tableau splitting rule like V has the node with the disjunction (f>Vij; above
thee two branches with the disjuncts <f> and ip. The rule V serves as the 'true side
rule',, and is matched by a rule ->V for dealing with the 'false side'.

/ \\ I

7.2.7.2. Tableaux for DFOL(o, U) 119 9

InIn the dynamic version of FOL, order matters: the sequencing operator ';' is not
commutativee in general. Suppose $ were to consist of 3a;; Px and ->Px. Then
iff we read $ as 3x; Px; ->Px, we should get a contradiction, but if we read $ as
-<Px;-<Px; 3x; Px then the formula has a model that contains both Ps and non-Ps.

Supposee $ were to consist of just 3ar; Px; ->(Qx U Sx). Then we can apply
thee ->U analogue of ->V to $, but we should make sure that the results of this
application,, -<Qx and -*Sx, remain in the scope of 3x; Px. In other words, the
resultt should be: 3a:; Px; ~>Qx; -<Sx (or 3x; Px; -<Sx; ~>Qx: being negated formu-
las,, -iQx and ->Sx are interchangeable), with both ->Qx and ->Sx in the dynamic
scopee of the quantifier 3x. In the tableau calculus to be presented, we will ensure
thatt negation rules ->o take dynamic context into account, and that all formulas
comee with an appropriate binding context, to be supplied by explicit bindings.

Locall Bindings Versus Global Substitutions. As a rule, we don't apply
bindingss to formulas unless it is needed; in fact, when processing a formula <f>
withh a binding 0, we store the formula 8; (f> and apply the binding only as needed,
forr example when processing an atom. We can see tableau theorem proving as
thee process of building a domain D and finding out whether the requirements
imposedd on Z) by $ are consistent, by decomposing the formulas into positive
andd negative facts and seeing that there is no contradiction between them. We
willl employ an infinite set F8ko of skolem functions, with F^K, n FUN = 0, plus
aa set of fresh variables X, with VAR n X = 0. Call the extended signature £*,
andd the extended language £E» . Let TE* be the terms of the extended language,
andd 7j£R the terms of the extended language without occurrences of members of
XX (the frozen terms of £E*) . We have then two instances of grounding: ground
terms,, those without any variables, and frozen terms, without variables from X.
Wee extend the notion to literals, and call an Cz* literal frozen if it contains only
frozenn terms.

Thee variables in X will function as universal tableau variables [Fit96]. Where
thee bindings of the variables from VAR are local to a tableau branch, the bindings
off the variables from X are global to the whole tableau. Next to the (local)
bindingss for the variables VAR of £ E , we introduce (global) substitutions a for
thee fresh variables X in C&, and extend these to (sequences of) terms and (sets
of)) formulas in the manner of Definition 1.4.14. A substitution a is a unifier of
aa set of (sequences of) terms T if trT contains a single term (sequence of terms).
Itt is a most general unifier (mgu) of T if a is a unifier of T, and for all unifiers p
off T there is a 6 with er = 0 p. Similarly for formulas. Note that only unifiers
forr global substitutions (the term maps for the global tableau variables from X)
willl ever be computed.

Thee definitions and results on binding extend to bindings with values in T^.,
andd to substitutions (domain C X, values in T^.). Still, the global substitutions
playy an altogether different role in the tableau construction process, so we use a

120 0 ChapterChapter 7. Tableau Reasoning with DFOL

differentt notation for them, and write (representations for) global substitutions
as s

{Xii t -+ t i , . . . ,X n .

7.2.22 Tableaux for DFOL(<r,U) Formula Sets

Iff E is a first order signature, a DFOL(<r, U) tableau over E is a finitely branching
treee with nodes consisting of (sets of) £E* formulas. A branch in a tableau T is
aa maximal path in T. We will follow custom in occasionally identifying a branch
BB with the set of its formulas.

Lett $ be a set of C% formulas. A DFOL(<r, U) tableau for $ is constructed by
aa (possibly infinite) sequence of applications of the following rules:

Initializationn The tree consisting of a single node \\ is a tableau for $.

Bindingg Composition Suppose T is a tableau for $ and B a branch in T. Let
<f><f> 6 B U $, let 6; p occur in (f>, and let <f/ be the result of replacing 9; p in
<f><f> by 6 o p. Then the tree T' constructed from T by extending B by <f>' is a
tableauu for <£>.

Expansionn Suppose T is a tableau for $ and B a branch in T. Let <f> € B U $.
Thenn the tree T ' constructed from T by extending B according to one of
thee tableau expansion rules presented in subsection 7.2.3, applied to <f>, is a
tableauu for $.

Equalityy Replacement Suppose T is a tableau for <J> and B a branch in T.
Lett f i = t2 € B U $ or t2 = tx € B u $, and L(t3) e B U $, where L is
aa literal. Suppose ^,£3 are unifiable with MGU a. Then T' constructed
fromm T by applying <r to all formulas in T, and extending branch <TB with
L(o"£2)) is a tableau for $.

Closuree Suppose T is a tableau for $ and B a branch in T, and L, 1/ are literals
inn B U $. If L, L' are unifiable with MGU a then T' constructed from T
byy applying <r to all formulas in T is a tableau for $.

AA tableau branch can be considered a conjunction of formulas: all of them have
too be true for that particular branch to remain open. Since we want to include
treatmentt of identities, the closure of a branch is more involved than in classical
freee variable tableaux. When checking for closure, we can consider variables
fromm VAR as existentially quantified: occurrence of Pv along branch B does not
meann that everything has property P, but rather that the element called v has
P.P. We can freeze the parameters from X by mapping them to fresh parameters
fromm VAR. Applying a freezing substitution to a tableau replaces references to
'arbitraryy objects' x, y,..., by 'arbitrary names.' We can then determine closure
off a branch B in terms of the congruence closure of the set of equalities occurring

7.2.7.2. Tableaux for DFOL{a,U) 121

inn a frozen image <rB of the branch. See [BN98], Chapter 4, for what follows
aboutt congruence closures.

Iff $ is a set of C%* formulas without parameters from X, the congruence
closuree of $, notation «$, is the smallest congruence on T that contains all the
equalitiess in $. In general, « * will be infinite: if a = b is an equality in $,
andd ƒ is a one-placed function symbol in the language, then « * will contain
fafa = ƒ6, f fa = ƒ ƒ ft, ƒ ƒ fa = fffb, Therefore, one uses congruence closure
moduloo some finite set instead.

Lett S be the set of all sub-terms (not necessarily proper) of terms occurring in
aa literal in $. Then the congruence closure of $ modulo S, notation CCs($), is
thee finite set of equalities « $ n (S x S). We can decide whether t = i! in CCs($);
[BN98]] gives an algorithm for computing CCs(G), for finite sets of equalities G
andd terms S, in polynomial time.

7.2.1.. DEFINITION, t as if is suspended in a frozen £E. formula set $ if t =
t'' € CCs($). We extend this notation to sequences: t fa r7 is suspended in $ if
iii « fl5..., tn » fn are suspended in $.

AA frozen £E* formula set # is closed if either ->(9) G $ (recall that _L is
ann abbreviation for -"(Q)), or for some t fa t' suspended in $ we have Pt € $,
-iPf77 G $, or for a pair of terms t\,t2 with ii fa t<i suspended in $ we have
tii / <2 € $

AA tableau T is c/ose<2 if there is a freezing substitution er of T such that each
off its branches aB is closed.

7.2.33 Tableau Expansion Rules

Notee that we can take the form of any £E* formula to be 0; 0, by prefixing or
suffixingg [] if necessary. The tableau rules have the effect that bindings get pushed
fromm left to right in the tableaux, and appear as computed results at the open
endd nodes.

Conjunctivee Type. Here are the rules for formulas of conjunctive type (type
aa in the Smullyan typology):

122 2 ChapterChapter 7. Tableau Reasoning with DFOL

9;9; Pt; <f> 0\h= t2; <f>
11 i
11 1

petpet 9tx = 9t2
0;; <f> 9 o [Qtilv\, <f>

wheree 9ti = ve VAR, i e {1,2}

-(0;; (faufa); fa) 9; ((fa)); fa

-(0;; fa; fa) ((9; fa))

-(0;; fa; fa) 0; fa

9,9, *i = t2, <j>
l l 1 1

9t\9t\ — 9t2

9;9; <j>

wheree 9t{ £ VAR,iG {1,2}

0;; --{fa); fa

-(0;; fa)

0;; fa

Calll the formula at the top node of a rule of this kind a and the formulas at
thee leaves cci,a2. To expand a tableau branch B by an a rule, extend B with
bothh a\ and ot2.

Disjunctivee Type. The rules for formulas of disjunctive type (Smullyan's type

/»)) =

-(0; ;

^P9t ^P9t

Pt;; fa

-(0;; fa

-(0;; t i =

0*11 # 0t2

== *2; fa

-(0;; ^)

0; ;

0;0 0

(faL (faL

ufa ufa

fa); fa);

0;fa 0;fa

fa fa

;fa ;fa

-(0;; -

((0;; fa))

{fay, {fay,

((0; ;

fa) fa)

« «

Calll the formula at the top node of a rule of this kind /3, the formula at the
leftt leaf Pi and the formula at the right leaf fi2. To expand a tableau branch B
byy a /? rule, either extend B with Pi or with fi2.

Universall Type. Rule for universal formulas (Smullyan's type 7):

- (0 ;; 3v; fa

-i{6o[x/v];-i{6o[x/v]; fa

Heree x is a universal variable taken from X that is new to the tableau. Call
thee formula at the top node of a rule of this kind 7(1?), and the formula at the
leaff 71. To expand a tableau branch B by a 7 rule, extend B with 71.

1.3.1.3. Soundness of the Calculus 123

Existentiall Type. Rule for existential formulas (Sraullyan's type 6):

0 ;; 3 v ; <f>
I I

6o6o [skg.3v.^(xi,... ,xn)/v]; <j>

Heree x i , . . . , x „ are the universal parameters upon which interpretation of
3v;3v; (f> depends, and skfl.^.^xi,..., xn) is a skolem constant that is new to the
tableauu branch.1

Byy Proposition 7.1.3, {xi,... ,xn} is a subset of input(9; Bv; <f>), or, since no
memberss of X occur in <f> or in dom(9), a subset of Xninput(0) = X(~)var(rng(9)).
Promm this set, we only need2

{x i , . . . ,, xn] := X n var{rng{9 \ {input{<f>)\{v}))).

Calll the formula at the top node of a rule of this kind ö(v), and the formula
att the leaf <$i. To expand a tableau branch B by a S rule, extend B with 6\.

Thee tableau calculus specifies guidelines for extending a tableau tree with
neww leaf nodes. If one starts out from a single formula, at each stage only a finite
numberr of rules can be applied. Breadth first search will get us all the possible
tableauu developments for a given initial formula, but this procedure is not an
algorithmalgorithm for tableau proof construction; it doesn't tell us how to choose which
branchh to expand or what to freeze variables from X to. We'll see the algorithm
implementingg this calculus in chapter 8.

7.33 Soundness of the Calculus
Valuationss for S* models M. = (D, I) are functions in VAR U X —t D. Any such
functionn g can be viewed as a union s U h of a function s € VAR —>• D and a
functionn h € X —t D (take s = g \ VAR and h = g \ X). For satisfaction in
E** models we use the notation su/»^]^ to be understood in the obvious way.
InIn terms of this we define the notion that we need to account for the universal
naturee of the X variables.

7.3.1.. DEFINITION. Let <j> € £ s . , M - {D, I) a S* model, s,u e VAR - • D.

xItt is well-known that this can be optimized so that the choice of skolem constant only
dependss on 8; 3r; <j>.

2Inn an implementation, it may be more efficient to not bother about computing input{<j>),
andd instead work with {iCi,...,zn} : = X n var(rng(d)}.

124 4 ChapterChapter 7. Tableau Reasoning with DFOL

Thenn)\4\M iff for every h : X - • D there i s a u : VAR UX ^ D with
SUA[0]^-- We say: s universally satisfies <j> in M..

Forr any tableau T we say that C(T) if there is an E* model M, a branch £
off T and a VAR valuation s for M such that every formula <f> of £? is universally
satisfiedd by s in M..

7.3.2.. LEMMA, ƒƒ S universally satisfies (j> in M, and a is a substitution on X
thatthat is safe for <f>, then s universally satisfies er<f> in Ai.

Proof.Proof. If ^ [0]^ then for every X valuation h in M there is a VAR U X valuation
uu in M with JU/JMJ^- Thus for every h in M there is a VAR U X valuation u in
AiAi with

andd therefore for every h in M there is a VAR U X valuation u in M with

Sincee or is safe for <j> we have by the binding lemma that [«r^J^1 = [a; <f>] M, and
itt follows that s universally satisfies <r<j) in M. H

Withh this, we can show that the tableau building rules preserve the C(T)
relation. .

7.3.3.. LEMMA (TABLEAU EXPANSION LEMMA).

1.1. If tableau T for $ yields tableau T' by an application of binding composition,
thenthen C(T) implies C(T').

2.2. If tableau T for $ yields tableau T" by an application of a tableau expansion
rule,rule, then C(T) implies C(T').

3.3. If tableau T for $ yields tableau T' by an application of equality replacement,
thenthen C(T) implies C(T').

4-4- If tableau T for $ yields tableau T1 by an application of closure, then C(T)
impliesimplies C(T').

Proof.Proof. 1. Immediate from the fact that 6; p and 9op have the same interpretation.
2.. All of the a and /? rules are straightforward, except perhaps for the a

equalityy rules. The change of $ to 0 o [$ti/v], where Otj = v (i,j € {1,2}, z ̂ j ,)
reflectss the fact that 9t\ = Ot ̂ gives us the information to instantiate v.

Thee 7 rule. Assume ->(0; 3v; <£) is universally satisfied by s in M. We may
assumee that 9 is safe for 3u; <j>. If x € X, x fresh to the tableau, then 9 o [x/v]
willl be safe for <f>, and ->(9 o [x/v]; <j>) will be universally satisfied by s in M..

7.4-7.4- Derived Principles 125 5

Thee <5 rule. Assume s universally satisfies 9; 3v\ <f> in M.. By induction on
tableauu structure, dom(9) C VAR. Define a new model M' where sk* ,^ is
interpretedd as the function ƒ : Dn -»• D given by

f(di,...,df(di,...,dnn)) := some d for which <fi succeeds in M

forr input state s$[di/xi,..., dn/xn,d/v].

Byy the fact that s universally satisfies 9; Sv; <j> in M and by the way we have
pickedd xi,...,xn, such a d must exist. Then s will universally satisfy 9 o
[skö;3t»;^(xi,... .,xn)/v];<f> in M', while universal satisfaction of other formulas
onn the branch is not affected by the switch from M to M'.

33 and 4 follow immediately from Lemma 7.3.2. H

7.3.4.. THEOREM (SOUNDNESS). If<t>,ip€. £E , and the tableau for <j>\ -i(V') closes,
thenthen <j> (= ip-

Proof.Proof. If the tableau for <j>; ->{ip) closes, then by the Tableau Expansion Lemma,
theree are no M, s such that)[<f>; ~>{ip)] M. Since 0, ip G £%, there are no M, s, u
withh ,[0; -'(tp)]^- In other words, for every E model M and every pair of variable
statess s, u for M. with »[0]^ there has to be a variable state u' with «[^J^1. Thus,
wee have <f> (= ip in the sense of Definition 7.1.1. H

7.44 Derived Principles
Universall Quantification. Immediately from the definition of Vu{0) we get:

0;Vv(fc);fc c

((9 o [x M ^)))

ö;02 2

wheree x E X new to the tableau

Blockss Detachment. A sequence of blocks ; . -; 5 where is
eitherr ((0«)) or —1(̂), yields the set of its components, by a series of applications
off distribution of the empty substitution over block or negation. This is useful,
ass the formulas , n) can be processed in any order. In a schema:

1 n))

))

M M

126 6 ChapterChapter 7. Tableau Reasoning with DFOL

Negationn Splitting. The following rules are admissible in the calculus:

g6V))) -tex) ((<£;-#))) -0£;x)
Negationn splitting can be viewed as the DFOL guise of a well known principle

fromm modal logic: 0(A V B) - ^ (0^4 V OB). To see the connection, note that
-i(<£;; ->(V0; x) is semantically equivalent to -"(0; ->(tp U _|(x)))» where ->(<f>; -••••)
behavess as a • modality.

7.55 Some Examples
InIn the examples we will use VQ, V\, ... as 0-ary skolem terms for v, etcetera.

Syllogisticc Reasoning. Consider the syllogism:

\/x{Ax\/x{Ax - • Bx), Vx(5x - • Cx) \= Vx{Ax -»> Car).

Thiss is an abbreviation of (7.1).

~>{3x;~>{3x; Ax;~>Bx),->(3x;Bx;->Cx) (= -i(3x;Ax;->Cx) (7.1)

Thee DF0L((7, U) tableau for this example, a tableau refutation of

->(3x;->(3x; Ax; ->Bx); ->(3x; Bx; ->Cx); ((3x; Ax; ->Cx]j

iss in Figure 7.1.

Reasoningg about *<\ Consider example (7.2).

yy <x;^{3x;3y;x < y). (7.2)

Thiss is contradictory, for first two objects of different size are introduced, and
nextt we are told that all objects have the same size. The contradiction is derived
ass follows:

yy < x; ^{3x; By; x < y)

yy < x

^(3x;3y;x^(3x;3y;x < y)
I I

^{{xi/x,x^{{xi/x,x22fy];x<y) fy];x<y)

I I
{xi{xi i-t y, x2 H> x}

x x

1.5.1.5. Some Examples 127 7

i(3x;; Ax; -<Bx); ->(3:c; 5a;; -iCx); ((3a;; Ax; -<Cx))

-^Ax -^Ax

{x{x H-+ Xi}
X X

-i(3a;;.Aa:;; -iJ3ar)
-i(3a;;; Ba;;->Ca;)
((3x;; Ax; ->Cx))

(([xi/x];Ax;-.Cx)))

AxAx i

(([x!/x];-iCx)))

-CX! !

(([*l/s])))

-i([x/x];; Ax; -iBx)

-i([x/x];-i([x/x]; -iSx)

Sa; ;

^{[y/x\;Bx;^Cx) ^{[y/x\;Bx;^Cx)

;^Cx) ;^Cx)

{x^x{x^xuuyy H-Xi}
x x

{x\-txi,yi-txi} {x\-txi,yi-txi}
x x

Figuree 7.1: DFOL(cr, U) Tableau for Syllogistic Reasoning (7.1).

128 8 ChapterChapter 7. Tableau Reasoning with DFOL

Computationn of Answer Substitutions. The following example illustrates
howw the tableau calculus can be used to compute answer substitutions for a query.

I < 3 ; II = 5 U I = 2

xx < 3
x=x= 5Ux=2

xx = 5 x = 2

[5/1]] [2/x]

AA combination with model checking or term rewriting (see [DHK98]) can be
usedd to get rid of the left branch. Adding the relevant axioms for < would achieve
thee same. See the next example.

Moree Reasoning about <. Assume that 1, 2 ,3 , . . . are shorthand for sO, ssO,...
Wee derive a contradiction from the assumption that 5 < 2 together with two ax-
iomss for <. See Figure 7.2, with arrows connecting the literals that effect closure.

Computationn of Answer Substitutions, with Variable Reuse. Figure 7.3
demonstratess how the computed answer substitution stores the final value for x,
underr the renaming x\. Because of the renaming, the database information for
X\X\ does not conflict with that for x.

Closuree by Equality Replacement. This example illustrates closure by means
off equality replacement, in reasoning about 3x; 3y; x ^ y; 3x; ->(By; x ^ y). Note
thatt X\,yi,xi serve as names for objects in the domain under construction. What
thee argument boils down to is: if the name X2 applies to everything, then it cannot
bee the case that there are two different objects X\,yi. See Figure 7.4.

Thee first application of equality replacement in Figure 7.4 unifies x with x\
andd concludes from x2 = x,x\ ^ y\ that x2 ^ y\. The second application of
equalityy replacement unifies y with and concludes from x2 = y, x2 ^ V\ that
xx22 ƒ x2-

Loopp Invariant Checking. To check that x = y\ is a loop invariant for y :—
yy + l;x := x *y, assume it is not, and use the calculus to derive a contradiction
withh the definition of !. Note that y := y + I; x := x * y appears in our notation
ass [y + l/y]; [x * y/x\. See Figure 7.5. A more detailed account would of course
havee to use the DFOL definitions of +, * and !.

7.5.7.5. Some Examples 129 9

i(3x;; x < 0); 4 < 2; -t(3ar; 3y; sx < sy; - a < j/)

-i(3»;ajj < 0)

4 < 2 2

-i(3a;;; 3y; sx < sy; -<x < y)
I I

->Qx/xhx->Qx/xhx < 0)

->x->x < 0"
I I

<[y/a;,, z/y]; sx < sy; ->x < y)

Figuree 7.2: More Reasoning about <.

130 0 ChapterChapter 7. Tableau Reasoning with DFOL

xx = 0; x = y U y = 2; 3x; x = 2

xx = 0

[0/x];; a; = y U t/ = 2; 3x; x = 2

[0/x];; x = y;3x;x = 2 [0/x]; 2/ = 2; 3x; x = 2

0=y0=y 2 = y
[0/x,, O/?/]; 3a;; x = 2 [0/x, 2/y]; 3x; x = 2

[x[x 11/x,0/y];x/x,0/y];x = 2 [xi/x,2/y];x = 2

xii = 2 xi = 2

[xi/x,, 0/j/, 2/xi] [xi/x, 2/y, 2/xi]

Figuree 7.3: Computation of Answer Substitutions, with Variable Reuse

Loopp Invariant Detection. This time, we inspect the code [x*(y + l)/x]; [y +
1/y]1/y] starting from scratch. Since y is the variable that gets incremented, we may
assumee that x depends on y via an unknown function ƒ. Thus, we start in a
situationn where fy = x. We check what has happened to this dependency after
executionn of the code [x * (y + l)/x]; [y + 1/y], by means of a tableau calculation
forr fy = x; [x * (y + l)/x]; [y + 1/y]; fy = x. See Figure 7.6. The tableau shows
thatt [x * (y + l)/x]; [y + 1/y] is a loop for the factorial function.

Postconditionn Reasoning for 'If Then Else'. For another example of this,
considerr a loop through the following programming code:

ii := i + 1; if x < a[i] then x := a[i] else skip. (7.3)

Assumee we know that before the loop x is the maximum of array elements a[0]
throughh a[i]. Then our calculus allows us to derive a characterization of the value
off x at the end of the loop. Note that the loop code appears in DFOL(<7, U) under
thee following guise:

[i[i + 1/i]; (x < a[i]; [a[i]/x] U ->x < a[i\).

Thee situation of x at the start of the loop can be given by an identity x = m°,
wheree m is a two-placed function. To get a characterization of x at the end, we
justt put X = x (X a constant) at the end, and see what we get (Figure 7.7). What
thee leaf nodes tell us is that in any case, X is the maximum of a[0], ..,a[i + 1],
andd this maximum gets computed in x.

7.5.7.5. Some Examples 131 1

3a;;; 3y; x ̂ y; 3x; -Gj/; x ^ y

[x[x 11/x,/x, yi/y}; x^y; 3x; -By; xj^y

[x2/x,yi/y};^3y;x^y [x2/x,yi/y};^3y;x^y

^[x^[x22/x,x/y];x^y /x,x/y];x^y

xx22 = x

{x{x !->• Xi}

X2X2 Ï 2/1

%2/x,y/y];x%2/x,y/y];x £y

xx22 = y

{y{y 2/1}

X2X2 ¥" X2

X X

Figuree 7.4: Reasoning With Equality

xx = y\\ [y + 1/y]; [x * y/x}; x^y\

[y\/x];[y\/x]; [y + 1/y}; [x * y/x]; x^y\

[y\/x,y+l/y]; [y\/x,y+l/y]; x*y/x];x^y\ x*y/x];x^y\

[y[y + l/y,y* (y + l)/x];x ^ y\

y*{yy*{y + l)^{y + l)l

Figuree 7.5: Loop Invariant Checking.

132 2 ChapterChapter 7. Tableau Reasoning with DFOL

fyfy = x;[x*(y + l)/x}; [y + 1/y}; fy = x

fyfy = x

[fy/x];[fy/x]; [x * (y + l)/x]\ [y + 1/y]; fy = x

[fy[fy * (y + \)/x]\ [y + 1/y]; fy = x

[fy[fy *{y + l)/x, y + 1/y]; fy = x

f(yf(y + l)=fy*(y+l)

[fy*(y[fy*(y + l)/x,y + l/y]

Figuree 7.6: Loop Invariant Detection.

xx — m°; [i + 1/t]; x < a[i}; [a[i]/x] U ->x < a[i}\ X = x

[m°/x);[m°/x); [i + 1/t']; x < a[i\; [a[i]/x] U -uc < a[t]; X = x

[m°/x,[m°/x, i + 1/t]; a; < a[i]; [a[t]/af] U - * < o[»]; X = x

[m°/x,[m°/x, i + 1/t]; a; < a[i]; [a[t]/x]; X = a: U \m\jx, i + 1/t]; ->a; < a[t]; X = x

[m°/x,[m°/x, i + 1/t]; x < o[t]; [a[t]/x]; X

m?? < a[t + 1]
[m°/x,[m°/x, i + 1/t]; [a[i]/a;]; X = a;

[t++ 1/t, a[i + l]/x];X = a;

XX = a[i + 1]
[tt + 1/t, a[i + l]/x]

[m!-/x,i[m!-/x,i + 1/t]; -ix < o[t]; Jf = x

imff < o[t + 1], [mS/x, i + 1/t]; X = a:

-imff < a[i + 1]

[ml/x,[ml/x, i + 1/t]

Figuree 7.7: Postcondition Reasoning For (7.3).

file:///m/jx

7.6.7.6. Completeness 133 3

7.66 Completeness
Completenesss for this calculus can be proved by a variation on completeness
proofss for tableau calculi in classical FOL. First we define trace sets for DFOL(a, U)
ass an analogue to Hintikka sets for FOL. A trace set is a set of DFOL(er, u) for-
mulass satisfying the closure conditions that can be read off from the tableau
rules.. Trace sets can be viewed as blow-by-blow accounts of particular consistent
DFOL(a,U)) computation paths (i.e., paths that do not close).

7.6.1.. DEFINITION. A set \& of Cv formulas is a trace set if the following hold:

i.. -.(0) i $.

2.. If 0 G $, then 0 £ * .

3.. If 0; 0 <E * , then dtp e * .

4.. If a € * then all a{ € \I>.

5.. If ft e * then at least one & € vl(.

6.. If 7(u) € * , then 71 (t) € * for all* € T ^R (all terms that do not contain
variabless from X).

7.. If S{v) E tf, then 6i(t) € # for some t € T%*R (some term t that does not
containn variables from X).

Thiss definition is motivated by the Trace Lemma:

7.6.2.. LEMMA (TRACE LEMMA). The elements of every trace set ^ are simul-
taneouslytaneously satisfiable.

Proof.Proof. Define a canonical model A4o in the standard fashion, using congruence
closuree on the trace set ^ over the set of terms occurring in $, to get a suitable
congruencee = on terms. Next, define a canonical valuation SQ by means of SQ{V) :=
[v]=[v]= for members of VAR and 3o(sk?) = [sk°]= for 0-ary skolem terms. Verify that
ss00 satisfies every member of $ in M.Q. H

Too employ the lemma, we need the standard notion of a fair computation
rule.. A computation rule is a function F that for any set of formulas $ and any
tableauu T, computes the next rule to be applied on T. This defines a partial
orderr on the set of tableaux for $, with the successor of T given by F. Then
theree is a (possibly infinite) sequence of tableaux for $ starting from the initial
tableau,, and with supremum T^. A computation rule F is fair if the following
holdss for all branches B in T^:

1.. All formulas of type a, $, 5 occurring on B or in $ were used to expand B,

134 4 ChapterChapter 7. Tableau Reasoning with DFOL

2.. All formulas of type 7 occurring on B or in $ were used infinitely often to
expandd B.

7.6.3.. THEOREM (COMPLETENESS). For all </>, V € C^: if'<f>\= tp then there is
aa tableau refutation of <j>;-<(ip).

Proof.Proof. Let To, . . . be a sequence of tableaux for <fi; -<(tp) constructed with a fair
computationn rule, without closure rule applications, and with supremum T ^ .
Definee a freezing map cr,» on T ^ in the standard fashion (see, e.g., [HahOl]).
InIn particular, let (J3jt)jt>o be an enumeration of the branches of Too, let (<&)j>o
bee an enumeration of the type 7 formulas of T,», and let Xijk be the variable
introducedd for the j- th application of 7 formula <fo along branch B^. If (fy)j>o is
ann enumeration of all the frozen terms of T ^ , we can set c^Xijk) := tj for all
hh h k > 0. Note that a^ is not, strictly speaking, a substitution since dom(a,

00)
iss not finite.

Supposee O-QOTOO contains an open branch. Then from this branch we would get
aa trace set, which in turn would give a canonical model and a canonical valuation
forr <j>; ->(ip), and contradiction with the assumption that <f> \= ip. Therefore,
""ooTooo must be closed.

Sincee the tree T ^ is finitely branching and all formulas having an effect on
closuree are at finite distance from the root, there is a finite Tn with o"ooTn closed.
Finally,, construct an MGU <r for T„ on the basis of the part of (T^ that is actually
usedused in the closure of Tn, and we are done. H

7.6.4.. THEOREM (COMPUTATION THEOREM). If<f> is satisfiable, then all bind-
ingsings 9 produced by open tableau branches B satisfy S[0]^S where Ai is the canon-
icalical model constructed from B, and s the canonical valuation.

Proof.Proof. Let To, . . . be a sequence of tableaux for <f> constructed with a fair compu-
tationn rule, without closure rule applications, and with supremum T,». Consider
«TOOTQO,, where «Too is the canonical freezing substitution. Then since <j> is satis-
fiable,fiable, «TOOTQC will have open branches (Bk)k>o (the number need not be finite).
Itt follows from the format of the tableau expansion rules that every open branch
willl develop one binding.

AA binding 9 ^ [] occurs non-protected in a formula of the form 9; ip. Check
thatt the tableau expansion rules on formulas of the forms ((^)) or ->(tp) never yield
(nontrivial)) non-protected bindings. Check that each application of an a, /?, 7 or
55 rule to a formula with a non-protected binding extends a branch with exactly
onee non-protected binding. It follows that every tableau branch £?* has a highest
nodee where a formula of the form 9 appears. This 9 can be thought of as the
resultt of pulling the initial binding [] through the initial formula <f>. For every
suchh B). and 9 there is a finite Tn with a branch B^ that already contains (a
generalizationn of) 6.

Itt can be proved by induction on the length of B^ that sl^l^S for M the
canonicall model and s the canonical valuation for that branch. H

7.7.. Extending the Language 135 5

Notee that the computation theorem gives no recipe for generating all correct
bindingss for a given <f>. Specifying appropriate computation rules for generating
thesee bindings for specific sets of DF0L(<7, U) formulas remains a topic for future
research. .

Variation:: Using the Calculus with a Fixed Model. Computing with
respectt to a fixed model is just a slight variation on the general scheme. The
techniquee of using tableau rules for model checking is well known. Assume that
aa model M = (£>, I) is given. Then instead of storing ground predicates POt
(groundd equalities 6t\ = 9t2), we check the model for M =̂ POt (for [flti]^ =
[0*2]"̂),, and close the branch if the test fails, continue otherwise. Similarly,
insteadd of storing ground predicates POt (ground equalities 0t\ = #£2) under
negation,, we check the model for M ^ POt (for \6ti\M # l0t2]

M), and close the
branchh if the test fails, continue otherwise.

7.77 Extending the Language

7.7.11 Local variables: the Hiding operator

Considerr the language of DFOL(er, U,3), that is, the extension of the logic we
havee been using with the 3 operator. This extension gives a 'classical' existential
quantifierr to DFOL, and it is therefore quite straightforward to state tableau rules
too handle it:

0;; 3u(^i); <fa

0;4>i[sk0;4>i[sk66..3vi<l3vi<l ,(xu,(xu...,x„)/v];...,x„)/v]; <fa

wheree again Xi,...,xn are the universal parameters upon which interpretation
off 3v; (j> depends, and s k ^ ^ a ï i , . . . , xn) is a skolem constant that is new to the
tableauu branch. The rule for the negated hiding operator would be just the same
ass the 7-rule:

0;; -.<3vfói)); <h

-i(0o[x/v];<l>i) -i(0o[x/v];<l>i)

136 6 ChapterChapter 7. Tableau Reasoning with DFOL

wheree a; is a universal variable taken from X that is new to the tableau. In
fact,, since the difference between the classical and dynamic interpretations of the
existentiall quantifier lies in this context in the scope of the quantifier, negation
bringss them to the same form, and the rule for negated 3 operator is the same as
thee 7 rule. Soundness and completeness for rules involving this operator follow
fromm soundness and completeness of the 6 and 7 rules.

7.7.22 Iteration: the Kleene star

Lett us now add the Kleene star operator, making our language DFOL(<r, U, *);
Thee intended relational meaning of <f>* is that (j) gets executed a finite (> 0)
numberr of times. This extension is then a full-fledged programming language.

Thee semantic clause for <f>* runs as follows:

sWJisWJi44 iff either s = u

orr 3Sl,..., sn(n > 1) with , [f l £ , . . . , SJ<C*.

Itt is easy to see that it follows from this definition that:

, fo*]** iff either a = u or 3Sl with , [0]£ and Sl{4>*V? (7.4)

Note,, however, that (7.4) is not equivalent to the definition of s [</>*]£* 1 for (7.4)
doess not rule out infinite <f> paths.

Lett <fi n be given by: 0° := \\ and 4>n+i := <f>; (f>n. Now (j)* is equivalent to 'for
somee n e N : <f> n\

Whatt we will do in our calculus for DFOL(cr, U, *) is take (7.4) as the cue to
thee star rules. This will allow star computations to loop, which does not pose
anyy problem, given that we extend our notion of closure to 'closure in the limit'
(seee below).

Thee calculus for DFOL((T, U, *) has all expansion rules of the DFOL(a, U)
calculus,, plus the following a* and /?* rules.

a*a* expansion rule. Call ip* the star formula of the rule.

->(0;x))
^(0;^;V*;x))

7.7.. Extending the Language 137

/3*/3* expansion rule. Call rjj* the star formula of the rule.

4>\4>\ V\ x

(f>;(f>; XX (f>;il);ip*;x

Too see that the a* rule is sound, assume that s universally satisfies -i($; ij)*; x)
inn M — (D,I). By (7.4), this means that there is at least one h : X -4 D for
whichh there is no u with suft!*/'; x]^1 and no u with SUA[</>; tp; tp"; xV^- Thus, s
universallyy satisfies ->{(p;x) a nd _,(0;V';V'*;x) m M.

Forr the /3* rule, assume that s universally satisfies 4>\ij)*;x m M.. Then for
everyy h : X ^ D there are u,u' with . u , , ^] ̂ and „ I^*;x]^- Then, by (7.4),
eitherr u\x]tf or there is a ux with „[t/*]^ and „ J ^ ^ x l ^ - Thus, s universally
satisfiess either <fi; x or <f>; ip; ip*; x in M.

Closuree in the Limit. To deal with the inflationary nature of the a* and /3*
ruless (the star formula of the rule reappears at a leaf node), we need a modification
off our notion of tableau closure. We allow closure in the limit, as follows.

7.7.1.. DEFINITION. An infinite tableau branch closes in the limit if it contains
ann infinite star development, i.e., an infinite number of a* or /?* applications to
thee same star formula.

Examplee of Closure in the Limit. We will give an example of an infinite
starr development. Consider formula (7.5):

->3w->(3i;;; v — 0; (v ^ w; [v + l/f])*; v = w). (7.5)

Whatt (7.5) says is that there is no object w that cannot be reached in a finite
numberr of steps from v = 0, or in other words that the successor relation v \-¥ V+l,
consideredd as a graph, is well-founded. This is the Peano induction axiom: it
characterizess the natural numbers up to isomorphism. What it says is that any set
AA that contains 0 and is closed under successor contains all the natural numbers.
Thee fact that Peano induction is expressible as an ££ formula is evidence that
£££ has greater expressive power than FOL. In FOL no single formula can express
Peanoo induction: no formula can distinguish the standard model (N, s) from the
non-standardd models. In a non-standard model of the natural numbers it may
takee an infinite number of s-steps to get from one natural number n to a larger
numberr m.

Thee expressive power of £s* is the same as that of quantified dynamic logic [Pra76,
Gol92].. Arithmetical truth is undecidable, so there can be no unitary refutation

1388 Chapter 7. Tableau Reasoning with DFOL

3w->(3v;3w->(3v; v = 0; (v ̂ w\ [v + l/v])*; v = w)

[wi/w]-i(3v;[wi/w]-i(3v; v = 0; (v ̂ w; [v + l/v])*; v = w)

->([UJI/VJ,, 0/v]; (v ^ w; [v + l/v])*; v = w)

->([wi/w,, 0/v]; v = w)

^{[w^{[w xx/w,/w, 0/v]; v ̂ w; [v + l/v]; (v ft w; [v + l/v])*; v = w)

I I

I I
->([wi/w,->([wi/w, l/v]; (v ^ w; [v + l/v])*; v = w)

^([wi/w,^([wi/w, l/v]; v = w)

->([wi/w,->([wi/w, l/v]; v ̂ w; [v + l/v]; (v ̂ w; [v + l/v])*; v = VJ)

I I
11 T^IVI

^([WX/VJ,, 2/v]; (v ^ w; [v + l/v])*; v = w)

->([w\/w,->([w\/w, 2/v]; v = w)

-i([wi/w,-i([wi/w, 2/v]; v ^ VJ; [v + l/v]; (u ̂ w; [v + l/v])*; v = UJ)

I I
22 ^ tvi

-i([wi/w,-i([wi/w, 3/v]; (v T̂ w; [v + l/v])*; v = VJ)

->([WI/VJ,, 3/v]; v = w)

-"([VJI/VJ,, 3/v];v ^ u>; [v + l/v]; (v ̂ VJ; [v + l/v])*; v = VJ)
I I

3 ^ V J I I

-I([TVI/VJ,, 4/V]; (V ^ VJ; [v + l/v])*; v = VJ)

-I([WI/UJ,, 4/v]; v = w)

->([VJI/UJ,, 4/v]; v T̂ w; [v + l/v]; (v ^ VJ; [v + l/v])*; v = VJ)

I I
44 T̂ TVi

-I([ÏVI/IÜ,, 5/v]; (v ^ w; [v + l/v])*; v = VJ)

x x

Figuree 7.8: 'Infinite Proof' of the Peano Induction Axiom.

7.7.. Extending the Language 139 9

systemm for ££. The unitary tableau system for £s is evidence for the fact that
DFOL(<7,, U) validity is recursively enumerable: all non-validities are detected by
aa finite tableau refutation. This property is lost in the case of ££: the language
iss just too expressive to admit of finitary tableau refutations.

Therefore,, some tableau refutations must be infinitary, and the tableau devel-
opmentt for the negation of (7.5) is a case in point. Let us see what happens if we
attemptt to refute the negation of (7.5). A successful refutation will identify the
naturall numbers up to isomorphism. See Figure 7.8. This is indeed a successful
refutation,, for the tree closes in the limit. But the refutation tree is infinite: it
takess an infinite amount of time to do all the checks.

7.7.2.. THEOREM (SOUNDNESS THEOREM FOR C%). The calculus f or
DFOL(a,DFOL(a, U, *) is sound:

ForFor all <f>, ip € C^: if the tableau for <f>] ->(ip) closes then <f> f= ip.

Thee modified tableau method does not always give finite refutations. Still, it
iss a very useful reasoning tool, more powerful than Hoare reasoning, and more
practicall than the infinitary calculus for quantified dynamic logic developed in
[Gol82,, Gol92]. Dynamic logic itself has been put to practical use, e.g. in KIV, a
systemm for interactive software verification [Rei95]. It is our hope that the present
calculuss can be used to further automate the software verification process.

Precondition/postconditionn Reasoning. For a further example of reasoning
withh the calculus, consider formula (7.6). This gives an C% version of Euclid's
GCDD algorithm.

{x{x ^y\{x> y; [x - y/x] Uy>x;[y- x/y]))*] x = y . (7.6)

Too do automated precondition-postcondition reasoning on this, we must find a
triviall correctness statement. Even if we don't know what gcd(x, y) is, we know
thatt its value should not change during the program. So putting gcd(x, y) equal
too some arbitrary value and see what happens would seem to be a good start. We
willl use the correctness statement z = gcd(x, y). The statement that the result
getss computed in x can then take the form z = x. The program with these trivial
correctnesss statements included becomes:

zz = gcd(x,y);

(x(x ^ y; (x > y; [x - y/x]; z = gcd(x, y) U y > x; [y - x/y]] z = gcd(x, y)))*;
xx = y\ z = x.

(7.7))
Wee can now put the calculus to work. Abbreviating

{x{x y; [x - y/x]] z = gcd(x, y) U y > x; [y - x/y]] z = gcd(x, y)))*

ass A*, we get:

140 0 ChapterChapter 7. Tableau Reasoning with DFOL

[gcd{x,[gcd{x, y)/z];x = y;z = x

xx = y, gcd(x, y) = x

[gcd(z,, y)/z]; A;A*;x = y\z = x

x>y x>y

gcd(x,y)gcd(x,y) =gcA{x-y,y)

[gcd{x,[gcd{x, y)/z,x - y/x]; A";

xx = y; z = x

y>y> x

gcd(x,, y) = gcd(:r, y - x)

[gcd(x,[gcd(x, y)/z,y - x/y]; A';

xx = y; z = x

Thee second split is caused by an application of the rule for U. By the soundness
off the calculus any model satisfying the annotated program (7.7) will satisfy one
off the branches. This shows that if the program succeeds (computes an answer),
thee following disjunction will be true:

(x(x = yAgcd(x,y) = x)

VV {x > y A gcd(x, y) = gcd(x - y, y) A <p)

VV (y > x A gcd(:r, y) = gcd(x, y - x) A ip)

(7.; ;

Heree (j> abbreviates [gcd(x,y)/z,x - y/x];A*;x = y;z = x and ip abbreviates
[gcd(x,y)/z,y[gcd(x,y)/z,y - x/y]\A*\x = y;z = x. Prom this it follows that the following
weakerr disjunction is also true:

(x(x = yAgcd(x,y) = x)

VV (x>yAgcd(x,y)=gcd{x-y,y))

VV {y > xAgcd(x,y) =gcd(x,y-x))

Notee that (7.9) looks remarkably like a functional program for GCD.

(7.9))

7.88 Completeness for DFOL (a, U, *)

Thee method of trace sets for proving completeness from Section 7.6 still applies.
Tracee sets for DFOL(er, U, *) will have to satisfy the obvious extra conditions.
Inn order to preserve the correspondence between trace sets and open tableau
branches,, we must adapt the definition of a fair computation rule. A computation
rulee F for £*s is fair if it is fair for £E, and in addition, the following holds for
alll branches B in T^:

 All formulas of type a*, /3* occurring on B or in $ were used to expand B.

Wee can again prove a trace lemma for DFOL(<r, U, *), in the same manner as
before:: Again, open branches in the supremum of a fair tableau sequence will
correspondd to trace sets, and we can satisfy these trace sets in canonical models.
Thee definition of trace sets is extended as follows:

7.9.7.9. Related Work 141 1

7.8.1.. DEFINITION. A set V of ££. formulas is a *-trace set if the following
hold: :

•• * is a trace set,

•• If ft* € $ then at least one ft € $.

•• If <f>; tp*; x € \&, then there is some n > 0 with <fc i/?m; % ^ *& for all m > n.
Similarlyy for ((<£; ^*; x)).

•• For all <j>, if>, x it holds that ->(0; ^*; X) £ * .

Notee that the final two requirements are met thanks to our stipulation about
closuree in the limit. In the same manner as before, we get:

7.8.2.. THEOREM (COMPLETENESS FOR £*). For all <f>,ip e C*: if <j> (= tf> then
thethe tableau for 0; ->(V>) closes.

Soo we have a complete logic for DFOL(cr, U, *), but of course it comes at a
price:: we may occasionally get in a refutation loop. However, as our tableau
constructionn examples illustrate, this hardly affects the usefulness of the calculus.

7.99 Related Work
Comparisonn with tableau reasoning for (fragments of) FOL. The present
calculuss for DFOL can be viewed as a more dynamic version of tableau style rea­
soningg for FOL and for modal fragments of FOL. Instead of just checking for valid
consequencee and constructing counterexamples from open tableau branches, our
openn tableau branches yield computed answer bindings as an extra. The con­
nectionn with tableau reasoning for FOL is also evident in the proof method of
ourr completeness theorems. Our calculus can be used for FOL reasoning via the
followingg translation of FOL into DFOL:

(ft-)' '
(-4)' (-4)'

(4>Ai!>y (4>Ai!>y

(*v^r r
(3x<t>y (3x<t>y

{Vx(f>y {Vx(f>y

== pt

== -^
== ^' ;^
== ^u f
== &;01
== - i (3 x ; ^ #)

Itt is easy to check that for every FOL formula <j> it holds that <fi* = ((0*)), i.e., all
FOLL translations are DFOL tests. Moreover, the translation is adequate in the
sensee that for every FOL formula <j> over signature E, every E-model Ai, every
valuationn s for M it holds that M \=t <f> iff ,[<£']^.

142 2 ChapterChapter 7. Tableau Reasoning with DFOL

Connectionn with Logic Programming. The close connection between tableau
reasoningg for DFOL and Logic Programming can be seen by developing a DFOL
tableauu for the following formula set:

VxA(Q,, x,x)yxVyVz\/i(A(x, y, z) -+ A{\i\x\, y, [t|*])), -BxA{[a\[6|u], [c|[]], x).

Thiss will give a tableau for the append relation, with a MGU substitution {x i-»
[a|[&|c|[]]]}} that closes the tableau, where x is the universal tableau variable used
inn the application of the 7 rule to -i3x.4([aj[&|[]], [c|[]],a;). The example may
servee as a hint to the unifying perspective on logic programming and imperative
programmingg provided by tableau reasoning for DFOL. We hope to elaborate this
themee in future work.

Comparisonn with other Calculi for DFOL and for DRT. The calculus
developedd in [vE99a] uses swap rules for moving quantifiers to the front of for-
mulas.. The key idea of the present calculus is entirely different: encode dynamic
bindingg in explicit bindings and protect outside environments from dynamic side
effectss by means of block operations. In a sense, the present calculus offers a full
accountt of the phenomenon of local variable use in DFOL.

Kohlhasee [KohOO] gives a tableau calculus for DRT (Discourse Representation
Theory,, see [Kam81]) that has essentially the same scope as the [vE99a] calculus
forr DPL: the version of DRT disjunction that is treated is externally static, and
thee DRT analogue of U is not treated.

Kohlhase'ss calculus follows an old DRT tradition in relying on an implicit
translationn to standard FOL: see [SE88] for an earlier example of this. Kohlhase
motivatess his calculus with the need for (minimal) model generation in dynamic
NLL semantics. In order to make his calculus generate minimal models, he replaces
thee rule for existential quantification by a 'scratchpaper' version (well-known from
textbookk treatments of tableau reasoning; see [Hin88] for further background, and
forr discussion of non-monotonic consequence based on minimal models generated
withh this rule). First try out if you can avoid closure with a term already available
att the node. If all these attempts result in closure, it does not follow from this
thatt the information at the node is inconsistent, for it may just be that we have
'overburdened'' the available terms with demands. So in this case, and only in
thiss case, introduce a new individual.

Thiss 'exhaustion of existing terms' approach has the virtue that it generates
'small'' models when they exist, whereas the more general procedure 'always in-
troducee a fresh variable and postpone instantiation' may generate infinite models
wheree finite models exist. Note, however, that the strategy only makes sense for
aa signature without function symbols, and for a tableau calculus without free
tableauu variables.

Kohlhasee discusses applications in NL processing, where it often makes sense
too construct a minimal model for a text, and where the assumption of mini-

7.9.7.9. Related Work 143 3

malityy can be used to facilitate issues of anaphora resolution and presupposition
handling. .

Comparisonn with Apt and Bezem's Executable FOL. Apt and Bezem
presentt what can be viewed as an exciting new mix of tableau style reasoning
andd model checking for FOL. Our treatment of equality uses a generalization of
aa stratagem from their [AB98]: in the context of a partial variable map 9, they
calll v = t a $ assignment if v £ dom{9), and all variables occurring in t are in
dom(9).dom(9). We generalize this on two counts:

•• Because our computation results are bindings (term maps) rather than maps
too objects in the domain of some model, we allow computation of non-
groundd terms as values.

•• Because our bindings are total, in our calculus execution of t\ = t^ atoms
neverr gives rise to an error condition.

Itt should be noted for the record that the first of these points is addressed in
[AptOO].. Apt and Bezem present their work as an underpinning for Alma-0, a
languagee that infuses Modula style imperative programming with features from
logicc programming (see [ABPS98]). In a similar way, the present calculus provides
logicall underpinnings for Dynamo, a language for programming with an extension
off DFOL. For a detailed comparison of Alma-0 and Dynamo we refer the reader
too [vE98b].

Connectionn with WHILE, GCL. It is easy to give an explicit binding se­
manticss for WHILE, the favorite toy language of imperative programming from
thee textbooks (see e.g., [NN92]), or for GCL, the non-deterministic variation on
thiss proposed by Dijkstra (see, e.g. [DS94]). DFOL is in fact quite closely related
too these, and it is not hard to see that DFOL(a, U, *) has the same expressive
powerr as GCL. Our tableau calculus for DFOL(<7, U, *) can therefore be regarded
ass an execution engine cum reasoning engine for WHILE or GCL.

Connectionn with PDL, QDL. We can see that there is also a close connection
betweenn DFOL(<r, U, *) on one hand and propositional dynamic logic (PDL) and
quantifiedd dynamic logic (QDL) on the other. QDL is a language proposed in
[Pra76]] to analyze imperative programming, and PDL is its propositional version.
Seee [Seg82, Par78] for complete axiomatizations of PDL, [Gol92] for an exposition
off both PDL and QDL, and for a complete (but infinitary) axiomatization of
QDL,, [HKT84] for an overview, and [Har79] for a a study of QDL and various
extensions.. In PDL/QDL, programs are treated as modalities and assertions
aboutt programs are formulas in which the programs occur as modal operators.
Thus,, if A is a program, (A)<f> asserts that A has a successful termination ending

144 4 ChapterChapter 7. Tableau Reasoning with DFOL

inn a state satisfying </>. As is well-known, this cannot be expressed without further
adoo in Hoare logic.

Thee main difference between DFOL(cr, U, *) and PDL /QDL is that in the
formerr the distinction between formulas and programs is abolished. Everything
iss a program, and assertions about programs are test programs that are executed
alongg the way, but with their dynamic effects blocked. To express that A has
aa successful termination ending in a <j> state, we can just say ((^4; </>)). To check
whetherr A has a successful termination ending in a 0 state, t ry to refute the
statementt by constructing a tableau for -*(A; <ft).

Too illustrate the connection with QDL and PDL, consider MIX, the first of
thee two PDL axioms for *:

[A*]4-*4>A[A][A']4.[A*]4-*4>A[A][A']4. (7.10)

Writingg this with (A), -i, A, V, and replacing -i<f> by <f>, we get:

->(-,(A*)<l>A(<f>V(A)(A*)<j>)).->(-,(A*)<l>A(<f>V(A)(A*)<j>)). (7.11)

Thiss has the following DFOL(er, U, *) counterpart:

- . (- . (A ' ; *) ; (* U (J 4 M * ; 0)) .. (7-12)

Forr a refutation proof of (7.12), we leave out the outermost negation.

- . (J ! * ; *) ; (* U (4 A * ; 0))

I{A';4>) I{A';4>)

{<f>U(A;A*;<f>)) {<f>U(A;A*;<f>))
I I

-,</, -,</,

->(A;A*;</>) ->(A;A*;</>)

f ^^ (A; A*;*)
xx x

Thee tableau closes, so we have proved that (7.12) is a DFOL(cr, U, *) theorem
(andd thus, a DFOL(cr, U, *) validity).

Wee will also derive the validity of the DFOL(<7, U, *) counterpart to IND, the
otherr PDL axiom for *:

{4,A[A*]{4>^[A]<t>))^[A*)ct>.{4,A[A*]{4>^[A]<t>))^[A*)ct>. (7.13)

Equivalently,, this can be writ ten with only (^4), -i, A, V, as follows:

- . (^^ A -i{A*)(f A (A)^>) A {A')->4>). (7.14))

7.9.7.9. Related Work 145

Thee DF0L(<7, U, *) counterpart of (7.14) is:

- . (f c i (j 4 » ; M ; - *) ; A W) .. (7.15)

Wee will give a refutation proof of (7.15) in two stages. First, we show that (7.16)
cann be refuted for any n > 0, and next, we use this for the proof of (7.15).

fc-,(ii';*;fc-,(ii';*; 4 - *) ; ; ! " ; - + (7.16)

Heree is the case of (7.16) with n = 0:

^(A*;<f>;A;-«f>) ^(A*;<f>;A;-«f>)

Bearingg in mind that A is a dynamic action and <p is a test, we can apply the
rulee of Negation Splitting (Section 7.4) to formulas of the form ->(An; (f>\ A; -xft),
ass follows:

Notee that ^(An; <j>; A; -i<£) can be derived from -.(A*; cj>; A; -<4>) by n applications
off the o:* rule. Using this, we get the following refutation tableau for the case of
(7.16)) withn = fe + 1:

- . (A* ;&A; -M£))

Thee left-hand branch closes because of the refutation of 0; ~>(A*; <j>\ A; -xj>); Ak; -«l>,
whichh is given by the induction hypothesis.

Next,, use these refutations of -K£, A; -uf>, A2; -xj>, ..., to prove (7.15) by
meanss of a refutation in the limit, as follows:

146 6 ChapterChapter 7. Tableau Reasoning with DFOL

fc-i(j4«;rt4-*M*;-* fc-i(j4«;rt4-*M*;-*

-.(A'jfcA;-*))

i 4 j i 4 ' ; - ^ ^

A ; ^ ^
,44 V ; ^

, 4 2 ; ^ ^
43;4*;-u£ £

Thiss closed tableau establishes (7.15) as a DFOL(u, U, *) theorem. That clo-
suree in the limit is needed to establish the DFOL(<r, U, *) induction principle is
nott surprising. The DFOL *-rules express that * computes a fix-point, while the
factt that this fix-point is a least fix-point is captured by the stipulation about
closuree in the limit. The induction principle (7.15) hinges on the fact that *
computess a least fix-point.

Goldblattt [Gol82, Gol92] develops an infinitary proof system for QDL with
thee following key rule of inference:

Iff <f> -»• \Ai\ A%]ij) is a theorem for every n € N, then cj) -+ [Ai;A 2]ip is a theorem.
(7.17))

Too see how this is related to the present calculus, assume that one attempts to
refutee <p ->• [AI;A^IJJ, or rather, its DFOL(cr, U, *) counterpart -i{<t>; A^\ A\\ -*/>),
onn the assumption that for any n € N there exists a refutation of <j>; A\\ A%; -rf.

<j>;AiiAZ;-*l> <j>;AiiAZ;-*l>

</>;A</>;A 11;A;A22;->i{> ;->i{>

<j>;Ai;A<j>;Ai;A 22;A;A22;^ ;^

x x
<l>;<l>; Ai;A2; A^A^, A^;-iip

4>;A4>;A11;A;A22;A;A22;A;A22;-'ip ;-'ip

x x

1.10.1.10. Conclusion 147 7

Wee can close off the faA^A^-iip branches by the assumption that there
existt refutations for these, for every n € N. The whole tableau gives an infinite
/3** development, and the infinite branch closes in the limit, so the tableau closes,
thuss establishing that in the DFOL(a, U, *) calculus validity of -<(0; Ai\ A^; -t̂ >)
followss from the fact that ->(<£; A\\ A^; -"VO is valid for every n G N.

7.100 Conclusion
Startingg out from an analysis of binding in dynamic FOL, we have given a tableau
calculuss for reasoning with DFOL. The format for the calculus and the role of
explicitt bindings for computing answers to queries were motivated by our search
forr logical underpinnings for programming with (extensions of) DFOL. The DFOL
tableauu calculus presented here constitutes the theoretical basis for Dynamo, a
toyy programming language based on DFOL. To find the answer to a query, given
aa formula 4> considered as Dynamo program data, Dynamo essentially puts the
tableauu calculus to work on a formula <j>, all the while checking predicates with
respectt to the fixed model of the natural numbers, and storing values for variables
fromm the inspection of equality statements. If the tableau closes, this means
thatt (j> is inconsistent (with the information obtained from testing on the natural
numbers),, and Dynamo reports 'false'. If the tableau remains open, Dynamo
reportss that <j> is consistent (again with the information obtained from inspecting
predicatess on the natural numbers), and lists the computed bindings for the
outputt variables at the end of the open branches. But the Dynamo engine also
workss for general tableau reasoning, and for general queries. Literals collected
alongg the open branches together with the explicit bindings at the trail ends
constitutee the computed answers. We report on the development of Dynamo in
thee next chapter.

Chapterr 8

Implementingg Dynamo

BeforeBefore enlightenment, the mountain is a mountain.
WhileWhile seeking enlightenment, the mountain is a floating mirage,

atat once real and ephemeral, at once there and not there.
AfterAfter enlightenment, the mountain is a mountain.

-- Zen folklore

8.11 Introduction

Wee have so far presented a way of interpreting DFOL formulas as programs, a
methodd of verifying correctness of such programs, and a tableau calculus that can
bee implemented as an engine for the language. What we need now is to do the
implementation,, so we can use the language for programming and exploring the
conceptss so far introduced.

Beforee developing the tableau calculus, we had other implementations of Dy-
namo,namo, based on the state machines described in Chapter 5 but we were having
aa bit of trouble with negation; when a negated formula succeeded with 'complex
states',, we put the result back into state form by dualizing the result, which was
basicallyy applying De Morgan's laws to the set of states (taking into account that
thee set represents a disjunction and the states conjunctions), so that its nega-
tionn would again be a set of states. This gave us the idea of actually using a
tableauu calculus to carry out the computations. Now we have a calculus that
dealss with these matters in a much more natural way, but knows nothing about
simplee arithmetic; still, we are closer now to DFOL semantics.

Wee report here on our efforts to bring the two capabilities together; the pur-
posee of this implementation is to test the appropriateness and efficiency of the
tableauu method for implementation of a programming language.

149 9

150 0 ChapterChapter 8. Implementing Dynamo

Freee Variable Tableaux
Wee follow the guidelines given in [Fit96] for the handling of universally quantified
variables:: the formulas in each branch are organized as a list, and we always
processs the fomula at the head of the list. When the formula is not of type 7,
thee formula itself is removed from the list, and is replaced by the formulas that
resultt from applying the corresponding rule. When the 7-rule is applied, the
formulaa can not be discarded, but is then moved to the end of the list, to enable
thee other formulas in the branch to be processed. The branches themselves are
alsoo organized as a list; whenever the 7-rule is applied, the algorithm leaves the
branchh and goes on to the next one in the list.

Closingg the Tableau. In its original version, when the algorithm expands
thee tableau until the 7 rule has been applied a predetermined number of times,
thee program tries to close all branches, by finding the substitution that will
closee all of them simultaneously. Essentially, it will sequentially, starting from
thee empty substitution, find all extensions of the current substitution that close
thee branch, and try to close the rest of the branches starting from each of the
extensions.. If no substitution that closes the entire tableau is found, the tableau
iss considered 'not solved'; either the formula is satisfiable, or the 7 rule will
havee to be applied a higher number of times, usually starting from scratch. In
thee Dynamo implementation, the 7 rule is applied at most once per branch (it
mightt not be needed), and then closure is attempted. If closure is not reached,
andd at least one branch consists only of atoms, the tableau is open, otherwise
thee algorithm does another pass through the already expanded tableau and tries
againn until closure is reached.

8.22 The Dynamo Engine

8.2.11 The Programming Language

DynamoDynamo is implemented in Haskell; compiles under GHC version 5.04. As before,
wee chose Haskell over other programming languages because of its small semantic
gapp between the program and its task, its being strongly typed, and the fact that
itt compiles into an executable program instead of requiring an interpreter.

8.2.22 The Algorithm

Thee way we implemented the free variable tableaux is shown in Figure 8.1.

•• The function init-branch(form) initializes the branch data structure, with
thee input formula as the only element of the formula list.

8.2.8.2. The Dynamo Engine 151

input:: form: formula;
input:: query: list of variable schemes
var:: Branches, New_branches: list of branches
var:: current: branch

Branchess := {init-branch(form)};
{{ * Main loop *}
whilee (close_branches(Branches)= False

andd all^atomic-branch (Branches)
New_branchess := 0;
{{ * Single step *}
foreachh current in Branches do

{{ * Infer until univ. quant or out
NewJbranchess := New.branches U s

Branchess := NewJbranches;

iff (close-branches (Branches) = True
thenn return "unsatisfiable"
elsee return (extract .values (query,

== False) do

ofof formulas *}
inglee .step (current);

Branches)))

Figuree 8.1: Structure of the Dynamo engine

•• The function single_step(current) applies the rule that corresponds to the
typee of formula at the head of the list in the branch; if the type is 7, after
applyingg the corresponding rule the formula is copied at the end of the for­
mulaa list and the function returns. Otherwise, single_step is applied to all
thee branches that result from application of the rule, until the formula list
iss empty or the 7-rule is processed. If the result of applying a rule is a new
atom,, (ground) closure is checked for. If the branch is found to close, it is
removedd from the result list.

•• The function close-branches attempts to close all branches, one by one;
itt calls close-branch for each branch, and carries a list of all the freez­
ingg substitutions that close all processed branches. If a branch can not be
closedd by any of the existing freezing substitutions (or an extension of one),
thee procedure returns False.

•• The function close-branch (current) attempts to find complementary atoms
inn the branch, first through the congruence closure and failing that through
unificationn with a universally quantified variable. It accepts as parameters
thee list of atoms in the branch, the computed congruence closure, and a
freezingg substitution, and returns whether the branch can be closed or not,
andd the substitution that closes it if possible.

•• The function all^atomicJbranch(branches) looks for a branch made up

152 2 ChapterChapter 8. Implementing Dynamo

entirelyy of atoms. Since it is called after a test for closure, the presence of
suchh a branch always indicates that the tableau will never close.

•• The function extract_values(query, Branches) extracts the values of the
requiredd variables from the open tableau branches.

8.33 Tableau reasoning for DFOL
Heree we review the main departures from a tableau prover for FOL; the data
structure,, which had to take into account the handling of equality, and the im­
plementationn of the rules.

8.3.11 Data Structures

Thee main data structure in this implementation is the branch. A branch is a tuple
consistingg of a list of formulas, a list of universally quantified variables present
inn the branch, a congruence, and a list of atoms. The list of formulas contains
thee formulas to be processed, the list of universally quantified variables holds
thee variables that would serve as arguments for skolem functions, the congruence
keepss track of equalities between terms, and the list of atoms carries the list of
atomicc facts that is searched for complementary assertions. The program state
iss a tuple containing the list of branches, and the indexes of the last universal
variablee and the last skolem function instantiated. The program state is reached
throughh a state monad, and is therefore transparent to most functions in the
program. .

8.3.22 Rules

Rulee Extensions. Many of the tableau rules of Chapter 7 included both lead­
ingg substitutions and trailing formulas, which were actually optional and could
bee replaced by a tautology; that had to be made more explicit in the program,
whichh multiplied the number of rule instances. For example, one of the cases of
thee /?-rule is:

9;9; {fa Ufa); fa

9;9; fa; fa 9; fa; fa

Inn this case, both 9 and fa are optional; only (fa U fa) is required to be non­
empty,, so the rule has to fire on (9; (fa Ufa); fa), (9; (faUfa)), ((fa Ufa); fa) and
(faUfa).(faUfa). We solved the problem in part by placing the empty substitution at the
startt of the input formula, since the rules themselves ensure all resulting formulas
willl start with a substitution, but the trailing formulas still force us to duplicate
thee rules. The reason for the trailing formulas is precisely that the rules push a

8.4-8.4- Extensions to the Calculus 153 3

substitutionn through the whole: order is not important in FOL, but it matters a
lott in DFOL.

Blocking.. Block formulas, given their nature as assertions, were given special
treatment:: when a block formula is found, a new tableau is created for it, with
thee same data as the current branch but only the blocked formula in the formula
list,, and evaluated. If it results in many branches, the rule creates branches in-
corporatingg the list of atoms of each new branch to copies of the current branch.
Inn this way we block the dynamic effects that would result from existential quan-
tificationn inside the blocked formula, but keep any atomic checks that were not
groundedd at the time of evaluation.

Universall Quantification. A problem with universal quantification is that it
representss a 'standing order': unlike the other rules, the 7-rule does not consume
thee formula it processes, and it can be processed again. If a limit to the number
off times the 7-rule can be applied were known, the logic would be decidable. The
enginee will run forever on satisfiable problems in which all branches have a 7-type
formula;; we are looking for ways in which it can be detected that a new application
off the 7 rule will be redundant. We also need to ensure fairness, as stated in
Sectionn 7.6; ensuring that for all branches B of the fully expanded (possibly
infinite)) tableau Tinf, all the a-, j3-, and 5-type formulas present either in B or in
thee original formula $ are used to expand B, and that all 7-type formulas present
inn <f> or B are used to expand B infinitely often. Our computation rule makes
suree this happens: formulas are kept in a list, a-, /?-, and 5-type formulas are
alwayss discarded and replaced by the resulting formula(s), while 7-type formulas
aree put at the end of the list while the formulas resulting from applying the rule
aree still placed in the head of the list.

8.44 Extensions to the Calculus

Afterr implementing the free variable tableau, there was still something to be done:
wee want the engine to do some computation, and maybe even support equational
reasoning.. The following is an account of our efforts.

8.4.11 Indexed Variables

Havingg indexed variables is very useful for programming, since it enables us to
writee a program for the general case of a problem; we don't need to write n
programss to sort arrays of size 2 . . . n. But then we have a problem:

[4/A]o[8/J[*] I6/l[4]]] = ?

154 4 ChapterChapter 8. Implementing Dynamo

Wee must either make sure that the indexes are grounded or allow composition of
substitutionss to fail when the result would be inconsistent. Since we find it hard
too figure out why someone would want to assign values to unspecified elements of
ann array, we chose the first option. In [AB98], the corresponding requirement is
thatt all indexes have to be grounded, and the term to be substituted for the index
variablee must be also grounded; we relax the requirement in that the substituting
termm can be non-grounded. Another idea to consider is to treat bindings of the
formm [£/u[fc]] and formulas of the form v[k] = t , where k is not grounded, as
instancess of t\ =t2, that is, add the equality to the list of atoms.

8.4.22 Teaching Dynamo to Add

Somethingg that might not be apparent in the description of Chapter 7 is that the
handlingg of terms does not contemplate interpreted function symbols other than
=.. While this is a specialized behavior for theorem provers, it is crucial for a
programmingg language: we want the language to be able to do basic arithmetic,
suchh as necessary for incrementing a counter or specifying a range. We added
thenn interpretation of +, - , * and div (integer division) to the language. Still,
somethingg was missing, since expressions could be indirectly ground (as in x =
y;y; y = 4; z = x + 2), so we added a lookup to the congruence closure in the term
evaluation.. Also, formulas of the type <j> 1 and [Xlt2 required evaluation of the
termss in the rule body. We also included interpretation of <,<,>,< for ground
terms. .

8.4.33 What to do with the Equations

Afterr a formula is determined to be satisfiable, there are two possible outcomes
forr each branch: either the complete list of atoms has been grounded, found
consistent,, and discarded, or some values are still to be computed and we are
leftt with a set of ungrounded atoms. Now, this set itself could be unsatisfiable
(considerr the atoms {o > 6, b > c, c > a], or a set of equations). We have
nott included equation solving in Dynamo; possible solutions include coupling
ann algorithm for equation solving to the tableau algorithm [ABC+02], calling
ann external program to solve the equation system, and encouraging potential
programmerss to try and make their programs give values to their variables; we're
aimingg for a language with an imperative flavor after all.

8.55 Example runs

Wee will show now some examples that highlight improvements of the implemen-
tationn over previous versions of the engine and over the calculus as presented.

8.5.8.5. Example runs 155 5

8.5.1.. EXAMPLE. [Blocks puzzle] Let's consider a classical AI puzzle [Ram87]:
wee have a pile of three blocks, which are either green or red. The bottom block is
red,, and the top block is green; we don't know the color of the middle brick. The
questionn is: Is there a green brick on top of a red brick? The Dynamo version of
thee puzzle is as follows:

[juanhQbanaann dynamo] $ cat tes ts /a ipuzz le
/** program puzzle ;*/

begin n
G 1 ; R 3 ; ;
00 1 2; 0 2 3;
nott (some k;!(G k);!(R k));
nott (some x; G x ;some y; R y ; 0 x y) ;

end d

?? () true

Here,, the Gx and Rx predicate represents being green and red, respectively,
andd Oxy represents "block x is over block y". We state the facts about the
dispositionn and coloring of the blocks, and that a block is either green or red.
Then,, we state that there never is a green brick on top of a red brick, and call
Dynamo: Dynamo:

[juanhCbanaann dynamo]$./dynamo tes ts /a ipuzz le

Input: :
G-[C1]};R{[3]};0{[1,2]};0<[2,3]}; ;
!(Exx k;!(G{[k]}); !(R{[k]}));
!(Exx x;G-C[x]};Ex y;R{[y]};0{[x,y]>)

Endd of input

Formulaa is False
Elapsedd time: 3.0e-2

Previouss versions of Dynamo would just return the • state, since by design they
don'tt deal with universal quantification.

8.5.2.. EXAMPLE. [Computation of Answer Substitutions] In the example on
Chapterr 7, we hinted that while the tableau engine itself did not know about
thee semantics of <, the left branch could be eliminated by model checking or
termm rewriting, or adding the relevant axioms for <, We do a limited form of
modell checking (interpretation of < ,<= ,<=,< for ground terms), so here is how
thee problem looks like in Dynamo:

156 6 ChapterChapter 8. Implementing Dynamo

[juanhGbanaann dynamo]$ cat tests/union

/** program union;*/

begin n

x<3; ;
begin n
x=55 or x=2

end d
end d

?? (x) true

andd how Dynamo reacts:

[juanhflbanaann dynamo]$./dynamo tests/union

Input: :
<{[x,3]};x==55 U x==2

Endd of input

Formulaa is True
"x=2" "
[<{[x,3]}]]

Elapsedd time: 0.0

Thee line under " i = 2" tells us that the condition x < 3 is still active: we
probablyy need to remove 'constraint' atoms once the constraint is fulfilled by the
model. .

8.5.3.. EXAMPLE. [More computed answers: the Eight Queens Problem] This is
actuallyy a classical Dynamo example program: all versions have been able to
solvee it. What makes it special in this case is that the engine had to be able
too add and substract, address values in an array, and evaluate terms in the rule
body.. We found that there are a lot of things to improve on the new engine:
thee old Dynamo solved the problem in 5.3 seconds, while the current Dynamo
tookk 37.3 seconds. We take comfort that the new engine, while more ponderous,
cann tackle many more problems than the previous ones, and that this is but a
proof-of-conceptt implementation.

[juanhQbanaann dynamo]$ cat tests/8queens
/** program Nqueens(f[]) ;*/

8.5.8.5. Example runs

begin n
nn = 8;
somee k; k := 0;
doo ii times
begin n

kk := k + 1;
findd r in [1
begin n

rr = f [k] ;
nott (find i in

(ff [i] = r or
end d

end d
end d

n]] with

[11 . . k-1] with
ff [i] = r + (k - i) or f [i] = r - (k

?? (fD) true

[juanhtbanaann dynamo]$./dynamo t«ita/8qu««ns

Input: :
n—8;Exx k;[(k,0)];Do n timaa ([(k,+([k, l3))3 ;Choos« (r : - l . .n) with r—«W;
KChooi** (i : - l . . - (Dt ,13))

withh [[[[«[i3—r33 U [[«[13—+([r,-([k,13)3)33 U [[«[i3—([r ,-([k,13)3)3333))
Endd of input

Formula a
«[83-3 3
«[83-3 3
«[83-6 6
«[83-4 4
«[83-6 6
«[83-4 4
«[83-6 6
«[83-6 6
«[83-6 6
«[83-4 4
«[83-6 6
«[83-6 6
«[83-4 4
«[83-4 4
«[83-6 6
«[83-6 6
«[83-4 4
«[83-3 3
«[83-3 3
«[83-3 3
«[83-8 8
«[83-3 3
«[83-7 7
«[83-6 6
«[83-4 4
«[83-6 6
«[83-4 4
«[83-6 6
«[83-7 7
«[83-8 8
«[83-3 3

iaa True
;; «[73-6
;; «[73-6
;; «[73-2
;; «[73-2
;; «[73-7
;; «[73-7
;; «[73-4
;; «[73-3
;; «[73-2
;; «[73-2
;; «[73-3
;; «[73-3
;; «[73-2
;; «[73-6
;; «[73-8
;; «[73-3
;; «[73-7
;; «[73-6
;; «[73-7
;; «[73-6
;; «[73-2
;; «[73-1
;; «[73-4
;; «[73-7
;; «[73-2
;; «[73-2
;; «[73-1
;; «[73-1
;; «[73-2
ii «[73-2
;; «[73-6

«[63-4 4
«[63-2 2
«[63-4 4
«[63-7 7
«[63-2 2
«[63-6 6
«[63-7 7
«[63-6 6
«[63-4 4
«[63-8 8
«[63-1 1
«[63-1 1
«[63-6 6
«[63-1 1
«[63-4 4
«[63-6 6
«[63-3 3
«[63-7 7
«[63-2 2
«[63-2 2
«[63-6 6
«[63-7 7
«[63-2 2
«[63-2 2
«[63-8 8
«[63-8 8
«[63-6 6
«[63-8 8
«[63-4 4
«[63-4 4
«[63-8 8

«[53-2 2
«[53-8 8
«[533 "7
«[63-3 3
«[63-6 6
«[63-2 2
«[63-1 1
«[63-7 7
«[63-6 6
«[63-6 6
«[63-6 6
«[53-8 8
«[63-8 8
«[53-6 6
«[63-1 1
«[63-8 8
«[63-8 8
«[53-1 1
«[63-8 8
«[53-8 8
«[63-3 3
«[63-6 6
«[63-6 6
«[63-4 4
«[63-6 6
«[63-1 1
«[63-8 8
«[63-4 4
«[63-1 1
«[63-1 1
«[63-4 4

«M3-8 8
«[43-6 6
«[43-3 3
«[43-6 6
«[43-3 3
«[43-6 6
«[43-3 3
«[43-1 1
«[43-8 8
«[43-1 1
«[43-8 8
«[43-6 6
«[43-6 6
«[43-2 2
«[43-3 3
«[43-1 1
«[43-2 2
«[43-4 4
«[43-6 6
«[43-1 1
«[43-1 1
«[43-8 8
«[43-8 8
«[43-8 8
«[43-7 7
«[43-4 4
«[43-2 2
«[43-2 2
«[43-8 8
«[43-7 7
«[43-1 1

«[33-6 6
«[33-4 4
«[33-8 8
«[33-8 8
«[33-1 1
«[33-1 1
«[33-6 6
«C33-4 4
«[33-3 3
«[33-3 3
«[33-2 2
«[33-2 2
«[33-1 1
«[33-8 8
«[33-6 6
«[33-4 4
«[33-6 6
«[33-2 2
«[33-1 1
«[33-7 7
«[33-7 7
«[33-2 2
«[33-1 1
«[33-1 1
«[33-1 1
«[33-7 7
«[33-7 7
«[33-7 7
«[33-6 6
«[33-6 6
«[33-7 7

«[23-7 7
«[23-7 7
«[23-6 6
«[23-6 6
«[23-4 4
«[23-3 3
«[23-2 2
«[23-2 2
«[23-1 1
«[23-6 6
«[23-4 4
«[23-4 4
«[23-3 3
«[23-3 3
«[23-2 2
«[23-2 2
*D3-1 1
«[23-8 8
«[23-4 4
«[23-4 4
«[23-4 4
«[23-4 4
«[23-3 3
«[23-3 3
«[23-3 3
«[23-3 3
«[23-3 3
«[23-3 3
«[23-3 3
«[23-3 3
«[23-2 2

«[13-1; ;
ff [13-1;
«[13-1; ;
«[13-1; ;
«[13-8; ;
«[13-8; ;
«[13-8; ;
ff [13-8;
«[13-7; ;
«[13-7; ;
«[13-7; ;
«[13-7; ;
«[13-7; ;
«[13-7; ;
«[13-7; ;
«[13-7; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;
«[13-6; ;

158 8 ChapterChapter 8. Implementing Dynamo

;; f[73-8
;; f [7]-2
;; f [73-3
;; f [7]-7
;; f [73-6
;; *C7]-2
;; l [7] -6
;; i [7] -4
ii *[73-«
;; *[73»8
ii *[7]-4
;; JE7>3
;; *[7]«6
;; f [7] -4
;; *[7]-6
;; t C7] -3
;; *[73-8
;; f [7]-6
;; *C7]-i
;; * [7>7
;; t[7] -3
;; f [7]-6
;; t[7] «7
;; f [7]-2
;; f [7]-6
;; f[7]«8
;; t [7] -3
;; f [73-1
;; *C7]-3
;; *[73-6
;; *[7]-3
;; f [7]-6
;; f [73-3
;; f [7] -6
;; f [73-1
;; f [73-6
;; f [7]-3
;; *[7]-4
;; i [7 > 2
ii *C73-1
;; *[7]-4
;; f [7]-a
;; *[7]«5
;; f [7]-7
;; f [7]-7
;; t [7] -7
;; *[73-8
;; f [7]-8
;; f [7]-7
;; *[73-2
;; t[7] -8
;; f [7] -4
;; t [7] -7
;; *[73-7
;; f [73-6,
;; fC7]-l,
;; f [7 > 3 ,
;; f[73-7;
;; *[73-6;
;; fC7]-6;
;; f [7]-7;

;; i [«]-B
;; f [6]-7
;; f [6]-7
;; f [6] -2
;; f [6]-2
;; f[63-6
;; f[63-8
;; f [6]-6
;; f [e] -8
;; f [63-1
;; f [6] - l
;; f [63-1
;; t[63-8
;; *C6]-2
;; *C6]-i
;; i [6] -7
;; f [63-4
;; f E6] «8
;; t [63 -3
;; *[63-3
;; f [63-7
.. f [63-2

ff [6]-2
*[63-7 7
«« [6]-2
ff [6]-6
*[63-l l
ff [6]-5
ff [6]-8
ff [6]-7
ff [63-1
ff [63 -3
ff [63-1
ff »] «8
ff [6]-8
ff [6]-8
ff [63-1
tt [63 -2
ff [6]-6
ff [6]-4
*[63-l l
ff [63-7
ff [63-7
i [6] - l l
ff [6]-6
ff [6]-6
tt [63 -4
ff [63-1
ff [63-1
ff C6]-7
*[63-2 2
ff [6]-7
ff [6]-4
*[63-6. .
f [6] -4 . .
ff [6]-6,
f[63-8; ;
f[63-4; ;
f [6]-8; ;
f [6]-8; ;
ff [63-1;

ii f [6] -3
ii f [6]-3
;; *C53-2
ii *[53-8
;; i [6] -7
;; f [6]-3
.. f [5]-2

ff [6]-8
11 [6] -3
ff [6]-3
ff [5]-3
ff [5] "8
*[53-2 2
ff [5]-8
ff [5]-7
tt [53 -4
ff [5]-7
ff [5]-3
ff [5]-8
ff [63 -6
ff [5] «2
ff [6]-7
ff [53-6
ff [63-1
ff [5]-5
ff [53-1
ff [53-6
ff [5]-2
ff [5]-2
ff [63-1
tt [6] -7
i [B] - l l
i [63-7 7
*[63-l l
ff [53-6
U63-6 6
*[63-6 6
ff [5]-8
ff [53-1
tt [6] -6
ff [5]-5
ff [6]-6
*[53-4 4
ff [6]-4
ff [6]-8
ff [5]-8
ff [63-1
ff [5]-6
ff [6]-8
ff [63-1
ff C6]-4
ff [53-1,
f[B]-6, ,
ï [53-3; ;
ff [63-1;
ff t6]-8;
ff [63-4;
ff [63-1;
*[63-3; ;
*[63-l; ;
ff [5]-3;

ii f [43-1;
;; U43-6;
;; f [43-4;
;; 1M3-6;
;; *C4]-1;
;; tC4]-l;
;; * M - 4 ;
;; * M - 3 ;
;; t [4]- l ;
;; f [4]-6;
;; f [43-6;
;; f[43-4;
;; *[43-7;
;; *[43«6;
,, f [43-4;

ff [43-1;
*[43-l; ;
ff [43-7;
f[43-6; ;
*[43-8; ;
f[43-8; ;
ff [43 -5;
ff [43-3;
ff [43-3i
ff [43-8;
ff [43-3;
f[43-2; ;
f[43-8; ;
ff [43-6;
ff [43-3;
ff [43-2;
11 [43-6;
ff [43-5;
1M3-6; ;
i [43-3; ;
i [43-3; ;
t[43-8; ;
1C43-6; ;
11 [43-7;
ff [4]-8;
*[43-8; ;
ff [43-1;
*[43-l; ;
*[43-2; ;
ff [43-1;
ff [43-2;
i [43-7; ;
ff [43-7;
f[43-B; ;
f[43-4; ;
ff [43-1;
f[43-8; ;
f[43-8; ;
tt [43-1;
f[43-8; ;
f[43-6; ;
f[43-7; ;
ff [43-3;
ff [43-1;
ff [43-4;
11 [43 -8;

f [33 -7 ; ;
tt [33-8;
tt [33-8;
tt [33-4;
t [3] - 4 ; ;
ff [33-4;
ff [33 -1 ;
ff [33 -1 ;
ff [33-4;
ff [33-2;
([33-2 ; ;
f [33-2 ; ;
ff [33-1 ;
ff [33-1 ;
EE [33-8;
f [33-8 ; ;
ll [33-6;
tt [33 - 4 ;
f [33-4; ;
ff [33-5;
ff [33-6;
ff [33-1 ;
ff [33-1 ;
t [33-5; ;
t [3 3 - l ; ;
ff [33-6;
ff [33-5;
r [33-3; ;
ff [33-1 ;
r [33-8; ;
r [33-8; ;
t [33-8; ;
[[33-8; ;
ff [33-7;
f [33-7; ;
[[33-7; ;
E[3]-6; ;
t [33-7; ;
[[33-4; ;
t [33-2; ;
ff [33-2;
f [33-8; ;
[[33-8; ;
[[33-8; ;
[[33-4; ;
[[33-4; ;
[[33-2; ;
[[33-2; ;
[[33-2; ;
[[33-8; ;
[[33-7; ;
[[33-2; ;
[[33-2; ;
E[33-6; ;
[[33-5; ;
[[33-3; ;
[[33-1 ; ;
[[33-8; ;
[[33-7; ;
! [33-7; ;
! [33-6; ;

ff [23-2
ff [23-1
i [23- l l
*[23-l l
*[23-8 8
tt [23-8
J[23-7 7
ff [23-7
ff [23-7
ff [23-7
t[23-7 7
ff [23-7
ff [23-3
ff [23-3
*[23-3 3
tt [23-2
ff [23-2
ff [23-2
ff [23-2
ff [23-1
ff [23-1
ff [23-8
ff [23-8
ff [23-8
ff [23-7
ff [23-7
ff [23-7
ff [23-7
ff [23-6
ff [23-6
ff [23-6
ff [23-2
ff [23-2
ff [23-2
ff [23-2
l [23-2 2
ff [23-2
1E23-1 1
ff [23-8
ff [23 "7
ï[23-7 7
f[23-6 6
ff [23-6
ff [23-6
ff [23-6
ff [23-6
*[23-6 6
*[23-6 6
ff [23-6
ff [23-5
ff [23-5
ff [23-5
ff [23-5.
tt [23 -8 ,
ff [23-7;
ff [23-7;
ff [23-6;
ff [23-6;
f[23-5; ;
f[23-6; ;
f[23-4; ;

.. *[l3-6;
,, f[13-5;

f [l3 -5 ; ;
<[13-5; ;
f [l3 -5 ; ;
ff [13-5;
f [l3 -5 ; ;
ff [13-6;
ff [13-6;
ff [13-6;
f[13-5; ;
ff [13-5;
ff [13-5;
f[13-5; ;
U13-5; ;
U13-S; ;
*[l3-5; ;
l [l3 -6 ; ;
*[13-5; ;
J[l3-4; ;
i [l 3 -4 ; ;
f[13-4; ;
f [l3 -4 ; ;
f [l3 -4 ; ;
f[13-4; ;
l [13-4; ;
*[l3-4; ;
*[l3-4; ;
*[13-4; ;
f [l3 -4 ; ;
* [l3-4; ;
f[13-4; ;
«[13-4; ;
f[13-4; ;
f[13-4; ;
*[l3-4; ;
f[13-4; ;
ï [13-3; ;
ff [13-3;
ff [13-3;
ff [13-3;
ff [13-3;
f[13-3; ;
ff [13-3;
ff [13-3;
ff [13-3;
f[13-3; ;
U13-3; ;
*[13-3; ;
i [13-3; ;
* [l3-3; ;
J[13-3; ;
tt[13-3; [13-3;
ff [13-2;
ff [13-2;
t[13-2; ;
ff [13-2;
f[13-2; ;
f[13-2; ;
*[13-2; ;
«[13-2; ;

Elapsedd time: 37.31

8.6.8.6. Conclusion 159 9

8.66 Conclusion
Wee have now provided a platform on which to experiment on the concepts pre-
sentedd in Chapters 5, 6 and 7; this opens the way to cross-checking the contents
off these chapters, and even as it is their culmination it serves as a background
too their study. Implementation is the true test for theories; teaching a tableau
proverr to do simple arithmetic can be hard. Also, we found that the use of a
theoremm prover as a language engine demands a major increase in its capabilities
too be worthwhile.

Nextt steps for Dynamo include adding equational reasoning capabilities, get-
tingg it to run faster, adding data types, the 3 operator and the Kleene star, and
implementingg a tool to verify Dynamo programs using the calculus presented in
Chapterr 6.

Partt III

Conclusions s

Chapterr 9
Conclusion n

ComputersComputers are useless;
theythey can only give you answers.

-Pablo-Pablo Picasso

Wee started out this journey with the intention of improving both the under-
standingg and the landscape of automated reasoning tools for a variety of logics;
inn the course of this work, a translator from multi-modal logic into first order
logic,, a hybrid logic resolution theorem prover, a hybrid logic test set generator
andd a DFOL programming language were designed and implemented.

9.11 On Empirical Evaluation
andd Modal-like Satisfiability Testing

Inn Part I of the thesis we focused on putting modal logic to work; in particular, we
weree interested in different ways of implementing solvers for the modal satisfiabil-
ityy problem. We saw how empirical evaluation is useful not only for comparison
off competing reasoning tools, but also for guidance and evaluation in the develop-
mentt of said tools, as well as evaluation of the test sets themselves. We also saw
thee importance of having a proper test set in the case of HyLoRes development;
hadd we developed hGen first, the urgency of improving paramodulation treatment
wouldd have been much more apparent. We also saw two different ways of putting
aa particular logic to work: having a tool to translate it into a logic that has tools
alreadyy developed for it, in this case FOL, or writing a tool from scratch. Each
methodd has its advantages and disadvantages: the translation method can be
veryy easy to do in a naive way, but improving it requires tweaking the translation
withh an eye on the workings of the tool we want to work with, which will require
substantiallyy more involvement and is always limited. The custom tool way also
hass its own compromises: on the one hand, one has complete control over the

163 3

164 4 ChapterChapter 9. Conclusion

innerr workings of the tool, but on the other hand it tends to be a much bigger
effort. .

9.22 On DFOL programming

InIn Part II, we concentrated on one thing we can do with one logic, and all the
wayss in which we can look at it. We took DPL, extended it until it was expressive
enoughh for programming, and stated an executable program interpretation for it.
Wee reviewed the first two versions of the Dynamo engine, and decided that getting
closerr to DFOL semantics would be simpler if we abandoned the state machine
approachh and used a tableau prover for the engine instead. In the meantime,
wee provided a Hoare calculus for verification of Dynamo programs, which being
inspiredd in the semantics of the logic instead of the program state, is the same for
anyy incarnation of the Dynamo engine. In the end, we implemented Dynamo, in
thee course of which we learned that while a theorem prover has no trouble with the
conceptt of negation-as-failure, things like simple arithmetic and equality reasoning
requiree the engine to be significantly enlarged. Another desired functionality, the
Kleenee star, had to be postponed; the study of how to do unrestricted looping
andd still produce meaningful results falls out of the scope of the present work.
Onee thing that can be done is take advantage of the lazy processing engine of
Haskell,, and report models as they appear.

9.33 Threaded through:
Haskelll and Scientific Programming

Thee translators from modal to first order logic, HyLoRes, hGen, and all versions of
Dynamo,Dynamo, all share a common property: they have been written in Haskell. The
mainn benefit of programming in Haskell was that since we did not have to worry
aboutt all the little details of how we wanted our computation carried out, we
hadd more time to consider optimizations to the bigger details of the algorithms
andd data structures; it is also less trouble to change them in order to experiment.
Ultimately,, if one wants a really fast program and can devote the time and re-
sourcess to developing it, the imperative way will always work better, although
itt is always superseded by hardware-specific machine coding, which in turn is
bestedd by task-specific hardware design. There is something else to be said for
thiss ordering, which is that the insights gained for each approach are increasingly
different:: the tasks performed and therefore the knowledge required focus more
andd more on where the data goes and how cleverly it is stored, recalled and up-
dated.. But all these optimizations are vulnerable to improvements in algorithm
quality;quality; developing better heuristics and better data organization usually results
inn more dramatic results than fine-tuning your loops or using custom hardware,

9-4-9-4- Equality Reasoning 165 5

andd more importantly, gives a better insight on the nature of the problem.

9.44 Equality Reasoning

Anotherr thing that became a common theme between the two parts of this thesis
iss the need for equality reasoning treatment. Both in HyLoRes and in the Dynamo
engine,, we found some manifestation of equality being a stone in our shoe. Were
thesee stones equal? Well... since tableaux and resolution are dual methods, the
problemss posed by equality are perforce different; also, in Dynamo we want the
solutionn to the set of equations, while in HyLoRes we do not have interpreted
functionn symbols and are looking for contradictory statements.

9.55 One Logic to Find them, one Logic to Bind
them? ?

Thee two main threads in this work are not parallel, but come together in a
placee slightly outside this thesis. DFOL is, after all, a dynamic logic: it has
tests,, which either fail or succeed, and other operators bring us from states to
(setss of) states. Furthermore, Hoare logic can be expressed in terms of First
Orderr Dynamic Logic [Har79], so in a sense all the logics covered here belong
too the family of 'modal-like' logics. In fact, there is a way to express the Hoare
calculuss we introduced entirely in DFOL, since the meaning of both existential
andd universal correctness triples can be encoded in it: we can write {A}0{i?} as
A*A* —• (<f> Bm), and {A)<j>(B) as A* —y (<f>;B*), where •* is a translation from
FOLL to DFOL. So it is revealed; the formulas of DFOL can be seen as modalities,
wheree the 'worlds' in a model are the assignments, and the transitions are of course
regulatedd by the usual semantics of DFOL: tests represent transitions to either
thee failure state or the current state, an assignment to a variable v represents a
transitionn to a v-variant of the current state, and so on.

9.66 Final Remarks

AA theory is useful only when it is used; it is our hope that the tools developed in
thee course of preparing this work make the involved logics more useful than they
alreadyy are, by providing a testing lab to try out ideas and see how they work.
Andd how well they do.

Onn the course of this study, then, some tools apt for studying and experi­
mentingg with nonclassical logics have been developed:

•• HyLoRes: http://www.science.uva.nl/~juanh/hylores

http://www.science.uva.nl/~juanh/hylores

1666 Chapter 9. Conclusion

•• Dynamo: http://www.science.uva.nl/~juanh/dynamo

•• hGen: http://www.science.uva.nl/~juanh/hGen

http://www.science.uva.nl/~juanh/dynamo
http://www.science.uva.nl/~juanh/hGen

Bibliography y

[AB98]] K. Apt and M. Bezem. Formulas as programs. In PNA-R9809,
Centrumm voor Wiskunde en Informatica (CWI), ISSN 1386-3711,
Octoberr 1998.

[ABC+02]] G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebas-
tiani.. Integrating boolean and mathematical solving: Foundations,
basicc algorithms and requirements. In Proceedings of Joint AISC
20022002 and Calculemus 2002. Springer, July 2002.

[ABPS98]] K. Apt, J. Brunekreef, V. Partington, and A. Schaerf. Alma-0: An
imperativee language that supports declarative programming. ACM
TransactionsTransactions on Programming Languages and Systems, 20(5):1014-
1066,, 1998.

[AdNdROl]] C. Areces, H. de Nivelle, and M. de Rijke. Resolution in modal,
descriptionn and hybrid logic. Journal of Logic and Computation,
ll(5):717-736,, 2001.

[AE92]] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational
viewpoint.. Journal of Logic and Computation, 2(3):247-297, 1992.

[AG03]] C. Areces and D. Gorfn. Ordered resolution for hybrid logics. Sub-
mitted,, 2003.

[AGHdROO]] C. Areces, R. Gennari, J. Heguiabehere, and M. de Rijke. Tree-
basedd heuristics in modal theorem proving. In W. Horn, editor,
Proc.Proc. ECAI'2000, Berlin, Germany. IOS Press, 2000.

[AH02a]] C. Areces and J. Heguiabehere. Direct resolution for modal-like
logics.. In Proceedings of WIL 2002. Kurt Gödel Society, 2002.

167 7

168 8 Bibliography Bibliography

[AH02b]] C. Areces and J. Heguiabehere. Hylores: A hybrid logic prover
basedd on direct resolution. In Proceedings of Advances in Modal
LogicLogic 2002, 2002. refereed.

[AH03]] C. Areces and J. Heguiabehere. hGen: A random CNF formula gen-
eratorr for Hybrid Languages. In Proceedings of Methods for Modal-
itiesities 3, 2003.

[AptOO]] K. Apt. A denotational semantics for first-order logic. In Proc. of
thethe Computational Logic Conference, pages 53-69. Springer, 2000.

[AreOO]] C. Areces. Logic Engineering. The Case of Description and Hybrid
Logics.Logics. PhD thesis, Institute for Logic, Language and Computation,
Universityy of Amsterdam, Amsterdam, The Netherlands, October
2000. .

[AV02]] K. Apt and C. Vermeulen. First-order logic viewed as a constraint
programmingg language. In A. Voronkov and M. Baaz, editors, Pro-
ceedingsceedings of LPAR02, pages 19-35. Springer, 2002.

[BBKdN98]] P. Blackburn, J. Bos, M. Kohlhase, and H. de Nivelle. Automated
theoremm proving for natural language understanding, 1998.

[BdRVOl]] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge
Universityy Press, 2001.

[BFH+92]] F. Baader, E. Franconi, B. Hollunder, B. Nebel, and H.-J. Profitlich.
Ann empirical analysis of optimization techniques for terminological
representationn systems or: Making KRIS get a move on. In Proceed-
ingsings KR-92, 1992.

[BG98]] L. Bachmair and H. Ganzinger. Equational reasoning in saturation-
basedd theorem proving. In Automated deduction—a basis for ap-
plications,plications, Vol. I, pages 353-397. Kluwer Acad. Publ., Dordrecht,
1998. .

[BG01]]

[BGdR03]]

L.. Bachmair and H. Ganzinger. Resolution theorem proving.
Robinsonn and Voronkov [RV01], chapter 2, pages 19-99.

In n

S.. Brand, R. Gennari, and M. de Rijke. Constraint programming for
modellingg and solving modal satisfiability. In Proceedings CP 2003,
2003. .

[BHS0O]] P. Balsiger, A. Heuerding, and S. Schwendimann. A benchmark
methodd for the propositional modal logics K, KT, S4. Journal of
AutomatedAutomated Reasoning, 24(3):297-317, 2000.

Bibliography Bibliography 169 9

[Bli]] Bliksem Version 1.10B. URL: http://www.mpi-sb.mpg.de/
"bliksem/.. Accessed January 16, 2000.

[BN98]] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
Universityy Press, 1998.

[Bra75]] D. Brand. Proving theorems with the modification method. SIAM
JournalJournal of Computing, 4(4):412-430, 1975.

[CAS]] The CADE ATP System Competition, h t tp : //www. cs.miami. edu/
"tptp/CASC/.. Site accessed on July 17, 2003.

[CGM+97]] A. Cimatti, F. Giunchiglia, G. Mongardi, D. Romano, F. Torielli,
andd P. Traverso. Model checking safety critical software with spin:
Ann application to a railway interlocking system. In Proceedings of
thethe Third SPIN Workshop, 1997. Twente, the Netherlands.

[CGV02]] D. Calvanese, G. De Giacomo, and M. Vardi. Reasoning about
actionss and planning in ltl action theories. In Proc. of the 8th Int.
Conf.Conf. on the Principles of Knowledge Representation and Reasoning
(KR(KR 2002), pages 593-602, 2002.

[DHK98]] Gilles Dowek, Therese Hardin, and Claude Kirchner. Theorem prov-
ingg modulo. Technical Report RR-3400, 1998.

[DP60]] S. Davis and M. Putnam. A computing procedure for quantifica-
tionn theory. Journal of the Association for Computing Machinery,
7(3):201-215,, 1960.

[DS94]] E Dijkstra and C. Scholten. redicate Calculus and Program Seman-
tics.tics. MIT Press, Cambridge, Massachusetts, 1994.

[EdC89]] P. Enj albert and L. Farinas del Cerro. Modal resolution in clausal
form.. Theoretical Computer Science, 65(l):l-33, 1989.

[FDGM+98]] E. Franconi, G. De Giacomo, R. MacGregor, W. Nutt, and C. Welty,
editors.. Proceedings of the 1998 International Workshop on De-
scriptionscription Logics (DL'98), 1998. Available at h t tp : / / suns i te .
informatik.rwth-aachen.de/publications/ceur-ws. .

[FHMV95]] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. Reasoning About
Knowledge.Knowledge. The MIT Press, 1995.

[Fit96]] M. Fitting. First-Order Logic and Automated Theorem Proving.
Springer-Verlagg New York, 2nd edition, 1996.

http://www.mpi-sb.mpg.de/
http://sunsite

170 0 Bibliography Bibliography

[GGST98]] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, and A. Tacchella.
Moree evaluation of decision procedures for modal logics. In A. G.
Cohn,, L. Schubert, and S. C. Shapiro, editors, KR '98: Principles of
KnowledgeKnowledge Representation and Reasoning, pages 626-635. Morgan
Kaufmann,, San Francisco, California, 1998.

[GHC]] the glasgow haskell compiler homepage, h t tp : //www. haskel l . org/
ghc/.. Site accessed on June 19, 2003.

[GJ79]] M. Garey and D. Johnson. Computers and Intractability: A Guide
toto the Theory of NP-Completeness. Freeman, New York, 1979.

[GNU]] GNU General Public License, http://www.gnu.org/copyleft/
gpl.html. .

[Gol82]] R. Goldblatt. Axiomatising the Logic of Computer Programming.
Springer,, 1982.

[Gol92]] R. Goldblatt. Logics of Time and Computation. CSLI Lecture Notes.
CSLI,, Stanford, second edition, revised and expanded edition, 1992.

[GP92]] V. Goranko and S. Passy. Using the universal modality: gains and
questions.. Journal of Logic and Computation, 2:5-30, 1992.

[GraOl]] E. Gradel. Why are modal logics so robustly decidable? In G. Paun,
G.. Rozenberg, and A. Salomaa, editors, Current Trends in Theoret-
icalical Computer Science. Entering the 21st Century, pages 393-408.
Worldd Scientific, 2001.

[GS90]] J. Groenendijk and M. Stokhof. Dynamic montague grammar. In
L.. Kalman and L. Polos, editors, Papers from the Second Symposium
onon Logic and Language. Akademiai Kiadoo, 1990.

[GS91]] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics
andand Philosophy, 14(1):39-100, 1991.

[GS96]] F. Giunchiglia and R. Sebastiani. Building decision procedures for
modall logics from propositional decision procedures—the case study
off modal K. In Proceedings CADE-96, 1996.

[GvMWOO]] I. Gent, H. van Maaren, and T. Walsh., editors. SAT 2000. IOS
Press,, 2000.

[HahOl]] R. Hahnle. Tableaux and related methods. In Robinson and
Voronkovv [RV01], chapter 3, pages 100-178.

[Har79]] D.. Harel. First Order Dynamic Logic. Springer, 1979.

http://www.gnu.org/copyleft/

Bibliography Bibliography 171 1

[HdROl]] J. Heguiabehere and M. de Rijke. The random modal qbf test set.
InIn Proceedings IJCAR Workshop on Issues in the Design and Ex-
perimentalperimental Evaluation of Systems for Modal and Temporal Logics,
pagess 58-67, 2001.

[Her89]] A. Herzig. Raisonnement automatique en logique modale et al-
gorithmesgorithmes d'unification. PhD thesis, Université Paul-Sabatier,
Toulouse,, 1989.

[Hil03]] T. Hillenbrand. Citius altius fortius: Lessons learned from the the-
oremm prover waldmeister. In Ingo Dahn and Laurent Vigneron, edi-
tors,, Electronic Notes in Theoretical Computer Science, volume 86.
Elsevier,, 2003.

[Hin88]] J. Hintikka. Model minimization - an alternative to circumscription.
JournalJournal of Automated Reasoning, 4(1):1-13, March 1988.

[HKT84]] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In D. Gabbay and
F.. Guenther, editors, Handbook of Philosophical Logic Volume II —
ExtensionsExtensions of Classical Logic, pages 497-604. D. Reidel Publishing
Company:: Dordrecht, The Netherlands, 1984.

[Hoa69]] C. Hoare. An axiomatic basis for computer programming. Commu-
nicationsnications of the ACM, 12(10):567-580, 583, 1969.

[HPSS00]] I. Horrocks, P. Patel-Schneider, and R. Sebastiani. An analysis of
empiricall testing for modal decision procedures. Logic Journal of
thethe IGPL, 8:293-323, 2000.

[HS96]] A. Heuerding and S. Schwendimann. A benchmark method for the
propositionall modal logics K, KT, and S4. Technical report IAM-
96-015,, University of Bern, Switzerland, 1996.

[HS97]] U. Hustadt and R. Schmidt. On evaluating decision procedures for
modall logic. In Proceedings IJCAI-97, pages 202-207, 1997.

[HyL]] The hybrid logics homepage, http://www.hylo.net. Site accessed
onn July 17, 2003.

[Kam81]] H. Kamp. A theory of truth and semantic representation. In J. Groe-
nendijk,, T. Janssen, and M. Stokhof, editors, Formal Methods in the
StudyStudy of Language: Part 1, pages 277-322. Mathematisch Centrum,
1981. .

[KohOO]] M. Kohlhase.. Model generation for Discoure Representation Theory.
Inn ECAI Proceedings, 2000.

http://www.hylo.net

172 2 Bibliography Bibliography

[Kow74]] R.A. Kowalski. Predicate logic as a programming language. In
ProceedingsProceedings of IFIP 4, pages 569-574, 1974.

[Lad77]] R. Ladner. The computational complexity of provability in systems
off modal logic. SIAM Journal on Computing, 6:467-480, 1977.

[LFdC88]] A. Herzig L. Farinas del Cerro. Linear modal deductions. In E. Lusk
andd R. Overbeek, editors, Proceedings of 9th International Confer-
enceence on Automated Deduction, CADE-88, volume 310 of Lecture
NotesNotes in Computer Science, pages 487-499. Springer, 1988.

[LS02]] M. Lange and C. Stirling. Model checking fixed point logic with
chop.. In M. Nielsen and U. H. Engberg, editors, Proc. 5th Conf. on
FoundationsFoundations of Software Science and Computation Structures, FOS-
SACS'02,SACS'02, volume 2303 of LNCS, pages 250-263, Grenoble, France,
Aprill 2002. Springer.

[Mas99]] F. Massacci. Design and results of the Tableaux-99 non-classical

(modal)) system competition. In Proceedings Tableaux'99, 1999.

[Min89]] G. Mints. Resolution calculi for modal logics, amst, 143:1-14, 1989.

[MSP]] MSPASS V 1.0.0t.l.2.a. URL: http://www.cs.man.ac.uk/
"schmidt/mspass.. Accessed June 11, 2003.

[NN92]] H. Nielson and F. Nielson. Semantics with Applications. John Wiley
andd Sons, 1992.

[Ohl88]] H.J. Ohlbach. A resolution calculus for modal logics. In E. Lusk and
R.. Overbeek, editors, Proceedings of 9th International Conference
onon Automated Deduction, CADE-88, volume 310 of Lecture Notes
inin Computer Science, pages 500-516. Springer, 1988.

[OkaOl]] C. Okasaki. An overview of edison. In Graham Hutton, editor, Elec-
tronictronic Notes in Theoretical Computer Science, volume 41. Elsevier,
2001. .

[ONdRGOO]] H. Ohlbach, A. Nonnengart, M. de Rijke, and D. Gabbay. Encoding
two-valuedd non-classical logics in classical logic. In J. Robinson and
A.. Voronkov, editors, Handbook of Automated Reasoning. Elsevier,
2000. .

[Par78]] R. Parikh. The completeness of propositional dynamic logic. In
ProceedingsProceedings of the 7th Symposium on Mathematical Foundations of
ComputerComputer Science, volume 64, pages 403-415. Springer, 1978.

http://www.cs.man.ac.uk/

Bibliography Bibliography 173 3

[Pel85]] D. Peleg. Concurrent dynamic logic. In Proceedings of the sev-
enteenthenteenth annual ACM symposium on Theory of computing, pages
232-239.. ACM Press, New York, 1985.

[Pra76]] V. Pratt. Semantical considerations on Floyd-Hoare logic. In Pro-
ceedingsceedings 17th IEEE Symposium on Foundations of Computer Sci-
ence,ence, pages 109 - 121, 1976.

[PS98]] P. Patel-Schneider. DLP system description. In Franconi et al.
[FDGM+98],, pages 87-89. DLP is available at http://www.
bell- labs.com/user/pfps. .

[PSHvH02]] P. Patel-Schneider, I. Horrocks, and F. van Harmelen. Reviewing
thee design of daml+oil: An ontology language for the semantic web.
InIn R. Dechter, M. Kearns, and R. Sutton, editors, Proceedings of
thethe Eighteenth National Conference on Artificial Intelligence, pages
792-797,, July 2002.

[PSS03]] P. Patel-Schneider and R. Sebastiani. A new general method to
generatee random modal formulae for testing decision procedures.
JournalJournal of Artificial Intelligence Research, 18:351-389, May 2003.

[PSV02]] G. Pan, U. Sattler, and M. Vardi. Bdd-based decision procedures for
k.. In Proceedings of the Conference on Automated Deduction, vol-
umee 2392 of Lecture Notes in Artificial Intelligence. Springer Verlag,
2002. .

[PT85]] S. Passy and T. Tinchev. PDL with data constants. Information
ProcessingProcessing Letters, 20:35-41, 1985.

[PT91]] S. Passy and T. Tinchev. An essay in combinatory dynamic logic.
InformationInformation and Computation, 93(2):263-332, 1991.

[RAC]] The racer system homepage. http://www.fh-wedel.de/~mo/
racer/ . .

[Ram87]] A. Ramsay. Formal Methods in Artificial Intelligence. Cambridge
Universityy Press, 1987.

[Rei95]] W. Reif. The KTV Approach to Software Verification. In M. Broy
andd S. Jahnichen, editors, KORSO: Methods, Languages and Tools
forfor the Construction of Correct Software, volume 1009. Springer
Verlag,, 1995.

[Rob65]] J. Robinson. A machine-oriented logic based on the resolution prin-
ciple.. J ACM, 12(1):23-41, 1965.

http://www
http://www.fh-wedel.de/~mo/

1744 Bibliography

[RSV01]] I.V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing.
Inn A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning,Reasoning, volume II, chapter 26, pages 1853-1964. Elsevier Science,
2001. .

[RV01]] A. Robinson and A. Voronkov, editors, volume I. Elsevier Science,
2001. .

[RW69]] G. Robinson and L. Wos. Paramodulation and theorem-proving in
first-orderfirst-order theories with equality. In Machine Intelligence, h pages
135-150.. American Elsevier, New York, 1969.

[*SA]] *SAT Homepage. URL: :ht tp: / /www.mrg.dist .unige. i t / " tac/
StarSAT.html. .

[Sch97]] R. Schmidt. Optimised Modal Translation and Resolution. PhD
thesis,, Universitat des Saarlandes, Saarbrikken, Germany, 1997.

[SE88]] C. Sedogbo and M. Eytan. A tableau calculus for DRT. Logique et
Analyse,Analyse, pages 379-402, 1988.

[Seg82]] K. Segerberg. A completeness theorem in the modal logic of pro-

grams,grams, pages 36-46. Polish Science Publications, 1982.

[Smu68]] R. Smullyan. First-Order Logic. Springer, 1968.

[SPA]] SPASS Version 1.0.3. URL: http://spa8S.mpi-sb.mpg.de/. Ac-

cessedd June 11, 2003.

[Tac99]] A. Tacchella. *SAT system description. In Proceedings DL'99, 1999.

[TAN]] TANCS: Tableaux Non-Classical Systems Comparison, h t t p : / /
www.dis.uniromal.it/~tancs.. Site accessed on January 17, 2000.

[tCvEHOl]] B. ten Cate, J. van Eijck, and J. Heguiabehere. Expressivity of
extensionss of dynamic predicate logic, pages 61-66, 2001.

[Var97]] M. Vardi. Why is modal logic so robustly decidable? In DIMACS
SeriesSeries in Discrete Mathematics and Theoretical Computer Science,
volumee 31, pages 149-184. AMS, 1997.

[vB83]] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis, 1983.

[vB86]] J. van Benthem. Partiality and nonmonotonicity in classical logic.
LogiqueLogique et Analyse, 1986.

[vB96]] J. van Benthem. Exploring Logical Dynamics. CSLI Publications,
1996. .

http://www.mrg.dist.unige.it/%22tac/
http://spa8S.mpi-sb.mpg.de/
http://
http://www.dis.uniromal.it/~tancs

Bibliography Bibliography 175 5

[vBV92]] J. van Benthem and W. Meyer Viol. Logical semantics of program-
ming.. Manuscript, 1992.

[vE98a]] J. van Eijck. Dynamo — a language for dynamic logic programming.
1998. .

[vE98b]] J. van Eijck. Programming with dynamic predicate logic. Technical
ReportCT-1998-06,, ILLC, 1998. Availablefromwww.cwi.nl/-jve/
dynamo. .

[vE99a]] J. van Eijck. Axiomatising dynamic logics for anaphora. Journal of
LanguageLanguage and Computation, 1:103-126, 1999.

[vE99b]] J. van Eijck. Powering decision machines with dynamo. In J. Ger-
brandy,, M. Marx, M. de Rijke, , and Y. Venema, editors, Essays
dedicateddedicated to Johan van Benthem on the Occasion of his 50th Birth-
day.day. ILLC, Amsterdam, 1999.

[vEdV92]] J. van Eijck and F.-J. de Vries. Dynamic interpretation and hoare
deduction.. Journal of Logic, Language and Information, 1(1): 1-44,
1992. .

[vEHNOl]] J. van Eijck, J. Heguiabehere, and B. 0 Nuallain. Tableau reasoning
andd programming with dynamic first order logic. Logic Journal of
thethe IGPL, 9(3):411-445, 2001.

[Ver03]] C. Vermeulen. Decidability and axiomatisation of a denotational
semanticss for first order logic. Manuscript, CWI, 2003.

[Vis98]] A. Visser. Contexts in dynamic predicate logic. Journal of Logic,
LanguageLanguage and Information, 7(l):21-52, 1998.

[Vor95]] A. Voronkov. The anatomy of Vampire. Journal of Automated
Reasoning,Reasoning, 15(2):237-265, 1995.

[VorOl]] A. Voronkov. Algorithms, datastructures, and other issues in effi-
cientt automated deduction. In R.Goré, A. Leitsch, and T. Nipkow,
editors,, Automated Reasoning. 1st. International Joint Conference,
IJCARIJCAR 2001, number 2083 in LNAI, pages 13-28, Siena, Italy, June
2001. .

[Wad95]] P. Wadler. Monads for functional programming. In J. Jeuring and
E.. Meijer, editors, Advanced Functional Programming, number 925
inn LNCS. Springer Verlag, 1995.

http://Availablefromwww.cwi.nl/-jve/

176 6 Bibliography Bibliography

[Wal94]] C. Walther. A Many-Sorted Calculus Based on Resolution and
Paramodulation.Paramodulation. Research Notes in Artificial Intelligence. Morgan
Kaufmann,, 1994.

[XX S] Spin - formal verification. http://www.spinroot.com/spin/
whatispin.html. .

[Zam89]] N. Zamov. Modal resolutions. Soviet Mathematics, 33(9):22-29,
1989. .

http://www.spinroot.com/spin/

Samenvatting g

Formelee logica is de studie van noodzakelijke waarheden en systematische meth-
odenn met als doel deze waarheden helder uit te drukken en rigoreus te demonstr-
eren.. Dit proefschrift gaat over de automatisering van de conclusies die mogelijk
zijnn gemaakt door zekere logica's, over de evaluatie van deze automatiserings
methodenn en mogelijke toepassingen hiervoor.

Dee afgelopen jaren is de efficiëntie van het automatische bewijzen van stellin-
genn voor modale logica enorm toegenomen, tegelijkertijd is het gebied van eval-
uatiee van deze stelling bewijzers gerijpt. We zullen een aantal van de strategieën
zienn die gebruikt worden om middelen voor automatisch redeneren voor deze
logicass te ontwikkelen en zien wat de rol is van empirische beoordeling in dit pro-
ces.. We zullen ook zien hoe Dynamic Predicate Logic (DPL) geïnterpreteerd kan
wordenn als programmeer taal, en hoe programma's die geschreven zijn in die taal
gemakkelijkk formeel gecontroleerd kunnen worden. Uiteindelijk zullen we zien hoe
automatischh redeneren gebruikt kan worden als een motor voor berekeningen.
Ditt werk gaat dan over middelen: hun ontwikkeling, beoordeling en mogelijke
toepassingen. .

Ditt proefschrift is ingedeeld in twee hoofd gedeeltes. Deel I, Evaluation in
Modall and Hybrid Theorem Proving, gaat over de huidige en bestaande pogingen
opp het gebied van stelling bewijsvoering in modale en hybride logica en het belang
vann beoordeling in het ontwerp en vergelijking van stelling bewijzers evenals in
dee beoordeling van de standaarden zelf. In Hoofdstuk 2 zullenn we de evolutie van
dee standaardisering in modale logica stelling bewijsvoering bespreken en zullen
wee een hybride logica standaard introduceren. In Hoofdstuk 3 spreken we over
dee verschillende methoden voor het vertalen van modale logica naar First Order
Logicc (FOL), over het voordeel te gebruiken van de jaren van ontwikkeling die
zijnn gegaan in FOL stelling bewijsvoering en over hoe verschillende methoden te
vergelijken.. In Hoofdstuk 4 beschrijven we andere kijk op stelling bewijsvoer-
ingg in niet klassieke logica: ontwikkeling van jouw eigen gespecialiseerde stelling
bewijzer.. We beschrijven de theorie en implementatie van HyLoRes, een oploss-

177 7

178 8 Samenvatting Samenvatting

ingg gebaseerde stelling bewijzer voor hybride logica; we beschrijven ook hoe het
testenn een onaangetast deel van de ontwikkeling was.

InIn Deel II, Programming with Dynamic First Order Logic, onderzoeken wij
hett gebruik van Dynamic First Order Logic (DFOL) als een programmeer taal.
Inn Hoofdstuk 5 geven we enige achtergrond van het concept model 'formules als
programma's';; we introduceren het concept van een uitvoerbare interpretatie van
DFOL(U),, en beschrijven twee steeds betrouwbaar wordende benaderingen van de
interpratie.. In Hoofdstuk 6 leggen we uit waarom DFOL(U, a) een goede kandi-
daatt is voor een programmeer taal en beschrijven we een Hoare calculus daarvoor.
Inn Hoofdstuk 7 beschrijven we een reken tabel voor DFOL(U,a) die zelfs een
beteree benadering geeft voor de uitvoerbare interpretatie van DFOL(U, er) en kan
gebruiktt worden als een programmeer taal moter en in Hoofdstuk 8 beschrijven
wee de implementatie van zo'n moter en laten we een aantal voorbeeld runs.

Inn Deel III, Conclusie, kijken we terug op wat er geleerd is in de delen I en II,
watt ze gemeenschappelijk hebben en waar ze elkaar ontmoeten.

Abstract t

Formall logic is the study of necessary truths and of systematic methods for clearly
expressingg and rigorously demonstrating such truths. This thesis is about the
automationn of the inferences made possible by certain logics, about the evaluation
off these automation methods, and some possible uses for them.

Thee last few years have seen a huge increase in the efficiency of theorem
proverss for modal and modal-like logics, and together with it the field of evaluation
off these theorem provers has matured considerably. We will see some of the
strategiess used to develop automatic reasoning tools for these logics, and the role
off empirical evaluation in this process. We will also see how Dynamic Predicate
Logicc (DPL) can be interpreted as a programming language, and how programs
writtenn in that language can be easily subjected to formal verification. Finally, we
willl see how automated reasoning can actually be used as a computation engine.
Thiss work is then about tools: their development, evaluation, and possible uses.

Thiss thesis is organized in two main parts. Part I, Evaluation in Modal and
Hybridd Theorem Proving, deals with current and existing efforts in the field of
modall and hybrid logic theorem proving, and the importance of evaluation in
thee design and comparison of theorem provers as well as in the evaluation of the
benchmarkss themselves. In Chapter 2 we'll review the evolution of benchmarking
inn modal logic theorem proving, and introduce a hybrid logic benchmark. In
Chapterr 3 we talk about the different methods for translating Modal Logic to
Firstt Order Logic (FOL), to take advantage of the years of development that went
intoo FOL theorem proving, and how different methods compare. In Chapter 4 we
describee another approach to theorem proving in non-classical logics: developing
yourr own specialized theorem prover. We describe the theory and implementation
off HyLoRes, a resolution-based theorem prover for hybrid logics; we also describe
howw testing was an integral part of development.

InIn Part II, Programming with Dynamic First Order Logic, we explore the use
off Dynamic First Order Logic (DFOL) as a programming language. In Chap-
terr 5 we give some background to the 'formulas as programs' paradigm; we in-

179 9

180 0 Abstract Abstract

troducee the concept of an executable interpretation of DFOL(U), and describe
twoo increasingly faithful approximations to the interpretation. In Chapter 6 we
explainn why DFOL(U,a) is a good candidate for a programming language and
describee a Hoare calculus for it. In Chapter 7 we describe a tableau calculus for
DFOL(U,CT)) which gives an even better approximation to the executable inter-
pretationn of DFOL(U, a) and can be used as a programming language engine, and
inn Chapter 8 we describe the implementation of such an engine and show some
examplee runs.

InIn Part III, Conclusion, we reflect on what was learned from Parts I and II,
whatt they had in common, and where they meet.

	Titlepage
	Contents
	Acknowledgments
	Chapter 1 Introduction
	Part I Evaluation in Modal and Hybrid Theorem Proving
	Chapter 2 How Long is a Ruler?
	Chapter 3 Modal Theorem Proving: Translations into First Order Logic
	Chapter 4 Modal and Hybrid Theorem Proving Ð Direct Resolution
	Part II Programming with Dynamic First Order Logic
	Chapter 5 The Executable Program Interpretation for Dynamic First Order Logic
	Chapter 6 Hoare Calculus for DFOL
	Chapter 7 Tableau Reasoning with DFOL
	Chapter 8 Implementing Dynamo
	Part III Conclusions
	Chapter 9 Conclusion
	Bibliography
	Samenvatting
	Abstract

