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Abstract
Image-Text Retrieval (ITR) systems are central to multimodal in-
formation access, with Vision-Language Models (VLMs) show-
ing strong performance on standard benchmarks. However, these
benchmarks predominantly rely on coarse-grained annotations,
limiting their ability to reveal how models perform under real-
world conditions, where query granularity varies. Motivated by
this gap, we examine how dataset granularity and query perturba-
tions affect retrieval performance and robustness across four archi-
tecturally diverse VLMs (ALIGN, AltCLIP, CLIP, and GroupViT).
Using both standard benchmarks (MS-COCO, Flickr30k) and their
fine-grained variants, we show that richer captions consistently
enhance retrieval, especially in text-to-image tasks, where we ob-
serve an average improvement of 16.23%, compared to 6.44% in
image-to-text. To assess robustness, we introduce a taxonomy of
perturbations and conduct extensive experiments, revealing that
while perturbations typically degrade performance, they can also
unexpectedly improve retrieval, exposing nuanced model behaviors.
Notably, word order emerges as a critical factor – contradicting
prior assumptions of model insensitivity to it. Our results highlight
variation in model robustness and a dataset-dependent relationship
between caption granularity and perturbation sensitivity and em-
phasize the necessity of evaluating models on datasets of varying
granularity.

CCS Concepts
• Information systems→ Test collections; Relevance assess-
ment.
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1 Introduction
Image-text retrieval (ITR) is a bidirectional retrieval task that in-
volves retrieving the top-𝑘 relevant images given a textual query—or
vice versa—based on cross-modal semantic alignment [4, 24]. This
capability plays an important role in multimodal information ac-
cess, enablingmore expressive search and interaction paradigms [9].
Fueled by advances in large-scale pretraining, vision-language mod-
els (VLMs) have achieved state-of-the-art (SOTA) performance on
standard ITR benchmarks [15, 38, 59, 73].

The granularity gap. The ITR landscape has largely relied on
established benchmarks such as MS-COCO [13, 43] and Flickr30k
[77] to evaluate model performance. While these datasets have
been instrumental in driving progress, they predominantly employ
coarse-grained captions, i.e., general descriptions that may overlook
finer details important for assessing retrieval accuracy [12, 20, 34].
For example, a caption might describe “a person walking a dog”
without specifying important distinguishing features like the breed
of dog, the setting, or the person’s attire. This level of abstraction
may mask significant differences in models’ ability to capture fine-
grained semantic relationships.

Recent work has attempted to address this limitation through
fine-grained dataset augmentations (MS-COCO-FG and Flickr30k-
FG), which provide more detailed and descriptive captions [12].
However, to the best of our knowledge, the impact of this increased
granularity on model performance and robustness remains poorly
understood. Critically, we lack systematic studies examining how
caption detail affects retrieval quality across different model archi-
tectures and evaluation scenarios.

The robustness challenge. Beyond granularity, robustness remains
a critical yet underexplored aspect of the ITR evaluation. Real-world
applications of ITR encounter noisy, ambiguous, and perturbed in-
puts – ranging from minor textual modifications to variations in
image content [8]. Prior studies emphasize the necessity of models
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that generalize beyond clean, well-annotated benchmarks andmain-
tain robustness against adversarial shifts and data perturbations
[44–46, 48, 54, 55]. Furthermore, existing ITR evaluation metrics
often rely on binary matches between images and texts, ignoring
real-world scenarios where there may be partial semantic over-
laps [50, 68, 82]. A more comprehensive assessment framework is
needed to evaluate models’ sensitivity to textual perturbations and
their ability to maintain retrieval performance under real-world
conditions.

Research goals. Motivated by this gap, in this reproducibility
study, we aim to validate and extend previous findings on the role
of dataset granularity and robustness in ITR evaluation. To ensure
comprehensive evaluation, we select four architecturally diverse
pre-trained models which demonstrate state-of-the-art (SOTA) per-
formance on ITR tasks and evaluate them in a zero-shot setting.
Following the ACM terminology [3], we focus on the replicability
(different team, different experimental setup) of previously reported
results. Following Voorhees [66], we evaluate the relative perfor-
mance of VLMs on different datasets. We explore the impact of
concept granularity in the context of robustness and extend be-
yond traditional binary matching to measure semantic alignment
in cross-modal retrieval tasks.

In our experiments, we are motivated by the following research
questions: (RQ1) How using more detailed (fine-grained) image
descriptions affects retrieval performance compared to general
(coarse-grained) descriptions across selected models (ALIGN, Alt-
CLIP, CLIP, and GroupViT)? (RQ2) How is the performance of the se-
lected state-of-the-art VLMs (ALIGN, AltCLIP, CLIP, and GroupViT)
on the coarse-grained vs. fine-grained datasets impacted by per-
turbations? To address these questions, we conducted over 200
experiments testing 13 different perturbations across four selected
models and four datasets. The experiments are grouped into two
principal sets, each aimed at addressing a specific research question.

Main contributions. Our main contributions are: (1) We conduct
one of the first reproducibility studies examining both dataset gran-
ularity and model robustness in ITR, by replicating experiments
from [12] and extending them to analyze their generalizability.
(2) We develop a comprehensive evaluation framework that sys-
tematically assesses VLM robustness to 13 different perturbations
across both coarse-grained and fine-grained datasets, revealing
unexpected cases where perturbations can improve retrieval per-
formance. (3) We introduce a novel evaluation suite that bridges
the gap between concept granularity and model robustness in ITR
tasks. This suite provides: (i) zero-shot evaluation across multi-
ple architecturally diverse models that excel at ITR, (ii) systematic
analysis of perturbation impacts on both coarse and fine-grained
datasets, (iii) cross-modal evaluation metrics that capture nuanced
performance differences.

2 Preliminaries
Notation. We adopt the notation used in [7]. Let D be a dataset

of 𝑁 image-text tuples:D = {(x𝑖I , {x
𝑖
C𝑗
}𝑘
𝑗=1)}

𝑁
𝑖=1. Each tuple 𝑖 ∈ 𝑁

consists of a single image x𝑖I and 𝑘 corresponding texts (captions)
x𝑖C𝑗

, where 1 ≤ 𝑗 ≤ 𝑘 . All texts are considered relevant to the

image x𝑖I . We derive sets of queries Q and candidates C from
the dataset D. Let QT represent the set of text queries, where
QT ⊆ Q. Let QI represent the set of image queries, where QI ⊆ Q.
Similarly, CT ⊆ C and QI ⊆ Q represent the sets of text and image
candidates respectively. Let 𝑞 ∈ Q and 𝑐 ∈ C represent a query and
a candidate item respectively.

A query 𝑞 may originate from either the text modality 𝑞 ∈ QT or
the image modality 𝑞 ∈ QI , while a candidate 𝑐 may similarly orig-
inate from either the text modality 𝑐 ∈ CT or the image modality
𝑐 ∈ CI . Let 𝐸𝜃1 : Q → R𝑑 be the encoder function mapping textual
queries 𝑞 ∈ QT to 𝑑-dimensional vectors: q = 𝐸𝜃1 (𝑞). Similarly,
we write 𝐸𝜃2 : C → R𝑑 for the encoder function mapping image
queries 𝑐 ∈ CI to 𝑑-dimensional vectors: c = 𝐸𝜃2 (𝑐).

Let 𝑓𝑟𝑒𝑙 : Q × C → R be a relevance function that computes the
relevance of a query-candidate pair. We write 𝑓𝑆 : Q × C → R for
a scoring function that takes a query and a candidate, maps them
into 𝑑-dimensional space, normalizes the vectors so that they lie on
𝑑-dimensional hypersphere and computes their similarity. Finally,
𝑓𝑠𝑖𝑚 : R𝑑 × R𝑑 → R denotes a similarity function that computes a
similarity score between the two 𝑑-dimensional vectors. We assume
that all vectors lie on the surface of a 𝑑-dimensional hypersphere.
Formally, this implies that ∥𝑞∥ = ∥𝑐 ∥ = 1 where ∥ · ∥ denotes the
Euclidean norm.

Task. We focus on the task of cross-modal retrieval, which in-
volves matching queries in one modality (e.g., text or image) to
candidates in a different modality.

The retrieval process can occur in two ways: (i) text-to-image
retrieval (t2i): given a textual query 𝑞 ∈ QT and a set of candidate
images CI , rank the images by their relevance to𝑞; (ii) image-to-text
retrieval (i2t): given an image query 𝑞 ∈ QI and a set of text
candidates CT , rank the texts by their relevance to 𝑞. For both
tasks, dedicated encoders are used to map images and texts into
a shared 𝑑-dimensional representation space. Once encoded, we
compute the similarity between the query and candidate in this
shared space to derive relevance scores.

Performance is typically evaluated bidirectionally using Recall@k
(R@k), where 𝑘 = {1, 5, 10}, and the sum of recall (rsum).

3 Concept Granularity in Image-Text Retrieval
Datasets

We start our study by examining the concept granularity in image-
text retrieval (ITR) datasets, focusing on features that influence the
specificity and richness of textual descriptions.

3.1 Selected Features
To analyze concept granularity in ITR datasets, we examine linguis-
tic features at both the noun phrase (NP) level and the caption level.
These features help quantify the level of detail and specificity in
image descriptions.

3.1.1 NP-level granularity. This section discusses linguistic fea-
tures contributing to NP granularity in captions.

Modifiers of the noun. Adjectives and complement phrases (CPs)
provide details about objects in images [56, 80]. By quantifying
these modifiers, we assess the detail and granularity associated
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with objects [42]. Specifically, we count the number of adjectives
and CPs per identified noun in captions.

Semantics: Concept depth. Concept depth reflects the semantic
understanding capturedwithin individual concepts in captions, indi-
cating a deeper comprehension of the depicted scene [75]. Datasets
with deeper conceptual information offermore detailed descriptions
of visual content [58]. We measure concept depth by calculating
the minimum depth of the corresponding synsets, considering the
maximum depth across all synsets associated with a word.

Determiners: Articles, quantifiers. The use of articles and quanti-
fiers impacts the specificity of noun descriptions [30]. Analyzing
their occurrences offers insights into the explicitness and precision
of noun specifications. We quantify the occurrences of articles and
quantifiers linked to identified nouns in captions.

3.1.2 Caption-level granularity. Next, we consider caption-level
features.

Caption length. The character count of a caption indicates the
amount of information conveyed [36]. Longer captions are likely to
include more details, contributing to finer granularity. We measure
the total word count for each caption.

Number of words. The total word count is indicative of caption
richness [36]. A higher word count suggests a more elaborate de-
scription, signaling finer granularity. We count the total number of
words in each caption.

Semantic diversity of concepts per caption. Concept diversity is es-
sential for analyzing granularity within ITR datasets [30]. It reflects
the range of ideas and semantic complexity captured in a caption.
We compute the ratio of unique synonyms to the total word count
in each caption.

3.2 Granularity Analysis
3.2.1 Datasets. We conduct our experiments on two widely used
ITR datasets and their fine-grained variants:

MS-COCO [43]. A large-scale dataset originally designed for
object detection, segmentation, and captioning. It consists of 123,287
images and 616,435 captions, with each image annotated with five
captions.

Flickr30k [77]. An image caption corpus consisting of 31,783
images and 158,915 crowd-sourced captions, with each image anno-
tated with five captions. This dataset is commonly used for image-
text retrieval tasks.

MS-COCO-FG [12]. A fine-grained extension of MS-COCO that
enhances concept granularity for more detailed retrieval evalua-
tions. It augments the original dataset with captions containing
additional contextual details extracted from the associated images.

Flickr30k-FG [12]. A fine-grained extension of Flickr30k, de-
signed to improve retrieval performance on nuanced textual and
visual details. Like MS-COCO-FG, it adds captions with additional
contextual information.

For all datasets, we use the standard training, validation, and test
splits as defined by Karpathy and Li [31].

3.2.2 Results. Table 1 presents the results of analyzing our datasets
in terms of granularity. For Flickr30k vs. Flickr30k-FG, we observe
a 21% increase in the number of concept phrases in the extended
dataset. This indicates a richer description of scenes with additional
details. The concept depth remains unchanged. While the fine-
grained dataset offers more detailed descriptions, the semantic
complexity of the concepts remains largely unchanged. Similarly,
we note a 38% increase in the number of adjectives per caption in
MS-COCO-FG over MS-COCO. This suggests a more descriptive
and nuanced portrayal of visual content. The concept depth exhibits
only a marginal increase, implying that the semantic understanding
of concepts is slightly enhanced in the fine-grained version. Overall,
the fine-grained datasets demonstrate higher scores across features
than their standard counterparts. Thus, they offer more detailed
and descriptive captions, amounting to improved granularity.

4 Evaluation Framework
To comprehensively evaluate VLMs robustness in the context of
ITR, we present a novel evaluation framework. This framework
includes a diverse set of perturbations and a cross-modal relevance
metric to examine model performance.

4.1 Perturbations
To assess the robustness and performance of VLMs in ITR, we
introduce a set of perturbations targeting word order sensitivity
and resilience to noise in input. These perturbations are inspired by
prior studies on the limitations of large languagemodels in handling
word order [25, 53, 57, 78] and noisy input [18, 29, 64, 71, 83].

4.1.1 Word Order Sensitivity. To assess a model’s sensitivity to
word order, we designed a series of perturbations to test how rear-
ranging sentence elements impacts its ability to perform ITR. We
focus on three levels: adjectives and nouns, trigrams, and complete
captions. We assume that breaking word order will degrade the
model’s retrieval performance, as sentence structure is crucial for
accurate cross-modal alignment. The perturbations are grouped
into three categories based on the level of operations:

Nouns andAdjectives. We test themodels ability to handle changes
in the arrangement of descriptive elements by shuffling the order
of nouns and adjective (shuffle nouns and adjectives); additionally,
we examine model’s ability to preserve essential details while other
sentence elements are rearranged (shuffle all words but nouns and
adjectives).

Trigrams. We evaluate the model’s response to localized word
order changes by randomly shuffling the word order within each
trigram (shuffle within trigrams); besides, we assesses the model’s
ability to perform ITR when faced with trigram reshuffling (shuffle
trigrams).

Complete Caption. We test the model’s sensitivity to word order
on a caption level by randomly reshuffling all words in a caption
(shuffle all words).

4.1.2 Robustness to Noise in Input. To evaluate the robustness of
VLMs to noise in input, we introduce several perturbations that
simulate common real-world scenarios. These perturbations are
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Table 1: Coarse-grained vs. fine-grained ITR datasets at the levels of noun phrases and captions. Section 3.1 defines the quantities
counted for each of the features.

Level Aspect Features MS-COCO MS-COCO-FG Flickr30k Flickr30k-FG

N
P

Modifiers of the Noun Adjectives 0.76 1.05 1.14 1.3
Complement Phrases 1.56 1.99 1.81 2.19

Determiners Articles 2.14 2.34 2.27 2.55
Quantifiers 0.12 0.13 0.26 0.27

Semantics Concept depth 7.89 7.91 7.97 7.97

Ca
pt
io
n Number of Characters Caption length 52.39 56.38 63.61 68.29

Number of Words Number of words in a caption 10.59 11.48 12.34 13.67
Semantics Diversity of concepts per caption 9.14 10.04 9.86 10.68

designed to test the model’s ability to handle distractions, lexical
variations, and typos.

Distractions. Distraction-based perturbations aim to evaluate the
model’s robustness to irrelevant elements within captions. These
perturbations focus on statements that are always true and do not
add meaningful content to the caption, helping to understand how
well the model can filter out relevant information when performing
ITR [64].

Lexical variations. This type of perturbation aims to assess the
model’s adaptability and robustness to changes in language [18, 29].
We focus on replacing 𝑘 synonyms and nouns in a given caption
with their lexical variations.

Typos. Typos are common in real-world ITR scenarios, and eval-
uating a model’s response to such errors is important for ensuring
its practical usability [61, 71, 83]. Typo perturbations aim to assess
the model’s resilience to typographical errors. We implement sev-
eral perturbations of this type that simulate keyboard character
transposition, mimic a character omission typo, simulate insertion
typo, and emulate key proximity typo.

4.2 Evaluation Metric
Our goal is to evaluate not only explicit matches but also the overall
relevance between queries and candidates, even when explicit labels
are unavailable. To achieve this, we define a metric based on both
perfect match cases and cross-modal relevance.

We operate in a setup when, given a query 𝑞, and a ranked list
of top-𝑘 retrieved results 𝐾 = [𝑐1, . . . , 𝑐𝑘 ], we want to obtain a
list of the relevance scores [𝑟𝑒𝑙1, . . . , 𝑟𝑒𝑙𝑘 ] where 𝑟𝑒𝑙𝑖 denotes the
relevance for the 𝑖-th retrieved candidate.

4.2.1 Perfect match. When explicit matching labels are available,
we assign a relevance score of 1 to perfect matches. This applies to
both text-to-image and image-to-text retrieval:

(i) Text-to-Image Retrieval (t2i): The retrieved image 𝑐 ∈ CI is
considered a perfect match if it is the ground-truth image
for query 𝑞 ∈ QT :

𝑓𝑟𝑒𝑙 (𝑞, 𝑐) = 1 if ∃𝑖 ∈ N such that 𝑞 ∈ {x𝑖C𝑗
}𝑘𝑗=1 ∧ 𝑐 = x𝑖I .

(ii) Image-to-Text Retrieval (i2t): The retrieved caption 𝑐 ∈ CT is
considered a perfect match if it is the ground-truth caption

for query 𝑞 ∈ QI :

𝑓𝑟𝑒𝑙 (𝑞, 𝑐) = 1 if ∃𝑖 ∈ N such that 𝑞 = x𝑖I ∧ 𝑐 ∈ {x𝑖C𝑗
}𝑘𝑗=1 .

4.2.2 Cross-modal relevance. When explicit labels are unavailable
(i.e., no perfect matches exist), the relevance score is computed
based on the similarity between the encoded query and candidate
vectors. This approach allows us to measure how well the model
aligns cross-modal pairs (text and images) in the shared representa-
tion space. The scoring function 𝑓𝑆 is defined as:

𝑓𝑆 (𝑞, 𝑐, 𝐸𝜃1 , 𝐸𝜃2 )=
{
𝑓𝑠𝑖𝑚 (𝐸𝜃1 (𝑞), 𝐸𝜃2 (𝑐)) if 𝑞 ∈ QT and 𝑐 ∈ CI
𝑓𝑠𝑖𝑚 (𝐸𝜃2 (𝑞), 𝐸𝜃1 (𝑐)) if 𝑞 ∈ QI and 𝑐 ∈ CT .

We use cosine similarity as the similarity function: 𝑓𝑠𝑖𝑚 (v1, v2) =
v1 ·v2

∥v1 ∥ ∥v2 ∥ .

4.2.3 Overall metric. To evaluatemodel performance across ranked
results, we measure relevance while considering the rank position
of the results:

𝐷𝐶𝐺
𝑝

𝐶𝑀
=

𝑝∑︁
𝑖=1

rel𝑖

log2 (𝑖 + 1) ,

where 𝑝 represents the rank position up to which the score is
computed.

5 Experiments
In this section, we describe the models selected for evaluation, the
design of our experiments, and the results obtained. Our experi-
ments aim to assess the impact of concept granularity on VLMs
performance in ITR tasks and analyze their robustness to textual
perturbations.

5.1 Models
For our experiments, we select four VLM that excel in ITR tasks.
All selected models use dual-encoder architectures trained via con-
trastive learning, but each embodies distinct methodological ap-
proaches.

The models we consider are: (1) ALIGN [28] builds upon the
principles established by CLIP (see below), using an expansive
dataset of over one billion noisy image alt-text pairs. By using uncu-
rated data, ALIGN achieves robust performance across large-scale
visual tasks, distinguishing itself from models reliant on meticu-
lously curated datasets and facilitating a more realistic assessment
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of robustness in less controlled environments. (2) AltCLIP [15]
is a multilingual adaptation of CLIP (see below), enhancing its
capabilities through the integration of a pre-trained multilingual
text encoder, XLM-R, and a two-stage training schema that com-
bines teacher learning and contrastive learning. This adaptation
allows AltCLIP to achieve state-of-the-art performance on various
vision-language tasks, demonstrating the effectiveness of simple
modifications to CLIP’s architecture for extending its capabilities
in multilingual contexts. (3) CLIP [59] serves as a foundational
model in VL research. It is contrastively pre-trained on a dataset
of 400 million image-text pairs collected from the internet. CLIP’s
capacity for zero-shot transfer across a wide range of downstream
computer vision tasks has established it as a benchmark in the
field. Its efficient zero-shot performance provides a robust baseline.
(4) GroupViT [73] features a hierarchical approach that focuses on
grouping semantic regions within images without the need for pix-
el-level annotations. The model dynamically aligns image regions
with their corresponding textual descriptions, emphasizing visual
scene understanding by progressively grouping image regions into
larger segments, which contrasts with the global image-level repre-
sentations used by the other selected models.

5.2 Experimental Design
To answer the research questions introduced in Section 1, we con-
duct over two hundred experiments testing thirteen different per-
turbations across four selected models and four datasets. The ex-
periments are grouped into two sets, each aimed at addressing a
specific research question.

5.2.1 Set 1: Coarse vs Fine-Grained Datasets Evaluation across Se-
lected Models (RQ1). In these experiment, we evaluate the impact
of concept granularity in both textual descriptions and dataset
composition on VLMs performance in the ITR task. We validate
our evaluation framework by comparing our results to those re-
ported in a previous study [12]. This study is relevant because it
critiques current ITR benchmarks and proposes enhanced evalua-
tions for fine-grained cross-modal semantic matching. Moreover,
Chen et al. [12] introduced augmented benchmarks (MS-COCO-FG
and Flickr30K-FG) that we incorporate into our experiments. We
run the ITR task on both standard image-caption datasets (MS-
COCO and Flickr30k) and their more fine-grained counterparts
(MS-COCO-FG and Flickr30K-FG). The models are evaluated on
image-to-text (i2t) and text-to-image (t2i) tasks, and we report the
recall at 1 for both. This experiment allows us to assess how refin-
ing textual descriptions and increasing dataset granularity impact
model performance.

5.2.2 Set 2: Model Robustness and Perturbation Sensitivity (RQ2).
In these experiments, we the robustness to perturbations of state-
of-the-art VLMs (ALIGN, AltCLIP, CLIP, and GroupViT) on the
coarse-grained vs. fine-grained datasets. We apply 13 perturbations
across the four selected datasets (MS-COCO vs. MS-COCO-FG, and
Flickr30k vs. Flickr30K-FG). The perturbations are designed to test
the models’ sensitivity to changes in word order and robustness
to noisy input. We analyze the performance drop of the models
after each perturbation and measure their sensitivity to word order,
lexical variations, and typos.

5.3 Results
5.3.1 Set 1: Coarse vs. Fine-Grained Datasets Evaluation across Se-
lected Models (RQ1). To address RQ1, we evaluate models R@1
performance for both i2t and t2i retrieval and compare the results
between the original datasets (MS-COCO, Flickr30k) and their fine-
grained versions (MS-COCO-FG, Flickr30k-FG).

Table 2 highlights that refining the captions improves perfor-
mance in most cases. Across datasets, we observe significant im-
provements in R@1 scores. The highest performance gain is a
29.11% improvement in CLIP for t2i retrieval on the Flickr30k
dataset. On average, scores increase by 12.63% on MS-COCO and
10.05% on Flickr30k. Specifically, MS-COCO exhibits an 8.14% in-
crease for i2t retrieval and a 17.11% increase for t2i, while Flickr30k
shows a 4.75% rise in i2t scores and a 15.35% rise for t2i.

However, there are exceptions, particularly in the CLIP MS-
COCO t2i and GroupViT MS-COCO i2t tasks, where refined cap-
tions do not improve the scores. Despite these few exceptions, the
overall results demonstrate that refining textual descriptions en-
hances retrieval performance, with the greatest benefits observed in
t2i retrieval, which saw an average 16.23% improvement compared
to a 6.44% increase in i2t retrieval.

Therefore, we answer RQ1 as follows: fine-grained captioning
consistently improves retrieval performance across models and
datasets in zero-shot scenarios, with greater benefits observed in
t2i retrieval than in i2t retrieval. The performance difference demon-
strates that comprehensive model evaluation should include both
granularity levels. Testing only on coarse-grained captions may
underestimate a model’s true retrieval capabilities, while testing
only on fine-grained captions might overstate its real-world perfor-
mance where detailed descriptions are not always available. This
multi-granularity evaluation approach provides a more complete
understanding of model robustness and capabilities across different
levels of descriptive detail.

5.3.2 Set 2: Model Robustness and Perturbation Sensitivity (RQ2).
To address RQ2, we assess the robustness of four VLMs (ALIGN, Alt-
CLIP, CLIP, GroupViT) to various perturbations across MS-COCO,
Flickr30k, and their refined counterparts. We apply the proposed
perturbations to contrast how well models handle changes in word
order, lexical variations, and typos, in the coarse-grained vs. fine-
grained settings.

The results are shown in Table 2. The results indicate consistent
drops across most perturbation-dataset pairs. The most notable
decrease is caused by the shuffle all words perturbation, where ran-
domly shuffling all words in captions leads to the largest score
drops, underscoring the models’ reliance on correct word order
for accurate retrieval. In contrast, the lexical variation perturba-
tion has the smallest effect, indicating a greater model resilience to
synonym substitution. Interestingly, while most perturbations neg-
atively affect performance, in some cases, refined datasets exhibit
better robustness. For example, on MS-COCO-FG, models show
smaller relative performance drops when compared to MS-COCO.
This trend is less consistent for Flickr30k-FG, which shows smaller
performance drops than Flickr30k for only 5 of the 13 perturba-
tions. This discrepancy may be due to the inherently more detailed
nature of Flickr30k captions, making additional granularity less
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Table 2: Model performance on the i2t and t2i tasks. “DCG” is short for “DCG𝐶𝑀 .”

Model i2t t2i rsum

R@1 R@5 R@10 DCG R@1 R@5 R@10 DCG i2t t2i

MS-COCO

ALIGN 42.22 54.42 60.48 2.45 22.93 42.15 51.01 1.60 157.12 116.09
AltCLIP 40.95 53.44 58.64 2.43 22.47 41.85 50.90 1.61 153.03 115.22
CLIP 33.66 45.29 50.08 2.32 16.15 33.11 42.06 1.66 129.03 91.32
GroupViT 24.88 34.38 35.72 1.97 8.29 18.90 25.59 1.41 94.98 52.78

MS-COCO-FG

ALIGN 44.59 56.55 64.20 2.50 25.60 45.64 54.65 1.61 165.34 125.89
AltCLIP 43.97 57.23 61.83 2.51 25.45 45.86 54.75 1.63 163.03 126.06
CLIP 38.16 50.38 55.20 2.43 16.15 33.11 42.01 1.66 143.74 91.27
GroupViT 24.88 34.38 35.72 1.97 9.58 21.38 28.68 1.42 94.98 59.64

Flickr30k

ALIGN 70.52 83.58 88.90 3.03 35.56 58.78 67.64 1.70 243.00 161.98
AltCLIP 67.98 82.46 86.40 2.99 33.06 56.42 65.74 1.69 236.84 155.22
CLIP 58.06 72.54 79.30 2.85 19.30 39.74 49.22 1.70 209.90 108.26
GroupViT 35.34 49.24 50.80 2.20 8.36 19.26 26.02 1.38 135.38 53.64

Flickr30k-FG

ALIGN 75.28 87.38 90.80 3.10 39.80 64.76 73.44 1.73 253.46 178.00
AltCLIP 71.66 85.96 87.40 3.05 37.10 61.02 70.60 1.72 245.02 168.72
CLIP 63.70 77.72 82.60 2.95 24.92 46.00 55.60 1.73 224.02 126.52
GroupViT 38.50 53.88 52.30 2.26 8.92 20.98 28.54 1.38 144.68 58.44

beneficial than in MS-COCO, which has coarser captions (see Ta-
ble 1 for details). Besides, while perturbations generally decrease
performance across all models, we discovered several surprising
cases where certain perturbations resulted in R@1 scores being
improved. We present randomly sampled examples of these cases
in the Appendix B. Table 4 illustrates two scenarios: one where
perturbations increase R@1 and another where they decrease R@1.
The left side of the table shows an example where a perturbation
(changing “couple” to “coupel”) led to an increase in R@1, as evi-
denced by the top-3 retrieved images. Conversely, the right side of
the table demonstrates a case where a perturbation (changing “mo-
torcycles” to “omtorcycles”) resulted in a decrease in R@1, as seen
in the corresponding top-3 images. Overall, our findings highlight
the sensitivity of VLMs to perturbations, with word order being
particularly critical. Interestingly, this contradicts prior work on
this topic where authors demonstrate that reshuffling word order
does not affect ITR performance [78].

Therefore, we answer RQ2 by stating that VLMs demonstrate
varying degrees of sensitivity to different perturbations in zero-
shot settings, with word order being the most critical factor affect-
ing retrieval performance. More importantly, our findings empha-
size the necessity of comprehensive perturbation testing in model
evaluation, as these perturbations closely mirror real-world usage
scenarios where input text is often imperfect. The interaction be-
tween caption granularity and perturbation robustness provides
additional insights - models generally show better resilience to
perturbations when operating on fine-grained descriptions, particu-
larly in MS-COCO, suggesting that richer visual details in text may

help maintain retrieval performance even under noisy conditions.
This interplay between description granularity and perturbation
robustness should be considered when developing and deploying
VLMs in practical applications.

Overall, results underline the importance of comprehensive eval-
uation protocols for VLMs that go beyond standard benchmarks.
The significant variations in model behavior across different gran-
ularity levels and perturbation types reveal capabilities and lim-
itations that would remain hidden under simpler evaluation ap-
proaches. These findings suggest that robust assessment frame-
works should account for both the quality of textual descriptions
and the imperfect nature of real-world inputs to provide meaningful
insights into model performance in practical applications.

6 Related Work
Cross-modal retrieval. Cross-Modal Retrieval (CMR) methods

construct a multimodal representation space where concepts from
different modalities are mapped and compared using distance met-
rics such as cosine or Euclidean distance. Early approaches relied
on canonical correlation analysis [21, 32], followed by dual en-
coder architectures integrating recurrent and convolutional com-
ponents trained with hinge loss [19, 69]. Later advancements in-
troduced hard-negative mining [17] and attention mechanisms
like dual attention and stacked cross-attention [35, 52]. Recent
transformer-based methods leverage dual encoders trained on large-
scale datasets. ALBEF [38] aligns unimodal representations before
fusion, while CLIP [59] directly predicts image-text pairs. Models
such as FILIP [76] and SLIP [51] enhance multimodal interaction
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Table 3: Rsum after applying perturbation.

MS- MS- Flickr- Flickr-
Perturbation COCO COCO-FG 30k 30k-FG

ALIGN

No perturbation 116.09 125.89 161.98 168.72
Shuffle N&A 100.00 109.58 139.33 145.39
Shuffle all words 85.78 97.58 120.39 130.77
Shuffle all but N&A 98.03 116.59 133.67 154.19
Shuffle within trigrams 101.70 116.12 144.65 154.16
Shuffle trigrams 104.23 117.86 145.06 156.83
Distraction 112.17 124.91 156.20 163.51
Lexical variation 108.88 119.46 157.79 161.61
Typos 103.07 115.25 152.83 152.01

AltCLIP

No perturbation 115.22 126.06 155.22 178.00
Shuffle N&A 96.84 107.54 133.63 154.82
Shuffle all words 88.41 98.91 121.62 132.39
Shuffle all but N&A 100.08 113.69 135.68 159.44
Shuffle within trigrams 101.60 113.66 138.82 160.87
Shuffle trigrams 103.81 115.35 143.14 163.60
Distraction 110.20 120.63 157.08 173.07
Lexical variation 107.46 118.20 148.64 174.12
Typos 100.91 112.60 141.32 161.71

CLIP

No perturbation 91.32 91.27 108.26 126.52
Shuffle N&A 31.23 72.24 86.06 99.74
Shuffle all words 41.24 60.87 69.19 77.82
Shuffle all but N&A 28.93 75.40 82.52 99.31
Shuffle within trigrams 26.11 74.12 84.57 100.26
Shuffle trigrams 30.60 76.41 91.08 103.33
Distraction 84.05 89.93 105.75 121.10
Lexical variation 74.12 84.04 101.26 139.32
Typos 66.30 76.86 87.99 105.37

GroupViT

No perturbation 52.78 59.64 53.64 58.44
Shuffle N&A 43.62 49.00 46.82 49.87
Shuffle all words 41.94 46.82 47.83 46.89
Shuffle all but N&A 49.08 54.58 51.82 48.32
Shuffle within trigrams 48.18 54.52 51.72 54.36
Shuffle trigrams 48.56 53.98 52.84 47.52
Distraction 51.18 58.23 53.47 59.91
Lexical variation 48.61 53.71 49.78 53.89
Typos 43.11 49.81 47.65 50.44

and supervision techniques. AltCLIP [15] integrates multilingual
text encoders, whereas GroupViT [73] incorporates a grouping
mechanism in vision transformers to improve visual segment un-
derstanding. Unlike prior work in this domain, in our work, we
conduct a comparative evaluation of multiple transformer-based
dual encoder models on the image-text retrieval (ITR) task, analyz-
ing their performance across different retrieval settings.

Transformer-based vision-language models. Another research di-
rection explores transformer-based encoders for ITR. ViLBERT [47]
and LXMERT [63] employ two-stream architectures, while B2T2 [2],
VisualBERT [40], Unicoder-VL [37], VL-BERT [62], andUNITER [14]
adopt single-stream architectures. Oscar [41] enhances region fea-
tures by incorporating object tags, and BEIT-3 [70] extends mul-
tiway transformers trained with cross-entropy loss. This work fo-
cuses on transformer-based dual encoder models due to their strong
performance on vision-language (VL) tasks. Unlike prior work in
this domain, in our work, we systematically compare the effective-
ness of four SOTA transformer-based dual encoders and provide
insights into their generalization across different datasets.

Vision-language model evaluation. The evaluation of vision-lan-
guage models (VLMs) is critical for assessing their capabilities
across diverse tasks and datasets. Standard benchmarks such as MS-
COCO [13, 43] and Flickr30k [77] have been widely used for image
captioning, visual question answering (VQA), and ITR. However,
these datasets have limitations in concept granularity and diversity,
prompting the introduction of more fine-grained benchmarks like
MS-COCO-FG and Flickr30k-FG [12].

Additionally, specialized datasets cater to specific domains: CUB-
200 [72] for fine-grained bird classification, ABO [16] for product
listings, and Fashion200k [22] for fashion items. Large-scale datasets
such as Conceptual Captions [60], XMarket [6], and Recipe1M [49]
further enrich the evaluation landscape, providing diverse real-
world scenarios for testing VLMs. Unlike prior work in this domain,
in ourwork, we evaluate thesemodels on a broader range of datasets
to analyze their performance in both standard and fine-grained
retrieval tasks.

Robustness and generalization. Evaluating the robustness and
generalization of VLMs is crucial for their deployment in real-world
applications. Recent studies examine VLMs under adversarial at-
tacks [81], domain shifts, and input perturbations [78] to identify
vulnerabilities and improve model resilience. Adversarial attacks
have been extensively studied in the context of VQA [5, 10, 33,
39, 67, 79] and image captioning [1, 11, 74], highlighting the need
for robust training and evaluation strategies. Unlike prior work in
this domain, in this work, we assess the robustness of transformer-
based dual encoders under varying retrieval conditions in zero-shot
settings and examine their performance in ITR scenarios.

7 Conclusions
In this work, we address the brittleness of the evaluation pipeline
in the ITR task, emphasizing two primary concerns: the coarseness
of existing benchmarks and the limitations of current evaluation
metrics. Through our analysis, we compare standard datasets, MS-
COCO and Flickr30k, with their fine-grained counterparts, MS-
COCO-FG and Flickr30k-FG. We propose an evaluation framework
that encompasses a taxonomy of perturbations and a new evalua-
tion metric designed to improve the robustness of ITR assessments.
We selected four state-of-the-art VLMs –AltCLIP, ALIGN, CLIP, and
GroupViT – for our experiments and evaluate their performance
on the ITR task using the novel framework.
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Main findings. Overall, our findings reveal two critical aspects of
VLM evaluation. First, the substantial performance differences be-
tween coarse and fine-grained datasets (particularly in t2i retrieval)
demonstrate that comprehensive model assessment requires test-
ing across multiple granularity levels. Second, the varying model
responses to perturbations, coupled with the dataset-dependent
relationship between caption granularity and robustness, highlight
the complexity of real-world deployment scenarios. Models gener-
ally perform better with fine-grained descriptions but show dataset-
specific patterns in their resilience to perturbations, suggesting that
evaluation protocols should consider both description detail and
text noise to better reflect practical usage conditions.

These insights underscore the importance of multi-faceted eval-
uation approaches that combine different granularity levels and
perturbation types to fully understand model capabilities and limi-
tations.

Limitations. While our study provides valuable insights, it has
certain limitations. First, our evaluation focuses on a specific set
of perturbations and datasets, which may not fully encompass the
range of real-world variations encountered in image-text retrieval.
Additionally, while we selected leading models in the domain of
ITR, evaluating a broader range of VLMs could yield a more compre-
hensive understanding of their performance across diverse datasets
and evaluation frameworks. Expanding our evaluation to include
models with varied architectures and training methodologies could
provide deeper insights into their robustness and generalization.

Future work. Promising avenues for future work include extend-
ing the proposed framework by incorporating additional pertur-
bations and datasets, as well as expanding the range of evaluated
models. Another promising avenue includes exploring other facets
of VLM performance on the ITR task, such as interpretability and
domain adaptation, to further improve our understanding of their
capabilities and limitations.

Reproducibility Statement
To ensure reproducibility and facilitate further research, we release
our code at https://github.com/bloomberg/evaluating-cmr-in-mm.
For our software stack, we employ Matplotlib [27] and SciPy for
plotting, NumPy [23] for data handling, PIL [65] for image process-
ing, and spaCy [26] for text processing. Regarding computational
resources, all experiments were conducted on NVIDIA A100 GPUs
(40GB memory). Evaluation runs used 1–8 GPUs for durations be-
tween 2–12 hours, depending on configuration. The total compute
usage amounts to approximately 600 GPU days for experiments,
with an additional 987 GPU days allocated for development.
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Appendix
A Core Components

Dataset. The Dataset class handles loading and processing image-
text pairs, supporting train/val/test splits, JSON annotation loading,
and dataset augmentation. It maintains mappings between captions
and images, applies augmentations when enabled, and retrieves
image-caption pairs via indexing.

Models. The project supports multiple encoder architectures for
computing image and text embeddings, including CLIP, ALIGN,
AltCLIP, and GroupViT. Each model follows a common interface
for encoding queries and computing similarity scores. Each model
utilizes dedicated processor and backbone to encode images and
text into a shared embedding space. We provide support for batch
processing, with optimizations such as precomputed embedding
storage and incremental computation when needed.

Retrieval. The Retriever class is responsible for retrieving the
most relevant documents given a query. It takes a query, encodes it
using the specified model, and computes similarity scores between
the query and a set of document embeddings. The retrieval process
begins by truncating textual queries to match the model’s maximum
sequence length if necessary. The query is then encoded into an
embedding tensor, which is compared against the stored document
embeddings using semantic similarity. The top-k most relevant
documents are selected based on their similarity scores. The class
returns the ranked document names and their scores.

Evaluation. The Evaluator class assesses retrieval performance
through bidirectional ITR task. The evaluation process begins with
dataset loading and preprocessing, followed by embedding com-
putation, either from scratch or using precomputed values. The
retrieval process then ranks candidate results based on semantic
similarity scores, and performance is measured using metrics such
as RecallK and DCG𝐶𝑀 .

Metrics. The Metrics package offers functionality for comput-
ing RecallK and the DCG𝐶𝑀 metric. The DCG𝐶𝑀 metric evaluates
ranking quality by incorporating graded relevance scores, assigning
perfect relevance to exact matches and computing partial cross-
modal relevance for non-exact matches using the configured rele-
vance estimator. The RelevanceEstimator class is responsible for
computing relevance scores between queries and documents using
CLIP-based models. It supports multiple model architectures and
computes similarity scores using cosine similarity.

Perturbations. The Perturbation class applies various types of
perturbations to captions to evaluate the robustness of models.
The TyposPerturbation class introduces common typographical
errors into captions. The SynonymBased class generates perturba-
tions to test the model’s ability to handle semantic variations. The
DistractionBased class introduces distracting elements into the
captions, aiming to test the model’s focus and robustness against
irrelevant information. The ARO class applies various perturbations
to the captions, aiming to test model’s sensitivity to word order.

https://github.com/bloomberg/evaluating-cmr-in-mm
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Table 4: Examples of perturbation effects on R@1 for image retrieval.

Perturbation increases R@1 Perturbation decreases R@1

Initial caption Perturbed caption Initial caption Perturbed caption

a red rose is sitting next to a
couple of mugs

a red rose is sitting next to a
coupel of mugs

Two men are at an intersec-
tion on motorcycles.

Two men are at an intersec-
tion on omtorcycles.

Top-3 images Top-3 images

B Impact of Perturbations on Image Retrieval
Performance

Table 4 lists samples of perturbation effects, with both increases
and decreases in R@1.
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