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In this article we give an overview of our recent work on online learning to rank for information
retrieval (IR). This work addresses IR from a reinforcement learning (RL) point of view, with
the aim to enable systems that can learn directly from interactions with their users. Learning
directly from user interactions is difficult for several reasons. First, user interactions are hard to
interpret as feedback for learning because it is usually biased and noisy. Second, the system can
only observe feedback on actions (e.g., rankers, documents) actually shown to users, which results
in an exploration–exploitation challenge. Third, the amount of feedback and therefore the quality
of learning is limited by the number of user interactions, so it is important to use the observed
data as effectively as possible. Here, we discuss our work on interpreting user feedback using
probabilistic interleaved comparisons, and on learning to rank from noisy, relative feedback.
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1. INTRODUCTION

Information retrieval (IR) systems, such as web search engines, provide easy access to a

vast and constantly growing source of information. The user submits a query, receives a

ranked list of results, and follows the link or links to the most promising ones. To address

the flood of data available on the web, today’s web search engines have developed into

complex systems that combine hundreds of information sources (features) with the goal of

creating the best possible result rankings for all their users at all times.

Making a result ranking as useful as possible may be easy for some search tasks, but in

many cases it depends on context, such as users’ background knowledge, age, or location,
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or their specific search goals. And even though there is an enormous variety in the tasks

and goals encountered in web search, web search engines are only the tip of the iceberg.

More specialized systems are everywhere: search engines for company’s intranets, local

and national libraries, and users’ personal documents (e.g., photos, emails, and music) all

provide access to different, more or less specialized, document collections, and cater to

different users with different search goals and expectations. The more we learn about how

much context influences peoples’ search behavior and goals, the more it becomes clear that

addressing each of these settings individually is not feasible. Instead, we need to look for

scalable methods that can learn good rankings without expensive tuning.

In our recent work, we have focused on developing methods for “self-learning search en-

gines” that learn online, i.e., directly from natural interactions with their users. Such sys-

tems promise to be able to continuously adapt and improve their rankings to the specific

setting they are deployed in, and continue to learn for as long as they are being used.

While data about user interactions with a search engine (e.g., clicks) are a natural by-

product of normal search engine use, using them to gain insights in user preferences, and

learning from these insights, poses several unique challenges. Search interactions are not

consciously made to reflect users’ preferences. They are at most noisy indicators that may

correlate with preference. They are strongly affected by how results are presented (e.g.,

position on the result page). These effects may systematically influence (i.e., bias) which

results are clicked and distinguishing these effects from those of true ranking quality may

be hard.

In this article, we give an overview of the solutions we have developed to address these

challenges, focusing on evaluation and learning of ranking functions for IR. Our solutions

include (1) an interleaved comparison method that allows unbiased and fine-grained ranker

comparison using noisy click data, and, most importantly, that allows reuse of such data

for new comparisons, (2) an approach for modeling and compensating for click bias in

user interactions with a web search engine, (3) an experimental framework that allows

the assessment of online learning to rank methods for IR using annotated data sets and

click models, (4) learning approaches that improve the online performance of self-learning

search engines by balancing exploration and exploitation, and (5) methods for reducing the

effects of click noise in learning to rank by reusing previously observed interaction data.

We provide an overview of (1) and (2) in Section 2, and discuss (3)–(5) in Section 3.

2. EVALUATION: COMPARING RANKERS USING PROBABILISTIC
INTERLEAVE

A key challenge in an online learning to rank for IR is the interpretation of user feedback,

such as clicks. Previous work has shown that absolute interpretations of such feedback

suffer from presentation bias, and do not reliably reflect system quality [Radlinski et al.

2008].

In response to the limitations of absolute interpretations, several approaches have been

developed that interpret feedback instead as relative preferences [Joachims 2002]. One

such approach is called interleaving, or interleaved comparison [Chapelle et al. 2012].

Interleaving methods compare pairs of rankers using user interactions by combining results

from both rankers. In this way, interleaving can be seen as a controlled within-subject
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Fig. 1. Example interleaving (1) and comparison (2) using Probabilistic Interleave.

experiment.

Briefly, interleaved comparison methods work as follows. When a user submits a query,

the system generates two original result lists, one for each candidate ranker, and creates an

interleaved result list in such a way that each original list is equally likely to contribute its

highest-ranked documents to the top of the interleaved result list (to control for position

bias). This interleaved result list is presented to the user, and clicks on result documents are

observed. The clicks are projected back to the original result lists to infer which is likely

to be preferred by the user. The inferred comparison outcomes are aggregated over many

queries to obtain a reliable estimate of the relative quality of the rankers.

Our main contribution to this area is a new interleaved comparison method, called Proba-

bilistic Interleave [Hofmann et al. 2011b; 2013b]. One advantage of this method is that it

is the first that can detect all differences between rankers in cases where one ranker Pareto-

dominates (i.e., ranks all clicked documents at least as high as the competitor) the other in

terms of how it ranks clicked documents. This is achieved by generating interleaved result

lists probabilistically, in such a way that documents that are ranked highly by the original

rankers have a high probability of being ranked highly in the interleaved list. After clicks

are observed, knowledge of the probabilistic interleaving process is used to infer compar-

ison outcomes. This results in comparisons that are more reliable and fine-grained than

previously possible.

An overview and example of interleaved comparisons with Probabilistic Interleave is given

in Figure 1. The first part of the figure (on the left), shows how two ranked lists, l1 and

l2, are first transformed into probability distributions over documents (softmax, s1 and s2).

Generating an interleaved result list is then implemented as repeated sampling without re-

placement from the resulting distribution. This means that all permutations of candidate

documents have non-zero probability of being observed. After observing user clicks (here:

on documents d2 and d3), we infer a comparison outcome by marginalizing over all possi-

ble assignments (ways in which either of the two rankers could have contributed documents

to the observed interleaved list), as shown in part 2 of the figure.

The most important advantage of Probabilistic Interleave is that it enables the application

of a statistical technique called importance sampling to the interleaving process and com-

parisons. In [Hofmann et al. 2012; 2013b] we showed that importance sampling can be

leveraged for unbiased reuse of historical data (i.e., data observed in previous ranker com-
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Fig. 2. Results: accuracy (portion of correctly detected ranker preferences) of Balanced Interleave (BI), Team

Draft (TD), Document Constraints (DC), and Probabilistic Interleave (PI-MA (Probabilistic Interleave with

marginalization) under live data, and PI-MA-IS (PI with marginalization and importance sampling) under his-

torical data) under live (a) and historical (b) data.

parisons). For evaluation, such data reuse addresses the bottleneck that previously new

data had to be collected for each new comparison, which limited the number of possible

comparisons. Now, existing data can be used to dramatically reduce the amount of new

data required for a comparison.

Figure 2 shows a subset of the results obtained when assessing Probabilistic Interleave.

Results were obtained using a simulation setup, where user interactions are obtained from

generative click models and annotated learning to rank data sets. Probabilistic Interleave

is compared to the existing interleaving methods Balanced Interleave [Joachims 2003;

Radlinski et al. 2008], Team Draft [Radlinski et al. 2008], and Document Constraints [He

et al. 2009]. We see that Probabilistic Interleave can detect more ranker preferences cor-

rectly with smaller amounts of data under live data (Figure 2(a)). Under historical data,

it is the only interleaved comparison method that can detect preferences when comparing

previously unseen ranker pairs.

In addition to noise in user clicks, we investigated caption bias (i.e., effects of how results

were presented) in [Hofmann et al. 2012]. We showed how such bias can be captured using

logistic regression models, validated our models in a click prediction task, and then showed

how caption bias can affect interleaving outcomes (e.g., when rankers were trained using

biased click data).

3. LEARNING: ONLINE LEARNING TO RANK FOR IR WITH NOISY
FEEDBACK

Learning directly from user interactions is fundamentally different from the previously

dominant supervised learning to rank approaches for IR, where training data was assumed

to be sampled i.i.d. from some underlying distribution, and where absolute and reliable

labels were provided by professional annotators. When learning from user interactions, a

system has no control over which queries it receives, it only receives feedback on the result

lists it presents to users, and it has to present high quality result lists while learning, to

satisfy user expectations. Previous research resulted in solutions for learning from relative

comparisons, such as the Dueling Bandit algorithm [Yue and Joachims 2009].
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Fig. 3. Results: offline performance (in NDCG) of online learning to rank approaches under perfect (a) and noisy

(informational, b) user interactions.

To enable assessment of online learning to rank for IR approaches, we developed an exten-

sion of the test-collection based evaluation framework commonly used in IR evaluation.

This extension leverages manually annotated learning to rank data sets and models of click

behavior to models various assumptions, e.g., about the amount of noise in user feedback.

This framework simulates the system’s environment according to these assumptions, and

allows us to measure online performance, i.e., the quality of presented rankings while the

system is learning [Schuth et al. 2013].

Addressing the requirement for high online performance, we investigated approaches for

balancing exploration and exploitation in online learning to rank for IR [Hofmann et al.

2011a; 2013a]. Online learning systems need to construct result lists in such a way that

users’ interactions with these lists allow the systems to infer feedback that is useful for

future learning. This is achieved through exploration, e.g., by trying out new rankings.

However, such systems also need to exploit what they have already learned, to ensure that

the presented result lists satisfy current users’ needs and expectations. We developed the

first approaches for balancing exploration and exploitation in a learning to rank for IR set-

ting (with relative, noisy feedback), and showed that such a balance can substantially and

significantly improve online performance in listwise [Hofmann et al. 2011a] and pairwise

[Hofmann et al. 2013a] learning to rank for IR.

Finally, we developed new learning approaches that could make use of historical data,

enabled by our Probabilistic Interleave method for interleaved comparisons [Hofmann et al.

2013]. We devised and investigated two such approaches, one that reuses historical data to

make ranker comparisons during learning more reliable (RHC), and one that uses historical

data for more effective exploration of the solution space (CPS). Both approaches lead to

more reliable learning when feedback is noisy. In particular, CPS enables much faster

learning than previously possible, learning up to three orders of magnitude faster than

methods that do not reuse historical data.

Evaluation results of the proposed learning approaches are shown in Figure 3. We again

use the simulation approach discussed above, where user interactions are obtained from

generative user models. Here, we show our results for the perfect (low noise and position

bias) and informational (high noise and position bias) user models. Compared are the ex-

isting learning and comparison methods Dueling Bandit Gradient Descent (DBGD) [Yue
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and Joachims 2009] with Balanced Interleave and Team Draft, and Probabilistic Interleave

with RHC (a learning approach that uses historical data to make comparisons more reli-

able) and CPS. We see that Probabilistic Interleave with CPS leads to significantly better

learning outcomes in both settings. Performance gains are particularly high when user

feedback is noisy. These results show that CPS can effectively reuse historical data to

quickly eliminate underperforming candidate rankers.

4. CONCLUSION AND FUTURE WORK

In this article, we gave an overview of our recent work on online evaluation and online

learning to rank for information retrieval. First, we presented a new interleaved com-

parison method, probabilistic interleave. This method can detect fine-grained differences

between rankers, thereby addressing limitations of previous methods. More importantly,

this probabilistic method can be treated using importance sampling, enabling the reuse of

previously collected observations to compare new rankers.

In Section 3, we discussed our work on balancing exploration and exploitation in online

learning to rank for IR. We showed that such a balance can significantly improve the on-

line performance of such systems, and identified differences in how pairwise and listwise

learning approaches react to such a balance. Finally, we showed how data reuse with prob-

abilistic interleave can be used to extend current learning approaches to speed up online

learning to rank, especially in settings with noisy feedback.

Future work will focus on smart exploration and long-term planning and learning in search.

After showing that balancing exploration and exploitation can make a big difference, de-

veloping more sophisticated approaches for doing so is a promising research direction.

Finally, while our work so far treated subsequent queries as independent of each other,

understanding and modeling such temporal dependencies is expected to further improve

online performance.
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