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ABSTRACT
Fairness of exposure is a commonly used notion of fairness for rank-

ing systems. It is based on the idea that all items or item groups

should get exposure proportional to the merit of the item or the

collective merit of the items in the group. Often, stochastic ranking

policies are used to ensure fairness of exposure. Previous work

unrealistically assumes that we can reliably estimate the expected

exposure for all items in each ranking produced by the stochas-

tic policy. In this work, we discuss how to approach fairness of

exposure in cases where the policy contains rankings of which,

due to inter-item dependencies, we cannot reliably estimate the

exposure distribution. In such cases, we cannot determine whether

the policy can be considered fair. Our contributions in this paper

are twofold. First, we define a method called FELIX for finding

stochastic policies that avoid showing rankings with unknown ex-

posure distribution to the user without having to compromise user

utility or item fairness. Second, we extend the study of fairness

of exposure to the top-𝑘 setting and also assess FELIX in this set-

ting. We find that FELIX can significantly reduce the number of

rankings with unknown exposure distribution without a drop in

user utility or fairness compared to existing fair ranking methods,

both for full-length and top-𝑘 rankings. This is an important first

step in developing fair ranking methods for cases where we have

incomplete knowledge about the user’s behaviour.
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(a) (b)
Figure 1: Visualization of rankings with unknown exposure
distribution which are due to inter-item dependencies be-
tween items marked by the same color and similar shapes (a).
By shuffling some items between rankings in the stochastic
ranking policy these dependencies can be reduced such that
the estimated exposure agrees with the actual exposure that
each item gets (b).

1 INTRODUCTION
There has been increased interest in fair ranking systems, as wit-

nessed by the number of publications [14, 45], the topic’s attention

during keynotes leading conferences [7, 19], and challenges such

as the TREC Fair Ranking track [15]. Several particularities about

rankings make this task especially challenging.

First, often ranking systems act as a tool for two-sided market-

places, such as jobmarkets [17] ormusic recommender systems [22].

On one side, users want relevant item recommendations. On the

other side, items or their providers are interested in being exposed to

as many users as possible. Second, biases like position bias can cause

a traditional deterministic ranking to amplify small differences in

predicted scores into vast differences in user attention [3, 27].

An important line of research on fairness in ranking deals with

fairness of exposure. Given a ranking, we can estimate how much

exposure each item gets in expectation during inference.We call this

the exposure distribution of the ranking. Singh and Joachims [27]

define several notions of fairness of exposure for rankings, among

them disparate treatment. This notion defines a stochastic ranking

policy to be fair if each item or item-group gets expected exposure

proportional to itsmerit.Wewill mostly focus on individual fairness,

where we want to provide each individual item with exposure

relative to its merit.

Incomplete exposure estimation. Previous methods for fairness

of exposure assume that we can estimate the exposure distribution

of any ranking in the set of all possible rankings. For this, a user

model like the position-based model [3, 27, 34, 38], or the ERR-based

model [12] can be used. However, there are cases where, due to

inter-item dependencies that are not accounted for by any of the

existing user models, for certain rankings, user-behaviour does not

follow the user model; for such rankings we cannot estimate the

exposure distribution accurately. See Fig. 1a for an illustration. E.g.,

https://doi.org/10.1145/3477495.3531977
https://doi.org/10.1145/3477495.3531977
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Sarvi et al. [25] show that visual outliers can have a great impact

on the exposure distribution within a ranking, since such outliers

attract more user attention. This phenomenon is an example of

inter-item dependencies where one item can be perceived as an

outlier in the context of items it is presented together with. It can

cause the exposure distribution to diverge from the distribution

assumed by the user model.

Simply ignoring the incomplete knowledge about the exposure

of some of the rankings would imply that we cannot guarantee

fairness. Also, by ignoring potentially incomplete exposure estima-

tion, we might introduce a new kind of bias into the collected click

data, since items that got more exposure than estimated will have

propensity values that are too high, leading to overestimation of

their relevance. One solution would be to obtain a more accurate

user browsing model by estimating the exposure distribution of

rankings that do not follow the user model, through a large-scale

user study. To the best of our knowledge no such studies have

been conducted. It is also not clear whether one can always reliably

estimate the exposure distribution for all possible rankings.

Instead, we propose to avoid showing rankings with unknown

exposure distribution to the user by reducing their weight in the

probability distribution of the stochastic ranking policy.

Fair top-𝑘 ranking. So far, the literature on fairness of exposure

has mostly focused on full-length rankings. Top-𝑘 rankings are well

studied in the general information retrieval (IR) literature [9, 11,

40, 42]; many real-world ranking applications require us to expose

just a short list of items. Often there are more relevant items than

can be shown to the user, hence it is important to consider fairness

of exposure for this set-up as well. Although there have been few

approaches to fair top-𝑘 ranking [42, 44], most are concerned with

demographic parity, rather than merit-based fairness of exposure.

Our contributions. In this work we develop a method to find

ranking policies that avoid presenting rankings with unknown

exposure distribution, while still optimizing for user utility and

fairness. Under the assumption that inter-item dependencies are

the reason for the shift in exposure, our method works by shuffling

items between different rankings to avoid presenting them in a

context where they disturb the position-based exposure distribution,

as illustrated in Fig. 1b.

We also present what we believe to be the first approach towards

fairness of exposure in the top-𝑘 setting for the convex optimiza-

tion approach towards fairness. We generalize the Birkhoff-von

Neumann theorem and use this to extend [27] to the top-𝑘 setting.

To summarize, our main contributions are as follows:

• We introduce the task of fairness of exposure in light of incom-

plete exposure estimation and define a novel method FELIX that

provides us with a fair ranking policy that avoids rankings with

unknown exposure distribution.

• To make FELIX applicable to a broader range of use cases, we

extend the constrained optimization approach to fairness of ex-

posure to the top-𝑘 case.

• We test and compare FELIX on the outlier use case introduced in

[25] and show big improvements over other top-𝑘 fair ranking

methods in terms of effectiveness in avoiding rankings containing

outliers, while staying within the fairness constraints.

2 RELATEDWORK
Fairness in ranking. For a detailed overview of fair ranking we

refer to [14, 45]. Yang and Stoyanovich [39] seem to have been the

first to formalize fairness for rankings in a rank-aware manner, by

calculating parity for different top-𝑘 cut-offs and summing over

these values with a rank-based discount. Zehlike et al. [42, 44]

discuss representational fairness for top-𝑘 rankings and define a re-

ranking algorithm that ensures a share of items from the protected

groups in every prefix of the top-𝑘 , while Celis et al. [8] formulate

the problem as a constrained optimization problem. These papers

look for a deterministic ranker, not a stochastic ranking policy, and

emphasize on representational fairness and demographic parity.

Singh and Joachims [26] introduce the notion of expected expo-

sure and define fairness of exposure with respect to demographic

parity and equal opportunity, where the expected exposure is cal-

culated w.r.t. position bias. Later work [27] defines different types

of fairness of exposure w.r.t. disparate impact and disparate treat-

ment, and address the task as a constrained optimization problem.

Biega et al. [3] define equity of attention as an alternative notion

of fairness for rankings that is also based on exposure; they also

address the task as a constrained optimization problem. Wang and

Joachims [34] also consider fairness of exposure combined with

diversity in rankings. We build on [27] and use the non-uniqueness

property of the Birkhoff-von Neumann decomposition that is also

used in [34] to produce more diverse rankings. Importantly, we

reduce the probability that the user is shown a ranking with un-

known exposure distribution rather than providing the user with

more diverse rankings as in [34].

Another line of research aims to include fairness in the learning

process by including a fairness objective in the objective function

[12, 28, 33, 43]. Since inter-item relationships are hard to model

within the in-processing set-up, in our work we focus on a post-

processing method for avoiding rankings with unknown exposure

distribution and leave work on in-processing methods for the future.

Another work that looks into the the topic of uncertainty within

fair ranking is [29], which explores fairness of exposure when there

is uncertainty about the merit. In contrast to this work, we are

considering uncertainty about the exposure of certain rankings.

Exposure estimation in ranking. In counterfactual learning to

rank (CLTR) true estimation of exposure plays a central role [20].

Early work on CLTR corrects for position bias using exposure,

estimated by a click model [10], as the propensity to inversely

weight the importance of clicks [20, 36]. More recent work focuses

on estimating examination probabilities [1, 2, 16, 31, 32, 37], which

also correlates with exposure, correcting for more types of bias.

Recent work on learning fair rankings from implicit feedback [38]

simultaneously corrects for position bias and implicit biases in the

data. There is no prior work on how to adapt these models for the

case where certain rankings do not follow the general user model.

Prior work has shown that exposure might be impacted by other

factors than just position and the relevance of other items. Yue et al.

[41] observe that visual attractiveness can impact the exposure that

items get; Sapiezynski et al. [24] acknowledge that the attention that

users give to items in a ranking depends on context; and Wang et al.

[35] address the impact of click bait items on exposure distribution.

Sarvi et al. [25] show that the existence of visual outliers in rankings
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can skew the exposure distribution amongst the items, causing

outliers to draw more attention than estimated by the position-

based user model that non-outlier rankings seem to follow.

In this work, we focus on similar but more general use cases,

where due to inter-item relationships the exposure distribution for

some rankings differs from the generally assumed distribution, that

can be described through existing user models.

3 BACKGROUND
We introduce preliminaries in fair ranking that form the basis for a

new method for ranking under fairness constraints, while avoiding

to present rankings with unknown exposure distribution.

3.1 Stochastic ranking policies
Depending on the definition of fairness being used, often a sin-

gle deterministic ranking cannot achieve fairness [3, 12]. Instead,

probabilistic rankers can be used to provide a fair distribution of

exposure among items. Given a query 𝑞 and set of candidate items,

D𝑞 = {𝑑𝑖 }𝑖=1,...,𝑛 , to be ranked, we define a stochastic ranking pol-
icy 𝜋𝑞 as a probability distribution over all possible rankings RD𝑞

.

That is, 𝜋 assigns each ranking 𝜎 𝑗 ∈ RD𝑞
a probability 𝜋𝑞 (𝜎 𝑗 ) that

it will be shown to the user.

To evaluate the fairness of a ranking policy we determine the

expected exposure 𝜖 (𝑑𝑖 | 𝜋𝑞) that each item 𝑑𝑖 obtains when enough

rankings have been presented to users. To compute this, we need

to assume a browsing model that explains the probability of a user

visiting an item. Diaz et al. [12] adopt user models corresponding

to the ranked-based precision (RBP) and expected-reciprocal rank

(ERR), while Singh and Joachims [27] use the position-based user

model (PBM). We follow the latter, as it is commonly used in the

fairness literature [3, 27, 34, 38]. Assuming that the exposure of

an item in a ranking, 𝜖 (𝑑𝑖 | 𝜎), is purely based on its position, the

expected exposure 𝜖 (𝑑𝑖 | 𝜋𝑞) of document 𝑑𝑖 for policy 𝜋𝑞 can be

calculated as:

𝜖 (𝑑𝑖 | 𝜋𝑞) = E𝜎∼𝜋𝑞𝜖 (𝑑𝑖 | 𝜎)

=
∑︁

𝜎∈R𝐷𝑞

𝜋𝑞 (𝜎) · 𝜖 (𝑑𝑖 | 𝜎)

=
∑︁

𝜎∈R𝐷𝑞

𝜋𝑞 (𝜎) ·
1

log(1 + rank(𝑑𝑖 | 𝜎))
,

(1)

where we assume that the exposure can be calculated based on the

rank: 𝜖 (𝑑𝑖 | 𝜎) = 𝑣 (𝑟𝑎𝑛𝑘 (𝑑𝑖 | 𝜎)) with exposure at rank 𝑗 given by

𝑣 ( 𝑗) = 1

log(1+𝑗 ) .

3.2 Fairness of exposure
The definition of what constitutes a fair ranking may vary between

application scenarios and types of biases being addressed [45]. We

focus on individual fairness, but our approach can easily be ex-

tended for group fairness. Our goal is to make sure that similar

items receive a similar amount of exposure that is proportional to

their merit. The merit 𝑢 (𝑑 | 𝑞) of an item, 𝑑 ∈ D, indicates how

much exposure it deserves to get from users with respect to query

𝑞. We define the merit of an item as its relevance to the query.

The idea of fairness of exposure [27] is to provide each item with

exposure 𝜖 that is proportional to its merit:

𝜖 (𝑑𝑖 | 𝜋𝑞)
𝑢 (𝑑𝑖 | 𝑞)

=
𝜖 (𝑑 𝑗 | 𝜋𝑞)
𝑢 (𝑑 𝑗 | 𝑞)

∀𝑑𝑖 , 𝑑 𝑗 ∈ D . (2)

3.3 Finding a stochastic policy under fairness
constraints

To be able to satisfy certain fairness constraints, we need to find

a stochastic ranking policy (Section 3.1). Singh and Joachims [27]

approach the problem by optimizing for user utility under fairness

constraints via linear programming. As our method is based on

theirs, we introduce it in more detail. For each query 𝑞 and item

𝑑 ∈ D, let 𝑢 (𝑑 | 𝑞) be its relevance to the user. We define the utility
𝑈 of a ranking policy 𝜋𝑞 as the expected utility to the user, when

shown a ranking sampled from 𝜋𝑞 :

𝑈 (𝜋𝑞) =
∑︁
𝑑∈D

𝜖 (𝑑 | 𝜋𝑞) · 𝑢 (𝑑 | 𝑞)

= E𝜎∼𝜋𝑞
∑︁
𝑑∈D

𝜖 (𝑑 | 𝜎) · 𝑢 (𝑑 | 𝑞) .
(3)

As we assume a position-based user model, 𝜖 (𝑑 | 𝜎) is purely
dependent on the position of 𝑑 in the ranking. Therefore, the

expected utility 𝑈 can be calculated based on the probabilities

𝑃𝑖, 𝑗 = 𝑃 (𝑑𝑖 is placed at rank 𝑗):

𝑈 (𝜋𝑞) =
∑︁

𝑑𝑖 ∈D

∑︁
𝑗∈{1,...,𝑛}

𝑃𝑖 . 𝑗 · 𝑣 ( 𝑗) · 𝑢 (𝑑𝑖 | 𝑞)

= u𝑇 Pv,
(4)

where 𝑛 = |D| is the number of items in the ranking, u the vector

containing the merit of each item, v the vector containing the

position bias at each position, and P = {𝑃𝑖, 𝑗 }𝑖, 𝑗=1,...,𝑛 . Singh and

Joachims [27] show that the disparate treatment constraint from

Eq. (2) can be formulated as a linear constraint in P, which yields a

convex optimization problem of the form:

P = argmaxP u𝑇 Pv

such that 1𝑇 P = 1

P1 = 1

0 ≤ 𝑃𝑖, 𝑗 ≤ 1

P is fair.

(5)

A solution P to this optimization problem is a doubly stochastic

matrix, called the marginal rank probability (MRP) matrix. The
solution P needs to be transformed into an executable stochastic

ranking policy. The Birkhoff-von Neumann theorem [5] gives us

a constructive proof that such a matrix can be decomposed into a

convex sum of𝑀 ≤ 𝑛2 − 𝑛 + 1 permutation matrices:

P =
∑︁

𝑚=1,...,𝑀

𝛼𝑚𝑃𝜎𝑚 such that

∑︁
𝑚=1,...,𝑀

𝛼𝑚 = 1 (0 ≤ 𝛼𝑚 ≤ 1) . (6)

Since each permutation matrix corresponds to some ranking, we

denote the permutation matrix corresponding to 𝜎 by 𝑃𝜎 .

With this we have found a stochastic policy 𝜋 with 𝜋 (𝜎𝑚) = 𝛼𝑚
and 𝜋 (𝜎) = 0 for all 𝜎 not contained in this convex sum. Note that

this decomposition is not necessarily unique; in Section 4.3 below

we will make use of this fact.
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3.4 The impact of outliers on the exposure in
rankings

Sarvi et al. [25] provide evidence that commonly made assump-

tions on the user-behaviour might not hold when the presented

ranking contains visible outliers that might attract the attention

of the user. Since outliers are an example where inter-item depen-

dencies between documents can change the exposure distribution

among the items in a ranked list, we work with this example for

our experiments in Section 5. We follow the set-up of [25], where

the authors assume that outliers can be determined through outlier

detection on a specific visual item feature 𝑔(𝑑) that might impact

the user’s perception of an item. In the case of scholarly search,

which is used as an example in the experiments, such a feature

could be the number of citations that each document has.

Outliers are considered in a context 𝐶 ⊂ D of items that are

presented together, which could for instance be the top-𝑘 that is

presented in a single search engine result page (SERP). Given such a

context𝐶 = {𝑑1, . . . , 𝑑𝑘 } ⊂ D, we use the features,𝑔(𝑑1), . . . , 𝑔(𝑑𝑘 ),
as input for the outlier detection. Sarvi et al. [25] find that the per-

formance of their method for removing outliers from the rankings

is not very sensitive to the outlier detection method. For simplicity,

we will therefore use the Z-score:

𝑧 (𝑔𝑖 ) =
𝑔𝑖 − 𝜇

𝑠
, (7)

where 𝑔𝑖 = 𝑔(𝑑𝑖 ), and 𝜇 = 1

𝑘

∑𝑘
𝑖=1 𝑔𝑖 and 𝑠 =

√︃
1

𝑘

∑𝑘
𝑖=1 (𝑔𝑖 − 𝜇)2

denote the mean and standard deviation of the scores in that con-

text. Given these Z-scores, we define an item 𝑑𝑖 to be an outlier if

|𝑧 (𝑔𝑖 ) | > 𝜆, where 𝜆 can be chosen dependent on the sensitivity

towards outlier items. Here, we diverge slightly from [25], who use

a more complex outlier detection method.

Next, we introduce an extension to the convex optimization ap-

proach to fairness of exposure from Section 3.3 for top-𝑘 rankings.

We use the definition of fairness of exposure with respect to dis-

parate treatment from Section 3.2 and work with stochastic policies

from Section 3.1. We also develop a method that avoids displaying

rankings with unknown exposure distribution, using the outlier

use case from Section 3.4 for our experiments in Section 5.

4 FAIRNESS OF EXPOSURE UNDER
INCOMPLETE EXPOSURE ESTIMATION

As discussed in Section 3.1, previous work on fair ranking assumes

that we can estimate the exposure distribution for all rankings

in a policy with one user model. Often, the position-based user

model is used. But there are cases where these assumptions do not

hold up. Sarvi et al. [25] show that the existence of outliers in a

displayed ranking can strongly impact the exposure distribution of

the ranking. To the best of our knowledge, there is no prior work

on estimating the exposure distribution of such rankings. If such

rankings with unknown exposure distribution are part of a stochastic

ranking policy (i.e., if such a ranking has a non-zero probability

of being presented to the user), we cannot determine whether the

policy is fair. Therefore, for attaining fair stochastic policies we

should avoid using such rankings. This introduces the task of fair

ranking under incomplete exposure estimation.

In this section we develop a method for the task of Fairness
of Exposure in Light of Incomplete eXposure estimation, FELIX,

that provides a ranking policy that avoids rankings with unknown

exposure distribution without damaging fairness or utility. FELIX

is based on the assumption that the shift in the exposure distribu-

tion is caused by inter-item relationships between the items that

are ranked together. Hence, depending on the context an item is

presented in, it could either follow the position-based exposure dis-

tribution or it could draw more or less exposure than assumed. In

the example, an outlier in a rankingmight drawmore attention than

a non-outlier item at the same position, as demonstrated in [25].

When presented in a more diverse ranking, the same item might

not be considered an outlier any more and follow the assumed

position-based exposure distribution. Compared to the method for

removing outliers from the top-𝑘 in [25], FELIX is more generally

applicable to any use case where, due to inter-item dependencies,

some rankings have unknown exposure distribution. Also, FELIX

allows us to consider outliers in the local context that they are

presented in, while Sarvi et al.’s approach can only remove outliers

with respect to the global context of all items in the list.

Since the context in which items are presented in plays a central

role for our task, naturally we are interested in our method to work

in the top-𝑘 setting. Therefore, we first generalize the constrained

optimization approach towards fairness of exposure, introduced

in [27], to the top-𝑘 setting and present an efficientway to determine

a fair policy. Then we present our method FELIX that uses iterative

re-sampling to determine a stochastic policy that avoids presenting

rankings with unknown exposure distribution to the user, while

staying within the fairness constraints.

4.1 Fair ranking in the top-𝑘 setting
We will now extend the convex optimization approach to fairness

to the top-𝑘 setting. Let 𝑛 be the number of candidate items to be

ranked and 𝑘 ≤ 𝑛 be the number of ranks of the desired rankings.

As explained in Section 3.3, searching for a stochastic policy under

fairness constraints can be done by first searching for a marginal

rank probability matrix P that satisfies the fairness constraints, and

then decomposing this matrix. Since we are interested in the top-𝑘

case, P = {𝑃𝑖, 𝑗 }𝑖=1,...𝑛,𝑗=1,...𝑘 is now a 𝑛×𝑘 matrix, where 𝑃𝑖, 𝑗 is the

probability that item 𝑖 is placed at rank 𝑗 . With u the 𝑛-dimensional

utility vector and v the 𝑘-dimensional vector containing the exami-

nation probability at each of the top-𝑘 positions we can solve the

following linear program:

P = argmaxP u𝑇 Pv

such that 1𝑇𝑛P = 1𝑘

P1𝑘 ≤ 1𝑛 (element-wise inequality)

0 ≤ 𝑃𝑖, 𝑗 ≤ 1

P is fair.

(8)

Given the marginal rank probability matrix P, we want to determine

a stochastic policy given by a distribution over actual rankings. In

the 𝑛 × 𝑛 setting, the Birkhoff-von Neumann (BvN) decomposition

provides us with an algorithm to determine such a distribution. The

following result generalizes the BvN theorem to the 𝑛 × 𝑘 setting

where 𝑛 is not necessarily equal to 𝑘 .



Fairness of Exposure in Light of Incomplete Exposure Estimation SIGIR ’22, July 11–15, 2022, Madrid, Spain

Theorem 4.1. Any matrix 𝑃 = {𝑎𝑖, 𝑗 }𝑖≤𝑛,𝑗≤𝑘 with ∀𝑖, 𝑗 : 0 ≤
𝑎𝑖, 𝑗 ≤ 1, ∀𝑗 : ∑𝑛

𝑖=1 𝑎𝑖, 𝑗 = 1 and ∀𝑖 : ∑𝑘
𝑗=1 𝑎𝑖, 𝑗 ≤ 1 can be written

as the convex sum 𝑃 =
∑𝑚
𝑙=1

𝛼𝑙 · 𝑃𝑙 of permutation matrices 𝑃𝑙 with
coefficients 𝛼𝑙 ∈ [0, 1] such that

∑𝑚
𝑙=1

𝛼𝑙 = 1.

Proof. In Lemma 4.2 below, we show that 𝑃 can be extended to

a doubly stochastic matrix 𝑃 ′. We can use the BvN decomposition

for doubly stochastic matrices to find a decomposition for 𝑃 ′, which
will induce a decomposition for 𝑃 . For details, see the Appendix. □

Here we say that 𝑃 ′ ∈ R𝑛′×𝑘 ′ is an extension of 𝑃 ∈ R𝑛×𝑘 if 𝑛′ ≥
𝑛, 𝑘′ ≥ 𝑘 , and 𝑃𝑖, 𝑗 = 𝑃 ′

𝑖, 𝑗
for all (𝑖, 𝑗) with 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑘 . We will

denote this by 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 = 𝑃 .

Lemma 4.2. Let 𝑃 = {𝑎𝑖, 𝑗 }𝑖≤𝑛,𝑗≤𝑘 be a matrix with the same
properties as described in Theorem 4.1 with 𝑘 ≤ 𝑛. Then there is
a matrix 𝑃 ′ = {𝑎′

𝑖, 𝑗
}𝑖≤𝑛,𝑗≤𝑛 with ∀𝑖, 𝑗 : 0 ≤ 𝑎′

𝑖, 𝑗
≤ 1 such that

𝑃 = 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 , and ∀𝑖 :
∑𝑛

𝑗=1 𝑎
′
𝑖, 𝑗

= 1 and ∀𝑗 : ∑𝑛
𝑖=1 𝑎

′
𝑖, 𝑗

= 1.

Proof. Define 𝑃 ′ = {𝑎′
𝑖, 𝑗
}𝑖≤𝑛,𝑗≤𝑛 as

𝑎′𝑖, 𝑗 =

{
𝑎𝑖, 𝑗 if 𝑗 ≤ 𝑘

1−∑𝑘
𝑗 ′=1 𝑎𝑖,𝑗 ′

𝑛−𝑘 if 𝑗 > 𝑘.
(9)

Then 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 = 𝑃 by definition. 𝑃 ′ satisfies all the requirements

from the lemma. A proof of this can be found in the Appendix. □

By transposing 𝐴 we can show that the Lemma also holds if 𝑘 > 𝑛.

4.2 An efficient implementation of the
generalized Birkhoff-von Neumann
decomposition

For an implementation of the generalized Birkhoff-von Neumann

theorem, one can in theory use the proof of Theorem 4.1 and extend

the MRP-matrix, that we obtained by solving the convex optimiza-

tion problem from Eq. 8, to a full 𝑛 × 𝑛-matrix. This matrix can

then be decomposed into the convex sum of permutation matrices

with help of the BvN theorem for doubly stochastic matrices after

which we can restrict the matrices again to the first 𝑘 columns.

Since the complexity of the BvN decomposition for square matrices

is O(𝑛4
√
𝑛) [18, 21] and hence infeasible for large 𝑛, we propose an

alternative implementation for 𝑛 × 𝑘 or 𝑘 × 𝑛 matrices with 𝑘 < 𝑛,

that can be implemented with time complexity O(𝑘3𝑛2).
Algorithm 1 gives a structured overview of our algorithm for the

generalized BvN decomposition. We start off by noting that the way

in which we extended the doubly stochastic matrix from 𝑃 in the

proof of Lemma 4.2 is not unique. For any index pair (𝑖, 𝑗), (𝑖′, 𝑗 ′)
with 𝑗, 𝑗 ′ > 𝑘 we can subtract some value 𝛽 from 𝑎′

𝑖, 𝑗
and 𝑎′

𝑖′, 𝑗 ′ ,

while adding the same value to 𝑎′
𝑖′, 𝑗 and 𝑎

′
𝑖, 𝑗 ′ . The resulting matrix

will have the same properties as 𝑃 ′ and will also be an extension

of 𝑃 . Therefore, instead of extending 𝑃 to a full doubly stochastic

matrix, we can extend it to an 𝑛 × (𝑘 + 1) matrix 𝑃 , where the last

column contains the entries that make the values of each row sum

to 1. In the decomposition we split off matrices that are permutation

matrices on the first 𝑘 columns and have 𝑛 − 𝑘 non-zero entries on

the last column; see line 2 in Algorithm 1.

Algorithm 1Algorithm for the generalized Birkhoff-von Neumann

decomposition.

Require: 𝑃 ∈ Mat𝑛×𝑘 with properties as in Theorem 4.1

1: Initialize P = {} empty decomposition

2: Extend 𝑃 to 𝑃 by adding a column {𝑐𝑖 }𝑖=1,...,𝑛 with values 𝑐𝑖 =

1 −∑𝑘
𝑗=1 𝑃𝑖, 𝑗

3: while 𝑃 ≠ 0 do
4: Translate 𝑃 to a bipartite graph with 𝑛 resp. 𝑘 + 1 vertices

on each side with edges between the 𝑖-th and 𝑗-th vertex if

𝑃𝑖, 𝑗 ≠ 0

5: Find a perfect matching𝑚 (with multiplicity of 𝑛 − 𝑘 for

the last vertex) with the adjusted Hopcroft-Karp algorithm

6: Translate 𝑚 to a matrix 𝑃𝑚 , where 𝑃𝑚 |𝑖≤𝑛,𝑗≤𝑘 forms a

permutation matrix.

7: 𝛼 = min{𝑖, 𝑗 |𝑃𝑚
𝑖,𝑗
≠0} (𝑃𝑖, 𝑗 )

8: P ← P + (𝛼, 𝑃𝑚 |𝑖≤𝑛,𝑗≤𝑘 )
9: 𝑃 ← 𝑃 − 𝛼𝑃𝑚
10: end while
11: Return P

We can use this realization to extend the implementation of

the BvN algorithm [4], which translates the marginal rank prob-

ability matrix into a bipartite graph and uses the Hopcroft-Karp

algorithm [18] to find a perfect matching𝑚, which in turn can be

translated back into a permutation matrix, 𝑃𝑚 ; see line 4, 5 and 6.
1

In the next step, line 7, we calculate the biggest coefficient 𝛼 ,

such that subtracting the scaled permutation matrix 𝛼𝑃𝑚 , still re-

sults in a matrix with only non-negative coefficients. We add the

coefficient-matrix pair to the decomposition and subtract the scaled

permutation matrix from 𝑃 ; see line 8 and 9. By translating the ma-

trix 𝑃 into a bipartite graph, where the node corresponding to the

(𝑘 +1)-th column has multiplicity 𝑛−𝑘 , and adjusting the Hopcroft-
Karp algorithm (line 5) slightly to allow for certain vertices to be

matched with higher multiplicity, we can significantly speed up

this part of the algorithm from 𝑛2
√
𝑛 to 𝑘2𝑛. Since the upper bound

of matrices in the decomposition decreases from order 𝑛2 to 𝑘𝑛 the

complexity changes as stated in the following Theorem. A proof of

this statement can be found in the Appendix A.2

Theorem 4.3. Using the modified top-𝑘 algorithm for the general-
ized Birkhoff-von Neumann theorem, Algorithm 1, a decomposition
as described in Theorem 4.1 can be obtained with time complexity
O(𝑘3𝑛2).

4.3 Determining a stochastic policy that avoids
rankings with unknown exposure
distribution

As explained in Section 3.4, certain types of rankings can have a non-

typical exposure distribution. Allowing such rankings invalidates

the approach by Singh and Joachims [27], since a position-based

exposure vector v is used in both the utility calculation and the

fairness constraint in their approach. In this section our goal is to

find a stochastic policy that avoids rankings for which the expo-

sure distribution is unknown. We will use a re-sampling strategy,

1
For the implementation we used https://networkx.org and https://github.com/jfinkels/

birkhoff

https://networkx.org
https://github.com/jfinkels/birkhoff
https://github.com/jfinkels/birkhoff
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which, after the decomposition step in Eq. 6, rejects rankings with

unknown exposure distribution. The core idea we present below is

based on the assumption that the inter-item dependencies between

some of the items is the cause of the shift in exposure and that

by shuffling the items between different rankings, rankings with

unknown exposure distribution might be changed into rankings

with known exposure distribution.

Algorithm 2 gives a step-by-step overview of the algorithm used

by FELIX. Similarly to Wang and Joachims [34], we make use of the

fact that the Birkhoff-von Neumann decomposition is not unique.

For most doubly stochastic matrices there is a large number of pos-

sible decompositions [13], which makes it possible for us to search

for a decomposition that does not have a lot of weight on rankings

with unknown exposure distribution. After determining the MRP

matrix P (line 1), we decompose it into the sum P =
∑𝑀
𝑖=1 𝛼𝑖𝑃𝜎𝑖 . In

the top-𝑘 setting this can be done by using the generalized Birkhoff-

von Neumann algorithm (Algorithm 1); see Algorithm 2 line 4. We

write P = {(𝛼𝑖 , 𝑃𝜎𝑖 )}𝑖=1,...,𝑀 for the set of coefficient, matrix pairs

in this convex sum. Once the matrix is fully decomposed, we divide

the resulting coefficient, permutation matrix pairs (𝛼𝑖 , 𝑃𝜎𝑖 ) into
two groups, one containing all the permutations where the corre-

sponding ranking has a known exposure distribution amongst its

items and the other one containing pairs corresponding to rankings

with unknown exposure distribution:

Pknown = {(𝛼𝑖 , 𝑃𝜎𝑖 ) ∈ P|𝜎𝑖 has known exposure distribution}
Punknown = P − Pknown .

We use the elements of Pknown directly as a part of the final decom-

position; see lines 5–7. The elements of Punknown are aggregated,
weighted by their coefficient; see line 8.

P̃ =
∑︁

(𝛼𝑖 ,𝑃𝑖 ) ∈Punknown
𝛼𝑖 · 𝑃𝑖 . (10)

Up to scalar multiplication, the resulting matrix P̃ satisfies the re-

quired characteristics of Theorem 4.1 and hence can be decomposed

again with the generalized BvN decomposition (Algorithm 1).

This decomposition-aggregation process repeats for a number of

iterations, iter (line 3–10). In each iteration, the recombination of

rankings with unknown exposure distribution makes it possible for

the algorithm to group items together that previously have not been

together in one ranking. Through this re-sampling, the context in

which items are presented changes, which often also means that the

exposure distribution of these newly ranked list is known. Note that

this approach does not remove items from the rankings, but rather

shuffles the items among different rankings within the decompo-

sition. After iter iterations the remaining rankings with unknown

exposure distribution are being added to the policy (line 11–13) to

ensure the fairness and utility, that was optimized for.

4.4 Upshot
To summarize Section 4, we extended the continuous optimization

approach to fairness for the top-𝑘 setting in Section 4.1 by proving

that the Birkhoff-von Neumann theorem, which is used to decom-

pose the matrix that was attained through the convex optimization,

can be extended to a more general setting. In Section 4.2 we gave

an algorithm for the decomposition in the top-𝑘 case and discussed

Algorithm 2 Fairness of Exposure in Light of Incomplete Exposure

Estimation (FELIX)

Require: D𝑞 , 𝑘 , merit vector u, position bias vector v, number of

iterations iter
1: Determine MRP matrix P as in Eq. 8 with u and v
2: Initialize 𝜋 (𝜎) = 0, ∀𝜎 ∈ RD
3: while iter ≠ 0 do
4: P ← Decompose P with Algorithm 1

5: for all (𝛼, 𝑃𝜎 ) ∈ Pknown do
6: 𝜋 (𝜎) ← 𝜋 (𝜎) + 𝛼
7: end for
8: P← ∑

(𝛼,𝑃𝜎 ) ∈Punknown 𝛼 · 𝑃𝜎
9: iter ← iter − 1
10: end while
11: for all (𝛼, 𝑃𝜎 ) ∈ Punknown do
12: 𝜋 (𝜎) ← 𝜋 (𝜎) + 𝛼
13: end for
14: Return 𝜋

an efficient implementation. This extends the space of use cases to

which this approach to fair ranking can be applied. We will use this

in our experiments, which will partly be conducted in the top-𝑘

setting. In Section 4.3 FELIX is introduced, which, by iteratively

rejecting rankings with unknown exposure distribution, reduces

the probability that such rankings are shown to the user.

Next, we test the performance of the proposed method for top-𝑘

fairness. Furthermore, we investigate how well FELIX is able to

avoid rankings with unknown exposure distribution and how this

impacts the performance w.r.t. fairness and user utility.

5 EXPERIMENTAL SET-UP
We experiment with two variants of our model: to evaluate our

top-𝑘 approach to fair ranking we use FELIX without re-sampling

i.e., with only one iteration, denoted by FELIX𝑖𝑡𝑒𝑟=1; to evaluate

our method for reducing the probability of generating rankings

with unknown exposure we use 20 iterations (FELIX𝑖𝑡𝑒𝑟=20).

Our experiments aim to answer the following research ques-

tions: (RQ1) Can FELIX𝑖𝑡𝑒𝑟=1 provide fair top-𝑘 rankings while

maintaining the user utility compared to the baselines? (RQ2) Can

FELIX𝑖𝑡𝑒𝑟=20 reduce the probability of showing rankings with un-

known exposure distribution to the user without compromising

fairness or utility, compared to other methods? We use the case of

rankings with outliers as an example for rankings with unknown ex-

posure distribution. As Sarvi et al. [25] show, outliers can change the

exposure distribution that items collect in expectation; we broadly

follow their experimental set-up to be able to compare to prior

work that is, for this specific use case, closest to our approach.

Datasets. Our experiments in Section 6 use two academic search

datasets provided by the TREC19 and TREC20 Fair Ranking track.
2

These datasets come with queries, relevance judgements, and infor-

mation about the authors and academic articles extracted from the

Semantic Scholar Open Corpus.
3
See Table 1 for descriptive statis-

tics of the datasets. Since we experiment on the task of removing

outliers from the top-𝑘 , which only makes sense for queries with

2
https://fair-trec.github.io/

3
http://api.semanticscholar.org/corpus/

https://fair-trec.github.io/
http://api.semanticscholar.org/corpus/
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Table 1: Descriptive statistics of the original and pre-
processed TREC Fair Ranking track 2019 and 2020 data.

2019 2020

Train Test Train Test

Avg. list size (original) 4.1 4.1 23.5 23.4

Avg. list size (pre-proc.) 4.1 13.0 23.5 31.9

Avg. # rel. items/list (original) 2.0 2.0 3.7 3.4

Avg. # rel. items/list (pre-proc.) 2.0 4.4 3.7 4.5

enough items, for testing we only use rankings with at least 20 items.

The 2020 dataset comes with 200 queries for training and 200 for

testing; keeping only the lists with at least 20 papers leaves us with

112 test queries. Similarly, the 2019 dataset comes with 631 queries

for training and 631 for testing. However the test set contains only

3 queries with more than 20 items, which is not acceptable. As

a pragmatic solution, we keep lists with at least 10 items, which

leaves us with 69 test queries, but up-sample each of these queries

to 50 items by using the feature vectors of non-relevant items from

other random lists as negative samples.

Experiments.We consider approaches where correcting for fair-

ness is a post-processing step. We use ListNet [6] as our learning

to rank (LTR) model for the ranking step, with a maximum of 30

epochs, the Adam optimizer with learning rate of 0.02, and early

stopping. As input to the LTRmodel we use the same data as OMIT
4

with 25 features based on term frequencies, BM25 [23], and lan-

guage models [30, 46].
5

To be able to treat the output of the LTR model as the relevance

probabilities we normalize the predicted scores to be within the

range [𝜖, 1] with 𝜖 = 10
−4
. Choosing 𝜖 > 0 ensures that each item

has a non-zero probability of being placed in a ranking.

Asmentioned earlier in this section, we use rankings that contain

visible outliers as example for rankings with unknown exposure

distribution. Following [25] we use the number of citations of a

paper as a visible feature that may be subject to outliers. For the

context in which outliers are perceived we use the top-𝑘 items. We

use the Z-score with threshold value 2.5 to determine whether an

item can be considered an outlier; see Section 3.4.

We conduct two types of experiments. The first experiment

imitates the experimental set-up of Sarvi et al. [25], where full

rankings are formed but the presence of outliers is only measured

in the top-𝑘 of each ranking. The second experiment looks at top-𝑘

ranking. We use 𝑘 = 10 in our experiments and aim for individual

fairness as opposed to [25, 27], where group fairness is used.

Baselines. To answer research questions (RQ1) and (RQ2), we com-

pare FELIX𝑖𝑡𝑒𝑟=1 and FELIX𝑖𝑡𝑒𝑟=20 with the following baselines:

PL As suggested in [12], we use a Plackett-Luce (PL) ranker initial-

ized with the predicted, normalized scores of the LTR model.

PL-random We use a PL ranker over a uniform score distribution

as a baseline for a random ranker.

Vanilla We use the method introduced by Singh and Joachims [27]

with only fairness constraints as the vanilla baseline. This is the

model we build upon.

Deterministic This baseline is ListNet, our traditional LTR model.

4
https://github.com/arezooSarvi/OMIT_Fair_ranking

5
Our experimental code is based on https://github.com/MilkaLichtblau/BA_Laura.

OMIT Themethod introduced in [25], where a similar optimization

problem is solved as for Vanilla, but with an additional regular-

izing objective that punishes rankings with a global outlier in

the top-𝑘 .

For the experiments on the top-𝑘 , we only sample 𝑘 = 10 items from

the PL models, PL@10 and PL-random@10. Since FELIX𝑖𝑡𝑒𝑟=1 is

a novel extension of the Vanilla convex optimization approach for

the top-𝑘 setting, we do not have the Vanilla baseline in this setting.

For OMIT we use our top-𝑘 convex optimization approach with the

additional outlier objective, OMIT@10, to be able to compare the

outlier reduction of FELIX𝑖𝑡𝑒𝑟=20 and OMIT in the top-𝑘 setting.

Evaluation. To evaluate fairness we use the EE-L metric [12].

The target exposure of item 𝑑𝑖 is calculated as 𝜖∗ (𝑑𝑖 ) = 𝜖𝑡𝑜𝑡𝑎𝑙 ·
𝑢 (𝑑𝑖 )/

∑
𝑗 𝑢 (𝑑 𝑗 ), where 𝜖𝑡𝑜𝑡𝑎𝑙 is the total amount of exposure that

users spend in expectation on the ranking, and 𝑢 (𝑑𝑖 ) is the merit,

i.e. relevance, of item 𝑑𝑖 . Given the expected exposure of all items

as a vector 𝜖 , the expected exposure loss, EE-L can be calculated as:

EE-L = ℓ
(
𝜖, 𝜖∗

)
=


𝜖 − 𝜖∗

2

2
. (11)

Ranking utility performance is measured with NDCG.

For a given query, to evaluate how well a policy 𝜋 performs in

avoiding rankings with unknown exposure distribution, we mea-

sure the probability that such a ranking is displayed by the policy.

In our experiments this translates to measuring the probability that

a randomly sampled ranking, 𝜎 contains an outlier:

𝑃 (𝑢 | 𝜋) = 𝑃 (𝜎 has unknown exposure distribution | 𝜎 ∼ 𝜋)
=
here

𝑃 (# outliers in 𝜎 ≥ 1 | 𝜎 ∼ 𝜋) .

Additionally, for comparability with [25], we measure:

Outlierness@𝑘 (𝜋) = E𝜎∼𝜋
∑︁

𝑑𝑖 ∈top-𝑘 (𝜎 )
1(𝑑𝑖 is outlier)𝑧 (𝑑𝑖 ) .

For each metric we report the average value taken over all queries.

Each experiment was conducted 5 times with different train/vali-

dation split and different random seed. Each split uses 80% of the

train-data for training and 20% of the train-data for validation. In

our result tables we report the mean results. We test for significance

with a two tailed paired students t-test, using the metric values over

all queries as input and comparing each method with FELIX𝑖𝑡𝑒𝑟=20.

6 RESULTS
Table 2 and 3 contain the results for our experiments on the top-𝑘

and full ranking set-up, respectively.

(RQ1): Can FELIX𝑖𝑡𝑒𝑟=1 provide fair top-𝑘 rankings while
maintaining the user utility compared to the baselines? To
answer this research question we first compare the performance of

FELIX𝑖𝑡𝑒𝑟=1 with PL@10, since this is the only baseline that has as

its objective to create fair top-𝑘 ranking policies. For both utility

and fairness FELIX𝑖𝑡𝑒𝑟=1 performs marginally better on TREC20

data. In the case of TREC19 data, FELIX𝑖𝑡𝑒𝑟=1 still has slightly better

user utility; the fairness scores are close to identical. Overall none

of these differences are significant.

As a sanity check, looking at our other baselines, we see that w.r.t.

user utility (NDCG), in Table 2 the deterministic ranker outperforms

all probabilistic rankers, which is expected since it is purely opti-

mized for utility. This is reflected in the fairness score, where the

https://github.com/arezooSarvi/OMIT_Fair_ranking
https://github.com/MilkaLichtblau/BA_Laura
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Table 2: Top-𝑘 rankings. Significance is measured with a two-
tailed paired t-test; all comparisons are against FELIX𝑖𝑡𝑒𝑟=20.

Optimizing NDCG↑ Fairness↓ 𝑃 (𝑢 | 𝜋)↓ Outlierness↓
Method Fairness @5 @10 EE-L @10 @10

T
R
EC

20

FELIX𝑖𝑡𝑒𝑟=20 Yes 0.203 0.279 6.22 0.20 0.115
FELIX𝑖𝑡𝑒𝑟=1 Yes 0.203 0.279 6.23 0.39* 0.151*

PL@10 Yes 0.197 0.275 6.24 0.47* 0.174*

PL-random@10 No 0.177* 0.249* 6.29 0.47* 0.175*

Deterministic No 0.287* 0.370* 7.22* 0.41* 0.154*

OMIT@10 Yes 0.198 0.273 6.34 0.33* 0.132*

T
R
EC

19

FELIX𝑖𝑡𝑒𝑟=20 Yes 0.12 0.16 5.9 0.12 0.08
FELIX𝑖𝑡𝑒𝑟=1 Yes 0.12 0.16 5.9 0.30* 0.12*

PL@10 Yes 0.11 0.16 5.8 0.35* 0.14*

PL-random@10 No 0.10 0.15 5.8 0.41* 0.16*

Deterministic No 0.15 0.21* 7.5* 0.25* 0.12*

OMIT@10 Yes 0.11 0.15 6.0 0.23* 0.10

Table 3: Full length rankings, remove outliers from the top-𝑘 .
Significance is reported in the same way as in Table 2.

Optimizing NDCG↑ Fairness↓ 𝑃 (𝑢 | 𝜋)↓ Outlierness↓
Method Fairness @5 @10 EE-L @10 @10

T
R
EC

20

FELIX𝑖𝑡𝑒𝑟=20 Yes 0.221 0.302 24.5 0.24 0.126

Vanilla Yes 0.221 0.302 24.5 0.40* 0.163*

PL Yes 0.192* 0.269* 24.7 0.45* 0.169*

PL-random No 0.178* 0.249* 24.9 0.47* 0.175*

Deterministic No 0.267 0.348 24.7 0.40* 0.152

OMIT Yes 0.221 0.302 24.5 0.34* 0.139

T
R
EC

19

FELIX𝑖𝑡𝑒𝑟=20 Yes 0.15 0.22 46.4 0.11 0.06

Vanilla Yes 0.16 0.22 46.4 0.14 0.07

PL Yes 0.12 0.17 46.4 0.32* 0.13*

PL-random No 0.10* 0.15* 46.5 0.41* 0.16*

Deterministic No 0.17 0.23 46.6 0.12 0.07

OMIT Yes 0.13 0.18 46.5 0.15 0.06

deterministic ranker scores significantly worse than FELIX𝑖𝑡𝑒𝑟=20.

W.r.t. utility, the random ranker is outperformed by all other proba-

bilistic ranking methods, showing that these methods present users

with better results than a uniform ranking policy would.

To summarize, we find no significant differences in terms of

utility or fairness between FELIX𝑖𝑡𝑒𝑟=1 on the one hand and the

PL-ranker on the one hand. This makes our approach suitable for

top-𝑘 ranking under fairness constraints and hence allows us to

extend FELIX for this setting. In the rest of this section, we will see

other advantages of FELIX over the PL baseline.

(RQ2): Can FELIX𝑖𝑡𝑒𝑟=20 reduce the probability of showing
rankings with unknown exposure distribution to the user,
without having to compromise fairness or utility, compared
to other methods? We are interested in the trade-offs between

user utility, fairness and the probability of showing rankings with

unknown exposure, which is indicated by 𝑃 (𝑢 | 𝜋), in Tables 2

and 3. For the TREC20 data, in both settings FELIX𝑖𝑡𝑒𝑟=20 success-

fully improves 𝑃 (𝑢 | 𝜋) while maintaining the NDCG@10 and EE-L

scores compared to all baselines. Our main baseline to compare

with for this research question is OMIT, as it is the only model

that optimizes for presenting fewer outliers in the top-𝑘 positions.

Compared to OMIT, FELIX𝑖𝑡𝑒𝑟=20 achieves significantly better re-

sults in terms of 𝑃 (𝑢 | 𝜋) for both settings, while keeping the same

(or better) scores for other metrics. For the top-𝑘 experiment, we

also see a significant improvement w.r.t. 𝑃 (𝑢 | 𝜋), compared to

FELIX𝑖𝑡𝑒𝑟=1: iteratively re-sampling successfully reduces the num-

ber of rankings with unknown exposure distribution in the policy.

For the TREC19 data we can still observe that FELIX𝑖𝑡𝑒𝑟=20 offers

the best trade-off between the three objectives in the top-𝑘 setting.

However, the improvements w.r.t. the outlier removal are less signif-

icant in the full length experiments. Since for this dataset we used

an up-sampling strategy that adds varying negative samples, the

variation within these experiments is much higher, which makes

the results less reliable and causes the observed differences to be

less significant. Still, since the results broadly agree with the results

for the more reliable TREC20 dataset, we take this as confirmation

for the conclusions drawn there.

We also report the Outlierness metric, as introduced in [25], to

show that the improvement of FELIX𝑖𝑡𝑒𝑟=20 is not just due to the

evaluation metric introduced in this paper but that there is an actual

improvement w.r.t. the outlier use case.

We conclude that in our experiments, FELIX𝑖𝑡𝑒𝑟=20 is able to

effectively reduce the probability that a ranking with unknown

exposure distribution is shown to the user, without a drop in utility

or fairness, compared to other fair ranking methods and OMIT.

Discussion. If we compare our results to those in [25], OMIT does

not perform as well as expected w.r.t. 𝑃 (𝑢 | 𝜋) and Outlierness.

We see two reasons for this. First, OMIT considers outliers in the

context of the whole list, while we consider outliers in the context

of the top-𝑘 that they are presented in; their approach is able to

remove outliers defined in the global context from the rankings but

does not consider the outliers in the local context they are presented

in, which is what we are evaluating for.

Second, in this paper we consider individual fairness, while Sarvi

et al. [25] report results on group fairness. For individual fairness

the number of constraints is much higher, therefore the space we are

optimizing over is smaller, making it challenging for OMIT to find a

good solution that is optimized for both utility and reducing outliers

while satisfying all the fairness constraints. FELIX𝑖𝑡𝑒𝑟=20 does not

suffer from this, since, instead of adding an additional objective term

to the optimization, it intervenes at the decomposition step, making

it independent from the constraints used in the optimization.

This comparison shows that FELIX is very general in terms of

use cases that it can be applied to. The condition that determines

whether a ranking has a known exposure distribution can be fo-

cused on each individual ranking without having to rely on global

assumptions. This allows us to really consider inter-item depen-

dencies, while OMIT needs to work with the heuristic of global

outliers instead. This also highlights the advantages of FELIX over

the PL-ranker method. While for most experiments there was no

significant difference in utility and fairness between those two

methods, considering inter-item dependencies within the rankings

is not possible for the PL approach to fair ranking.

7 SENSITIVITY ANALYSIS OF FELIX
Given the results obtained in the previous section, we now ana-

lyze the ability of FELIX to reduce the number of rankings with

unknown exposure distribution along two important dimensions:

(D1) the number of available item candidates; and (D2) the number

of re-sampling iterations, 𝑖𝑡𝑒𝑟 (see line 3 in Algorithm 2).
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Figure 2: Sensitivity analysis. Relative reduction in 𝑃 (𝑢 | 𝜋) in
% on the y-axis for different numbers of available candidate
items (left) and different numbers of iterations (right).

For the TREC datasets most queries have less than 40 items,

hence, we use a simulated set-up. This gives us more control, al-

lowing us to observe FELIX’s behaviour for different distributions

and numbers of candidate items. Each analysis is conducted with

a series of 𝑚 = 100 simulated sets of 𝑛 items (one can think of

these item-sets as corresponding to𝑚 imaginary queries). Since

we want to focus on the effectiveness of FELIX, rather than the

quality of the predicted labels, we assume that for each item we

know the correct probability that an item is relevant to users. For

our analysis we sample these scores uniformly in the interval [0, 1].
The feature that is used for the outlier detection is sampled from a

different probability distribution. We conduct experiments on the

uniform, normal, log-normal, and power-law distribution to see

how dependent the results are on the underlying data distribution.

Each of the different distributions has a different base probability

for a list of a given length to contain an outlier, and hence can be

seen as different levels of difficulty for removing the rankings with

unknown exposure distribution. With the definition of outliers used

in this paper and a list length of 10, the probability that such a list

contains an outlier is 0.6% for the uniform, 2.7% for the normal,

36.3% for the log normal and 60.5% for the power-law distribution.

(D1) Candidate items. The left plot in Fig. 2 shows the relative

reduction of rankings with outliers with a varying number of can-

didate items. We use 20 re-sampling iterations. We see that for all

distributions, FELIX performs increasingly better as the number

of items increases. Having more items to shuffle between various

rankings gives the method more flexibility in putting outlier items

into different contexts, in which they do not appear as outliers.

(D2) Re-sampling parameter. The right plot of Fig. 2 shows how
well FELIX is able to remove outliers from the rankings based on

the number of re-sampling iterations, which is the only new hyper-

parameter introduced by our method. We use 100 candidate items

per query. We find that with an increasing number of re-samples,

FELIX can remove more outliers. Nevertheless, the gains seem to

be diminishing, depending on the distribution after 5–20 iterations.

Broader implications. Ranking systems often work in two stages,

where in the first stage a certain number of documents are retrieved

and in the second stage they are re-ranked with help of a learning

to rank method. Our analysis of the number of candidate items (D1)

can help deciding on how many items to retrieve in the first stage.

Moreover, the analysis of the re-sampling parameter (D2) can help

with deciding on a good performance/computation time trade-off

when choosing the number of allowed re-sampling iterations.

8 CONCLUSION
Motivated by recent work on the impact of outliers on the exposure

distribution within a ranking, we introduced the task of fair ranking

under incomplete exposure estimation. We defined a new method,

FELIX, that avoids showing rankings to the user which, due to

inter-item dependencies, have unknown exposure distribution. We

extended the convex optimization approach to fairness to the top-𝑘

setting and gave an efficient implementation of the algorithm that

makes it feasible, even for a large number of items. We showed

empirically that FELIX is able to significantly reduce the probability

of generating rankings with unknown exposure, without hurting

user utility or fairness compared to previous fair ranking methods.

FELIX is a first step towards fair ranking in cases where due to

inter-item dependencies there is uncertainty about the exposure

distribution of some rankings. By defining an efficient algorithm for

the top-𝑘 setting, we enable the usage of the convex optimization

approach towards fairness for use cases with a large number of

items, which previously had been infeasible. We discussed that this

approach gives more flexibility than other methods and allows, for

example, to consider the relationship between items.

One limitation of our work is that, since the policy achieved by

the convex optimization is only fair in expectation, this approach is

most useful for head queries with a large number of repetitions. Use

cases where this might be applied include job search, where next

to the individual fairness criterion a correction for historical biases

should be considered, or item search for items that are frequently

bought. Second, our results are based on the assumption that the

unknown exposure comes from inter-item dependencies and that

the same items that cause one ranking to have unknown exposure

distribution, when placed in another context will result in a rank-

ing with known exposure distribution. This assumption holds for

rankings with visible outliers, however, to prove the generalizabil-

ity of this approach, experiments with other use cases are needed.

Lastly, to have enough flexibility within the Birkhoff-von Neumann

decomposition algorithm, enough entries of this matrix need to be

non-zero. Using group fairness with only two groups, results in a

marginal rank probability matrix that is a linear combination of

just two permutation matrices [27]. More groups introduce more

stochasticity, therefore this method is particularly interesting when

working with individual fairness or a larger number of groups.

A potential direction for future work is to investigate whether

FELIX can be extended for different user models. In this work we

assume that most rankings follow a position-based exposure dis-

tribution. For other user-models like the cascade model a different

approach might be necessary. Also, more research needs to be done

on inter-item dependencies between items in a ranking and their

impact on the exposure for different use cases. Phenomena like out-

liers or click bait have been explored to some extent but other types

of cognitive bias that impact how we perceive items in relation

to others have been broadly unexplored in the context of ranking

systems. Lastly, extending user models to include inter-item depen-

dencies such as outliers might allow for a more direct approach to

fair ranking in cases where the exposure distribution is unknown.
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A PROOFS
A.1 Extended proof for the generalized

Birkhoff-von Neumann
We give a more detailed proof of Lemma 4.2 and Theorem 4.1.

Recall that we say that 𝑃 ′ ∈ R𝑛′×𝑘 ′ is an extension of 𝑃 ∈ R𝑛×𝑘 if

𝑛′ ≥ 𝑛, 𝑘′ ≥ 𝑘 , and 𝑃𝑖, 𝑗 = 𝑃 ′
𝑖, 𝑗

for all (𝑖, 𝑗) with 𝑖 ≤ 𝑛 and 𝑗 ≤ 𝑘 . We

denote this by 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 = 𝑃 .

Lemma A.1. Let 𝑃 = {𝑎𝑖, 𝑗 }𝑖≤𝑛,𝑗≤𝑘 be a matrix with the same
properties as described in Theorem 4.1 with 𝑘 ≤ 𝑛. Then there is
a matrix 𝑃 ′ = {𝑎′

𝑖, 𝑗
}𝑖≤𝑛,𝑗≤𝑛 with ∀𝑖, 𝑗 : 0 ≤ 𝑎′

𝑖, 𝑗
≤ 1 such that

𝑃 = 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 , and ∀𝑖 :
∑𝑛

𝑗=1 𝑎
′
𝑖, 𝑗

= 1 and ∀𝑗 : ∑𝑛
𝑖=1 𝑎

′
𝑖, 𝑗

= 1.

Proof. Define 𝑃 ′ = {𝑎′
𝑖, 𝑗
}𝑖≤𝑛,𝑗≤𝑛 as

𝑎′𝑖, 𝑗 =

{
𝑎𝑖, 𝑗 if 𝑗 ≤ 𝑘

1−∑𝑘
𝑗 ′=1 𝑎𝑖,𝑗 ′

𝑛−𝑘 if 𝑗 > 𝑘.
(12)

Then 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 = 𝑃 by definition. Since for all 𝑖 , 0 ≤ ∑𝑘
𝑗=1 𝑎𝑖, 𝑗 ≤ 1

we also have 0 ≤
1−∑𝑘

𝑗 ′=1 𝑎𝑖,𝑗 ′

𝑛−𝑘 ≤ 1. Moreover, for all 𝑖 ≤ 𝑛:

𝑛∑︁
𝑗=1

𝑎′𝑖, 𝑗 =
𝑘∑︁
𝑗=1

𝑎𝑖, 𝑗 +
𝑛∑︁

𝑗=𝑘+1

1 −∑𝑗 ′=1 𝑎𝑖, 𝑗 ′

𝑛 − 𝑘

=

𝑘∑︁
𝑗=1

𝑎𝑖, 𝑗 + (𝑛 − 𝑘) ·
1 −∑𝑘

𝑗 ′=1 𝑎𝑖, 𝑗 ′

𝑛 − 𝑘

=

𝑘∑︁
𝑗=1

𝑎𝑖, 𝑗 + (1 −
𝑘∑︁

𝑗 ′=1

𝑎𝑖, 𝑗 ′ )

= 1,

where we used in the second equality that we sum over (𝑛 − 𝑘)
times the same value. We know that the columns of the matrix sum

to 1 for all 𝑗 ≤ 𝑘 , since this is the case for 𝑃 . For 𝑗 > 𝑘 we have:

𝑛∑︁
𝑖=1

𝑎′𝑖, 𝑗 =
1

𝑛 − 𝑘 (
𝑛∑︁
𝑗=𝑘

𝑛∑︁
𝑖=1

𝑎′𝑖, 𝑗 )

=
1

𝑛 − 𝑘 (𝑛 −
𝑘∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑎′𝑖, 𝑗 )

=
𝑛 − 𝑘
𝑛 − 𝑘 = 1.

Here in the first equality we used that all columns from the 𝑘-th

column are the same. In the second equality we used that since all

rows are summing to 1, the sum of all rows (and therefore also the

sum of all columns) equals 𝑛. The last equality simply uses the fact

that each of the first 𝑘 columns sums to 1. □

We use this Lemma to prove the generalized Birkhoff-von Neumann

theorem. Let 𝑘 ≤ 𝑛.

Theorem A.2. Any matrix 𝑃 = {𝑎𝑖, 𝑗 }𝑖≤𝑛,𝑗≤𝑘 with ∀𝑖, 𝑗 : 0 ≤
𝑎𝑖, 𝑗 ≤ 1, ∀𝑗 : ∑𝑛

𝑖=1 𝑎𝑖, 𝑗 = 1 and ∀𝑖 : ∑𝑘
𝑗=1 𝑎𝑖, 𝑗 ≤ 1 can be written

as the convex sum 𝑃 =
∑𝑚
𝑙=1

𝛼𝑙 · 𝑃𝑙 of permutation matrices 𝑃𝑙 with
coefficients 𝛼𝑙 ∈ [0, 1] such that

∑𝑚
𝑙=1

𝛼𝑙 = 1.

Proof. In Lemma A.1 we show that 𝑃 can be extended to a

doubly stochastic matrix 𝑃 ′, i.e. 𝑃 = 𝑃 ′ |𝑖≤𝑛,𝑗≤𝑘 . For this matrix

𝑃 ′, the theorem by Birkhoff and von Neumann states that we can

find a decomposition into the convex sum of permutation matrices,

𝑃 ′ =
∑𝑚
𝑙=1

𝛼𝑙𝑃
′
𝑙
, with 𝛼𝑙 ∈ [0, 1],

∑𝑚
𝑙=1

𝛼𝑙 = 1 and 𝑃 ′
𝑙
permutation

matrices. This induces a decomposition of the original matrix 𝑃 :

𝑃 =

𝑚∑︁
𝑙=1

𝛼𝑙𝑃
′
𝑙
|𝑖≤𝑛,𝑗≤𝑘 . □

A.2 Complexity of the generalized Birkhoff-von
Neumann algorithm

In this section we prove the following claim from Section 4.2:

Theorem A.3. Using the modified top-𝑘 algorithm for the gener-
alized Birkhoff-von Neumann theorem, Algorithm 1, a decomposition
as described in Theorem 4.1 can be obtained with time complexity
O(𝑘3𝑛2).

Proof. The time complexity of Algorithm 1 depends on the

complexity of the adjusted Hopcroft-Karp algorithm (line 5) and the

number of times it needs to be executed (line 4–9), which is equal to

the number of permutationmatrices in the decomposition. Hopcroft

and Karp [18] show that the time complexity of the Hopcroft-Karp

algorithm is O((𝑚 + 𝑙)
√
𝑙), where 𝑙 is the number of vertices and

𝑚 is the number of edges in the biparate graph. For the baseline

approach we have 𝑙 = 2𝑛 and𝑚 = 𝑛2, therefore the complexity of

the Hopcroft-Karp algorithm in this setting would be O(𝑛2
√︁
(𝑛)).

Using our approach instead, we have 𝑙 = 𝑛 + (𝑘 + 1) and 𝑚 =

𝑛 · (𝑘+1) which reduces the complexity to O(𝑘𝑛
√︁
(𝑛)). Furthermore

since the maximum length of each augmenting path is bounded

by 2 · 𝑘 , we can substitute the

√
𝑛 term with 𝑘 (see Corollary 2

and Theorem 3 of [18]). This gives us a time complexity of O(𝑘2𝑛)
for the full matching algorithm. For the number of matrices in the

decomposition, Johnson et al. [21] define an upper bound of 𝑛2 −
2𝑛 + 2 permutation matrices, which means that the total complexity

of the Birkhoff-von Neumann algorithm equals O(𝑛4
√
𝑛). Since for

our algorithm, a loose upper bound for the number of permutation

matrices is 𝑘 · 𝑛, the algorithm proposed in this paper has a time

complexity of only O(𝑛2𝑘3), which makes it much more feasible

than the more naive algorithm proposed in Section 4.1 for large

values of 𝑛. □

https://github.com/MariaHeuss/2022-SIGIR-FOE-Incomplete-Exposure
https://github.com/MariaHeuss/2022-SIGIR-FOE-Incomplete-Exposure
https://hybrid-intelligence-centre.nl
https://hybrid-intelligence-centre.nl
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