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ABSTRACT
Societal biases that are contained in retrieved documents have
received increased interest. Such biases, which are often prevalent in
the training data and learned by themodel, can cause societal harms,
by misrepresenting certain groups, and by enforcing stereotypes.
Mitigating such biases demands algorithms that balance the trade-
off between maximized utility for the user with fairness objectives,
which incentivize unbiased rankings. Prior work on bias mitigation
often assumes that ranking scores, which correspond to the utility
that a document holds for a user, can be accurately determined. In
reality, there is always a degree of uncertainty in the estimate of
expected document utility. This uncertainty can be approximated
by viewing ranking models through a Bayesian perspective, where
the standard deterministic score becomes a distribution.

In this work, we investigatewhether uncertainty estimates can be
used to decrease the amount of bias in the ranked results, while min-
imizing loss in measured utility. We introduce a simple method that
uses the uncertainty of the ranking scores for an uncertainty-aware,
post hoc approach to bias mitigation. We compare our proposed
method with existing baselines for bias mitigation with respect to
the utility-fairness trade-off, the controllability of methods, and
computational costs. We show that an uncertainty-based approach
can provide an intuitive and flexible trade-off that outperforms all
baselines without additional training requirements, allowing for the
post hoc use of this approach on top of arbitrary retrieval models.
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• Information systems→Retrieval models and ranking; Eval-
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1 INTRODUCTION
The probability ranking principle (PRP) [36] states that, for optimal
retrieval, the documents should be ranked in order of the predicted
probability of relevance to the user.While this principle is ideal with
respect to user utility, a ranking approach that solely relies on this
principle can lead to an unfair treatment of the documents through
unfair exposure and learned historical biases that are implicit in
the data [3, 48]. This realization has led to a broad range of work
in the field of fair ranking, where ways of ranking are explored
that do not always strictly follow the PRP, but instead correct for
such historical biases and distribute exposure more fairly [4, 13, 31].
Such biases can be reflected in different ways, e.g., models can be
biased to over proportionally favor members of one group over
another [1]. In this work, we follow Rekabsaz et al. [33], and say
that a ranking model is biased, if documents that contain biases or
stereotypes towards a protected group, e.g., people identifying with
a certain gender, are being placed in ranked lists for queries that
should be inherently neutral.
Using uncertainty to mitigate biases and improve fairness.
Recent work has highlighted how learned ranking models violate
the PRP – that each score is not well calibrated, and that learned
ranking models do not provide an equally reliable estimate of a
document’s relevance [8, 32]. In this work, we take advantage of
this violation of assumptions to produce a fair rankingwithminimal
utility loss. Rather than relying on a deterministic score, we consider
the uncertainty of the model’s estimate to violate the PRP in an
informed manner by focusing on the most uncertain documents.

Our proposed method, called Predictive Uncertainty based Fair
Ranking (PUFR) exploits knowledge about the certainty of the
predicted relevance scores for mitigating bias by intervening at
the scoring distribution, making it a post-processing method that
is easy to use on top of arbitrary ranking models. Furthermore,
PUFR does not require any training or fine-tuning of supervised
models. Rather, given a ranked list of documents generated by a
ranking model (most likely biased), PUFR leverages the uncertainty
of the predicted scores assigned to the candidate documents by the
ranking model to modify the ranked list among the most uncertain
positions to generate a fairer ranking. PUFR aims to reduce the
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Figure 1: Visualization of our method PUFR. Next to the
mean ranking scores PUFR also considers the score distribu-
tion that we obtained from the ranking model (1a). Through
intersecting confidence intervals (1b) that allow us to adjust
the scores (1c) such that a not biased document, visualized in
green, is swapping place with a higher ranked, biased docu-
ment (1d).

impact of biased documents, while adhering to the PRP as closely
as possible, only intervening in places where the ranking model
was not very certain to begin with.

Additionally, we introduce an entirely post hoc uncertainty quan-
tification procedure, based on Laplace approximation, that allows
PUFR to approximate the uncertainty for any off the shelf model
without access to the training data or optimization procedure. This
is in contrast to past work that requires a specific training regime
to produce the uncertainty scores for each candidate [8, 9, 32, 47].
Motivating example. In Fig. 1, we visualize our approach to predic-
tive uncertainty-based fairness, PUFR. In this example, the objective
is to promote the unbiased documents (marked in green) to appear
on top of the ranked result. We start by considering not only the
mean ranking score but also the score distribution (uncertainty) as
visualized with the cross resp. curve in Fig. 1a. We chose confidence
intervals relative to the standard deviation in which we allow PUFR
to adjust the scores for each document, as can be seen in Fig. 1b.
Depending on whether a document is biased or not, we increase
the score in this confidence interval if the document is unbiased or
decrease it otherwise as visualized with the green/red crosses in
Fig. 1c. As the confidence intervals of the second (D2) and third (D3)
documents intersect, this changes the order of these scores. After
re-ranking with respect to the newly obtained scores, the protected
document D3 has swapped place with the non-protected document
D2 as seen in Fig 1d. As there are minimal computational costs for
PUFR, developers/users have the freedom to modify the trade-off
between utility and fairness with minimal costs for their use-cases.

Our contributions.We summarize our contributions as follows:
• We introduce the notion of uncertainty-based fair ranking and
analyze the potential of using the model uncertainty w.r.t. the
ranking scores for bias mitigation.
• We define PUFR, an intuitive re-ranking approach that takes as
input the ranking score distribution and calculates new ranking
scores that can be used to create a less biased ranked list, while
still preserving some certainty guarantees.
• We compare PUFR to several in- and post-processing bias miti-
gation methods and show that it outperforms all baselines, while
being computationally much less expensive than some of them.
Moreover, we demonstrate that PUFR is easily controllable with
respect to the trade-off between fairness and utility, making it
practical for use in real-life ranking applications.

2 RELATEDWORK
2.1 Uncertainty in ranking
Zhu et al. [54] introduce the notion of considering a model’s confi-
dence when ranking documents. The authors view the confidence
of a score based on the probabilistic model’s own estimate – the
variance. Alternatively, we can assume a Bayesian perspective that
considers how well the training data support the current model.
As this approach does not rely on a probabilistic ranking model, it
complements current ranking regimes. Penha and Hauff [32] first
introduce this notion of uncertainty into conversational retrieval by
incorporating dropout into a BERT architecture at inference time.
The ranking score is then modified by an uncertainty measure to
improve the final re-ranking. Cohen et al. [9] suggest a similar ap-
proach for ad hoc retrieval where only the last layer’s uncertainty
is measured to offset both the complexity of a neural model and
the size of the document set with similar re-ranking improvements.
Yang et al. [46] extend the above work by leveraging the uncer-
tainty estimate to improve the exploration of an online learning to
rank model. Rather than performing uncertainty-aware re-ranking,
the uncertainty estimate is used to take an optimistic perspective
on candidate documents to reduce the exploitation bias commonly
found in an online learning to rank setting.

2.2 Mitigating bias and fair ranking
Recent years have seen a broad range of research on uncovering
and mitigating biases in different information retrieval systems,
such as biases in talent pool [16] and resume search [7] and the
reinforcement of gender biases through search engines [14]. Rek-
absaz and Schedl [34] explore the extent to which documents with
gender bias can be found in the retrieved results of different neural
retrieval models. Other work focuses more on the mitigation of such
biases [e.g., 33, 53], where models are optimized to contain fewer bi-
ased documents for queries that are inherently unbiased. Rekabsaz
et al. [33] use adversarial learning to remove gender bias from the
trained model, Zerveas et al. [53] optimize the query representation
from a previously trained architecture instead.

Mitigating biases is often framed as a fairness task. Zehlike et al.
[51, 52] introduce a classification framework for fair ranking ap-
proaches, which we partly use to position our work in the ex-
isting fair ranking literature. As opposed to score-based fairness
[5, 21, 42, 45], where the ranking scores are assumed to be known,
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in this work we focus on supervised learning to rank, where the
ranking scores need to be determined with a ranking model.

A large body of work focuses on merit-based fairness, where the
goal is to distribute the user attention in some way proportional to
the merit of either individual documents (individual fairness [e.g.,
19, 25, 38]) or groups of documents [e.g., 3, 39, 44]. In contrast,
other work [e.g., 48, 50] focuses on representational fairness, which
is concerned with removing historical biases from the ranking or
representing documents from different groups fairly w.r.t. some
demographic within the ranking.

Independently of the notion of fairness, we differentiate between
pre-processing [24], in-processing [2, 3, 33, 39, 40, 48, 49, 53], and
post-processing [11, 22, 50] approaches to fairness interventions.
These methods come into play either before the model is being
trained, adjust themodel or training process itself, or intervene after
the model has been trained and the ranking scores are determined.

PUFR is a post-processing approach that aims to mitigate bias
(representational unfairness) as opposed to prior in-processing work
on the same task [33, 53]. While other work on post-processing
approaches [such as, e.g., 6, 48] intervene at the ranked output, our
approach instead adjusts the score distribution. What distinguishes
PUFR from prior work on fair ranking is that we aim to exploit the
uncertainty that the ranking model has on the predicted relevance
scores to increase the fairness of the rankings.

2.3 Uncertainty in fair ranking
Prior work at the intersection of uncertainty and fairness can be
grouped into two categories. The first category deals with uncer-
tainty introduced when group membership cannot be determined
with confidence. Ghosh et al. [17] discover that, when group labels
are inferred from data, the usage of fair ranking methods can inval-
idate fairness guarantees and even increase the disadvantage that
protected groups might receive. Mehrotra and Vishnoi [28] follow
up on this work and develop a fair ranking framework for cases
where socially-salient group attributes cannot be determined with
certainty but are assumed to follow a given probability distribution.

The other category, which contains, among others, our work,
considers the predictive uncertainty stemming from imperfect pre-
diction of merits and ranking scores. Yang et al. [47] are concerned
with uncertainty in the relevance estimation. Unlike our work, the
authors study an online setting where the relevance estimation is
constantly updated. We target a static setting, not aiming to reduce
the uncertainty for some exploration strategy but to exploit the
uncertainty to obtain a better trade-off between fairness and utility.

Lastly, Singh et al. [41] are concerned with uncertainty in merit
due to observations of secondary attributes instead of directly ob-
serving themerit. The authors suggest a probabilistic fairness frame-
work in the presence of such uncertainty. Their work defines a
notion of fairness that takes the uncertainty in the merit prediction
into account, while we exploit uncertainty to, for example, correct
for historic biases in the data and ranking model.

In summary, where existing methods either ignore the predictive
uncertainty of ranking scores, aim to either reduce uncertainty, or
take it into account when defining fairness, our work is the first to
harness uncertainty to improve the fairness-utility trade-off.

3 METHOD
We take an uncertainty-based approach to post hoc bias mitigation
in ranking. We exploit the model’s uncertainty over the predicted
ranking scores to manipulate the ranking in a way that benefits doc-
uments that do not contain biases, which results in a fairer ranked
list. By staying within a certain confidence range, we minimize the
potential cost to utility. Following prior work [28, 33], we frame
the task as a fair ranking problem.

Our method operates entirely through principled machinery and
allows us to trade-off between user utility and fairness by adjusting
a single coefficient. Furthermore, an existing ranker can be used
as-is, without the need to retrain it, making it possible to use and
adjust it for various levels of fairness, with little additional costs.

Below, in Section 3.1, we start by defining our notation and the
fair ranking task. In Section 3.2, we introduce ourmethod PUFR that,
assuming that the predictive uncertainty over the ranking scores
is given, uses those uncertainty values to develop a fair ranking
approach. Finally, in Section 3.3 we follow with a description of how
to attain the uncertainty of a given deterministic ranking model
over its scores at inference time.

3.1 Notation and preliminaries
Given a query 𝑞, we consider the task of ranking documents from
a candidate set D𝑞 = {𝑑𝑞,𝑖 }𝑖 w.r.t. their relevance, to 𝑞. Regarding
measured user utility only, an ideal ranked list would be ordered
by decreasing document relevance. We assume a ranking model
has been trained to order the documents w.r.t. the relevance to the
query by predicting relevance scores. Most rankers are determin-
istic, outputting only a single predicted relevance score, `𝑞,𝑖 . In
Section 3.3 we will describe how to approximate the uncertainty of
predicted scores for such a model. We write 𝜎𝑞,𝑖 for the standard
deviation of the predicted score `𝑞,𝑖 for document 𝑑𝑞,𝑖 . Note that
we implicitly assume the score distribution to be Gaussian.

Prior work has shown that models that are trained solely for
maximizing the measured utility can be biased and contain unfair
representations of the resulting ranked lists [34]. In this work, as
an additional objective, we aim to decrease the presence of biased
documents in the ranked lists. We treat the task as a fair ranking
problem, where we want to increase the exposure of the protected
group D𝑃

𝑞 ⊂ D𝑞 of documents without biases and decrease the
exposure of the non-protected group D𝑁

𝑞 ⊂ D𝑞 of documents that
contain biases.

3.2 PUFR: Uncertainty-aware fairness
In this section, we introduce our post-processing fairness interven-
tion method PredictiveUncertainty based FairRanking, PUFR. The
core idea of PUFR is to take advantage of the uncertainty of the
model over the predicted ranking scores to adjust these scores pro-
portional to the standard deviation of the predictive distribution for
each document, allowing fairness adjustments with minimal cost
to the utility. For now, we treat the score distribution for each doc-
ument, N(`𝑞,𝑖 , 𝜎2

𝑞,𝑖
), as being given, but in Section 3.3 we describe

how to obtain it for a deterministic ranker.
As the goal of PUFR is to mitigate bias and hence increase the

fairness of the ranking system, PUFR accomplishes this by swap-
ping some of the documents of the protected group, D𝑃

𝑞 , with
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higher ranked documents of the non-protected group, D𝑁
𝑞 . Since

the uncertainty of the scores for the documents within the same
group can differ greatly, this allows for a tuned adjustment of the
ranking scores where swaps only occur in settings where there
exists a reasonable chance of the documents being equally relevant,
quantified by the model’s uncertainty, 𝜎𝑞,𝑖 .

In other words, we allow PUFR to pick ranking scores that max-
imize fairness in intervals [`𝑞,𝑖 − 𝛼 · 𝜎𝑞,𝑖 , `𝑞,𝑖 + 𝛼 · 𝜎𝑞,𝑖 ], without
re-ordering the documents within the same group. Here, 𝛼 is a
user defined hyper-parameter that quantifies the chance of a utility
violation when performing this procedure. A higher value of 𝛼 will
result in a fairer ranking but at the cost of less accurate predicted
scores, and hence potentially a drop in utility.

As shown inAlgorithm 1, PUFR initially loops over all documents
of the protected group 𝑑𝑞,𝑖 ∈ D𝑃

𝑞 , sorted w.r.t. decreasing ranking
score, `𝑞,𝑖 , see line 1. PUFR then increases the score as much as
possible while staying within the confidence bounds, i.e.,

˜̀𝑞,𝑖 = `𝑞,𝑖 + 𝛼 · 𝜎𝑞,𝑖 . (1)

See line 2. To avoid intra-group swapping of documents, modified
ranking scores are bounded by the lowest score of any higher
ranked document within the same group:

˜̀𝑞,𝑖 ≤ minD𝑃
𝑞 , 𝑗≤𝑖 ( ˜̀𝑞,𝑗 ), (2)

where 𝑗, 𝑖 are rank positions, see line 3. Equivalently, for all doc-
uments of the non-protected group, 𝑑𝑞,𝑖 ∈ D𝑁

𝑞 , we decrease the
score as follows, this time starting with the document with the
lowest ranking score (see line 5):

˜̀𝑞,𝑖 = `𝑞,𝑖 − 𝛼 · 𝜎𝑞,𝑖 , (3)

see line 6. Again, to avoid the same intra-group swapping for the
non-protected group, we lower bound the adjusted scores by the
maximum score of all documents in the same group that are ranked
lower in the original ranking:

˜̀𝑞,𝑖 ≥ maxD𝑁
𝑞 , 𝑗≥𝑖 ( ˜̀𝑞,𝑗 ) . (4)

See line 7. PUFR then uses these adjusted scores ˜̀𝑞,𝑖 to re-rank the
documents (line 9).

Note that even though we define PUFR for a setting with only
one protected document group, it can be extended to several pro-
tected groups, that need to receive different treatments. Our ap-
proach allows us to adjust the strength of the score adjustment
individually for each group, e.g., enabling a stronger correction for
more disadvantaged groups, by allowing a group-wise choice of
hyper-parameter 𝛼𝑔 .

Many pre-trained ranking models do not output the uncertainty
scores 𝜎𝑞,𝑖 that PUFR employs to reorder rankings. Thus we need a
way to approximate the uncertainty scores 𝜎𝑞,𝑖 in a post-processing
manner. Next, we show how to do this with the help of Laplace
approximation.

3.3 Attaining uncertainty scores from a
deterministic ranking model

The goal is to attain effective uncertainty scores, 𝜎 , from a ranking
model at inference time; conventional uncertainty approaches fail to
satisfy this condition [9, 32, 46, 47]. Past approaches have relied on
a specific training regime – Monte Carlo (MC) dropout – to achieve

Algorithm 1 Predictive Uncertainty based Fair Ranking (PUFR)

Require: mean ranking scores {`𝑞,𝑖 }𝑑𝑞,𝑖 ∈D𝑞
, standard deviation

{𝜎𝑞,𝑖 }𝑑𝑞,𝑖 ∈D𝑞
, control parameter 𝛼 , groups D𝑃

𝑞 , D𝑁
𝑞

1: for all 𝑑𝑞,𝑖 ∈ D𝑃
𝑞 , sorted by decreasing `𝑞,𝑖 do

2: ˜̀𝑞,𝑖 ← `𝑞,𝑖 + 𝛼 · 𝜎𝑞,𝑖
3: ˜̀𝑞,𝑖 ← maxD𝑃

𝑞 , 𝑗≤𝑖 ( ˜̀𝑞,𝑗 )
4: end for
5: for all 𝑑𝑞,𝑖 ∈ D𝑁

𝑞 , sorted by increasing `𝑞,𝑖 do
6: ˜̀𝑞,𝑖 ← `𝑞,𝑖 − 𝛼 · 𝜎𝑞,𝑖
7: ˜̀𝑞,𝑖 ← minD𝑁

𝑞 , 𝑗≥𝑖 ( ˜̀𝑞,𝑗 )
8: end for
9: Obtain ranking 𝐿 by sorting documents 𝑑𝑞,𝑖 ∈ D𝑞 with respect

to scores ˜̀𝑞,𝑖
10: return 𝐿

an effective Bayesian model. As PUFR is a post hoc method, we
leverage an alternative form of uncertainty, Laplace approximation,
that can be applied to any already trained ranking model.

The standard approach to training a deterministic model 𝑓 ,
where there exists a single output for each input, is to learn a
set of parameters, \MAP, that minimizes the loss function

L(\ ) = − ln 𝑃 (\ | D) + 𝑟 (\ ), (5)

where 𝑟 is some regularization on \ and D is the training dataset.
While this is a probabilistic interpretation of the loss function and
optimization process, prior work has mapped margin-based rank-
ing losses to this framework [9]. At inference time, the model, 𝑓 , is
evaluated using the single point \MAP, which minimizes L(\ ). Al-
ternatively, a Bayesian perspective captures the uncertainty of the
model by considering all possible \ values weighed by how likely
they are based on the training data using the posterior 𝑃 (\ | D),
with \MAP as the most likely value. This produces a distribution
over outputs, of which the variance 𝜎2 represents the uncertainty
present within the model and D:

𝑃 (𝑦 | 𝑥,D) =
∫
\

𝑃 (𝑦 | 𝑥, \ )𝑃 (\ | D)𝑑\, (6)

with 𝑥 as the input and 𝑦 as the output of the model. Unfortunately,
capturing this distribution is intractable for all but the smallest
models due to the nature of computing the posterior 𝑃 (\ | D).
There exists prior work that approximates this distribution using
MCDropout [9, 32, 46, 47]. However, this requires a specific training
regime, which would prevent the general application of PUFR to
off-the-shelf architectures or previously trained ranking models.
Using Laplace approximation for post-hoc uncertainty ap-
proximation. We propose using Laplace approximations (LA),
which can turn any conventionally trained deterministic model
into a Bayesian model at inference time to produce the necessary 𝜎
values for PUFR [27]. LA encompass a family of approaches that fit
a local Gaussian around the MAP estimate (5) via a second-order
Taylor expansion of the log posterior:

ln 𝑃 (\ | D) ≈ ln 𝑃 (\MAP | \ )
1
2
(\ − \MAP)⊺𝐻 (\ − \MAP),

(7)

where 𝐻 is the expected Hessian at \MAP. The key observation
is that the right side only requires the deterministic model, \MAP
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Algorithm 2 Post hoc uncertainty estimation for single query

Require: pre-trained 𝑙-layer model 𝑓\ , \MAP = [\1
MAP, . . . , \

𝑙
MAP],

query 𝑞, candidate documents D𝑞 = {𝑑𝑞,𝑖 }𝑖 , Monte Carlo sam-
ple size 𝑁 .

1: for all 𝑑𝑞,𝑖 ∈ D𝑞 do
2: ℎ𝑙−1

𝑖
, 𝑦 = 𝑓\MAP (𝑞, 𝑑𝑞,𝑖 )

3: 𝐻 ≈ diag(𝐹 ) = diag(E
[
∇\𝑙 ln 𝑃 (𝑦 | 𝑞, 𝑑𝑞,𝑖 ))2

]
4: for all 𝑗 ∈ 𝑁 do
5: {\ } 𝑗1 ∼ N(\

𝑙
MAP, diag𝐹−1)

6: end for
7: `𝑞,𝑖 =

1
𝑁

∑𝑁
𝑡=1 𝑓\𝑙𝑡

(ℎ𝑙−1
𝑖
)

8: 𝜎2
𝑞,𝑖

= 1
𝑁

∑𝑁
𝑡=1 𝑓\𝑙𝑡

(ℎ𝑙−1
𝑖
)2 −

(
1
𝑁

∑𝑁
𝑡=1 𝑓\𝑙𝑡

(ℎ𝑙−1
𝑖
)
)2

9: end for
10: return `𝑞,𝑖 , 𝜎𝑞,𝑖 ∀𝑑𝑞,𝑖 ∈ D𝑞

to produce the log Bayesian posterior distribution on the left side.
Then, to recover the full posterior, exponentiating both sides reveals
the Gaussian functional form for \ ,

𝑃 (\ | D) ≈ 𝑃 (\MAP | D)−

exp
(

1
2
(\ − \MAP)⊺𝐻 (\ − \MAP)

)
≈ N(\MAP, 𝐻

−1).

(8)

Thus, this approximation can take any twice differentiable off-the-
shelf model and conveniently convert it to a Bayesian model at
inference time by inverting the Hessian. While inverting to produce
the covariance matrix is intractable for most models, we leverage
past work by only inverting the last layers of a neural model to
achieve actionable uncertainty estimates with near-zero cost [8, 9]
(Algorithm 2, lines 2–3). While there exists a closed form lineariza-
tion of Eq. 8, we are able to achieve sufficient efficiency using Monte
Carlo sampling to capture the predictive distribution 𝑃 (𝑦 | 𝑥, 𝑓 ) by
sampling from the Gaussian (line 5), N(\MAP, 𝐻

−1) [10],

𝑃 (𝑦 | 𝑥,D) =
∫
\

𝑃 (𝑦 | 𝑥, \ )𝑃 (\ | D)𝑑\

≈ 1
𝑁

𝑁∑︁
𝑡=1

𝑝 (𝑦 | 𝑥, \𝑡 ), \𝑡 ∼ N(\MAP, 𝐻
−1) .

(9)

Furthermore, as the covariance matrix 𝐻−1 is viewed as indepen-
dent to the training process, we do not need to use the original
loss function either [23]. Lastly, for further efficiency, we exploit
the property that the Hessian, 𝐻 , is equivalent to the Fisher infor-
mation matrix, 𝐹 , at \MAP. As shown in Algorithm 2, we therefore
approximate 𝐻 by taking the diagonal of 𝐹 , which is a common
approximation regime (line 3) [18, 35].

After estimating N(\MAP, 𝐻
−1) for the last layer of a neural

model, we sample this distribution 𝑁 times to produce 𝑁 versions
of the last layer, in order to produce `𝑞,· and 𝜎2

𝑞,· as parameters of
the predictive distribution 𝑃 (𝑦 | 𝑥,D) = N(`𝑞,·, 𝜎2

𝑞,·) (line 7–8).
These parameters are then used by PUFR as described in Section 3.2
to debias the ranked list.

4 EXPERIMENTAL SETUP
We aim to answer the following research questions with our ex-
periments: (RQ1) Based on empirical findings, are the uncertainty
intervals around the ranking scores of a Bayesian rankingmodel suf-
ficiently intersecting to allow for a re-ranking of documents, while
staying within reasonable certainty bounds? (RQ2) Can PUFR be
used to reduce the number of biased documents that are ranked
on top of the list more effectively than prior methods? (RQ3) How
do the various methods for fairness interventions compare with
respect to controllability and computational efficiency?

There are four properties that we consider relevant to answer
these questions: (i) We want to improve the fairness within the
rankings. (ii) We want to do so with the least loss in utility possible.
(iii) The next property is the controllability of the approach at
hand. A human user/engineer should be able to easily adjust the
trade-off between fairness and utility to fit their purposes. (iv) The
last property is computational efficiency since this can also play a
role when choosing a fairness method.

Next, we detail our experimental design. Then we discuss the
evaluation metrics that we use to measure the four properties men-
tioned above (Section 4.2) and the dataset that we use (Section 4.3).
Section 4.4 summarizes the baselines that we compare against.

4.1 Experimental design
We perform our experiments on a web search task, where for each
query, the objective is to rank documents that might be relevant
to that query. In addition to the requirement of being relevant
to the user, the ranked list should not contain any gender biases
for queries that are naturally non-gendered [33]. Therefore, we
consider only non-gendered queries and expect a fair rankingmodel
to not promote any documents that are biased towards some gender.
See Section 4.3 for a discussion on the data used for this task.

To get an effective impression of the trade-off between utility
and fairness, we perform a range of experiments per baseline, by
varying some hyperparameter 𝛼 . We define this hyperparameter
individually for each baseline, based on the respective underlying
algorithms (see Section 4.4).

To demonstrate the efficacy of PUFR on current search models,
we use the BERT ranker introduced by Nogueira and Cho [30] as it
represents a common language model architecture in current rank-
ing regimes [12, 20, 26, 37]. Due to hardware constraints, we use
Bert-Mini [43], a distilled four-layer version of BERT that performs
comparably to the full model in search and other related tasks.
We note that in the case of uncertainty modeling, Cohen et al. [9]
demonstrate that a distilled model results in less expressive ranking
uncertainty compared to larger variants of the same architecture
on the same data. Thus, Bert-Mini represents a challenging setting
and a conservative estimate of PUFR’s performance.

To facilitate reproducibility of our work, all code and parameters
are made available; see Section 7.

4.2 Evaluation
User utility and fairness are measured per query. To get a single
score to compare across methods, we report the mean over all
queries. We measure significance with paired t-tests, where we
treat the results of each query as one sample.
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User utility. To measure user utility, we use the nDCG metric
(normalized discounted cumulative gain). We use different cut-offs
to measure the user utility in the top-10 documents, as well as for
the first 100 documents.
Fairness. As discussed in Section 4.1, our task entails reducing
the impact of strongly biased documents in the presented rankings.
Therefore, we use the nFaiRR metric as a measure of fairness intro-
duced by Rekabsaz et al. [33]. For a ranked list 𝐿, the FaiRR score
at cut-off 𝑘 is defined as:

FaiRR@k(𝐿) =
∑︁

rank𝐿 (𝑑𝑖 )≤𝑘
𝑛𝑑𝑖 ·

1
rank𝐿 (𝑑𝑖 )

, (10)

where rank𝐿 (𝑑𝑖 ) describes the rank of candidate document 𝑑𝑖 in
𝐿, and the neutrality score 𝑛𝑑𝑖 ∈ [0, 1] is lower, the more biased a
document is. Since the possible range of FaiRR scores depends on
the distribution of neutrality scores of its candidate documents, to
make the results easier to interpret and better comparable among
queries, we use the normalized FaiRR score (nFaiRR). For this, we
normalize the FaiRR score with the highest attainable FaiRR score
with the document candidates for this query, similar to how nDCG
is calculated from DCG. In our experiments we measure the nFaiRR
at a cut-off value of 10 and 50. We select a different cut-off than the
utility measure (@100) so as to compare with reported values from
the baseline evaluations.
Controllability.We follow prior work [33], and focus on a quali-
tative analysis of the results by investigating the predictability of
the utility-fairness trade-off when adjusting the controllable hyper-
parameter of each of the methods. An ideal approach should have
small change in utility and fairness for a small change in 𝛼 . To this
end, we compare the plots in Fig. 6 below.
Computational efficiency. For computational efficiency, we mea-
sure the run time of our implementation for each approach. We
acknowledge that method-specific performance optimization might
be able to further improve on the run times observed for the generic
implementations used here, but assume that at least a rough execu-
tion time comparison can be gleaned. We measure the run time of
each query and report the mean run time in Table 1.
Significance testing. To test the significance of observed differ-
ences in evaluation scores, we perform two-tailed paired t-tests on
the metrics, treating the results of an approach of each query as
a measurement of the same random variable. In Table 1, we mark
results with an asterisk if they are significantly different from those
of PUFR.

4.3 Dataset
The retrieval models that we use are trained on the MSMARCO Pas-
sage Retrieval collection [29]. For evaluation, we useMS MARCOFair,
a subset consisting of 215 queries from the validation set that are
non-gendered in nature – i.e., not containing any words or con-
cepts that could be attributed to some gender [33]. However, the
top candidate documents for these queries are highly associated
with gender [33, 53]. We quantify the degree of gender bias for each
document using the neutrality scores provided by Rekabsaz and
Schedl [34] in order to measure fairness. We define documents with
neutrality score 1 as the protected group for the post-processing
baselines and PUFR.

4.4 Baselines
The baseline fairness interventionmethods that we consider include
the two in-processing approaches that have been introduced for the
same bias mitigation task and dataset used here [33, 53]. Since PUFR
is a post-processing approach, we add two commonly used post-
processing fairness approaches that have been slightly adjusted
to fit the task. Both post-processing baselines as well as UNFAIR
use the mean scores `𝑞,𝑖 , produced by Algorithm 2 in Section 3.3
for the BERT-based ranker (see Section 4.1) as ranking scores. For
each baseline the hyper-parameter 𝛼 that allows us to control the
trade-off between utility and fairness, is defined individually.
UNFAIR. The ranking resulting from ordering the documents with
respect to the mean scores `𝑞,𝑖 , without considering fairness.
ADV.The (in-processing) adversarial fairness optimization from [33],
which shares the same underlying BERT re-ranking architecture
as discussed in Section 4.1. However, training is done using an
adversarial discriminator head that attempts to predict whether the
document is gendered or neutral by optimizing a classification loss
function. The gradient from this loss is reversed within the main
BERT architecture, therefore moving the parameters away from
regions that can effectively capture gender [15]. We implement this
model using the source code and suggested hyperparameters pro-
vided by the authors. The controlling hyperparameter 𝛼 (originally
_) is defined by the scale of the reversed gradient.
CODER. This (in-processing) baseline [53] is intended for dense
retrieval architectures. The method directly optimizes the query
representation from a previously trained architecture, TAS-B [20],
by jointly optimizing thousands of candidate documents in a list-
wise manner. While improving overall ranking performance, the
large candidate pool within a list-wise loss provides a stable and
competitive way to incorporate fairness directly during training.
We include this baseline not as a direct comparison with respect
to ranking performance, but to provide context on how a direct
list-based fairness optimization approach compares to methods that
operate entirely within a post hoc framework when viewed from a
utility-fairness trade-off perspective. Here, the hyperparameter 𝛼
(in the original paper _𝑟 ) is defined as the regularization coefficient
for the neutrality loss.
CVXOPT. A (post-processing) convex optimization approach sim-
ilar to [6]. For each query we optimize the ranking 𝐿 for util-
ity, measured by nDCG, under a constraint on the nFaiRR score,
nFaiRR(𝐿) ≥ 𝛼 . To keep computational costs within a reasonable
range, we only re-rank the first 50 documents of each query.
FA*IR. A (post-processing) approach suggested in [48]. We use
a significance parameter 0.1 as suggested in [48] and vary 𝑝 , the
desired minimal proportions of documents with the protected at-
tribute in the top-𝑘 for any value of 𝑘 . In the remainder of this
paper we use 𝛼 := 𝑝 , not to be confused with the significance pa-
rameter in the original paper, to match the other methods. For a fair
comparison w.r.t. to computational efficiency, we use an efficient im-
plementation that pre-computes the required number of protected
documents for each rank upfront via an iterative algorithm.

5 EXPERIMENTAL RESULTS
We present and discuss answers to our research questions.
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Figure 2: MSMARCOFAIR: Median number of documents that
have intersecting uncertainty intervals with the document
placed at each rank for uncertainty intervals of 1 (left) resp.
2 (right) standard deviations.

5.1 Intersections of uncertainty intervals
Recall (RQ1): Based on empirical findings, are the uncertainty in-
tervals around the ranking scores of a Bayesian ranking model suf-
ficiently intersecting to allow for a re-ranking of documents, while
staying within reasonable certainty bounds? To answer (RQ1), we
analyze the confidence intervals of the ranking scores. If the uncer-
tainty intervals do not intersect much, the ranking model is very
certain about the ordering of its ranking scores. In such a case, our
approach, or any uncertainty-aware approach in general, would
not be able to re-rank the documents within an acceptable utility
bracket. Previous work has shown that ranking models tend to be
very certain for the ranking scores of highly ranked documents [9],
but certainty decays when going down the ranked list. We are in-
terested in how much flexibility a rank-aware fairness approach
would offer in swapping documents by allowing the ranking scores
to take values in a given certainty [`𝑞,𝑖 − 𝛼 · 𝜎𝑞,𝑖 , `𝑞,𝑖 + 𝛼 · 𝜎𝑞,𝑖 ]
interval around the mean score value `𝑞,𝑖 . Fig. 2 shows the median
number of documents with intersecting confidence intervals (i.e.
the median number of documents that the document at that rank
could swap position with) for 𝛼 = 1 resp. 𝛼 = 2 standard deviations.

Even for documents ranked at higher positions, there is flexibility
to change the order of the ranking. For a confidence interval of
1 standard deviation, most documents in the top-10 each have
at least 6 documents that they could swap rank with. If we look
at confidence intervals of two standard deviations, this number
increases to ∼10 documents that the document at rank 10 can swap
place with. We therefore answer (RQ1) positively: The uncertainty
intervals around the ranking scores of the Bayesian ranking model
are sufficiently intersecting to allow for a re-ranking of documents,
while staying within acceptable certainty bounds for utility.

Having confirmed that within the uncertainty of the model there
is flexibility for an uncertainty-based fairness approach to change
the order of documents, we address our second research question
that asks whether the proposed approach can improve fairness.

5.2 The fairness utility trade-off
Recall (RQ2): Can PUFR be used to reduce the number of biased
documents that are ranked on top of the list more effectively than
prior methods? To answer this question we refer to Fig. 3 and 4,
where we plot fairness on the x-axis against utility on the y-axis,
for PUFR and the baselines discussed in Section 4.4, for different
values of the respective hyper-parameter 𝛼 that controls the trade-
off. In addition we use Table 1, where we compare the experimental
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Figure 3: Trade-off between fairness and utility evaluated on
the first 10 documents.
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Figure 4: Trade-off between fairness and utility evaluated on
the first 50 resp. 100 documents.

outcomes with the best nFaiRR value for a given minimum utility
requirement.
Utility-fairness trade-off. In Fig. 3 and 4, we observe that the
CODER baseline starts with a better trade-off for the top-10 docu-
ments, which can be attributed to better ranking scores that it starts
out with (PUFR uses a BERT-based model to obtain ranking scores).
CODER’s advantage quickly vanishes as the balancing parameter 𝛼
increases for more weight on fairness. Overall, PUFR offers a better
trade-off between fairness and utility than the CODER based and
the adversarial fairness optimization baseline (ADV).

If we compare PUFR to the post-processing baselines (CVXOPT
and FA*IR), it clearly outperforms those baselines. Once a nFaiRR
value of 0.96 is reached the advantage of PUFR over these baselines
becomes smaller. For a possible explanation see Section 6.

Overall, PUFR outperforms all baselines for a large range of
nFaiRR values, which we also highlight by comparing the fairness of
the different approaches at two different utility levels (nDCG@100 =

0.31 and nDCG@100 = 0.30) in Table 1. We chose these levels of
utility, assuming that, when taking a fair ranking approach in pro-
duction there might be a certain (small) allowance for a drop in
utility given, within which the best possible fairness value should
be reached. We see that for these levels PUFR reaches significantly
higher scores for nFaiRR than all baselines.
Ablation study. To ensure that the uncertainty estimates indeed
do contribute to the success of PUFR, we conduct an ablation study.
We compare PUFRwith a similar approach that, instead of adjusting
the scores relative to the standard deviation, in- or decreases all
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Table 1: Results for experiment with best nFairr value for
nDCG decrease not more than 0.01 and 0.02 respectively.
ADV baseline does not fulfill the criteria of being at most
0.01 nDCG points worse than UNFAIR. * denotes significance
w.r.t. PUFR via two tailed paired students t-test of 𝑝 < .05.

nDCG↑ nFaiRR↑ re-rank- req.

Method 𝛼 @10 @100 @10 @50 time(s)↓ train

UNFAIR 0.0 0.26 0.32 0.858 0.873 0.00 No
ADV 2.0 0.21 0.26 0.91 0.896 - Yes

𝑛
𝐷
𝐶
𝐺

10
0
≥

0.
31 PUFR 2.5 0.25 0.31 0.938 0.932 0.014 No

CODER 3.0 0.25 0.31 0.920* 0.920* - Yes
CVXOPT 0.8 0.25 0.31 0.906* 0.905* 0.123 No
FA*IR 0.7 0.25 0.31 0.898* 0.901* 0.058 No

𝑛
𝐷
𝐶
𝐺

10
0
≥

0.
30 PUFR 7.0 0.23 0.30 0.970 0.960 0.014 No

CODER 4.0 0.24 0.30 0.927* 0.926* - Yes
CVXOPT 0.91 0.23 0.30 0.949* 0.931* 0.123 No
FA*IR 0.85 0.23 0.30 0.944* 0.935* 0.058 No

scores by the same, constant value. In our experiments we use the
mean uncertainty score over all queries and candidates documents,
𝜎mean = mean𝑞,𝑖 (𝜎𝑞,𝑖 ). The results of this ablation study are pre-
sented in Fig. 5. We see that by using the uncertainty scores instead
of a uniform correction factor, we gain a better trade-off. For the
top-10, these improvements are less visible (see Fig. 5 (a)). When
considering the top-100 documents instead, the advantages of using
uncertainty become much clearer (see Fig. 5 (b)). This might be
due to fact that, as also noted by Cohen et al. [9], for the top-10
documents the uncertainty scores tend to be fairly similar to each
other, making our approach, if we only look at a small window,
seem similar to the ablation study approach. When we look at a
larger window, the uncertainty scores deviate more, emphasizing
the advantages of PUFR.

We conclude this section and answer (RQ2) in the affirmative.
PUFR performs competitively with baselines. In terms of fairness-
utility trade-offs it significantly outperforms other post-processing
schemes, and clearly beats the two state-of-the-art in-processing
baselines. The ablation study confirms that this result is at least par-
tially due to the use of the model’s uncertainty in its scores. Hence,
PUFR can be used to reduce the number of biased documents that
are ranked on top of the list more effectively than prior methods.

Since a good utility-fairness trade-off is not the only relevant
criterion when choosing a fair ranking method, our next research
question (RQ3) concerns the degree of controllability and computa-
tional costs of the different methods.

5.3 Controllability and computational efficiency
Next, we address (RQ3): How do the various methods compare with
respect to controllability and computational efficiency? As discussed
in Section 4.2, we focus on a qualitative analysis of the 𝛼-fairness
and 𝛼-utility curves, evaluating how predictable and hence con-
trollable the utility-fairness trade-off is. Fig. 6 shows that for PUFR
the nFaiRR score monotonically increases with increasing 𝛼 . At the
same time, utility, measured by nDCG, decreases. Both curves are
highly predictable. Furthermore, since re-ranking is computation-
ally very efficient, a broad range of rankingswith different trade-offs
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Figure 5: Ablation study comparing PUFR (score adjustment
proportional to the ranker’s uncertainty) with an ablation
experiment with uniform score adjustment.

can be explored to find the right choice of hyper-parameter for the
desired trade-off between nFaiRR and nDCG. The CODER-based
approach has similarly predictable trade-off curves as PUFR [53].
However, CODER is an in-processing approach, meaning that the
model needs to be re-trained for each choice of hyper-parameter
𝛼 , making it much less controllable in practice. The ADV method
on the other hand, seems to be highly unpredictable, on top of
the downsides that come with in-processing methods as discussed
above. For the FA*IR baseline, although its curve seems to be fairly
well controllable, the granularity in which we can produce results
is much coarser. Due to space constraints we omit the figure for the
convex optimization approach; because of computational efficiency,
FA*IR or PUFR should be preferred over it.

With regard to computational efficiency, we recall that both in-
processing approaches, ADV and CODER, once trained, do not have
the post-processing overhead of the other methods. However, these
methods need a large amount of training to gain a reasonable level
of performance [33, 53]. Looking at Table 1, re-ranking with PUFR
is much faster than with the other two post-processing approaches.
Obtaining uncertainty labels can be done within microseconds.
After adjusting the ranking scores there is a single re-sorting of
the documents that dominates the execution time. Hence, when
using PUFR in production and adjusting the score before the initial
ordering of the documents, the execution of PUFR is nearly free.

6 DISCUSSION
Exploiting model uncertainty for the fairness-utility trade-
off. To increase the fairness of a ranking, we would commonly
need to trade-off some predicted utility.Encouraging this trade-off
to take place when the ranking model is less certain about the
ranking scores will cause roughly equivalently relevant documents
that the model cannot confidently rank, to swap place. Assuming
that the ranking model is well calibrated, this might be the reason
for the overall better trade-off that PUFR achieves, compared to
models that do not consider predictive uncertainty. This quality is
highlighted in Fig. 7, where we show the score distribution of the
top-5 documents of two queries in the MSMARCOFair dataset. In
the case of Fig. 7a and 7b, the larger variance leads to overlapping
score distribution, allowing PUFR to swap documents in the re-
ranked list. On the other hand, Fig. 7c and 7d show a query where
the model is very certain about the order of the documents. PUFR
hence does not change the order of the documents, whereas FA*IR
and CVXOPT both do adjust the ranking, leading to decreased user
utility for those baselines.
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Figure 6: Controllability of different approaches visualized by plotting utility and fairness against the controlling hyper-
parameter 𝛼 on the x-axis (see Section 4.4 for a description of 𝛼 for each approach).

(a) query 1032855 before PUFR (b) query 1032855 after PUFR

(c) query 1089383 before PUFR (d) query 1089383 after PUFR
Figure 7: Examples of score distributions for the top-5 doc-
uments for two queries of the MS MARCOFair dataset. Pro-
tected documents in green, non-protected in red. Subfigs. 7a
and 7c show the ranking score before PUFR adjusts the
scores, 7b and 7d show them after. Query 1089383 was scaled
before plotting.

Using PUFR outside the models confidence. Our empirical
results show that if we allow PUFR to adjust the scores too far
outside of its confidence, its performance starts to decay (see Fig. 3).
If 𝛼 is too high, the natural interpretation of adjusting the scores
within plausible error-bounds gets lost and we cannot exploit the
models knowledge of its own certainty any further. Without the
certainty to back it up, PUFR becomesmore arbitrary in its decisions
where to trade-off predicted utility with fairness. Hence, PUFR is
most effective for small values of 𝛼 , roughly up to 𝛼 = 4 (see Fig. 6).
This observation means that a purely uncertainty-based fairness
method might not be the best choice when the bias we want to
correct for is too strong. In such cases, it might be beneficial to use
uncertainty in combination with another approach that has proven
effective for the task at hand.

7 CONCLUSION
We have introduced the notion of predictive uncertainty-based
ranking fairness, aiming to exploit a ranking model’s uncertainty
as an indicator of which documents we should focus on when
re-ordering for a fairer ranking which de-emphasizes documents
containing biases. Through our empirical analysis we have found
that the uncertainty intervals of the ranking scores are sufficiently
intersecting to allow us to swap the position of some documents.
We have also introduced an intuitive and principled post-processing

method, PUFR, that adjusts the predicted ranking scores within
some desired confidence bound.We have shown that by considering
uncertainty, PUFR can achieve the best utility-fairness trade-off
and has superior time complexity and good controllability.

We hope that our contribution makes the adoption of methods
to remove bias in ranked results more attractive to practitioners
working on real- world search and recommendation systems.

More experimentation is needed to confirm our findings in more
settings. We see limitations of our approach as twofold. Firstly,
PUFR allows a re-ordering of the documents only within the un-
certainty of the model. This might make our method less effective
in reducing unfairness when the model is very skewed towards
documents containing biases. As a second limitation, we rely on
uncertainty scores containing accurate information on which doc-
uments are more likely to be in the wrong order. Furthermore, the
uncertainty intervals around the scores need to intersect sufficiently.
In our experiments, we are using a neural ranking model on text
data, which is a task that inherently carries a fair amount of uncer-
tainty. For other tasks and fairness definitions, more research will
be necessary to evaluate whether an uncertainty-based approach
can be beneficial for the utility-fairness trade-off.

As to future work, an important next step would be to define
ways to evaluate uncertainty scores in a listwise manner for ranking
models. Without proper evaluation of the predictive uncertainty,
we are unable to put trust on the score distribution and hence on
an uncertainty-based fairness approach. Moreover, more work is
needed to investigate whether PUFR could be extended to, for ex-
ample, Bayesian learning-to-rank models or recommender systems.
Finally, we see a clear need to create more datasets for large lan-
guage models with fairness labels, on which methods such as ours
can be tested.
Data and code. To facilitate reproducibility of our work, all code
and parameters are shared at https://github.com/MariaHeuss/2023-
CIKM-uncertainty-based-bias-mitigation.
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