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Abstract

We report on ongoing experimental work on evaluating test sets for testing modal satisfiability solvers.
Our longterm aim is to understand the difference between the use of structured and of unstructured
randomly generated problems. Which parts of the problem space do they explore?

1 Introduction

Usually, theoretical studies do not provide an indication of the effectiveness and behavior of complex
systems such as satisfiability solvers. Instead, empirical evaluations have to be used. In the area of propo-
sitional satisfiability checking there is large and rapidly expanding body of experimental knowledge; see
e.g., [3]. In contrast, empirical aspects of modal satisfiability checking have only recently drawn the atten-
tion of researchers. We now have a number of test sets, some of which have been evaluated extensively
[2, 7, 4, 9, 8]. In addition, we also have a clear set of guidelines for performing empirical testing in the
setting of modal logic [8, 7].

Currently, there are two main test methodologies for modal satisfiability solvers, both based on ran-
domly generating problems. The first random generation technique used in testing modal decision proce-
dures, the random 3CNF2m test methodology, was proposed in [4]; its subsequent development is described
in [8], and its most recent incarnation is given Patel-Schneider and Sebastiani [14]. It allows one to ex-
plore the geography of modal satisfiability problems in as broad a manner as possible. A potential problem
with this generator is that we have no idea whether the randonly generated formulas are representative of
formulas generated by realistic applications.

There is some hope that the latter point is addressed by the other main test methodology that is cur-
rently in use for evaluating modal provers: the random modal quantified boolean formula (QBF) test set.
Quantified boolean formulas are interesting for a number of reasons. Many real-world problems can nat-
urally be rephrased in terms of QBFs [15], and, hence, the performance of modal provers on QBFs is a
good indication of their performance on those real-world problems. Moreover, the QBF-validity problem
(the problem of deciding whether a QBF without free variables is valid) is known to be PSPACE-complete;
since most of the logics that we’re interested have satisfiability problems that are (at least) PSPACE hard,
in principle QBFs provide problems of the appropriate complexity.
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The random modal QBF test set was proposed by Massacci [11], and used in the 1999 and 2000 editions
of the TANCS system comparisons [18]. The random modal QBF tests are performed on a single data
point, and the results are presented in the form of tables, each entry consisting of the number of successful
solutions and the mean CPU time for such solutions. Systems are compared by their numbers of successful
solutions, and, if that results in a tie, by their mean CPU times.

In this paper we’re interested in a different use of the random modal QBF test set, viz. in its use
for evaluating the qualitative and quantitative behavior of modal satisfiability solvers, and hence we’re
interested in plots rather than tables. More specifically, our longterm aim with this work is to understand
what can and cannot learn from structured test sets, such as the modal QBF test set, and how it compares
to using randomly generated unstructured problems such as the ones generated by the CNF methodology
described above.

We’re still a long way from having final answers to these questions. In this paper we review what’s
currently known about the random modal QBF test set, and discuss a number of concrete issues that are
guiding our ongoing experiments. We start by recalling the ideas underlying the random modal QBF test
set. After that we describe our experiments, and the preliminary conclusions at which we have arrived.

2 The Random Modal QBF Test Set

The random modal QBF test set is based on the idea of randomly generating QBFs and then translating
these into modal logic. Let’s explain these two steps in more detail.

Generating QBFs. Recall that QBFs have the following shape:Q1v1 . . .Qnvn CNF (v1, . . . , vn). That
is, QBFs are prenex formulas built up from proposition letters, using the booleans, and∀v β and∃v β
(wherev is any proposition letter).

What’s involved in evaluating a QBF? We start by peeling off the outermost quantifier; if it’s∃v, we
choose one of the truth values1 or 0 and substitute for the newly freed occurrence ofv; if it’s ∀v, substitute
both 1 and0 for the newly freed occurrences ofv. In short, while evaluating QBFs we are generating a
tree, where existential quantifiers increase the depth, and universal quantifiers force branching.

In therandom modal QBF test set, 4 parameters play a role:c, d, v, k. The parameterc is the number of
clauses of the randomly generated QBF. The parameterd is the alternation depth of the randomly generated
QBF; it is not the modal depth of the modal translation. The parameterv is the number of variables used
per alternation. Andk is the number of different variables used per clause.

Each clause in the matrixCNF (v0, . . . , vn) hask different variables and each is negated with probabil-
ity prneg(default0.5). The first and the third variable (if it exists) are existentially quantified. The second
and fourth variable are universally quantified, etc. This aims at eliminating trivially unsatisfiable formulas.
Other literals are either universal or existentially quantified variables with probabilityprmod(default0.5).
The depth of each literal is randomly chosen from 1 tod. By increasing the parameterd from odd to even,
a layer of existential quantifiers is added at the beginning of the formula, and, conversely, whend increases
from even to odd, a layer of universal quantifiers is added.

Translating into Modal Logic. The QBF that is produced by the random generator is translated into
the basic modal logic with the usual boolean operators and2, 3, using a variant of an encoding due
to Ladner [10]. The core idea is to capture, by means of a modal formula, the ‘peel off quantifiers and
substitute’ evaluation process for a given input QBF. The translation forces branching in the structure of
the possible model whenever a universal quantifier is found in the original formula, keeps the branches
separate, and makes sure there are enough modal levels in the model. It forces the structure of the possible
model to be a tree, and the resulting formula is satisfiable iff the original formula is.

The parametersc, k, v andd that are used in the generation process are related to the final modal
formula in the following way. The (maximum) number of clauses isc · k+ (v · (d+ 1))2 + bv · (d+ 1)/2c.
The (maximum) number of proposition letters isv · (d+1). And the (maximum) modal depth isv · (d+1).
These maximums obtain whenc · k is high enough compared tov · (d + 1) to cover all the possible
proposition letters. The file size for the translated formula is linear inc, and polynomial inv andd, but
usually we are not interested in big values of the last two.
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3 Test Results

Settings. To evaluate the QBF test set, we used 3 satisfiability solvers for modal logic. First, we used the
general first-order prover SPASS [16], version 1.0.3, extended with the layered translation of modal for-
mulas into first-order formulas as presented in [1]. Second, we used MSPASS version V 1.0.0t.1.2.a [12].
And, third, we used *SAT version 1.3 [17]. Our experiments were run on a Pentium III 800 MHz with 128
MB of memory, running RedHat Linux 7.0. We used the November 1999 version of the QBF problem gen-
erator. To facilitate future comparisons, we used as many default settings as possible: no modal encoding,
no lean encoding, the number of literals set to 4, andprmodandprnegboth set to0.5. We generated 64
instances of each problem, and the outputs of the generator were translated to the formats of the provers
being used; in one case we had to convert modal formulas to first-order logic formulas. The resulting file
sizes were linear inc, even though the linear coefficient varied from one solver to another.

Our main measurements concerned both CPU time elapsed (with a 10800 second timeout) and a time
independent measure: the number of clauses generated for SPASS plus layering and for MSPASS, and the
number of unit propagations for *SAT.1

Findings. We first ran the standardized tests provided by the TANCS competition: 64 instances randomly
generated withc = 20, v = 2, d = 2, and default settings for the remaining parameters. See Figure 1.
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Figure 1: The standardized tests provided by TANCS, used for SPASS, MSPASS, and *SAT. (Left): clauses
generated/unit propagations per problem instance, log scale. (Right): CPU time (seconds) per problem
instance, log scale.

While the number of clauses generated by resolution provers and the number of unit propagations in *SAT
are not directly comparable as a performance measurement, they do give an indication of the relative
difficulty of a problem (or problem set). As such, we can see that the difficulty of a problem varies with
the method used to solve it. The correlation between time elapsed and clauses generated/unit propagations
varies widely between the methods. For this test the *SAT times are completely dominated by startup costs
and don’t really inform us about problem difficulty.

We ran a large number of sweeps, with each of the three provers, withv = 2 and increasingd from
1 to 4 (and to 5 in the case of *SAT), while increasingc from 1 to 100. The resulting CPU times and the
number of clauses generated/unit propagations are depicted in Figure 2; the curves ford = 1, d = 2 do not
extend to the right-hand side of the plots, as the formulas being generated with these settings are simply
too small to be be able to accommodate larger number of clauses.

Many things are worth noting about Figure 2. First, the sets display an easy-hard-easy pattern familiar
from propositional satisfiability testing [3]. The shape of the curves is strongly dependent on the solver

1We found that the number of unit propagations best describes the resource usage for each problem, as evidenced by its strong
correlation to elapsed time. A detailed evaluation of unit propagations versus other statistics reported by *SAT (such as assignments
found) as a suitable time independent measure, is beyond the scope of this paper.
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Figure 2: SPASS, MSPASS, and *SAT on QBF test sets,v = 2, d = 1–4 (5), 64 samples/point, mean
values. (Top): clauses generated/unit propagations, log scale. (Bottom): CPU time in seconds, log scale.

used. Moreover, the pattern seem to vary from not-too-hard-hard-easy in some cases (SPASS,d = 1;
MSPASSd = 1, d = 2) to not-too-hard-hard-hard in others (SPASS,d = 4; MSPASS,d = 3, d = 4) to
not-too-hard-hard-not-too-hard in yet others (SPASS,d = 3; *SAT, d = 1–5).

Second, for SPASS and MSPASS we see that curves cross each other; this is most clearly visible in
(a), where the number of clauses generated by SPASS are displayed, but it also shows up in the CPU times
for SPASS (b). Hence, for SPASS (and to a lesser extent for MSPASS) thed parameter does not influence
the difficulty of the problems being generated in a monotonic way. Further experimental work has shown
that this ‘staircase phenomenon’ is also present with larger values ofv for SPASS. The phenomenon is
related to the special way in which QBFs grow: existential quantifiers are added to the original QBF when
d is increased from odd to even, universal quantifiers whend is increased from even to odd. The former
simplify matters for SPASS, while the latter make matters considerably harder.

Third, the time elapsed (displayed in (b), (d), and (f)) has a very strong dependence on file size: after
the hard region has been crossed and the elapsed time tends to decrease, it actually starts going up again.
The impact of input file size and I/O is most noticeable for MSPASS (plot (d)); but even in the case of
*SAT, where the number of unit propagations remains more or less constant after the hard region has been
traversed, the CPU times start going up: this increase is entirely due to input file size and I/O.

When increasing the parameterv, we get similar curve shapes as forv = 2. In Figure 3 (Left) and (Mid-
dle) we have displayed the results of running *SAT withv = 3. Notice that the humps indicating the hard
regions are higher forv = 3 than forv = 2 (see Figure 2 (e) and (f)), indicating that the problems are
harder; hence, the CPU times are not as strongly dominated by file size and I/O aspects as in the case
wherev = 2. The fact that the hard regions are ‘wider’ than forv = 2 indicates that we are not only
getting harder problems, but also that the fraction of hard problems is increasing.

To which extent can we choose the difficulty of the problem and of exploring the input space? Thev
parameter controls the difficulty monotonically, thed parameter also with some caveats. It seems, however,
thatv andd do not control trulyindependentdimensions of the problem space. Combinations ofv andd
for which the value ofv · (d + 1) coincides have very similar curves, as can be seen in Figure 3 (Right).
This suggests thatv · (d + 1) is the correct dimension along which the QBF problem space should be
explored. This comes as no surprise: as we saw in Section 2,v · (d + 1) determines both the maximum
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number of propositional variables and the maximum modal depth in the translated formula. (As an aside,
with increasing values ofv · (d + 1), the truly hard region for a given setting of parameters moves to the
right as we increase the number of clauses.)

An important aspect that we have not discussed so far is the satisfiable vs. non-satisfiable fraction. The
parameterc does indeed allow us to control the satisfiability fraction: it goes from 1 to 0 monotonically with
c. However, there are remarkably few values ofc for which the satisfiable fraction is 1; see Figure 4. As
illustrated by Figure 4 (top left), we have found satisfiable fractions of about 20% in many repeated runs
of the standardized 20/2/2 TANCS test (see Figure 1). Moreover, there is a heavy ‘tail’ of unsatisfiable
problems, as indicated by the curves in Figure 3 (Right). Contrary to intuition, the constrainedness of
problems does not seem to depend very strongly on thed parameter; for a fixedv, increasingd from even
to odd doesn’t shift the satisfiable fraction graph by any noticeable amount. The constrainedness of the
underlying models, then, remains unchanged despite the addition of variables and the increase in depth.

There’s one more thing worth pointing out. The 50% satisfiable mark occurs towards the right-hand
side of the truly hard region; this may suggest that the hardest problems within a given test set are likely to
be satisfiable ones.

Finally, recall that a modal formula istrivially satisfiableiff it is satisfiable on a model with a single
node [8, 9]. Clearly, trivial satisfiability is not a problem for modal QBF test sets. For a start, very few satis-
fiable problems are generated anyway, and because of the highly structured form of the randomly generated
QBFs, the resulting modal formulas always contain3-subformulas, thus avoiding trivial satisfiability.

4 What Have We Learned So Far?

For an assessment of the random modal QBF test set by means of the general criteria for evaluating modal
test methodologies that were put forward by Horrocks, Patel-Schneider, and Sebastiani [8], we refer the
reader to [6]; see also [14]. Here we adopt a different perspective: what part of the problem space do we
cover with the random modal QBF generator?

The modal QBF test set seems to represent just a restricted subarea of the whole input space. There
seem to be three reasons for this. First, the QBF test set provides poor coverage of the satisfiable region,
and especially of the easily satisfiable region; most of the modally encoded QBF-formulas generated with
values ofv andd that are within reach of today’s tools, are hard and unsatisfiable, as suggested by Figure 4.
Second, the modally encoded QBFs are of a very special shape, which seems to lead to the so-called
staircase phenomenon for some solvers. And third, thev andd parameters end up being substantially
overlapping and interrelated as part of the translation of QBFs into modal formulas. A strong point in favor
of the QBF test set is that it is possible to generate hard problems with a large modal depth which are still
within reach of today’s modal satisfiability solvers; in this respect the QBF random test methodology fares
better than the New3CNF2m test methodology, as reported in [8].

In sweeps with increasing values ofc, the phase transition already occurs for small values ofc, so that
explorations of larger values ofc reveals no novelties, and the effective search space is relatively small.
More generally, while QBFs are good representatives of the class of all quantified boolean formulas, the
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Figure 4: *SAT results ford = 1–4 (5), c = 1–50, 64 samples/point, mean values. (Top): Satisfiable
fraction. (Bottom): Unit propagations. (Left):v = 2. (Middle): v = 3. (Right): v = 4.

class of modally encoded QBFs are restricted to formulas whose underlying models have a very regular
structure (see [6] for elaborations on this point). As a consequence, the comment (made in the introduction)
about the naturalness of the modal QBF test set may only be partially true.

5 Next Steps

Our ongoing work is organized in a number of stages. At present we’re collecting data for the provers that
we haven’t considered so far (DLP [13] and RACER [5]). We’re particularly keen on finding out to which
extent the shape of our plots is dependent on differences in provers. This, we hope, will give us more insight
into whether our results are really about the modal satisfiability problem, or the particular algorithms and
implementations, or just about the particular kind of formulas being generated. Another way in which we
want to increase our understanding of the nature of the modal QBF test set is by developing suitable ways
of comparing the random QBF generator and the (2001 version of the) CNF2m generator.

As an aside, we want to see whether we can restrict ourselves to investigations along thev · (d + 1)
dimension only (instead of each ofv andd) — not only to save on (months worth of) CPU time, but also
to get a better understanding of the part of the problem space that we are actually exploring.

Finally, we are interested in compare our modal results against results obtained by feeding the (untrans-
lated) QBFs to QBF solvers, so as to get a better understanding of the effect of the encodings of QBFs into
modal formulas.
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