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Abstract. We provide an empirical evaluation of one of the main test sets that
is currently in use for testing modal satisfiability solvers, viz. the random modal
QBF test set. We first discuss some of the background underlying the test set, and
then evaluate the test set using criteria set forth by Horrocks, Patel-Schneider, and
Sebastiani. We also present some guidelines for the use of the test set.

1 Introduction

Usually, theoretical studies do not provide an indication of the effectiveness and behav-
ior of complex systems such as satisfiability solvers. Instead, empirical evaluations have
to be used. In the area of propositional satisfiability checking there is large and rapidly
expanding body of experimental knowledge; see e.g., [3]. In contrast, empirical aspects
of modal satisfiability checking have only recently drawn the attention of researchers.
We now have a number of test sets, some of which have been evaluated extensively [2,
5, 4, 7, 6]. In addition, we also have a clear set of guidelines for performing empirical
testing in the setting of modal logic; these were proposed by Horrocks, Patel-Schneider,
and Sebastiani [6], building on work by Heuerding and Schwendimann [5].

The aim of this paper is to provide an empirical evaluation of one of the test sets that
is currently in use for testing modal satisfiability solvers, viz. the random modal QBF
test set. We start by discussing the modal QBF test set and some of the underlying intu-
itions. We then evaluate the test set using criteria set forth by Horrocks, Patel-Schneider,
and Sebastiani. We also present some guidelines for the use of the test set.

2 The Random Modal QBF Test Set

The first random generation technique used in testing modal decision procedures, the
random 3CNF ��� test methodology, was proposed in [4]; its subsequent development
is described in [6]. The random modal quantified Boolean formula (QBF) test set was
proposed by Massacci [9], and used in the 1999 and 2000 editions of the TANCS sys-
tem comparisons [13]. It is based on the idea of randomly generating QBFs and then
translating these into modal logic. Let us explain these two steps in more detail.

Generating QBFs

Recall that QBFs have the following shape: ���	� ��
�

 ����������������� ���
�

�� ����� . That is,
QBFs are prenex formulas built up from proposition letters, using the booleans, and� ��� and  !�"� (where � is any proposition letter).



What is involved in evaluating a QBF? We start by peeling off the outermost quanti-
fier; if it’s  �� , we choose one of the truth values

�
or � and substitute for the newly freed

occurrence of � ; if it’s
� � , substitute both

�
and � for the newly freed occurrences of � .

In short, while evaluating QBFs we are generating a tree, where existential quantifiers
increase the depth, and universal quantifiers force branching.

In the random modal QBF test set, 4 parameters play a role: � , � , � , � :

– The parameter � is the number of clauses of the randomly generated QBF.
– The parameter � is the alternation depth of the randomly generated QBF; it is not

the modal depth of the modal translation. (More on this below.)
– The parameter � is the number of variables used per alternation.
– And � is the number of different variables used per clause.

The QBF-validity problem is the problem of deciding whether a QBF without free vari-
ables is valid; it is known to be PSPACE-complete. For every fixed valued of � we can
capture the problems in ���� in the polynomial hierarchy; PSPACE can only be reached
by an unbounded value of � .

Here’s a concrete example. Using �
	�� and ��	� we can generate

�
�

� ��� ���� � ����� ��������� �  
�

� ��� ���� � ����� ��������� � �
�

� ��� �� � � � � � � � ��� � �  
�

� ��� ���� � ����� ��������� �� ��� �
�

������� ��� ����
�

�� ��� � � 


Each clause in ��� ��� ��� ����

�
�� ��� � � has � different variables (default 4) and each is
negated with probability prneg (default � 
�� ). The first and the third variable (if it exists)
are existentially quantified. The second and fourth variable are universally quantified.
This aims at eliminating trivially unsatisfiable formulas. Other literals are either univer-
sal or existentially quantified variables with probability prmod (default � 
�� ). The depth
of each literal is randomly chosen from 1 to � .

By increasing the parameter � from odd to even, a layer of existential quantifiers
is added at the beginning of the formula, and, conversely, when � increases from even
to odd, a layer of universal quantifiers is added. The impact of increasing either � or
� on the shape of the QBF trees may be visualized as in Figure 1, beginning from the
smallest case where �
	�� and � 	 � .

Translating into Modal Logic

The QBF that is produced by the random generator is translated into the basic modal
logic with the usual boolean operators and ! , " , using a variant of an encoding that is
originally due to Ladner [8]. The core idea underlying the translation is to capture, by
means of a modal formula, the ‘peel off quantifiers and substitute’ evaluation process
for a given input QBF. The translation forces branching in the structure of the possi-
ble model whenever an universal quantifier is found in the original formula, keeps the
branches separate, and makes sure there are enough modal levels in the model. It forces
the structure of the possible model to be a tree, and the resulting formula is satisfiable
iff the original formula is.
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Fig. 1. The shape of QBF trees.

Here’s a detailed example. The formula û 	 � � � ���  !����� � � � �ýüÿþ ��� ü þ ��� ü þ � � �
(generated with parameters � 	 � , � 	 � , � 	 � , default encoding) translates into the
conjunction of the following formulas.

– The matrix û must be true everywhere in the model at the depths in which its
variables become fixed in value:

� � ��� � !
�
� � � ü þ ��� üÿþ ��� üÿþ � � � � where !

�
is

a sequence of � occurrences of the ! operators.
– Keep values of proposition letters forever, adding one a level, in order of quantifier

appearance:� � ���� � � !
�
� � � ü ! � þ � � � ��� !

�
� þ � � ü ! � � � � � �	�� � ���� � � !

�
� ! � � � ü !�� þ � � � � �	� !

�
� !�� þ � � ü !�� � � � � � �
��

!�� !�� !�� ��� ü !�� þ ��� � � � ��� !�� ! � ! � þ ��� ü ! � ��� � � � �
– Force branching on universal quantifiers: " � � � " þ � � � ! � " � � ��� !�� " þ � � � 

– Force tree depth; note that the first two levels are covered by the previous two

formulas: ! � !�� " �� � � � ��� !�� !�� ! � " ��� � � � � � 

During the translation formulas are added to guarantee the alternation of quantifiers in
a tree-like form.

The parameters � , � , � and � that are used in the generation process are related to
the final modal formula in the following way. The (maximum) number of clauses is
��� ��� ����� � ��� � � � � ��� ����� ��� � ������� . The (maximum) number of proposition letters
is ����� ��� � � . And the (maximum) modal depth is ��� � ��� � � . These maximums obtain
when � is high enough compared to ��� � ��� � � to cover all the possible proposition
letters. The file size for the translated formula is linear in � , and polynomial in � and � ,
but usually we are not interested in big values of the last two, so this is not much of a
problem.

3 Test Results

Settings

To evaluate the QBF test set, we used 3 satisfiability solvers for modal logic. First, we
used the general first-order prover SPASS [11], version 1.0.3, extended with the layered



translation of modal formulas into first-order formulas as presented in [1]. Second, we
used MSPASS version V 1.0.0t.1.2.a [10]. And, third, we used *SAT version 1.3 [12].

Our experiments were run on a Pentium III 800 MHz with 128 MB of memory,
running RedHat Linux 7.0.

We used version XXXX of the QBF problem generator. To facilitate future com-Juan, please supply
version number parisons, we used as many default settings as possible: no modal encoding, no lean

encoding, the number of literals set to 4, and prmod and prneg both set to � 
 � . We gen-
erated 64 instances of each problem, and the outputs of the generator were translated
to the formats of the provers being used; in one case we had to convert modal formulas
to first-order logic formulas. The resulting file sizes were linear in � , even though the
linear coefficient varied from one solver to another.

Our main measurements concerned both CPU time elapsed (with a 10800 second
timeout) and a time independent measure: the number of clauses generated for SPASS
plus layering and for MSPASS, and the number of unit propagations for *SAT.1

Findings

We first ran the standardized tests provided by the TANCS competition: 64 instances
randomly generated with � 	 ��� , � 	 � , � 	 � , and default settings for the remaining
parameters. See Figure 2.
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Fig. 2. The standardized tests provided by TANCS, used for SPASS, MSPASS, and *SAT. (Left):
clauses generated/unit propagations per problem instance, log scale. (Right): CPU time (seconds)
per problem instance, log scale.

While the number of clauses generated by resolution provers and the number of unit
propagations in *SAT are not directly comparable as a performance measurement, they
do give an indication of the relative difficulty of a problem (or problem set). As such,
we can see that the difficulty of a problem varies with the method used to solve it. The

1 We found that the number of unit propagations best describes the resource usage for each prob-
lem, as evidenced by its strong correlation to elapsed time. Unfortunately, a detailed evaluation
of unit propagations versus other statistics reported by *SAT (such as assignments found) as a
suitable time independent measure, is beyond the scope of this paper.
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Fig. 3. SPASS, MSPASS, and *SAT on QBF test sets, í î ð , ò î ó – ù (
�
), 64 samples/point,

mean values. (Left): clauses generated/unit propagations, log scale. (Right): CPU time in seconds,
log scale.

correlation between time elapsed and clauses generated/unit propagations varies widely
between the methods. In fact, for this test the *SAT times are completely dominated by
startup costs and don’t really inform us about problem difficulty.



Next we ran a number of sweeps, with each of three provers, with � 	 � and
increasing � from

�
to  (and to 5 in the case of *SAT), while increasing � from 1 to

100. The resulting CPU times and the number of clauses generated/unit propagations
are depicted in Figure 3; the curves for � 	 � , � 	 � do not extend to the right-hand
side of the plots, as the formulas being generated with these settings are simply too
small to be be able to accommodate larger number of clauses.

Several things are worth noting about Figure 3. First, the sets display an easy-hard-
easy pattern familiar from propositional satisfiability testing [3]. The shape of the curves
is strongly dependent on the solver used. Moreover, the pattern seem to vary from not-
too-hard-hard-easy in some cases (SPASS, � 	 � , � 	 � , � 	� ) to not-too-hard-hard-
hard in others (SPASS, � 	  ; MSPASS, � 	 � , � 	  ) to not-too-hard-hard-not-too-
hard in yet others (SPASS, � 	 � ; *SAT, �
	 � , ��	�� , �
	  , � 	 � ).

Second, for both SPASS and MSPASS we see that curves cross each other; this
is most clearly visible in (a), where the number of clauses generated by SPASS are
displayed, but it also shows up in (b) where the CPU times for SPASS are shown. Hence,
for SPASS (and to a lesser extent for MSPASS) the � parameter does not influence the
difficulty of the problems being generated in a monotonic way.

Third, the time elapsed (displayed in (b), (d), and (f)) has a very strong dependence
on file size: after the hard region has been crossed and the elapsed time tends to de-
crease, it actually starts going up again. The impact of input file size and I/O is most
noticeable for MSPASS (plot (d)); but even in the case of *SAT, where the number of
unit propagations remains more or less constant after the hard region has been traversed,
the CPU times start going up: this increase is entirely due to input file size and I/O. In
Figure 4 we have plotted the growth of the input file size against � , and against � . The
file size can be approximated by

� � � � � ��� �  � � , while the preprocessing performed
by the layered translation brings this up to ��� � � � � � ��� � � . Remarkably, the translated
file for MSPASS is smaller than the original input file.
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When we increased the parameter � , we saw similar curve shapes as for � 	 � . In
Figure 5 we have displayed the results of running *SAT with � 	 � . Notice that the
humps indicating the hard regions are higher for � 	 � than for � 	 � (see Figure 3



(e) and (f)), indicating that the problems are harder; hence, the CPU times are not as
strongly dominated by file size and I/O aspects as in the case where �
	�� . The fact that
the hard regions are ‘wider’ than for �
	�� indicates that we are not only getting harder
problems, but also that the fraction of hard problems is increasing.
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Let us return to the phenomenon observed in Figure 3, where it was found that the
� parameter does not monotonically control difficulty. We can observe this even clearer
when we plot � along the � -axis, as in Figure 6. Note that the phenomenon is strongly
prover dependent: it clearly shows up for SPASS (with the layered translation) as shown
in (a); it is somewhat visible with MSPASS (b), but not at all with *SAT (c). Further ex-
perimental work has shown that this ‘staircase phenomenon’ is also present with larger
values of � for SPASS. The phenomenon is related to the special way in which QBFs
grow: existential quantifiers are added to the original QBF when � is increased from
odd to even, universal quantifiers when � is increased from even to odd; see Figure 1.
The former simplifies matters for SPASS with the layered translation, while the latter
make matters considerably harder for that solver.2
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2 Note that the staircase phenomenon will not be observed if one only performs the standardized
TANCS test as this test only involves a single value of

ò
.



One central concern with any test set, synthetic or not, is parametrization: to which
extent can we choose the difficulty of the problem and of exploring the input space?
In the QBF test set the difficulty can easily be controlled: the � parameter controls it
monotonically, the � parameter also with some caveats. It seems, however, that � and
� do not control truly independent dimensions of the problem space. More precisely,
combinations of � and � for which the value of ���!� ��� � � coincides have very similar
curves, as can be seen in Figure 7. This suggests that ����� � � � � is the dimension along
which the QBF problem space should be explored, instead of either � or � indepen-
dently. This comes as no surprise: as we saw in Section 2, ����� ��� � � determines both
the maximum number of propositional variables and the maximum modal depth in the
translated formula. (As an aside, it is clear from Figure 7 that with increasing values of
��� � ��� � � , the truly hard region for a given setting of parameters moves to the right as
we increase the number of clauses.)
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 .

An important aspect that we have not discussed so far is the satisfiable vs. non-
satisfiable fraction. The parameter � does indeed allow us to control the satisfiability
fraction: it goes from 1 to 0 monotonically with � . However, there are remarkably few
values of � for which the satisfiable fraction is 1; see Figure 8. As illustrated by Fig-
ure 8 (top left), we have found satisfiable fractions of about 20% in many repeated runs
of the standardized 20/2/2 TANCS test (see Figure 2). Moreover, there is a heavy ‘tail’
of unsatisfiable problems, as indicated by the curves in Figure 7. And contrary to intu-
ition, the constrainedness of problems does not seem to depend very strongly on the �
parameter; for a fixed � , increasing � from odd to even doesn’t shift the satisfiable frac-
tion graph by any noticeable amount. The constrainedness of the underlying models,
then, remains unchanged despite the addition of variables and the increase in depth.
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Fig. 8. *SAT results for
ò îúó – ù (

�
), � îúó – � � , 64 samples/point, mean values. (Top): Satisfiable

fraction. (Bottom): Unit propagations. (Left): íïîñð . (Middle): íöîñ÷ . (Right): íöî ù .

There’s one more thing that’s worth point out. The 50% satisfiable mark occurs
towards the right-hand side of the truly hard region; this may suggest that the hardest
problems within a given test set are likely to be satisfiable ones.

Finally, recall that a modal formula is trivially satisfiable iff it is satisfiable on a
model with a single node [6, 7]. Clearly, trivial satisfiability is not a problem for modal
QBF test sets. For a start, very few satisfiable problems are generated anyway, and
because of the highly structured form of the randomly generated QBFs, the resulting
modal formulas always contain " -subformulas, thus avoiding trivial satisfiability.

4 Discussion and Conclusion

The general criteria put forward by Horrocks, Patel-Schneider, and Sebastiani [6] for
evaluating modal test methodologies, boil down to demanding a reproducible sample
of an interesting portion of the input space with appropriate difficulty. To conclude this
paper, here’s a brief discussion of these criteria as they relate to our setting.

Obviously, reproducibility is guaranteed for the modal QBF test set. The modal
QBF test set seems to represent just a restricted area of the whole input space; that
is, it scores low on representativeness. There are three reasons for this. First, the QBF
test set provides poor coverage of the satisfiable region, and especially of the easily
satisfiable region; most of the modally encoded QBF-formulas generated with values of
� and � that are within reach of today’s tools, are hard and unsatisfiable, as suggested
by Figure 8. Second, the modally encoded QBFs are of a very special shape, which
seems to lead to the so-called staircase phenomenon for some solvers. And third, the �
and � parameters end up being substantially overlapping and interrelated as part of the
translation of QBFs into modal formulas. A strong point in favor of the QBF test set
is that it is possible to generate hard problems with a large modal depth which are still



within reach of today’s modal satisfiability solvers; in this respect the QBF random test
methodology fares better than the New 3CNF � � test methodology, as reported in [6].

The QBF test set scores low on the satisfiable vs. unsatisfiable balance: it has a
strong preference for generating unsatisfiable instances. The levels of difficulty offered
by the test set are sufficient, as they range from next to trivial to too hard for today’s
systems. The tests terminate and provide information in a reasonable amount of time.
Finally, the set suffers from over-size, which forces one to consider both time dependent
and time independent measurements for determining the performance of solvers.

In conclusion, then, the random modal QBF test methodology provides useful test
sets that should, however, not be used as the sole measure in the evaluation of modal
satisfiability solvers. In particular, the standardized tests provided by TANCS (with
� 	���� and �
	��
	 � ) does not provide informative measurements.

Plans for further work include explorations beyond the default settings (more liter-
als, modal and/or lean encodings, alternative settings for ��������� , ��� �
	�� , . . . ), compar-
isons with QBF solvers, and systematic comparisons with other test methodologies.
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