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Introduction

The goal of the research area of information retrieval (IR) is to develop the insights and
technology needed to provide access to data collections. The most prominent applica-
tions, web search engines like Bing, Google, or Yahoo!, provide instant and easy access
to vast and constantly growing collections of web pages. A user looking for information
submits a query to the search engine, receives a ranked list of results, and follows links
to the most promising ones. To address the flood of data available on the web, today’s
web search engines have developed into very complex systems. They combine hundreds
of ranking features (properties of the query, a document, and the relationship between
the two) with the goal of creating the best possible search results for all their users at all
times.'

A ranker (or ranking function) is the part of a search engine that determines the order
in which documents retrieved for a given user query should be presented. Until recently,
most rankers were developed manually, based on expert knowledge. Developing a good
ranker may be easy for some search tasks, but in many cases what constitutes a good
ranking depends on the search context, such as users’ background knowledge, age, or
location, or their specific search goals and intents (Besser et al., 2010; Hofmann et al.,
2010a; Rose and Levinson, 2004; Shen et al., 2005). And even though there is an enor-
mous variety in the tasks and goals encountered in web search, web search engines are
only the tip of the iceberg. More specialized systems are everywhere: search engines
for companies’ intranets, local and national libraries, universities’ course catalogues, and
users’ personal documents (e.g., photos, emails, and music) all provide access to dif-
ferent, more or less specialized, document collections, and cater to different users with
different search goals and expectations. Addressing each of these settings manually is
infeasible. Instead, we need to look for scalable methods that can learn good rankings
without expensive, and necessarily limited, manual or semi-manual tuning.

For automatically tuning the parameters of a ranking function, machine learning al-
gorithms are invaluable (Liu, 2009). Most methods employ supervised learning to rank,
i.e., algorithms are trained on examples of relevant and non-relevant documents for par-
ticular queries. Data to train these approaches is typically obtained from experts who
label document-query pairs, which is time-consuming and expensive. In many settings,
such as personalized or localized search, or when deploying a search engine for a com-

"http://www.wired.com/magazine/2010/02/ff_google_algorithm/all/,
retrieved December 29, 2012.
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pany’s intranet or a library catalogue, collecting the large amounts of training data re-
quired for supervised learning is usually not feasible (Sanderson, 2010). Even in envi-
ronments where training data is available, it may not capture typical information needs
and user preferences perfectly (Radlinski and Craswell, 2010), and cannot anticipate fu-
ture changes in user needs.

In this thesis we follow an alternative approach, called online learning to rank. This
technology can enable “self-learning search engines” that learn directly from natural in-
teractions with their users. Such systems promise to be able to continuously adapt and
improve their rankings to the specific setting they are deployed in, and continue to learn
for as long as they are being used.

Learning directly from user interactions is fundamentally different from the currently
dominant supervised learning to rank approaches for IR, where training data is assumed
to be randomly sampled from some underlying distribution, and where absolute and re-
liable labels are provided by professional annotators. In an online learning setting, feed-
back for learning is a by-product of natural user interactions. This strongly affects what
kind of feedback can be obtained, and the quality of the obtained feedback. For example,
users expect to be presented with useful results at all times, so trying out new rankings
(called exploration) can have a high cost in user satisfaction and needs to be balanced
against possible future learning gains. Also, feedback inferred from user interactions can
be noisy, and it may be affected by how search results are presented (one example of
such an effect is caption bias). Learning from such lower-quality feedback may result
in degraded learning, unless we can design learning to rank algorithms that are robust
against these effects. In this thesis we investigate the principles that allow effective on-
line learning to rank for IR, and translate our insights into new algorithms for fast and
reliable online learning.

1.1 Research Outline and Questions

The broad question that motivates the research for this thesis is: Can we build search
engines that automatically learn good ranking functions by interacting with their users?
Individual components towards solving this problem already exist (see Chapter 2 for an
overview), but other aspects, such as how to learn from noisy and relative feedback, have
not yet been investigated. This thesis aims to close some of these gaps, contributing to
the long-term goal of a complete online learning to rank solution for IR.

We start our investigation by focusing on the type and quality of feedback that can be
obtained for learning to rank in an online setting. Extracting reliable and useful feedback
for learning to rank from natural user interactions is difficult, because user interactions
are noisy and context-dependent. The most effective techniques identified so far focus
on extracting relative information, i.e., they infer user preferences between documents or
whole result rankings. In this thesis we focus on these relative feedback techniques, and
particularly on so-called interleaved comparison methods that infer preferences between
rankings using click data. Besides in online learning to rank applications, these methods
are used for online evaluation for search engine research and development in general.

Given that three interleaved comparison methods have been developed previously,
we first aim to understand how these methods compare to each other, i.e., how can we
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decide which method to use for an online learning to rank system, or to evaluate a given
retrieval system? We formalize criteria for analyzing interleaved comparison methods,
to answer the following questions:

RQ 1 What criteria should an interleaved comparison method satisfy to enable reliable
online learning to rank for IR?

RQ 2 Do current interleaved comparison methods satisfy these criteria?

In answering these questions, we identify three minimal criteria that interleaved com-
parison methods should satisfy: fidelity, soundness, and efficiency. An interleaved com-
parison method has fidelity if the quantity it measures, i.e., the expected outcome of
ranker comparisons, properly corresponds to the true relevance of the ranked documents.
It is sound if its estimates of that quantity are statistically sound, i.e., unbiased and con-
sistent. It is efficient if those estimates are accurate with only little data.

Analyzing previously developed interleaved comparison methods, we find that none
of them exhibit fidelity. To address this shortcoming, we develop a new interleaved com-
parison method, probabilistic interleave (PI), that is based on a probabilistic interpreta-
tion of the interleaving process. An extension of PI, PI-MA, is then derived to increase
the method’s efficiency by marginalizing over known variables instead of using noisy
estimates. Regarding these new methods, we address the following questions:

RQ 3 Do PI and its extension PI-MA exhibit fidelity and soundness?

RQ 4 Is PI-MA more efficient than previous interleaved comparison methods? Is it
more efficient than PI?

While previous interleaved comparison methods required collecting new data for
each ranker comparison, our probabilistic framework enables the reuse of previously
collected data. Intuitively, the information contained in these previously collected lists
and user clicks should provide some information about the relative quality of new target
rankers. However, the source distribution under which the data was collected may differ
from the target distribution under which samples would be collected if the new target
rankers were compared with live data. This can result in biased estimates of comparison
outcomes. To address this problem, we design a second extension of PI, PI-MA-IS. It
uses importance sampling to compensate for differences between the source and target
distribution, and marginalization to maintain high efficiency. Investigating this method
analytically and experimentally allows us to address the following questions:

RQ 5 Can historical data be reused to compare new ranker pairs?
RQ 6 Does PI-MA-IS maintain fidelity and soundness?
RQ 7 Can PI-MA-IS reuse historical data effectively?

We then turn to more practical issues of using interleaved comparisons in a web
search setting. In this setting, user clicks may be affected by aspects of result pages
other than true result relevance, such as how results are presented. If such visual aspects

affect user clicks, the question becomes what click-based evaluation really measures. We
address the following questions:

RQ 8 (How) does result presentation affect user clicks (caption bias)?
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RQ 9 Can we model caption bias, and compensate for it in interleaving experiments?

RQ 10 (How) does caption bias affect interleaving experiments?

After addressing the above questions regarding the quality of feedback that can be
obtained in online learning to rank for IR settings, we turn to the principles of online
learning to rank for IR. Given the characteristics and restrictions of online learning to
rank, we investigate how to perform as effectively as possible in this setting. One cen-
tral challenge that we formulate is the exploration-exploitation dilemma. In an online
setting, a search engine learns continuously, while interacting with its users. To satisfy
users’ expectations as well as possible at any point in time, the system needs to exploit
what it has learned up to this point. It also needs to explore possibly better solutions, to
ensure continued learning and improved performance in the future. We hypothesize that
addressing this dilemma by balancing exploration and exploitation can improve online
performance. We design two algorithms for achieving such a balance in pairwise and
listwise online learning to rank:

RQ 11 Can balancing exploration and exploitation improve online performance in on-
line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of
online learning to rank for IR approaches relate to balancing exploration and ex-
ploitation?

Finally, we return to the question of how to learn as quickly and effectively as possi-
ble in an online learning to rank for IR setting. We hypothesize that reusing click data that
was collected during earlier learning steps could be used to gain additional information
about the relative quality of new rankers. Based on our PI-MA-IS method for reusing
historical data, we develop two algorithms for learning with historical data reuse. The
first, RHC, reuses historical data to make ranker comparisons during learning more reli-
able. The other, CPS, uses historical data for more effective exploration of the solution
space. The research questions addressed by our subsequent research are:

RQ 14 Can previously observed (historical) interaction data be used to speed up online
learning to rank?

RQ 15 Is historical data more effective when used to make comparisons more reliable
(as in RHC), or when used to increase local exploration (as in CPS)?

RQ 16 How does noise in user feedback affect the reuse of historical interaction data for
online learning to rank?

1.2 Main Contributions

In this section we summarize the main algorithmic, theoretical, and empirical contribu-
tions of this thesis.




1.2. Main Contributions

Algorithmic contributions:

e A probabilistic interleaved comparison method, called probabilistic interleave (PI),
that exhibits fidelity, and an extension of PI, called PI-MA, that increases the effi-
ciency of PI by marginalizing over known variables instead of using noisy obser-
vations.

e The first interleaved comparison method that allows reuse of historical interaction
data (called PI-MA-IS, an extension of PI-MA).

e An approach for integrating models of caption bias with interleaved comparison
methods in order to compensate for caption bias in interleaving experiments.

e The first two online learning to rank for IR algorithms (one pairwise, one listwise
approach) that can balance exploration and exploitation.

o The first two online learning to rank algorithms that can utilize previously observed
(historical) interaction data: reliable historical comparisons (RHC), and candidate
preselection (CPS).

Theoretical contributions:

e A framework for analyzing interleaved comparison methods in terms of fidelity,
soundness, and (previously proposed) efficiency.

e Analysis of the interleaved comparison methods balanced interleave, team draft,
and document constraints, showing that none exhibits fidelity.

e Two proofs that show that our proposed extensions of PI, PI-MA and PI-MA-IS
maintain soundness.

e A general-purpose probabilistic model of caption bias in user click behavior that
can combine document-pairwise and pointwise features.

o A formalization of online learning to rank for IR as a contextual bandit problem,
and formulation of the exploration-exploitation dilemma in this setting.

Empirical contributions:

e An experimental framework that allows for the assessment of online evaluation
and online learning to rank methods using annotated learning to rank data sets and
click models in terms of their online performance.

e An empirical evaluation of PI, PI-MA, and all existing interleaved comparison
methods, showing that PI-MA is the most efficient method.

e An empirical evaluation of interleaved comparison methods under historical data,
showing that PI-MA-IS is the only method that can effectively reuse historical data.

e A large-scale assessment of our caption-bias model with pairwise and pointwise
feature sets using real click data in a web search setting, showing that pointwise
features are most important, but combinations of pointwise and pairwise features
are most accurate for modeling caption bias.
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e Results of applying caption bias models to interleaving experiments in a web
search setting, indicating that caption bias can affect interleaved comparison out-
comes.

e The first empirical evidence that shows that balancing exploration and exploitation
in online learning to rank for IR can significantly improve online performance in
online learning to rank for IR.

o First empirical evidence showing that reusing historical data for online learning to
rank can substantially and significantly improve online performance.

In addition to the contributions listed above, the software developed for running on-
line learning to rank experiments following our experimental setup is made freely avail-
able (Appendix A). This software package includes reference implementations of the
developed interleaved comparison methods (PI, PI-MA, and PI-MA-IS) and online learn-
ing to rank approaches (balancing exploration and exploitation in pairwise and listwise
online learning, online learning to rank with historical data reuse).

1.3 Thesis Overview

This section gives an overview of the content of each chapter of this thesis. The next
chapter (Chapter 2) introduces background for all subsequent chapters. Chapter 3 details
the problem formulation used throughout this thesis, and introduces the experimental
setup that forms the basis of the empirical evaluations in Chapters 4, 6, and 7.

The next four chapters are the main research chapters of this thesis. Each focuses on
a specific aspect of online learning to rank for IR. We start with the most central compo-
nent, the feedback mechanism, in Chapter 4. This chapter develops a framework for an-
alyzing interleaved comparison methods, and proposes a new, probabilistic, interleaved
comparison method (PI) and two extensions for more efficient comparisons (PI-MA),
and for comparisons with reuse of historical interaction data (PI-MA-IS). Chapter 5 in-
vestigates interleaved comparison methods in a web search setting, and develops models
for compensating for caption bias in interleaved comparisons. Chapter 6 focuses on ap-
proaches for online learning, and investigates how exploration and exploitation can be
balanced in online learning to rank for IR, and whether such a balance can improve the
online performance of such systems. Finally, Chapter 7 integrates the interleaved com-
parison methods developed in Chapter 4 with an online learning to rank algorithm to
investigate whether and in what way historical data reuse can speed up online learning to
rank for IR. We draw conclusions and give an outlook on future work in Chapter 8.

All research chapters build on background introduced in Chapter 2, and all but Chap-
ter 5 use the experimental setup detailed in Chapter 3. Although ideas developed in
earlier chapters are referred to in later chapters, each chapter is relatively self-contained
(assuming knowledge of the background material provided in Chapters 2 and 3). An
exception is Chapter 7, which builds on the interleaved comparison methods developed
in Chapter 4.

Readers familiar with existing online evaluation and online learning to rank ap-
proaches can skip over Chapter 2. Also, for readers primarily interested in the main

6
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ideas and theoretical contributions of this thesis, it is recommended to skip Chapter 3
and only revisit it to understand empirical results as needed.

1.4 Origins

The following publications form the basis of chapters in this thesis.

Chapter 4 is based on (Hofmann et al., 2011c, 2012b, 2013c).

Chapter 5 is based on (Hofmann et al., 2012a).

Chapter 6 is based on (Hofmann et al., 2011a, 2013b).

Chapter 7 is based on (Hofmann et al., 2013a).

In addition, Chapter 3 combines material from (Hofmann et al., 2011a,c, 2012b,
2013a,b,c). Finally, this thesis draws from insights and experiences gained in (Besser
et al., 2010; Hofmann et al., 2008, 2009a,b, 2010a,b, 2011b; Lubell-Doughtie and Hof-
mann, 2012; Tsivtsivadze et al., 2012).







Background

In this chapter we introduce the concepts and previous work on which this thesis is based.
Most immediately relevant are the baseline approaches for online learning to rank, which
are presented in §2.5. However, we build up related material in several steps. First, we
start with general concepts and terminology from IR (§2.1), and learning to rank for IR
(§2.2). Because online learning to rank for IR relies on implicit feedback, such as click
data, we review existing work on uses of such data for improving IR systems (in §2.3).
In this section, we also detail the feedback mechanisms we build on, namely the inter-
leaved comparison methods balanced interleave (Bl), team draft (TD), and document
constraints (DC).

Besides IR, this thesis draws on concepts and techniques developed in reinforcement
learning (RL), a machine learning paradigm where systems learn from interactions with
their environment. Many ideas developed within RL are applicable to online learning to
rank for IR, and we review relevant research in this area in §2.4. Finally, we detail the
two online learning approaches that form our baseline learning algorithms in §2.5.

2.1 Information Retrieval

The term “information retrieval” was coined only in 1950 (as recalled by Mooers (1960)),
but research in this area has been actively pursued for at least the last 100 years. De-
veloped at the end of the 19th and the beginning of the 20th centuries, the first auto-
matic retrieval systems used mechanical solutions to speed up lookup in library cata-
logues (Sanderson and Croft, 2012). Research in this area accelerated with the tech-
nological developments of the following decades — systems based on microfilm were
succeeded by punchcards and early computerized systems — and ambitious visions were
formulated of systems that would allow users to pave trails through information land-
scapes (Bush, 1945), and that could mine users’ search behavior to learn the language to
describe documents from a user’s perspective (Mooers, 1960).

Since then, IR has undergone dramatic changes, not least because of the pervasive-
ness and scale at which recorded information has become widely accessible. However,
some of the components and concepts central to IR were first developed during early IR
research. In this section, we give a brief overview of the concepts that are central to IR
and that we refer to throughout this thesis.




2. Background

An IR system provides its users with access to information, which is typically stored
in the form of a document collection. Interaction between a user and a retrieval system
is initiated by the user, with the goal of satisfying some (more or less explicit) infor-
mation need (Belkin et al., 1982). The user expresses this information need in a query
(e.g., as a sequence of keywords, but other forms are possible'), and submits the query
to the retrieval system. Based on the query, the system’s task is to select information to
present to the user that is likely to be relevant to the users’ information need (the con-
cept of relevance is central to IR, but is notoriously difficult to define; we discuss this
concept in detail towards the end of this section). Most often, this takes the form of se-
lecting documents from its collection. The result presentation is typically in the form of a
ranking, in the order of probability of the documents’ relevance to the user’s information
need (Robertson, 1977).

A major focus of IR research is the development of retrieval models that capture the
relationship between a query and a document. In early retrieval systems, the boolean
model was dominant (Salton et al., 1983). This model allows users to formulate queries
in the form of logical clauses, and retrieve the set of documents that match the query.
Limitations of this model led to the development of weighting schemes that allowed users
or systems to assign weights to individual terms to indicate their importance (Salton et al.,
1975). A result of this effort was the vector space model (VSM), in which queries and
documents are represented by vectors in some space of terms (Salton, 1979). Instead of
returning sets of matching documents, retrieval systems based on the VSM return ranked
lists in which documents are ordered by their similarity to the user query in vector space.
One of the most influential weighting schemes developed for the VSM is TF-IDF. In it,
terms in document vectors are weighted by their term frequency (TF — the number of
times the term occurs in the document) times their inverse document frequency (IDF —
the inverse of the number of documents in the collection in which the term occurs).

The concept of document rankings was further formalized in the Probability Rank-
ing Principle, which states that retrieval performance is optimized when systems rank
documents by their probability of relevance (Robertson, 1977) (assuming an individual
user and independence between documents). Consequently, probabilistic approaches to
IR were developed, with BM25 as one of the most widely-known variants (Spirck Jones
et al., 2000). The most recently developed major IR approaches are based on statisti-
cal language modeling, where documents are modeled as sequences of words that are
drawn from an underlying distribution. There, scoring a document for a given query
is implemented as estimating the probability that the query and the document are sam-
pled from the same distribution (Hiemstra, 1998; Ponte and Croft, 1998). Besides these
major retrieval models, many alternatives and extensions have been proposed. Recent
developments include extended language models that take, e.g., term proximity into ac-
count (Metzler, 2011) and models based on quantum theory (Van Rijsbergen, 2004).

The developed content-based retrieval models were often found to be effective for
finding documents that matched the topic of a query. However, early results of IR re-

I'The empirical research described in this thesis is conducted on data collections that represent textual docu-
ments and text-based queries. However, the developed technology is independent of the type of collection and
can, in principle, be applied to any feature-based representation of query-document pairs, where both “query”
and “document” are interpreted very broadly (e.g., documents can be any retrievable entity). Our methods
require that results for a query can be interleaved (cf., §2.3.1).
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search showed that such topical matches are not always sufficient, and that the use of
additional sources of information could improve results (Salton, 1963). One information
source that has been explored extensively are references or citations that link documents
such as scientific papers. Garfield (1964) first proposed to index citations and use them
for scientific literature search. A crucial insight was that citation information could be
represented as a graph structure that could be analyzed to identify e.g., groups of related
documents (Salton, 1963). With the advent of the web, such graph-based methods were
extended to authoritative web pages based on the link structure of the web. Key develop-
ments, such as the HITS algorithm developed by Kleinberg (1999), and the related Page-
Rank algorithm, proved crucial for effective web search (Brin and Page, 1998). Today,
graph-based approaches are extended e.g., to understand community structures on the
social web, and are applied to develop tools for social and personalized search (Carmel
etal., 2009; Efron, 2011). Besides the large-scale graph structure exploited by algorithms
such as PageRank, more fine-grained structural information has been shown to be useful
for retrieval (Hofmann et al., 2009b). Extensions of topical retrieval models that take
document structure into account are BM25F (“fielded” BM25) (Robertson et al., 2004)
and the Indri search engine that is based on a combination of language modeling and
inference networks (Metzler and Croft, 2004).

In recent years, a wide variety of additional contextual factors have been integrated
with retrieval models. For example, terms extracted from users’ previous queries and
previously visited web pages can capture aspects of users’ general interests and cognitive
background (Matthijs and Radlinski, 2011; Shen et al., 2005). Similarly, detecting users’
search goals and intents can be used to improve retrieval performance (Besser et al., 2010;
Teevan et al., 2008). In a study of contextual factors in expert finding, we found that
several task-dependent factors, such as media experience, organizational structure, and
position of an expert in an organization, could improve retrieval performance (Hofmann
et al., 2008, 2010a). Finally, the use of location (Bennett et al., 2011) and temporal
information (Berberich et al., 2010) was shown to improve search results in, e.g., web
and news search.

Newly developed IR models are evaluated following the strong tradition of empirical
research in this area. The Cranfield paradigm, which forms the foundation of the Text
Retrieval Conference (TREC — the largest IR evaluation campaign) (Voorhees, 2002)
allowed rapid progress toward effective topical retrieval models by abstracting away dif-
ferences between individual users. This setup concentrates on the basic elements of IR
evaluation. Given document-query pairs, expert annotators (also called relevance judges)
are required to manually provide relevance judgments, i.e., to annotate whether or in
how far a document is considered relevant for a given query (Voorhees and Harman,
2005). Potential differences between judges and other non-topical aspects of relevance
were not considered initially. However, extensions of the Cranfield paradigm address
interactive IR (Over, 2001), the retrieval of varied information objects (e.g., people, en-
tities, user generated content (Bailey et al., 2007; Balog et al., 2011; Ounis et al., 2008)),
and consider relationships between individual documents (in the novelty and diversity
tracks (Clarke et al., 2009; Soboroff and Harman, 2003)) and queries (in the interactive
and session tracks (Kanoulas et al., 2010; Over, 2001)). Detailed surveys of evaluation
in IR and interactive IR can be found in (Sanderson, 2010) and (Kelly, 2009).

Given a TREC-style document collection with relevance judgments, the quality of an
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IR system is computed using one or more IR evaluation measures. Early work focused on
recall and precision, but many alternatives have been proposed since (Sanderson, 2010).
A measure that was developed during the early years of TREC, and that continues to be
influential, is Mean Average Precision (MAP), which captures ranking performance in
a single summary statistic. Other metrics have been developed to allow for graded rele-
vance judgments (Jarvelin and Kekéldinen, 2002), assess the quality of diversified result
lists (Clarke et al., 2011), or explicitly model assumptions about user behavior (Chapelle
et al., 2009; Yilmaz et al., 2010).

In this thesis we evaluate ranking performance in terms of Normalized Discounted
Cumulative Gain (NDCG) (Jarvelin and Kekildinen, 2002). This measure was proposed
to deal with graded relevance judgments, and is the most commonly used evaluation mea-
sure for assessing interleaved comparison methods (Radlinski and Craswell, 2010) and
online learning to rank (Yue and Joachims, 2009). We use the formulation from (Burges
et al., 2005):2

len(1)

2rel(l[i]) -1
NDCG = Y
i=1

. —1
reRCER) iNDCG™". 2.1)

For a given result list 1 of length len(1), this metric sums over the gain that is based on the
relevance label (rel(1[i])) of each document, and divides it by a discount factor (based on
the log of the rank ¢ at which the document was presented). This sum is then normalized
by the ideal NDCG (i N DCG) that would be obtained on an ideal document ranking.

As mentioned above, the goal of retrieval models and evaluation efforts is to cor-
rectly select or rank “relevant” documents. Despite being the most central concept of
IR research, the meaning of “relevance” has been debated throughout the development
of the field. Relevance has been operationalized in many different ways, ranging from
topical relevance (whether a document is about a given topic), to cognitive (concerning
the relation between the presented information and a user’s cognitive state, e.g., back-
ground or domain knowledge) (Ingwersen and Jdrvelin, 2005) and situational (concern-
ing the relation between the presented information and a user’s situation) views (Sarace-
vic, 2007). Defining this concept is an interdisciplinary effort, and forms an important
overlap between IR and Information Seeking — a research area where the information
seeking process itself is the main focus of investigation. Discussions range from aspects
of human psychology, where information seeking can be characterized as behavior with
the goal of reducing uncertainty (and relevant information is information that indeed re-
duces uncertainty) (Morrison, 1993; Wilson et al., 2002), to epistemological reflections
that characterize relevance in terms of subject knowledge (Hjgrland, 2010). Here, we
adopt a working definition of relevance as situational. We consider information relevant
when it addresses an (implicit or explicit) information need of the user (of an IR system)
at a given time and place. In addition, relevance can be graded, i.e., pieces of information
can be more or less relevant to a user in a given situation.

The concept of relevance is important to this thesis, because its central motivation
is the question of how to design retrieval systems that can address situational relevance.
In recent years, the amount and variety of digitally available information has increased

2Note that our formulation differs from earlier ones, including the one provided with the LETOR toolkit,
where documents at rank 2 are not discounted (cf., (Jarvelin and Kekaldinen, 2002)). Here, we use the formu-
lation from (Burges et al., 2005) so that relevance differences at the highest ranks can be detected.
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dramatically, as have the types of information needs that more and more heterogenous
users try to answer using these systems. These changes have fostered increasing interest
in research on contextual factors for improving retrieval systems. This work can be seen
as an effort towards addressing situational relevance.

As more contextual factors are identified, we think that different combinations of
these factors will be needed to provide optimal results to each user at each point in time.
Developing such combinations manually is impossible, so methods for automatically
learning such combinations are needed. One solution for automatically tuning retrieval
systems is learning to rank for IR. Existing learning to rank methods will be surveyed in
the next section. In this thesis, we specifically focus on methods for online learning to
rank for IR, which can automatically improve a retrieval system based on observed user
behavior. This technology enables search engines that interactively adapt to their users,
moving closer to the goal of presenting the best possible search results to each user at
each point in time.

2.2 Learning to Rank for IR

Current web search systems take many (possibly hundreds) of ranking features into ac-
count. To address the problem of tuning the large sets of parameters of such systems,
learning to rank methods were developed. These methods use machine learning tech-
niques to tune the parameters of an IR system automatically. Learning to rank for IR is
an active research area, and many approaches have been proposed and refined in recent
years (Liu, 2009). In this section we give a brief overview of the types of learning to rank
methods developed for IR settings.

For the purpose of this thesis, we assume that learning to rank for IR approaches
require a feature-based representation, where feature vectors encode characteristics of
a query, a document, and the relationship between the query and the document. Such
feature-based representations enable generalization across documents and queries. The
goal of the learner is then to find generalizable patterns in how to combine ranking fea-
tures to improve search results (e.g., according to some IR evaluation metric). This
leads to the following problem formulation for supervised learning to rank. The input
is provided as samples of the form (x,vy,q). Here, x = (x1,...,2,)7 € R" is an
n-dimensional feature vector that represents the relationship between a document and
a query; y denotes the ground truth relevance label of the document for a given query;
finally, ¢ € Z indicates to which query the sample belongs. The ground truth label y
can be obtained from a trained annotator, but it can also be inferred from user behavior
(§2.3).

The vast majority of learning to rank for IR approaches are developed for the su-
pervised setting. In this setting, training data in the form of a representative sample of
queries, documents, and relevance judgments is assumed. The specific form and seman-
tics of the input (feature vectors) and output (predicted labels) differ between supervised
learning to rank approaches. Following (Cao et al., 2007), three broad types are dis-
tinguished, namely pointwise, pairwise, and listwise approaches (Cao et al., 2007; Liu,
2009). Distinguishing between these types is helpful, as it provides insights into the
characteristics of learning approaches, such as the type of loss function or optimization
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goal that can be formulated. In turn, this allows conclusions about their effectiveness and
efficiency.

Pointwise learning to rank takes as input the feature vectors x for individual docu-
ments (Liu, 2009), and learns a mapping to the ground truth labels y. Depending on the
domain of y, standard supervised machine learning approaches can be used. For exam-
ple, binary relevance scores (i.e., predicting whether a document is relevant or not) can
be learned using standard classification approaches (Nallapati, 2004), and regression ap-
proaches can be used to learn continuous relevance scores (i.e., the degree of relevance
of a document) (Cossock and Zhang, 2006; Fuhr, 1989). The loss function depends on
the specific approach chosen, but could be the zero-one loss in the case of classification,
or the squared error in the case of regression. A disadvantage of both formulations is that
they do not correspond well to the IR ranking problem. In learning to rank for IR, the
order in which documents are placed is crucial, while an exact prediction of relevance
values is not. It is possible to show that perfect ranking performance can be achieved even
when classification or regression-type losses are high. In addition, IR training sets are
often highly imbalanced (there can be orders of magnitude more non-relevant documents
than relevant documents), making learning difficult. Advantages of pointwise approaches
are their low complexity when compared to pairwise and listwise approaches, and that
existing classification or regression approaches can be applied directly. Extensions of
the pointwise approach include ordinal regression, where a mapping to output scores and
thresholds to distinguish separate relevance levels are learned simultaneously. For exam-
ple, PRank is a popular and effective approach in settings where predictions of absolute
relevance labels are required (Crammer et al., 2001).

Pairwise learning to rank approaches operate on pairs of documents, i.e., they take as
input pairs of document vectors for a given query (X1 4,X2,4) € R™ x R™ (Liu, 2009).
These pairs are mapped to binary labels, e.g., y € {—1,+1}, that indicate whether the
two documents are presented in the correct order, or should be switched. This problem
can be reduced to binary classification by transforming the input to a single combined
feature vector X = X1 4 — X2 4. In this case, the loss function could be based on the clas-
sification errors on all document pairs. Optimizing for this loss function may again result
in a mismatch with ranking performance, because in IR evaluation metrics are much
more sensitive to ranking changes at the top of a result list, than to changes at the bot-
tom of a result list. In contrast, simply counting classification errors would consider all
switches of relevant and non-relevant documents equally important. Also, queries with
many associated candidate documents may skew results, as IR metrics are typically av-
eraged with equal weights per query. The complexity of the pairwise approach is higher
than for the pointwise approach (quadratic in the number of documents if all possible
document pairs are considered), but sampling approaches have been shown to be highly
effective and efficient (Sculley, 2009). Finally, depending on the form of the learned
function, deriving a final ranking from predictions of pairwise preferences may be hard.
However, a major advantage of the pairwise approach over the pointwise approach is
that it abstracts from specific relevance scores and instead focuses on the relative order
of (pairs of) documents. A widely known and effective approach to pairwise learning to
rank is RankSVM, a support vector machine approach to minimizing the pairwise hinge
loss (Herbrich et al., 1999; Joachims, 2002). Related approaches are developed in the
area of preference learning (Fiirnkranz and Hiillermeier, 2010).
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Listwise learning to rank operates on complete result rankings (Liu, 2009). These
approaches take as input the n-dimensional feature vectors of all m candidate docu-
ments for a given query (X1,q,...,Xm,q) € R™*™, and learn to predict either the scores
for all candidate documents, or complete permutations of documents. The loss func-
tion for such an approach can be an IR evaluation measure, although these can be hard
to optimize directly, as they are non-smooth and non-differentiable. Alternatives in-
clude smooth approximations of such measures (e.g., SoftRank (Taylor et al., 2008)),
or, when ground truth is provided in the form of ranked lists, measures of the differ-
ence between predicted rankings and the ground truth (e.g., ListNet (Cao et al., 2007)).
Listwise approaches have the advantage that they can directly optimize for high ranking
performance, but their complexity can be high. Listwise learning to rank approaches
are considered the state-of-the-art, as evidenced by the winning approach of the Yahoo!
Learning to Rank Challenge® (Burges et al., 2011). Best performance was achieved by
an ensemble that combines listwise models, including LambdaRank (Burges et al., 2005;
Donmez et al., 2009) and LambdaMART (Burges et al., 2006), which optimize listwise
measures directly using gradient descent and boosted decision trees.

As in other supervised learning settings, supervised learning to rank for IR methods
typically assume that a representative set of training data (including judgments) is avail-
able at training time, so that characteristics of the data can be estimated from this set.
This labeled data is most often obtained through manual relevance judgment, a process
that is often expensive and, because relevance judges may interpret queries differently
from actual users, may not accurately capture users’ preferences (Sanderson, 2010) (cf.,
situational relevance, §2.1). A number of semi-supervised learning methods have been
proposed more recently, which can, in addition to expensive labeled data, take into ac-
count unlabeled sample data, for example as a means of regularization (Szummer and
Yilmaz, 2011; Tsivtsivadze et al., 2012).

Both supervised and semi-supervised learning to rank approaches work offline. They
use provided training data to learn a ranking function that is expected to generalize well
to new data drawn from the same distribution as the training data. Once deployed, they do
not continue to learn. In contrast, online methods hold the promise of allowing learning
while interacting with users of the retrieval system.

The most common approach for learning without prior labels is active learning,
where the learner is initially provided with an unlabeled training sample, and can re-
quest labels for selected samples from an annotator or relevance judge. The focus of
these methods is to reduce manual labeling effort; however, they are not designed to
learn from natural user interactions. Active learning approaches have been developed
to request labels for queries and documents so that they gain as much information as
possible from each labeled instance. Xu et al. (2007) present an algorithm that learns
a linear combination of features based on relevance, document density, and diversity,
which is then used to select documents for which to obtain feedback. Similarly, Xu
and Akella (2008) follow a probabilistic approach that selects documents expected to
minimize model variance. Donmez and Carbonell (2009) apply active learning to two
state-of-the-art learning to rank algorithms, RankSVM and RankBoost. Their approach
selects the training instances expected to have the largest effect on the current model.

3Seehttp://learningtorankchallenge.yahoo.com/ for details.
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2. Background

An interesting extension of the active learning paradigm is a recently proposed co-
active learning algorithm (Shivaswamy and Joachims, 2012). It assumes that both system
and user actively explore possible solutions to speed up learning. Interactions are mod-
eled such that the system presents an initial ranked list, which is then improved by the
user. It was shown that feedback provided in this way can lead to effective learning.

In contrast to offline (semi-)supervised learning, we address learning to rank in an
online setting, where a system learns directly from interactions with the user. In this
setting, labeled training data is not provided but needs to be collected through interaction
with the user (Yue and Joachims, 2009). In contrast to active learning, feedback is not
explicitly requested, but has to be inferred from natural user interactions. No training
data is required before deploying the system (but any existing data could be used for
bootstrapping the system), and the system is expected to transparently adapt to its users’
true preferences. Online learning to rank for IR naturally maps to problem formulations
developed in the area of reinforcement learning (§2.4).

The main challenges that need to be addressed by online learning to rank for IR
approaches include the quality of available feedback (e.g., when inferring feedback from
click data, see §2.3, addressed in Chapters 4 and 5), and the need to learn quickly and
reliably from the available feedback while maintaining high result quality while learning
(addressed in Chapters 6 and 7).

Our work builds on existing pairwise and listwise online learning to rank for IR ap-
proaches as follows. A first evaluation of RankSVM in an online setting demonstrated
that learning from implicit feedback is possible in principle (Joachims, 2002). How to
best collect feedback for effective learning from implicit feedback has so far not been
examined further, but we hypothesize that online approaches need to explore to learn
effectively. Our work on pairwise online learning to rank is based on the approach
in (Joachims, 2002), which is detailed below (Algorithm 4 in §2.5.1).

Two of the methods for online learning to rank for IR that have been proposed so
far perform listwise learning, meaning that they learn from probabilistic comparisons
between pairs of candidate rankers using listwise feedback (Yue and Joachims, 2009;
Yue et al., 2012). A first such method, Dueling Bandit Gradient Descent (DBGD) was
proposed by (Yue and Joachims, 2009). This method implements stochastic gradient
descent over a large or infinite space of ranking solutions. Alternatively, algorithms
based on multi-armed bandit formulations have been developed to efficiently find the
best ranking solutions of a given set (Yue et al., 2012). Our work on listwise online
learning to rank is based on the DBGD algorithm (Algorithm 5 in §2.5.2).

2.3 Click Data and other Types of Implicit Feedback

In the previous section we gave an overview of online learning to rank approaches, de-
signed to learn from user behavior. A crucial component of such an approach is its
feedback mechanism, i.e., how to interpret user behavior to provide useful information
for learning. In this section we give a brief overview of approaches for leveraging user
behavior to improve retrieval.

The earliest method for integrating user feedback with retrieval approaches is the rel-
evance feedback approach introduced by Rocchio (1971). This approach allows users
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to indicate which returned documents are relevant and/or non-relevant to their informa-
tion need, and extracts information from the labeled documents to devise a more specific
query. Relevance feedback approaches have continued to evolve throughout the past
decades. A thorough review is provided in (Ruthven and Lalmas, 2003).

Relevance feedback is an example of explicit feedback. Explicit feedback is not part
of users’ natural interactions towards achieving their (search) goal, but rather it is pro-
vided with the sole purpose of improving retrieval performance. It is similar to relevance
judgments made by professional judges in that it is reliable (as it is consciously provided
to improve system performance) but expensive (it requires users’ time and effort).

In contrast to explicit feedback, implicit feedback is inferred from users’ natural in-
teractions with a (retrieval) system. Approaches for improving retrieval performance
using implicit feedback are based on the idea that user interactions can provide some
information about user satisfaction, e.g., with the relevance of presented search results.
Implicit feedback can include all aspects of recorded user behavior, such as clicks, mouse
movement, dwell time, etc. Compared to explicit feedback, obtaining implicit feedback
is much cheaper, as it is a by-product of natural user interactions, and requires no ad-
ditional time or cognitive effort of the user. On the other hand, implicit feedback is
typically much noisier than explicit feedback, and therefore its interpretation and use are
much more difficult. Surveys and further references on the use of implicit feedback in
retrieval are provided in (Fox et al., 2005; Kelly and Teevan, 2003).

In this thesis, we focus on online learning to rank using click-through data. Click data
is a side-product of natural user interactions. It is abundant in frequently-used search
applications, and (to some degree) reflects user behavior and preferences. Clicks are
part of the natural interaction between users and (web and other) search engines, and in
comparison to other types of feedback can be collected in large quantities at very low
cost. Consequently, a large body of work has focused on using click behavior to infer
information about users’ satisfaction with the search results (Carterette and Jones, 2008;
Chapelle and Zhang, 2009; Dupret et al., 2007; Kamps et al., 2009; Radlinski et al.,
2008b; Wang et al., 2009) and to improve search result quality (Agichtein et al., 2006;
Boyan et al., 1996; Dou et al., 2008; Ji et al., 2009; Joachims, 2002; Jung et al., 2007,
Shen et al., 2005).

As for all forms of implicit feedback, a challenge when using click data is how to ac-
curately interpret it. For instance, top-ranked web search results are clicked much more
frequently than lower-ranked results, even in the absence of a strong difference in rele-
vance (Joachims et al., 2007). Jung et al. (2007) found that click data does contain useful
information, but that variance is high. They propose aggregating clicks over search ses-
sions and show that focusing on clicks towards the end of sessions can improve relevance
predictions. Similarly, Scholer et al. (2008) found that click behavior varies substantially
across users and topics, and that click data is too noisy to serve as a reliable measure of
absolute relevance. Fox et al. (2005) found that combining several implicit indicators can
improve accuracy, though it remains well below that of explicit feedback. In particular,
evaluation methods that interpret clicks as absolute relevance judgments in more broadly
used settings such as literature search, web search, or search on Wikipedia, were found to
be rather unreliable, due to large differences in click behavior between users and search
topics (Kamps et al., 2009; Radlinski et al., 2008b). Finally, click behavior was found to
be affected by visual aspects of result presentation (§2.3.2).
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Nonetheless, in some applications, click data has proven reliable. In searches of
expert users who are familiar with the search system and document collection, clicks can
be as reliable as purchase decisions (Hofmann et al., 2010b; Zhang and Kamps, 2010).
Methods for optimizing the click-through rates in ad placement (Langford et al., 2008)
and web search (Radlinski et al., 2008a) have also learned effectively from click data.

Methods that use implicit feedback to infer the relevance of specific document-query
pairs have also proven effective. Shen et al. (2005) show that integrating click-through
information for query-document pairs into a content-based retrieval system can improve
retrieval performance substantially. Agichtein et al. (2006) demonstrate dramatic per-
formance improvements by re-ranking search results based on a combination of implicit
feedback sources, including click-based and link-based features.

The quickly growing area of click modeling develops and investigates models of
users’ click behavior (Chapelle and Zhang, 2009; Dupret and Liao, 2010; Dupret et al.,
2007). These models are trained per query to predict clicks and/or relevance of docu-
ments that have not been presented to users at a particular rank, or that have not been
presented at all for the given query. An advantage of click models is that they directly
model absolute relevance grades of individual documents. However, it is not yet clear
to what degree they can complement or replace editorial judgments for evaluation. Ex-
tensions of click models combine inferred relevance with editorial judgments. These
extensions have been found to effectively leverage click data to allow more accurate
evaluations with relatively few explicit judgments (Carterette and Jones, 2008; Ozertem
et al.,, 2011). Recently developed evaluation metrics that incorporate insights gained
from click models (Chapelle et al., 2009; Moffat and Zobel, 2008) provide new possibil-
ities for combining click data and editorial judgments, further bridging the gap between
click-based and traditional retrieval evaluation. The click models mentioned above can
be reused to some degree but, unlike our methods, do not generalize across queries.

Since clicks and other implicit feedback vary so much across queries, it is diffi-
cult to use them to learn models that generalize across queries. To address this prob-
lem, Joachims (2002) proposes to interpret clicks not as absolute feedback (e.g., whether
or not a document is relevant), but relative to its context (whether a clicked document is
more or less relevant than a preceding non-clicked document). This interpretation was
successfully demonstrated by Joachims (2002), and forms the basis of our research on
document-pairwise online learning to rank (Chapter 6, esp., §6.1.1).

A particularly promising approach to interpreting click-through data are interleaved
comparison methods (Radlinski et al., 2008b). These methods use clicks on interleaved
result lists to infer relative feedback on ranking functions, and have been shown to pro-
vide reliable comparisons in large-scale web search evaluations (Chapelle et al., 2012;
Radlinski and Craswell, 2010). A more detailed discussion of interleaved comparison
methods and an overview of existing methods are provided in the next section. The
research presented in this thesis builds on these methods.

2.3.1 Interleaved Comparison Methods

Interleaved comparison methods use click data to compare ranking functions. These
methods are quickly gaining popularity as a form of online evaluation, a complement to
TREC-style evaluations. Compared to TREC-style evaluations, which require expensive
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manual relevance judgments, interleaved comparison methods rely only on click data,
which can be collected cheaply and unobtrusively. Furthermore, since this data is based
on the behavior of real users, it more accurately reflects how well their actual information
needs are met (Radlinski et al., 2008b). Previous work demonstrated that two rankers can
be successfully compared using click data in practice (Chapelle et al., 2012).

From the viewpoint of learning to rank, interleaved comparison methods are interest-
ing, as they infer listwise feedback from clicks, which can enable online listwise learn-
ing to rank approaches. Methods for learning to rank from such feedback have been
proposed (Yue and Joachims, 2009; Yue et al., 2012), but our work is the first to empiri-
cally confirm that online learning to rank is possible using the relative, listwise feedback
obtained from interleaved comparison methods (Chapter 6).

At a high level, interleaved comparison methods compare rankers in two steps, one
interleaving step and one comparison step. During the interleaving step, ranked result
lists for a given query are obtained from the two competing rankers. From these, an
interleaved result list is generated in such a way that position bias between the two rankers
is minimized (Radlinski et al., 2008b). The interleaved result list is presented to the
user and clicks are recorded. Then, during the comparison step, the observed clicks are
associated with the original rankers to infer which ranker the user would prefer.

Interleaving involves showing each user results returned by both retrieval functions.
This allows the user’s selection process to provide evidence as to which retrieval function,
in expectation, returns relevant results more often. By doing this direct comparison, inter-
leaving has been shown to be more sensitive than alternative approaches (Radlinski et al.,
2008b). Radlinski and Craswell (2010) compare the reliability and sensitivity of TD to
judgement-based evaluation in a web search setting, and Chapelle et al. (2012) provide
a detailed comparison and evaluation of several interleaving approaches. Alternative in-
terleaving approaches have also been proposed (Joachims, 2003) (cf., BI, below), as well
as alternative scoring approaches (He et al., 2009) (cf. DC, below). In their most recent
work (contemporary with this thesis) Radlinski and Craswell (2013) formulate interleav-
ing as an optimization problem, and explore several rank-based scoring functions with
the goal of increasing the sensitivity of interleaved comparisons.

Below, we introduce the three existing interleaved comparison methods, BI, TD,
and DC. All three methods are designed to compare pairs of rankers (1;(q), I2(q)).*
Here, rankers are deterministic functions that, given a query ¢, produce a ranked list
of documents d. Given 1; and 1, interleaved comparison methods produce outcomes
o € {—1,0,1} that indicate whether the quality of 1; is judged to be lower, equal to,
or higher than that of 15, respectively. For reliable comparisons, these methods are typi-
cally applied over a large number of queries and the individual outcomes are aggregated.
However, in this section, we focus on how interleaved comparison methods compute
individual outcomes. We analyze these interleaved comparison methods in §4.1, and
propose a new, probabilistic interleaved comparison method in §4.2. We present learning
approaches based on interleaved comparisons, and empirical evaluations in Chapters 6
and 7.

4If it is clear from the context which q is referred to, we simplify our notation to 11 and lo.
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Balanced Interleave

BI (Joachims, 2003; Radlinski et al., 2008b) generates an interleaved result list 1 as fol-
lows (cf., Algorithm 1, lines 3—12). First, one of the result lists is randomly selected as
the starting list and its first document is placed at the top of 1. Then, the non-starting list
contributes its highest-ranked document that is not already part of the list. These steps
repeat until all documents have been added to 1, or until it has the desired length. Next,
the constructed interleaved list 1 is displayed to the user, and the user’s clicks on result
documents are recorded. The clicks c that are observed are then attributed to each list as
follows (lines 13—17). For each original list, the rank of the lowest-ranked document that
received a click is determined, and the minimum of these values is denoted as v. Then,
the clicked documents ranked at or above v are counted for each original list. The list
with more clicks in its top v is deemed superior. The lists tie if they obtain the same
number of clicks.

Algorithm 1 Interleaved comparison with BI, following (Chapelle et al., 2012).

1: Input: 1, 1o

2:1=1[;i1=0;i2=0

3. first-1 = random_bit()

4: while (i1 < len(11)) A (i2 < len(lp)) do
50 if (i1 < idg) V ((i1 ==1i2) A (first_.1 == 1)) then
6: if 11[11] g 1 then

7: append(1,1;[i1])

8: 1 =11 +1

9: else

10: if 1o [12] g 1 then

11: append(l,12[iz])

12: 9 =19+ 1

// present 1 to user and observe clicks c, then infer outcome (if at least one click was observed)
13: dyaz = lowest-ranked clicked document in 1
14: v =min{j : (dmaz = L1[j]) V (dmax = L2[j])}
15: ¢ =len {i: c[i] = true A1i] € L1[1..v]}
16: co = len {i : c[i]| = true Al[i] € 15[1..v]}
17: return —1if ¢y > ¢ else 1if ¢; < ¢ else 0

Team Draft

The alternative interleaved comparison method TD (Radlinski et al., 2008b) creates an
interleaved list following the model of “team captains” selecting their team from a set of
players (cf., Algorithm 2). For each pair of documents to be placed on the interleaved
list, a coin flip determines which list gets to select a document first (line 4). It then
contributes its highest-ranked document that is not yet part of the interleaved list. The
method also records which list contributed which document in an assignment a (lines 7,
11). To compare the lists, only clicks on documents that were contributed by each list (as
recorded in the assignment) are counted towards that list (lines 12—14), which ensures
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Algorithm 2 Interleaved comparison with TD, following (Chapelle et al., 2012).

1: Input: 1, 1,
21— [a—|
3: while (3i: L[] €DV (3i: L[i] ¢1) do
4:  if count(a, 1) < count(a,2) V (rand-bit() == 1) then
5: j=min{i:L1[i] €1}
6 append(L,1;[4])
7 append(a, 1)
8: else
9: j=min{i:L[i] €1}
10: append(1,15[4])
11: append(a, 2)
// present 1 to user and observe clicks c, then infer outcome
12: ¢; =len{i: ci] = true A afi] == 1}
13: co = len {i: c[i] = true A afi] == 2}
4: return —1ifc; > ¢ else 1if ¢; < ¢o else O

—

that each list has an equal chance of being assigned clicks. Again, the list that obtains
more clicks wins the comparison. Recent work demonstrates that TD can reliably identify
the better of two rankers in practice (Chapelle et al., 2012; Radlinski and Craswell, 2010).

Document Constraints

While BI and TD directly aggregate clicks to detect preferences between rankers, He
et al. (2009) hypothesize that the efficiency of interleaved comparison methods can be
improved if methods also take into account the preference relations between documents
that can be inferred from clicks. Based on this hypothesis, the authors propose an ap-
proach that we refer to as DC (cf., Algorithm 3).

Result lists are interleaved and clicks observed as for BI (lines 3—12). Then, follow-
ing (Joachims, 2002), the method infers constraints on pairs of individual documents,
based on their clicks and ranks. Two types of constraints are defined: (1) for each pair of
a clicked document and a higher-ranked non-clicked document, a constraint is inferred
that requires the former to be ranked higher than the latter; (2) a clicked document is
inferred to be preferred over the next unclicked document.”> The method compares the
inferred constraints to the original result lists and counts how many constraints are vio-
lated by each. The list that violates fewer constraints is deemed superior. Though more
computationally expensive, this method proved more reliable than either BI or TD on
synthetic data (He et al., 2009).

SVariants of this method can be derived by using only the constraints of type (1), or by using an alternative
constraint (2) where only unclicked documents are considered that are ranked immediately below the clicked
document. In preliminary experiments, we evaluated all three variants and found the one using constraints (1)
and (2) as stated above to be the most reliable. Note that only constraints of type (1) were used in earlier work
(Hofmann et al., 2011c, 2012b).
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Algorithm 3 Interleaved comparison with DC, following (He et al., 2009).

1: Input: 1, 1,

221=1[];i1=0;i2=0

3: first_1 = random_bit()

4: while (i1 < len(1y)) A (i2 < len(lz)) do
5. if (i < da) V ((i1 == d9) A (first_1 == 1)) then
6: if I, [21] g 1 then

7: append(1,1;[i1])

8: i1=11+1

9: else

10: if lg[ig] Q/ 1 then

11 append(1,15[is])

12: 9 =19+ 1

// present 1 to user and observe clicks c, then infer outcome
13: v; = violated(l,c,1y)  // count constraints inferred from 1 and c that are violated by 1,
14: vo = violated(l,c,la)  // count constraints inferred from 1 and c that are violated by 15
15: return —1if v1 < vq else 1 if v; > v, else O

2.3.2 Click Bias

While clicks are becoming more popular as a source of preference indications on search
results, a number of studies have found that click behavior is affected by bias. In this
section we give a brief overview of the types of bias previously found to affect users’
click behavior in web search.

In the context of interleaved comparisons, position bias has been addressed. Position
bias results from the layout of a search result page. Because users generally expect
more relevant items to be listed at the top of a page, and because people are used to
reading pages from top to bottom, top-ranked results are typically the most likely to
be examined. This phenomenon was first confirmed in eye-tracking studies (Granka
et al., 2004; Guan and Cutrell, 2007). Craswell et al. (2008) developed models of user
behavior to describe position bias, and described a cascade model to explain this effect.
The model was refined in several follow-up studies, e.g., to account for multiple clicks on
the same result page (Guo et al., 2009b), and to account for differences in click behavior
for different types of queries and search goals (Guo et al., 2009a).

In addition to position bias, which reflects where on the page a result was displayed,
click behavior is also affected by caption bias, caused by how the result was displayed.
Clarke et al. (2007) studied caption bias by comparing features and click behavior on
pairs of search results. They found that results were more often clicked on when they
had longer snippets, shorter URLs, more query terms matching the caption, matches
of the whole query as a phrase, if the caption was more readable, or if it contained
the term “official” or terms related to images. Yue et al. (2010b) compared click data
on result documents that were sampled to minimize position bias using the Fair Pairs
approach (Radlinski and Joachims, 2006) to editorial judgments. They identified a bias
towards captions that included more highlighted (bold) terms, i.e., items with more bold
terms would be clicked more frequently than similar results with fewer bold terms.
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Other factors affecting click behavior include the domain of the search result (Ieong
et al., 2012), whether or not search results are grouped (e.g., by intent) (Dumais and
Cutrell, 2001), page loading time (Wang et al., 2009), the amount of context shown in
the snippet (Tombros and Sanderson, 1998), and the relation between task and result
caption (Cutrell and Guan, 2007).

In this thesis, we address the effects of visual factors on click behavior, in particular
in a web search setting, in Chapter 5. In §5.2.4, we report on the effects of such caption
bias on interleaving experiments. While our model focuses on caption bias, our approach
is generally applicable to other sources of click bias. In the remainder of this thesis, we
compensate for position bias using interleaved comparisons (Chapters 4 and 7) or by
balancing exploration and exploitation (Chapter 6), and assume that other sources of
click bias have been compensated for.

2.4 Reinforcement Learning

In this thesis, we formulate online learning to rank as an RL problem, a problem in which
an agent learns from interactions with an environment (Kaelbling et al., 1996; Sutton and
Barto, 1998) (cf., Chapter 3). Using this formulation allows us to draw from the ideas and
solutions developed in RL. First, we give an overview of the terminology and concepts
from RL that are important for the IR problem formulation proposed in Chapter 3. Then
we outline standard RL concepts and solutions that form the basis for methods developed
in this thesis, including strategies for balancing exploration and exploitation (§2.4.2), and
off-policy evaluation (§2.4.3).

In RL, an agent interacts with an unknown environment over a series of timesteps,
observing the state of the environment, taking actions, and receiving rewards, which can
be positive, negative, or zero (Kaelbling et al., 1996). For example, a robot navigating
an unfamiliar maze can take actions to move in different directions and might receive
positive reward for reaching a goal and negative reward for using a scarce resource such
as battery power. The distinguishing characteristic of RL problems is that the agent
learns through trial and error (Sutton and Barto, 1998). In this setting, the agent can
only observe the rewards for the actions it selected, meaning that it is never shown any
examples of the optimal action for any situation, as is the case in e.g., supervised learning.

The goal of the agent in an RL problem is to maximize cumulative reward, accamu-
lated while interacting with the environment. How cumulative reward is defined depends
on whether the task is formulated as a finite or infinite horizon problem. In finite hori-
zon problems, the interaction between the agent and its environment is limited to a fixed
number of timesteps 7'. For example, the task of playing soccer could be modeled as a
finite horizon problem that terminates when time expires. In this case, the cumulative
reward C' is simply the sum of rewards received until termination:

T
C = E T,
i=1

where r; is the reward received on the ¢th timestep.
In infinite horizon problems, the interaction between the agent and its environment
continues indefinitely. E.g., the task of managing resources in a factory can be modeled
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action a;

agent environment

state s;
reward r;

Figure 2.1: Generic RL problem and terminology. In contextual bandit problems states
are independent of previous actions.

as an infinite horizon problem, since factories often remain open indefinitely. One issue
with infinite horizon problems is the infinitely delayed splurge: since there are always
infinitely many timesteps to go, the agent always explores, confident that enough time
remains to exploit. To address the issue, infinite horizon problems typically include a
discount factor y € [0, 1) which weights immediate rewards higher than future rewards.
Hence, the agent has an incentive to balance exploration and exploitation, instead of
always exploring. Here, cumulative reward is defined as the discounted infinite sum of
rewards:

C= Zvi_lri. (2.2)
i=1

When v = 0, the agent cares only about maximizing immediate rewards through ex-
ploitation. As y approaches 1, future rewards take on greater importance and the agent’s
incentive to explore increases. One way to interpret the discount factor is to suppose that
there is a 1 — y probability that the task will terminate at each timestep. Rewards are
thus weighted according to the probability that the task will last long enough for them to
occur. This is the formulation used in this thesis (cf., §3.2).

An agent’s behavior is determined by its policy, which specifies what action it should
take in each state. Solutions to finding an optimal policy fall in two categories. First,
policy-search methods use optimization techniques such as gradient methods (Sutton
et al., 2000) or evolutionary computation (Moriarty et al., 1999) to directly search the
space of policies for those accruing maximal reward. Second, value-function methods
work by estimating the expected long-term reward for taking an action in a state and be-
having optimally thereafter (Sutton, 1988). Given an optimal value function, an optimal
policy can be easily derived by selecting in each state the greedy action: the one that
maximizes this value function. The methods explored in this thesis are based on policy
search.

2.4.1 Contextual Bandit Problems

Particularly relevant to this thesis are methods for tackling contextual bandit problems
(also known as bandits with side information or associative RL (Auer, 2003; Barto et al.,
1981; Langford and Zhang, 2008)), a well-studied type of RL problem (Auer, 2003;
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Barto et al., 1981; Langford and Zhang, 2008; Strehl et al., 2006), as they have been
successfully applied to problems similar to learning to rank for IR (Agarwal et al., 2008;
Langford et al., 2008; Li et al., 2010, 2011; Radlinski et al., 2008a; Zhang et al., 2003).

A contextual bandit problem is a special case of an RL problem in which states are
independent of the agent’s actions. In other words, the agent has no control over the states
to which it transitions (Figure 2.1). Instead, its actions affect only its immediate reward.
A difference between typical contextual bandit formulations and online learning to rank
for IR is that in IR (absolute) reward cannot be observed directly. Instead, feedback
for learning can be inferred from observed user interactions as noisy relative preference
indications (cf., §2.3).

Contextual bandit formulations have proved successful in applications that are similar
to online learning to rank for IR, in cases where implicit feedback can be interpreted in
absolute terms (e.g., in cases where maximizing the click-through rate can be assumed to
lead to good task performance). One solution is to reduce the contextual bandit problem
to several multi-armed bandit problems (a multi-armed bandit problem has only one state
or context), so that a different solution is learned for each context. For example, Langford
et al. (2008) consider the ad placement application. Given a website, their algorithm
learns the value of placing each of a set of candidate ads on the website. Similarly,
Radlinski et al. (2008a) consider how to learn diverse document lists such that different
information needs are satisfied; they present an algorithm for doing so that balances
exploration and exploitation. Our solutions differ from this type of approach in that
context is taken into account by using a feature-based representation, which allows them
to generalize over queries (cf. §2.2).

Another widely-studied application area of related approaches is news recommenda-
tion, where news stories are selected for a user population or for individual users. Work
in this area has focused on learning approaches (Agarwal et al., 2008; Li et al., 2010),
and methods for offline evaluation (Li et al., 2011). Finally, an application to adaptive
filtering is presented by Zhang et al. (2003). However, like other RL algorithms, these
methods all assume access to absolute feedback. For example, in ad placement, clicks
can be interpreted as absolute feedback because they are directly correlated with the
value of the ad-website pair (assuming a pay-per-click model). Since interpreting clicks
as absolute feedback is problematic in online IR settings (Joachims et al., 2007; Radlin-
ski et al., 2008b) (§2.3), these methods are not directly applicable. While in related areas
implicit feedback can often be interpreted as absolute reward, this is not possible in our
setting.

2.4.2 Balancing Exploration and Exploitation

A central challenge of RL is the problem of balancing exploration and exploitation.®
As the agent’s environment is initially unknown, and the agent only receives feedback
(reward) for the actions it tries, the agent needs to try out new actions to learn about
their effects. In addition, it is not enough for the agent to discover a good solution by

SIn the related area of search and optimization, exploration and exploitation are used in a different sense.
There, exploration means global search (over a large part of a solution space) and exploitation means local
search (close to previously identified optima) (Chen et al., 2009). In this thesis we always refer to exploration
and exploitation in the RL meaning, as described in this section.
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the end of learning (as is the case in supervised learning). Rather, it should maximize
the cumulative reward it receives during its interaction with the environment. For this
reason, balancing exploration and exploitation is crucial. The agent needs to try out new
solutions to be able to learn from the observed feedback, and it needs to exploit what it
has already learned to ensure high reward.’

Most approaches for balancing exploration and exploitation in RL have been devel-
oped for value-function methods. For these methods, it is possible to compute a Bayes-
optimal exploration strategy (Poupart et al., 2006; Strens, 2000), but doing so is typically
intractable. Many approaches for heuristically balancing exploration and exploitation
exist (Kaelbling, 1993; Sutton and Barto, 1998). E.g., in e-greedy exploration (Watkins,
1989), the agent selects an action with probability € at each step. With probability 1 — e,
it selects the greedy action, i.e., the one with highest currently estimated value.

Policy-search methods are by nature exploratory, so maximizing cumulative perfor-
mance requires supplementing them with mechanisms for properly balancing exploration
and exploitation. To this end, exploration heuristics developed for value-function meth-
ods have been successfully adapted for policy search (Whiteson and Stone, 2006b).

Because balancing exploration and exploitation is considered important for optimiz-
ing performance while learning in an RL setting, we hypothesize that similar benefits can
be achieved in online learning to rank for IR. We investigate this hypothesis in Chapter 6.

2.4.3 Off-policy Evaluation

One part of this thesis explores the idea of reusing previously collected data for inter-
leaved comparisons (Chapter 4) and online learning to rank for IR (Chapter 7). Such
data reuse was not possible with previous interleaved comparison methods. However,
from an RL perspective, our work is related to off-policy learning (Precup et al., 2000;
Sutton and Barto, 1998). Off-policy learning was developed in the RL community to
address settings where interactions with the environment (to evaluate a new policy) is
expensive (e.g., due to cost of material, such as a robot, or because repeating many real-
time interactions can take a long time). When data from earlier policy evaluations is
available, off-policy methods estimate the value of new policies based on this data.
Algorithms for off-policy evaluation have been developed for tasks similar to IR,
namely news recommendation (Dudik et al., 2011; Li et al., 2011) and ad placement
(Langford et al., 2008; Strehl et al., 2010). In both settings, the goal is to evaluate the
policy of an agent (recommendation engine, or ad selector) that is presented with a con-
text (e.g., a user profile, or website for which an ad is sought), and selects from a set of
available actions (news stories, ads). Off-policy learning in this context is hard because
the data is sparse, i.e., not all possible actions were observed in all possible contexts. So-
lutions to this problem are based on randomization during data collection (Li et al., 2011),
approximations for cases where exploration is non-random (Langford et al., 2008; Strehl
et al., 2010), and combining biased and high-variance estimators to obtain more robust

7Balancing exploration and exploitation plays an important role in many areas, such as sequential exper-
imental design and in the multi-armed bandit work coming from the applied probability community. Early
work includes (Robbins, 1952), with an important breakthrough by Gittins (1979). A recent overview can be
found in (Mahajan and Teneketzis, 2008). Exploration and exploitation have also been extensively studied as
fundamental principles of human and animal decision-making behavior (Cohen et al., 2007).
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results (Dudik et al., 2011).

Though sparse data is also a problem in IR, existing solutions to off-policy evaluation
are not directly applicable. These methods assume reward can be directly observed (e.g.,
in the form of clicks on ads). Since clicks are too noisy to be treated as absolute reward in
IR (Kamps et al., 2009; Radlinski et al., 2008b), only relative feedback can be inferred.
In §4.2.3, we consider how to reuse historical data for interleaved comparison methods
that work with implicit, relative feedback.

However, one tool employed by existing off-policy methods that is applicable to
our setting is a statistical technique called importance sampling (MacKay, 1998; Precup
et al., 2000). Importance sampling can be used to estimate the expected value Er|[f(X)]
under a target distribution Pr when data was collected under a different source distribu-
tion Ps. The importance sampling estimator is:

Pr(z;)
Ps ()

Ep[f(X)] =~ % Z F(z:) 2.3)

where f is a function of X, and the z; are samples of X collected under Ps. These
are then reweighted according to the ratio of their probability of occurring under Pr and
Pgs. This estimator can be proven to be statistically sound (i.e., unbiased and consistent,
cf., Definition 4.1.3 in §4.1) as long as the source distribution is non-zero at all points at
which the target distribution is non-zero (MacKay, 1998).

Importance sampling can be more or less efficient than using the target distribution
directly, depending on how well the source distribution focuses on regions important for
estimating the target value. In §4.2.3, we use importance sampling to derive an unbiased
and consistent estimator of interleaved comparison outcomes using historical data. In
Chapter 7, we show that this estimator allows effective reuse of historical interaction
data in online learning to rank for IR.

2.5 Baseline Online Learning to Rank Approaches

Below, we detail our two baseline algorithms for online learning to rank for IR, which
form the basis of our work on pairwise and listwise online learning to rank for IR in
Chapters 6 and 7.

Both approaches are based on a feature-representation of document-query relations,
i.e., input consists of the feature vectors of the m candidate documents for a given query
(X1,...,Xm).2 Also, both learn a weight vector w for linear-weighted combinations
of these features. At any point ¢ during learning, a ranked list can be obtained from
a current weight vector w, for a given query by scoring the candidate documents us-
ings = w! x (X1,...,%,,), and sorting them by their scores. The weight vectors are
learned using feedback inferred from user clicks. In the case of the pairwise approach,
user behavior is used to infer preferences between document pairs. In the case of the list-
wise approach, preferences are inferred between complete result lists using interleaved
comparison methods (§2.3.1).

8In practice, candidate documents are typically collected based on some feature-based criteria, such as a
minimum retrieval score.
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2.5.1 Learning from Document-Pairwise Feedback

Our first approach builds off a pairwise formulation of learning to rank, and a stochastic
gradient descent learner. Document-pairwise approaches model the pairwise relations
between documents for a given query. Our formulation of the learning to rank problem
from implicit feedback follows Joachims (2002). The learning algorithm is a stochastic
gradient descent algorithm, following Zhang (2004) and (Sculley, 2009).

Pairwise preferences are inferred from clicks, following Joachims (2002) (cf., §2.3).
For example, assume a query ¢, in response to which the system returns documents
(d1,da,ds), in this order. If the user clicks on documents dy and d3, but not on dj,
we can infer that do > dy and d3 = d;. From these observations, labeled data could be
extracted as (dy, da, —1) and (dy, d3, —1).

Given a set of labeled document pairs, we apply the stochastic gradient descent
(SGD) algorithm by Zhang (2004, Algorithm 2.1). This algorithm finds an optimal
weight vector w that minimizes the empirical loss L(w,x,y) given a set P of labeled
training samples, each consisting of a feature vector x and a label y:

|P|
. . A
W = arg min —‘,P‘ E L(w,xi,y;) + §HWH% , 2.4)
w i=1

where the last term is a regularization term. Using the hinge loss, i.e., L(w,x,y) =
max(0,1 — yw7T'x), the algorithm optimizes the same quantity as RankSVM (Joachims,
2002). It was shown to perform competitively on standard learning to rank data sets in
terms of ranking performance with only a fraction of the training time (Sculley, 2009).
Here, we follow the implementation provided in sofia-ml,” and apply it to pairwise learn-
ing by setting x = (Xl,q — xzyq), where x; , and x , are the feature vectors of two
candidate documents for a query gq.

Combining the above method of inferring pairwise feedback and the pairwise learn-
ing method, we obtain our pairwise baseline algorithm (Algorithm 4). It receives as input
a document set D, learning rate 7), regularizer weight A, and an initial weight vector wy.
For each observed query ¢, a set of feature vectors ¢(d;|q;) is extracted that characterize
the relationship between the query and each candidate document d; € D. The document
feature vectors are then scored using the weight vector learned so far (w;_1), and sorted
by this score to obtain an exploitative result list (the best ranking given what has been
learned so far).

The constructed exploitative result list is shown to the user, and clicks on any of the
result documents are observed. From the observed clicks c, all possible labeled docu-
ment pairs P are inferred using the pairwise labeling method described above (Joachims,
2002). The labeled samples in P are then used to update the weight vector w. For
each pair, the loss is obtained by comparing the current solution to the observed la-
bel (line 10 in the definition of the hinge loss above). If the labels do not match, or
the prediction margin is too small, the weight vector is updated using the update rule
Wi = W1 + ny(x1 — X2) — nAw;_1. Here, we use the unregularized version of this
update rule (by setting A = 0) and use a small constant 7. This formulation was found

Provided online athttp://code.google.com/p/sofia-ml/.
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Algorithm 4 Baseline online learning to rank algorithm for the pairwise setting, based
on (Joachims, 2002; Sculley, 2009; Zhang, 2004).

1: Input: D, n, \, wg
2: for query ¢; (t = 1..00) do

32 X=0¢D|q) // extract features
// generate result list

4 s= WtT71X

5. 1= sort_descending_by_score(D,s)[1 : 10]

6:  Display 1 and observe clicked elements c.

7:  Construct all labeled pairs P = (x1, X2, y) for ¢; from 1 and c.

8. for (x1,x%2,y)in P do

9: if ywl | (x1 — x2) < 1.0 and y # 0.0 then

10: Wi = w1 +ny(X1 — X2) — NAW_1 // update w

to show good convergence properties (Zhang, 2004) and resulted in good performance in
preliminary experiments.

2.5.2 Dueling Bandit Gradient Descent

Our listwise baseline approach is DBGD, a listwise stochastic gradient descent algorithm
proposed in (Yue and Joachims, 2009). It is based on randomized search of the solution
space, and uses feedback about the relative quality of result lists. The approach was
previously shown to work effectively under smoothness assumptions for this feedback,
and was empirically evaluated with stochastic feedback based on true NDCG differences.

DBGD learns weight vectors as shown in Algorithm 5 (Yue and Joachims, 2009).
Its first input is a comparison function f(11,1ls), which compares two result lists 1; and
I, using user clicks c (the return value o, € R indicates whether the quality of the
two lists was inferred to be equal (o, = 0), or whether the first (o, < 0) or second
(or, > 0) list was inferred to be better; cf., 2.3.1). A second function, g(d, w) is provided
to generate candidate rankers. The remaining inputs are the step sizes a'® and §, and
an initial weight vector wg. An optional parameter ¢ indicates the maximum amount
of most recent historic interaction data that the algorithm should keep in memory for
possible reuse. This parameter is set to 0 in the baseline version.

The algorithm learns while interacting with search engine users as follows. At any
time, the hypothesized best solution up to that point is maintained as w;. When a query
gt is observed, a new candidate weight vector w} is generated using g(-) (line 4). Then,
result lists for ¢; are generated using both the current best (w;) and the candidate (w7})
weight vector (line 5; generate_list(-) generates a result list using a weight vector as
shown in lines 4 and 5 of Algorithm 4). The two result lists are compared using f(11,15)
(line 6). If w} wins the comparison, w; is updated using the update rule w; < wy + auy
(line 8). Otherwise, w; is not changed. Lines 11-14 of Algorithm 5 shows how historical

10Yye and Joachims (2009) use «y to denote the exploitation step size. We use « to avoid confusion with the
discount factor ~y.
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Algorithm 5 Baseline online learning to rank algorithm for the listwise setting, based
on (Yue and Joachims, 2009).

1: Input: f(11,15), g(6, w), a, d, wq, 6 (default: 0)

2: h+ []

3: for query ¢; (t < 1..00) do

4: (W,’H u;) < g(0, wy) // generate candidate ranker

50 1} = generate_ list(wy); 1o = generate_list(wy)

6: (0L717aac) %f(11;12)

7. if oy, > 0 then

8: Wil & Wi +ou // update current best ranker
9: else

10: Wit < Wy

// maintain historical data if needed
11:  if 6 > 0 then
12: if len(h) = 6 then
13: remove(h, h[0])
14: append(h, (1,a, c))

Algorithm 6 generate_candidate(-) (baseline method for generating candidate rankers,
to be used as g(d, w) in Algorithm 5).

1: Input: 0, w

2: Sample unit vector u uniformly.
3w+ w+du

4: return (w',u)

data is recorded if necessary (if # > 0, cf., Chapter 7 for learning approaches that reuse
historical data).

In the baseline version of this algorithm, generate_candidate(-) is used to generate
candidate weight vectors as follows (Algorithm 6). First, a vector u is generated by
randomly sampling a unit vector. Then, w’ is obtained by moving w by a step of size &
in the direction u. An alternative method of candidate selection using historical data is
presented in §7.1.2.

Central to the performance of DBGD is the choice of a reliable feedback mecha-
nism. The algorithm learns using relative feedback, typically implemented in the form
of an interleaved comparison method (i.e., a method for inferring relative comparisons
between rankers). Previous to this work, DBDG was evaluated in supervised learning
settings only, i.e., its effectiveness using interleaved comparison methods had not been
confirmed. We give an overview of existing interleaved comparison methods in §2.3.1
and develop new ones in 4. Learning with DBGD and different interleaved comparison
methods is empirically investigated in Chapters 6 and 7.
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In this chapter, we formalize online learning to rank for IR as a contextual bandit problem
and detail our experimental setup. The problem formulation is employed in all later
research chapters. The experimental setup is used to evaluate the algorithms presented
in Chapters 4, 6, and 7, using learning to rank data sets and click data. A different
experimental setup, based on observed user interactions with a web search engine, is
used in Chapter 5, and is explained in that chapter.

Below, we first detail our problem formulation (§3.1). We then give an overview of
the experimental setup (§3.2), before turning to the click models (§3.3), data sets (§3.4),
and evaluation measures (§3.5) used.

3.1 Problem Formulation

We formulate the problem of online learning to rank for IR as a continuous cycle of
interactions between users and a search engine, in which the search engine’s goal is to
provide the best possible search results at all times. In contrast to most current formu-
lations in IR, where the search engine passively applies its ranking model, we consider
it an active agent. To optimize its ranker, the search engine can learn from interaction
with its users. A natural fit for this problem are formalizations from RL, in which an
algorithm learns by trying out actions (e.g., document lists) that generate rewards (e.g.,
an evaluation measure such as NDCG) from its environment (e.g., users) (Sutton and
Barto, 1998) (cf. §2.4). Using this formalization allows us to describe this problem in a
principled way and to apply concepts and solutions from this well-studied area.

Figure 3.1 shows the interaction cycle. A user submits a query to a retrieval system,
which generates a document list and presents it to the user. The user interacts with the
list, e.g., by clicking on links, from which the retrieval system infers feedback about
the quality of the presented document list. Based on the inferred feedback, the retrieval
system can improve its ranker to better respond to future queries. This problem formu-
lation directly translates to an RL problem (cf., Figure 3.1, RL terminology in italics) in
which the retrieval system tries, based only on implicit feedback, to maximize a hidden
reward signal that corresponds to some evaluation measure. We make the simplifying
assumption that queries are independent, i.e., queries are independent of each other and
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Figure 3.1: The IR problem modeled as a contextual bandit problem, with IR terminology
in black and corresponding RL terminology in green and italics.

of previously displayed results.! This renders the problem a contextual bandit problem
(Barto et al., 1981; Langford and Zhang, 2008) (§2.4.1).

Because our algorithms learn online, we need to measure their online performance,
i.e., how well they address users’ information needs while learning. Previous work in
learning to rank for IR has considered only final performance, i.e., performance on un-
seen data after training is completed (Liu, 2009), and, in the case of active learning,
learning speed in terms of the number of required training samples (Xu et al., 2010).

As is common in RL, we measure online performance in terms of cumulative reward,
i.e., the sum of rewards over all queries addressed during learning (Sutton and Barto,
1998). Many definitions of cumulative reward are possible, depending on the modeling
assumptions. We assume an infinite horizon problem, a formulation that is appropriate
for IR learning to rank problems that run indefinitely (§2.4). As shown in Eq. 2.2, we use
a discount factor v € [0, 1) to weight immediate rewards higher than future rewards.

To summarize, we model online learning to rank for IR as an interaction cycle be-
tween the user and the retrieval system. We assume an infinite horizon setting and use dis-
counting to emphasize immediate reward. This problem formulation differs from those
traditionally used in IR because performance depends on cumulative reward during the
entire learning process, rather than just the quality of the final retrieval system produced
by learning. It also differs from typical contextual bandit problems, which assume that
the agent has access to the true immediate reward resulting from its actions. Typical IR
evaluation measures require explicit feedback, which is not available in most realistic use
cases for online learning to rank. Thus, this contextual bandit problem is distinct in that
it requires the learner to cope with implicit feedback such as click behavior (§2.3).

3.2 Experimental Setup

Evaluating the ability of an algorithm to maximize cumulative performance in an online
IR setting poses unique experimental challenges. The most realistic experimental setup—
in a live setting with actual users—is risky because users may get frustrated with bad

IThis formulation corresponds to a setting where each query is submitted by a different user.
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search results. The typical TREC-like setup used in supervised learning to rank for IR is
not sufficient because information on user behavior is missing.

To address these challenges, we propose an evaluation setup that simulates user in-
teractions. This setup combines data sets with explicit relevance judgments that are typi-
cally used for supervised learning to rank with recently developed click models. Given a
data set with queries and explicit relevance judgments, interactions between the retrieval
system and the user are simulated (cf., the box labeled “user/environment” in Figure 3.1).
Submitting a query is simulated by random sampling from the set of queries. After the
system has generated a result list for the query, feedback is generated using a click model
and the relevance judgments provided with the data set. Note that the explicit judgments
from the data set are not directly shown to the retrieval system but are used to simulate
the user feedback and measure cumulative performance.

We use this evaluation setup in two scenarios, the online evaluation scenario and the
online learning to rank scenario. Online evaluation is both a goal in itself and a subprob-
lem of online learning to rank. By itself, it allows the assessment of rankers that were
tuned e.g., manually, or using offline learning to rank, using real search engine traffic. As
a subproblem of online learning to rank, online evaluation provides the mechanism for
inferring feedback for learning.

The online evaluation scenario is investigated in Chapter 4. There, the goal of our
experiments is to assess the efficiency of interleaved comparison methods when com-
paring different rankers, and therefore we measure how much interaction data a method
needs to distinguish two rankers. We investigate the online learning to rank scenario in
Chapters 6 and 7. There, we focus on online performance, i.e., we measure cumulative
reward as described above. The details of each specific experiment are explained in the
respective chapters as needed.

Using simulated evaluations naturally has limitations, but allows us to systematically
investigate online evaluation and online learning to rank methods, without the risks asso-
ciated with experiments involving real users. Here, we can show how learning methods
behave under different assumptions about user behavior, but to what degree these as-
sumptions apply in specific practical settings needs to be studied in more detail, which is
beyond the scope of this thesis. We address one aspect of user behavior, caption bias, in
a study of real-live search engine traffic in Chapter 5.

3.3 Click Models

Our click models are based on the Dependent Click Model (DCM) (Guo et al., 2009a,b),>
a generalization of the cascade model (Craswell et al., 2008), that has been shown to be
effective in explaining users’ click behavior in web search. The model explains position
bias (i.e., the observation that higher-ranked results are much more likely to be clicked
than lower-ranked ones) by positing that users start examining documents at the top of
a result list. For each document they examine, they determine whether the document
representation (e.g., consisting of title, snippet and URL) appears promising enough to
warrant a click (we model this step of deciding to click with a click probability given

2Models that take additional information into account have been shown to more accurately reflect click
behavior (Xu et al., 2012), but these make stronger assumptions, rendering experiments unnecessarily complex.
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some relevance label P(C|R)). After each click, users decide whether they are satisfied
with the information provided in the clicked document(s) and they want to stop examin-
ing further results (with stop probability P(S|R)), or if they want to continue examining
results.

To instantiate this click model we need to define click and stop probabilities. When
the DCM is trained on large click logs, probabilities are estimated for individual query-
document pairs, while marginalizing over the position at which documents were pre-
sented in the training data. In our setting, learning these probabilities directly is not
possible, because no click log data is available. Therefore, we instantiate the model
heuristically, making choices that allow us to study the behavior of our approach in vari-
ous settings. Setting these probabilities heuristically is reasonable because learning out-
comes for the gradient algorithms used in this thesis are influenced mainly by how likely
users are to click on documents of different relevance grades. Thus, the ratio of these
probabilities is more important than the actual numbers used to instantiate the model.
We use several instantiations to cover a broad range of scenarios, from very reliable to
very noisy click behavior.

We define four click models for annotated data sets with up to five relevance levels,
ranging from 0 — “non-relevant” to 4 — “highly relevant”. An overview of the resulting
click models is given in Table 3.1.

click probabilities stop probabilities
relevance grade R 0 1 2 3 4 0 1 2 3 4
perfect 0.0 02 04 08 1.0 {00 00 0.0 00 0.0
navigational 005 03 05 07 095102 03 05 07 09
informational 0.4 06 07 08 09 |01 02 03 04 05
almost random 0.4 045 05 055 06 [05 05 05 05 05

Table 3.1: Overview of the click models used in our experiments for data sets with five
relevance grades. For data sets with three relevance grades, only the values for R €
{0,2,4} are used. For data sets with binary relevance, only the values for the lowest
(R = 0, non-relevant) and highest (R = 4, relevant) relevance grades are used.

First, to obtain an upper bound on the performance that could be obtained if feedback
was very reliable, we define a perfect click model. This model simulates a user who clicks
on all highly relevant documents (R = 4), and never clicks on non-relevant documents
(R = 0). Click probabilities for intermediate relevance levels have a linear decay, except
for a higher increase in click probability between relevance levels 2 and 3 (based on pre-
vious work that showed that grouping “good” documents with non-relevant documents
is more effective than grouping them with relevant documents (Chapelle et al., 2009)).
The stop probability for this click model is zero, meaning that there is no position bias
(simulated users examine all top-10 results).

We also implement two realistic models, the navigational and informational models.
These models are based on typical user behavior in web search (Broder, 2002; Guo et al.,
2009a), because most of the data sets we use implement web search tasks (see below,
§3.4).
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The navigational click model simulates the focus on top-ranked and highly relevant
results that are characteristic of navigational searches (Liu et al., 2006; Rose and Levin-
son, 2004). In a navigational task, users look for a specific document they know to exist
in a collection, e.g., a company’s homepage. Typically, it is easy to distinguish relevant
and non-relevant documents and the probability of stopping examination after visiting
a relevant result is high. Therefore, our navigational model is relatively reliable, with
a strong decay in click probabilities with decreasing relevance. In comparison with the
perfect click model, the navigational model results in fewer clicks on result documents,
with a stronger focus on highly relevant and top-ranked results (i.e., position bias is high).

In an informational task, users look for information about a topic, which can be dis-
tributed over several pages. Here, users generally know less about what page(s) they are
looking for and clicks tend to be noisier. Correspondingly, the informational click model
captures the broader interests characteristic for informational searches (Liu et al., 2006;
Rose and Levinson, 2004). In this model, the click and stop probabilities for lower rele-
vance grades are more similar to those for highly relevant documents, resulting in more
clicks, and more noisy click behavior than the previous models.

As a lower bound on click reliability, we also include an almost random click model,
with only a small linear decay in the click probabilities for different relevance grades.
This model has a strong position bias, with stop probability P(S) = 0.5 for all relevance
grades.

3.4 Data Sets

We conduct our experiments using several standard data sets for learning to rank in IR.
In Chapter 4 we use the MSLR-WEB30k data set, and in Chapters 6 and 7 we use the
data sets contained in the LETOR 3.0 and 4.0 collections. All data sets consist of a
set of query-document pairs, represented by up to 136 ranking features, and relevance
judgments provided by professional annotators.

The MSLR-WEB30k Microsoft learning to rank data set? is used in our online eval-
uation experiments in Chapter 4. This data set was constructed to provide access to
realistic training data as it is used by search engines, such as Bing. It encodes rela-
tions between queries and candidate documents in 136 precomputed features, including
scores for language modeling, BM25, TF-IDF, and other retrieval models computed on
different document fields (title, anchor, etc.), quality indicators, click-based features,
and PageRank and other link-based features. Relevance judgments were obtained from
professional web-search judges, and are provided on a 5-point scale. Our experiments
use the training set of fold 1. This set contains 18,919 queries, with an average of 9.6
(judged) candidate documents per query.

The online learning to rank experiments in Chapters 6 and 7 use the LETOR 3.0 and
LETOR 4.0 collections (Liu et al., 2007). In total, these two collections comprise nine
data sets.

The following search tasks are implemented: the data set OHSUMED models a lit-
erature search task, based on a query log of a search engine for the MedLine abstract

http://research.microsoft.com/en-us/projects/mslr/default.aspx,
retrieved on December 29, 2012.
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database. This data set contains 106 queries that implement an informational search task,
and about 150 judged documents per query. The remaining eight data sets are based on
TREC Web track tasks run between 2003 and 2008. The data sets HP2003, HP2004,
NP2003, and NP2004 implement navigational tasks, homepage finding and named-page
finding. 7D2003 and TD2004 implement an informational task: topic distillation. All
six data sets are based on the .GOV document collection, a crawl of the .gov domain,
and contain between 50 and 150 queries and approximately 1000 judged documents per
query. A more recent document collection, .GOV2 formed the basis of MQ2007 and
MQ2008. These data sets contain 1700 and 800 queries respectively, but far fewer judged
documents per query than the other LETOR data sets (approximately 40 and 20).

The data sets OHSUMED, MQ2007 and MQ2008 are annotated with graded rele-
vance judgments (3 grades, from 0, not relevant, to 2, highly relevant), while the re-
maining LETOR data sets are labeled using binary assessments. Each data set comes
split up for supervised learning to rank experiments using 5-fold cross-validation. We
use the training sets for training during the learning cycle and for calculating online per-
formance, and the test sets for measuring final performance. This setup replicates the
standard established for the supervised learning setting as much as possible.

3.5 Evaluation Measures

Our assessment of online evaluation and online learning to rank methods is based on
NDCG, as defined in Eq. 2.1. For our online evaluation experiments (Chapters 4 and 5),
we compare the outcomes of interleaved comparison methods to the true NDCG differ-
ence between rankers, following previous work (Radlinski and Craswell, 2010).

To measure online performance in online learning to rank experiments (Chapters 6
and 7), we instantiate reward as the NDCG of the (interleaved) result lists presented to
the user. We then define online performance as the discounted sum of NDCG that the
retrieval system accrues throughout the length of the experiment, as shown in Eq. 2.2.

Because our problem formulation assumes an infinite horizon, online performance is
defined as an infinite sum of discounted rewards (cf. §3.2). Since experiments are neces-
sarily finite, we cannot compute this infinite sum exactly. However, because the sum is
discounted, rewards in the far future have little impact and cumulative performance can
be approximated with a sufficiently long finite experiment.

In our experiments, we set the discount factor v = 0.995. This choice can be justified
in two ways. First, it is typical of discount factors used when evaluating RL methods
(Sutton and Barto, 1998). Choosing a value close to 1 ensures that future rewards have
significant weight and thus the system must explore in order to perform well. Second, at
this value of ~, cumulative performance can be accurately estimated with the number of
queries in our data sets. Using this discount factor, rewards after 1,000 iterations have a
weight of 1% or less. Therefore, finite runs over 1,000 are good approximations of true
cumulative performance.

While our main metric is online performance, we additionally report final perfor-
mance (after learning) for analysis. We measure final performance as the NDCG on the
held-out test set.

We test for statistically significant differences between baseline and experiment runs
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using a two-sided student’s t-test. Unless noted otherwise, we consider differences be-
tween runs statistically significant if the obtained p-value is less than 0.05. In tables,
we mark significant increases using # (p < 0.05) or * (p < 0.01) and significant de-
creases using ¥ (p < 0.05) or Y (p < 0.01). Additionally, best results per table row are
highlighted in bold when applicable.

When results are reported in graphs, we provide 95% confidence intervals. We de-
termine whether differences are statistically significant based on the overlap between
confidence intervals.
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Probabilistic Interleaving

Having formulated online learning to rank for IR as a contextual bandit problem (§3.1),
we now turn to one component of this problem, namely how to infer reliable feedback
from user clicks. In contrast to supervised learning approaches, an online learner is
not provided with an appropriate set of training data, but has to elicit feedback useful
for learning by interacting with the user. Because previous work found that relative
interpretations of user actions are most reliable, we focus on such interpretations, in
particular interleaved comparison methods (§ 2.3.1). These methods were found to be
able to accurately compare the quality of competing rankers using click data, and are
applicable beyond online learning to rank, to ranker evaluation in general.

This chapter addresses our research questions RQ 1-RQ 7, as specified in §1.1. We
propose a framework for analyzing interleaved comparison methods, and a new set of in-
terleaved comparison methods based on a probabilistic interpretation of the interleaving
process.

First, we focus on the theoretical foundations of interleaved comparison methods,
and address the following question:

RQ 1 What criteria should an interleaved comparison method satisfy to enable reliable
online learning to rank for IR?

We propose to characterize these methods in terms of fidelity, soundness, and efficiency.
An interleaved comparison method has fidelity if it measures the right quantity, i.e., if the
outcome of each ranker comparison is defined such that the expected outcome properly
corresponds to the true relevance of the ranked documents. It is sound if the estimates
it computes of that expected outcome have two desirable statistical properties: namely
they are unbiased and consistent. It is efficient if the accuracy of those estimates improves
quickly as more comparisons are added.

We use the proposed framework to analyze the existing interleaved comparison meth-
ods: BI (Joachims, 2003), TD (Radlinski et al., 2008b), and DC (He et al., 2009):

RQ 2 Do current interleaved comparison methods satisfy these criteria?

We find that, although sound, none of these methods meet our criteria for fidelity. To
overcome this limitation, we propose a new interleaved comparison method, probabilis-
tic interleave (PI). PI is based on a probabilistic interpretation of the interleaving pro-
cess, which enables it to compute comparison outcomes that are weighted by the rank
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differences of clicked documents. PI in its most naive form can be inefficient, because
the probabilistic approach can introduce more noise than existing interleaving methods.
Therefore, we derive an extension to PI that exploits the insight that probability distri-
butions are known for some of the variables in the graphical model that describes its
interleaving process. This allows us to derive a variant of PI, PI-MA, whose estimator
marginalizes out these known variables, instead of relying on noisy samples of them.
Regarding these new methods, we address the following questions:

RQ 3 Do PI and its extension PI-MA exhibit fidelity and soundness?

RQ 4 Is PI-MA more efficient than previous interleaved comparison methods? Is it
more efficient than PI?

We prove that both PI and PI-MA have fidelity and are statistically sound, and we empir-
ically show that PI-MA is more efficient than previous interleaved comparison methods
and PL

We also derive a second extension to PI that broadens the applicability of interleaved
comparison methods by enabling them to reuse previously observed, historical, interac-
tion data. Current interleaved comparison methods are limited to settings with access to
live data, i.e., where data is gathered during the evaluation itself. Without the ability to
estimate comparison outcomes using historical data, the practical utility of interleaved
comparison methods is limited. If all comparisons are done with live data, then appli-
cations such as learning to rank, which perform many comparisons, need prohibitive
amounts of data (cf., Chapter 7). Since interleaving result lists may affect the users’
experience of a search engine, collecting live data is complicated by the need to first
control the quality of the compared rankers using alternative evaluation setups. Unlike
existing methods, the probabilistic nature of PI enables the use of importance sampling
to properly incorporate historical data.

RQ 5 Can historical data be reused to compare new ranker pairs?
RQ 6 Does PI-MA-IS maintain fidelity and soundness?
RQ 7 Can PI-MA-IS reuse historical data effectively?

We prove that PI-MA-IS preserves fidelity and soundness, and empirically show that it
can effectively use historical data for new ranker comparisons.

The remainder of this chapter is organized as follows. We detail our criteria for
analyzing interleaved comparison methods and analyze existing methods in §4.1. In
84.2, we detail our proposed method, PI, and the two extensions PI-MA and PI-MA-IS.
Our experiments for investigating the efficiency of the existing and proposed interleaved
comparison methods are presented in §4.3. We detail and discuss our results in §4.4 and
conclude in §4.5.

4.1 Analysis

We analyze interleaved comparison methods using a probabilistic framework, and three
criteria — fidelity, soundness, and efficiency — that are formulated on the basis of this
framework. In this section, we first introduce our probabilistic framework and show how
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it relates to existing interleaved comparison methods (§4.1.1). Next, we formally define
our criteria for analyzing interleaved comparison methods (§4.1.2). Finally, we use these
criteria to analyze the existing interleaved comparison methods (§4.1.3-84.1.5). The
interleaved comparison methods analyzed in this section (BI, TD, and DC) have been
reviewed in §2.3.1.

411 Framework

The framework we propose in this section is designed for the systematic assessment of
interleaved comparison methods. In our framework, interleaved comparison methods
are described probabilistically using graphical models, as shown in Figure 4.1. These
models specify how a retrieval system interacts with its users and how observations from
such interactions are used to compare rankers. Generally, an interleaved comparison
method is completely specified by the components shown in gray, in the “system” part
of the model. Figure 4.1(a) shows one variant of the model, used for BI and DC, and
Figure 4.1(b) shows another, used for TD and PI (P is introduced in §4.2 below).

user system user system

(a) Graphical model for BI and DC (b) Graphical model for TD and PI

Figure 4.1: Probabilistic model for comparing rankers (a) using BI and DC, and (b) using
TD and PI. Conditional probability tables are known only for the variables in gray.

Both variants include the four random variables ), L, C, and O. The interaction
begins when the user submits a query g ~ P(Q) to the system. We assume that P(Q),
though unknown to the system, is static and independent of its actions. Based on ¢,
a result list 1 ~ P(L) is generated and presented to the user. Because we deal with
interleaving methods, we assume that 1 is an interleaved list that combines documents
obtained from the two rankers 1; (¢) and 15(g). Thus, given ¢, an interleaving method
completely defines P(L) (e.g., Algorithm 1, lines 1-12). The interleaved list 1 is returned
to the user, who examines it and clicks on documents that may be relevant for the given
g, resulting in an observation ¢ ~ P(C) that is returned to the system. The system then
uses ¢, and possibly additional information, to infer a comparison outcome o ~ P(O).
O, which is specified by the comparison step of the method (e.g., Algorithm 1, lines 13—
15), is a deterministic function of the other variables but is modeled as a random variable
to simplify our analysis.

The optional components defined in the model are the dependencies of O on () and
L for BI and DC (cf., Figure 4.1(a)), and the assignments A for TD and PI (cf., Fig-
ure 4.1(b)). As shown in Algorithms 1 (page 20) and 3 (page 22), BI and DC compute

41



4. Probabilistic Interleaving

outcomes using the observed c, 1, and ¢ (specifically, the 1; and 1, generated for that g).
In contrast, the comparison function of TD (and of PI, as we will see in §4.2) does not
require 1 and ¢, but rather uses assignments a ~ P(A) that indicate to which original
ranking function the documents in 1 are assigned (cf., Algorithm 2 on page 21).

The random variables in the model have the following sample spaces. For @, it is the
(possibly infinite) universe of queries, e.g., ¢ = ‘facebook’. For L it is all permutations of
documents, e.g., 1 = [d1, da, d3, d4]. For C it s all possible click vectors, such that c[é] is
a binary value that indicates whether the document 1] was clicked, e.g., ¢ = [1, 0,0, 0].
For A it is all possible assignment vectors, such that afi] is a binary value that indicates
which ranker contributed 1¢] , e.g., a = [1,2, 1, 2].

Within this framework, we are particularly interested in the sign of the expected out-
come E[O]. However, E[O] cannot be determined directly because it depends on the
unknown @ and C. Instead, it is estimated from sample data, using an estimator E [O].
The sign of E[O] is then interpreted as follows. An E[O] < 0 corresponds to inferring a
preference for ranker 1;, E[O] = 0 is interpreted as a tie, and £[O] > 0 is interpreted as
a preference for ranker 1.

The simplest estimator of an expected value is the mean computed from a sample
of i.i.d. observations of that value. Thus, the expected outcome can be estimated by the
mean of n observed outcomes o;:

E[0] = 0;. 4.1

S|

n
=0

Previous work did not formulate estimated interleaved comparison outcomes in terms of
a probabilistic framework as done here. We show below that a commonly used previous
estimator is equivalent to the sample mean. Chapelle et al. (2012) formulate the following
estimator:

wins(ly) + Sties(ly2)

Ewins =
wins(lz) + wins(ly) + ties(ly 2)

—0.5. “4.2)

Here, wins(l;) denotes the number of samples for which 1; won the comparison, and
ties(-) denotes the number of samples for which the two competing rankers tied. The
following theorem states that this estimator is equal to the rescaled sampled mean.

Theorem 4.1.1. The estimator in Eq. 4.2 is equal to two times the sample mean (Eq. 4.1).

Proof. See Appendix 4.A. O

Clearly, this theorem implies that Eq. 4.2 always has the same sign as the sample mean,
and thus the same preferences will be inferred.

Alternative estimators have been proposed and investigated in (Chapelle et al., 2012;
Radlinski and Craswell, 2010; Yue et al., 2010a). Typically, these alternatives are de-
signed to converge faster at the expense of obtaining biased estimates. This introduces a
bias-variance trade-off. A formal analysis of these is beyond the scope of this thesis.
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4.1.2 Definitions of Fidelity, Soundness, and Efficiency

Based on the probabilistic framework introduced in the previous subsection, we define
our criteria for analyzing interleaved comparison methods: fidelity, soundness, and effi-
ciency. These criteria reflect what interleaved comparison outcomes measure, whether an
estimator of that outcome is statistically sound, and how efficiently it uses data samples.
These assessment criteria are not intended to be complete, but are considered minimal
requirements. Nevertheless, they enable a more systematic analysis of interleaved com-
parison methods than was previously attempted.

Our first criterion, fidelity, concerns whether an interleaved comparison method mea-
sures the right quantity, i.e., if E[O|q] properly corresponds to the true quality difference
between 1; and 15 in terms of how they rank relevant documents for a given q. Our
definition uses the following concepts:

e random_clicks indicates that, for a given query, clicks are uniformly random, i.e.,
all documents at all ranks are equally likely to be clicked:

random_clicks(q) < Vd; ; € 1, P(c[r(d;,1)]|lq) = P(c[r(d;,1)]|q),
where P(c[r(d;,1)]|q) is the probability of a click at the rank r at which document

d; is displayed in result list 1.

e correlated_clicks(q) indicates positive correlation between clicks and document
relevance:

correlated_clicks(q) <
Vr € ranks(1), P(c[r]|rel(1[r],q)) > P(c[r]|-rel(1]r],q)),

where rel(1]r], q) indicates that the document at rank r of list 1 is relevant to ¢,
and P(c[r]|rel(1[r], q)) is the probability of a click on the document at r, given
that it is relevant. This means that, for a given query and at equal ranks, a relevant
document is more likely to be clicked than a non-relevant one.

e pareto_dominates indicates that ranker 1; Pareto dominates 1 for query g:

pareto_dominates(ly,1a, q) < Vd € rel(l; Uly, q),r(d, 1) > r(d,1s)
A3dd e rel(l; Uls, q),r(d,1y) > r(d,12),

where rel(l; U lg, ¢) denotes the set of documents in 1; and 1, that are relevant
to q. Thus, one ranker Pareto dominates another in terms of how it ranks relevant
documents if and only if it ranks all relevant documents at least as high as, and at
least one relevant document higher than, the other ranker.

Definition 4.1.2 (Fidelity). An interleaved comparison method exhibits fidelity if,

1. under random clicks, the rankers tie in expectation over clicks, i.e.,

Vq(random_clicks(q) = E[O|q] = 0),
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2. under correlated clicks, ranker 1 is preferred if it Pareto dominates 1;:

Vq(pareto_dominates(lz,11,q) = E[Olq] > 0).

We formulate fidelity in terms of the expected outcome for a given ¢ because, in
practice, a ranking function can be preferred for some queries and not for others. We
consider the expectation over some population of queries in our definition of soundness
below. In addition, we formulate condition (2) in terms of detecting a preference for
I,. This is without loss of generality, as switching 1; and 1 results in a sign change of
E[Olq].

The first condition of our definition of fidelity has been previously proposed in (Radlin-
ski et al., 2008b) and (Chapelle et al., 2012), and was used to analyze BI. A method
that violates (1) is problematic because noise in click feedback can affect the outcome
inferred by such a method. However, this condition is not sufficient for assessing inter-
leaved comparison methods because a method that picks a preferred ranker at random
would satisfy it, but cannot effectively infer preferences between rankers.

We add the second condition to require that an interleaved comparison method prefers
a ranker that ranks relevant documents higher than its competitor. A method that violates
(2) is problematic because it may fail to detect quality differences between rankers. This
condition includes the assumption that clicks are positively correlated with relevance and
rank. This assumption, which is implicit in previous definitions of interleaved compari-
son methods, is a minimal requirement for using clicks for evaluation.

Our definition of fidelity is stated in terms of binary relevance, as opposed to graded
relevance, because requirements about how ranks of documents with different relevance
grades should be weighted depend on the context in which an IR system is used (e.g.,
is a ranking with one highly relevant document better than one with three moderately
relevant documents?). In addition, our definition imposes no preferences on rankings for
which none dominates the other (e.g., one ranking placed relevant documents at ranks
1 and 7, the other places the same documents at ranks 3 and 4 — which is better again
depends on the search setting). Because it is based on Pareto dominance, the second
condition of our definition imposes only a partial ordering on ranked lists. This partial
ordering is stronger than the requirements posed in previous work, with a minimal set of
additional assumptions. Note that in past and present experimental evaluations, stronger
assumptions are implicitly made, e.g., by using NDCG as a performance measure.

In contrast to fidelity, which focuses on outcomes for individual observations, our
second criterion focuses on the characteristics of interleaved comparison methods when
estimating comparison outcomes from sample data (of size n). Soundness concerns
whether an interleaved comparison method’s estimates of E[O)] are statistically sound.

Definition 4.1.3 (Soundness). An interleaved comparison method exhibits soundness for
a given definition of O if its corresponding F[O|, computed from sample data, is an
unbiased and consistent estimator of E[O).

An estimator is unbiased if its expected value is equal to E[O] (Halmos, 1946). It is
consistent if it converges with probability 1 to E[O] in the limit as n — oo (Lehmann,
1999). A simple example of an unbiased and consistent estimator of the expected value
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of a random variable X, distributed according to some distribution P(X), is the mean of
samples drawn i.i.d. from P(X).

Soundness has not been explicitly addressed in previous work on interleaved com-
parison methods. However, as shown above (§4.1.1, Theorem 4.1.1) a typical estimator
proposed in previous work can be reduced to the sample mean, which is trivially sound.
Soundness is more difficult to establish for some variants of our PI method introduced in
84.2, because they ignore parts of observed samples, marginalizing over known parts of
the distribution in order to reduce variance. We prove in §4.2 that these variants preserve
soundness.

Note that methods can perform well in practice in many cases even if they are biased,
because there usually is a trade-off between bias and variance. However, all else being
equal, an unbiased estimator provides more accurate estimates.

The third criterion, efficiency, concerns the amount of sample data a method requires
to make reliable preference decisions.

Definition 4.1.4 (Efficiency). Let E}LO], E,[O] be two estimators of expected inter-
leaved comparison outcomes E[O]. F1[O] is a more efficient estimator of E[O] than
Ex[O] if E1[O] Pareto dominates E»[O] in terms of accuracy for a given sample size,

i.e., £1]0] is more efficient than E5[O)] if and only if

[0]) = sign(E[0])) = P(sign(E3[0]) = sign(E[O])))
1[0]) = sign(E[0])) > P(sign(E3 '

where Ef [O] is the outcome estimated by E; given sample data of size n.

Some interleaving methods may be more efficient than others in specific scenarios
(e.g., known-item search (He et al., 2009)). However, more generally, efficiency is af-
fected by the variance of comparison outcomes under a comparison method, and trends
in efficiency can be observed when applying these methods to a large number of ranker
comparisons. Here, we assess the efficiency of interleaved comparison methods experi-
mentally, on a large number of ranker comparisons under various conditions (e.g., noise
in user feedback) in §4.4.

Efficiency (also called cost by He et al. (2009)), has been previously proposed as
an assessment criterion, and has been investigated experimentally on synthetic data (He
et al., 2009) and on large-scale comparisons of individual ranker pairs in real-life web
search traffic (Chapelle et al., 2012).

In addition to improving efficiency by reducing variance, subsequent interleaved
comparisons can be made more efficient by reusing historical data. For methods that
do not reuse historical data, the required amount of live data is necessarily linear in the
number of ranker pairs to be compared. A key result of this chapter is that this require-
ment can be made sub-linear by reusing historical data. In the rest of this section, we
include an analysis in terms of whether historical data reuse and the resulting increase in
efficiency is possible for existing methods.

Below, we analyze the fidelity, soundness, efficiency, and possibility of data reuse of
the existing interleaved comparison methods, BI (§4.1.3), TD (§4.1.4), and DC (§4.1.5).
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41.3 Balanced Interleave

Fidelity. BI was previously analyzed by Radlinski et al. (2008b) and Chapelle et al.
(2012). The method was shown to violate requirement (1) of fidelity. Here, we extend
this argument, and provide example cases in which this violation of requirement (1) is
particularly problematic. The identified problem is illustrated in Figure 4.2. Given 1; and
15 as shown, two interleaved lists can result from interleaving. The first is identical to 13,
the second switches documents d; and ds. Consider a user that randomly clicks on one
of the result documents, so that each document is equally likely to be clicked. Because
dy is ranked higher by 1; than by 15, 1; wins the comparison for clicks on d;. However, 1,
wins in all other cases, which means that it wins in expectation over possible interleaved
lists and clicks. This argument can easily be extended to all possible click configurations
using truth tables.

BI violates condition (1) of fidelity when, between the compared rankers, individ-
ual documents are moved up or down by more than one rank. In practice, it is possi-
ble that the direction of such ranking changes can be approximately balanced between
rankers when a large number of queries are considered. However, this is unlikely in
settings where the compared lists are systematically similar to each other. For example,
re-ranking approaches such as (Xue et al., 2004) combine two or more ranking features.
Imagine two instances of such an algorithm, where one places a slightly higher weight on
one of the features than the other instance. The two rankings will be similar, except for
individual documents with specific feature values, which will be boosted to higher ranks.
If users were to only click a single document, the new ranker would win BI comparisons
for clicks on all boosted documents (as it ranks them higher), and lose for clicks on all
other documents below the first boosted document (as these are in the original order and
necessarily ranked lower by the new ranker). Thus, under random clicks, the direction of
preference would be determined solely by the number and absolute rank differences of
boosted documents. A similar effect (in the opposite direction) would be observed for al-
gorithms that remove or demote documents, e.g., in (near-)duplicate detection (Radlinski
etal., 2011).

In addition, BI violates condition (2) of fidelity when more than one document is
relevant. The reason is that only the lowest-ranked clicked document (k) is taken into
account when calculating click score differences. If for both original lists the lowest-
ranked clicked document has the same rank, the comparison results in a tie, even if large
ranking differences exist for higher-ranked documents. Condition (2) is not violated
when only one relevant document is present.

Soundness. Soundness of BI has not been explicitly investigated in previous work. How-
ever, as shown in §4.1.1, it is trivially sound because its estimator reduces to the sample
mean.

Efficiency. The efficiency of BI was found to be sufficient for practical applications
in (Chapelle et al., 2012). For example, several thousand impressions were required for
detecting ranker changes that are typical for incremental improvements at commercial
search engines with high confidence.

Data Reuse. Reusing historical data to compare new target rankers using BI is possible
in principle. Given historical result lists and clicks, and a new pair of target rankers,
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1) Interleaving 2) Comparison 3) Comparison with historical data
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d, dy 2 differ from the interleaved lists that would be
ds d; 1, wins the comparison on (a) and the one on generated under the target lists (starting with d,
dy dy (b) results in a tie. In expectation 1, wins. or ds).

Figure 4.2: Interleaving (1) and comparison with BI using live data (2) and historical
data (3).

comparison outcomes can be computed as under live data, following Algorithm 1, lines
13-17. This means that observed clicks would be projected onto the new target lists
to determine k, the rank at which the lowest click would occur for the target rankers.
Then, the number of clicks on the topk results can be counted for the target rankers as
if they had been used in a live comparison. However, such straightforward data reuse
would severely bias the inferred comparison outcomes. In particular, the target ranker
that is more similar to those under which the historical data was originally collected
will be likely to be preferred when data is reused. It is not clear whether and how the
differences between observed interleaved lists and “correct” interleaved lists for the new
target rankers could be compensated for.

41.4 Team Draft

Fidelity. TD was designed to address fidelity requirement (1) (Radlinski et al., 2008b).
This is achieved by using assignments as described in §2.3.1. That the requirement is
fulfilled can be seen as follows. Each ranker is assigned the same number of documents in
the interleaved result list in expectation (by design of the interleaving process). Rankers
get credit for clicks if and only if they are assigned to them. Thus, if clicks are randomly
distributed, each ranker is credited with the same number of clicks in expectation.

However, TD violates fidelity requirement (2) when the original lists are similar
to each other. Figure 4.3 illustrates such a case. Consider the original lists 1; and
l,. Also, assume that ds3 is the only relevant document, and is therefore more likely
to be clicked than other documents. We can see that 1 ranks dsz higher than 1; (i.e.,
pareto_dominates(la, 1y, q) = true; cf. §4.1.2), and therefore 15 should win the com-
parison. When TD is applied, four possible interleaved lists can be generated, as shown
in the figure. All these possible interleaved lists place document d3 at the same rank. In
two interleaved lists, dg is contributed by 1;, and in two cases it is contributed by 1. Thus,
in expectation, both lists obtain the same number of clicks for this document, yielding a
tie. In the example shown, the lists would also tie if d, was the only relevant document,
while in cases where only ds is relevant, a preference for 1, would be detected.

In practice, TD’s violation of requirement (2) can result in insensitivity to small rank-
ing changes. As shown above, some changes by one rank may result in a difference being
detected while others are not detected. This is expected to be problematic in cases where
a new ranking-function affects a large number of queries by a small amount, i.e., doc-
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Figure 4.3: Interleaving (1) and comparison with team draft using live data (2) and his-
torical data (3).

uments are moved up or down by one rank, as only some of these changes would be
detected. In addition, it can result in a loss of efficiency, because, when some ranking
differences are not detected, more data is required to reliably detect differences between
rankers.

Soundness. As with BI, the soundness of TD has not been analyzed in practice. However,
as above, typical estimators produce estimates that can easily be rescaled to the sample
mean, which is consistent and unbiased (cf., Theorem 4.1.1). Building on TD, methods
that take additional sources of information into account have been proposed to increase
the efficiency of interleaved comparisons (Chapelle et al., 2012; Yue et al., 2010a). The
resulting increase in efficiency may come at the expense of soundness. A detailed analy-
sis of these extensions is beyond the scope of this thesis.

Efficiency. As with BI, the efficiency of TD was found to be sufficient for practical appli-
cations in web and literature search (Chapelle et al., 2012). The amount of sample data
required was within the same order of magnitude as for BI, with TD requiring slightly
fewer samples in some cases and vice versa in others. In an analysis based on synthetic
data, TD was found to be less efficient than BI on a simulated known-item search task
(i.e., searches with only one relevant document) (He et al., 2009). This result is likely
due to TD’s lack of sensitivity under small ranking changes.

Data Reuse. Reusing historical data under TD is difficult due to the use of assignments.
One option is to use only observed interleaved lists that could have been constructed
under the target rankers for the historical query. If the observed interleaved lists can be
generated with the target rankers, the assignment under which this would be possible can
be used to compute comparison outcomes. If several assignments are possible, one can
be selected at random, or outcomes for all possible assignments can be averaged. An
example is shown in Figure 4.3. Given the observed interleaved lists shown in step (2),
and two target rankers 1l and 179, the observed document rankings (b) and (c) could
be reused, as they are identical to lists that can be produced under the target rankers.
However, this approach is extremely inefficient. If we were to obtain historical data under
a ranker that presents uniformly random permutations of candidate documents to users,
of the d! possible orderings of d documents that could be observed, only an expected 2%
could actually be used for a particular pair of target rankers. Even for a shallow pool
of 10 candidate documents per query, these figures differ by five orders of magnitude.
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Figure 4.4: Interleaving (1) and comparison with document constraints using live data
(2) and historical data (3).

In typical settings, where candidate pools can be large, a prohibitively large amount of
data would have to be collected and only a tiny fraction of it could be reused. Thus, the
effectiveness of applying TD to historical data depends on the similarity of the document
lists under the original and target rankers, but is generally expected to be very low.

Even in cases where data reuse is possible because ranker pairs are similar, TD may
violate requirement (2) of fidelity under historical data. An example that is analogous
to that under live data is shown in Figure 4.3. Here, the lists would tie in the case that
document dj is relevant, even though lyo Pareto dominates 17;. In addition, reusing
historical data under TD affects soundness because only some of the interleaved lists
that are possible under the target rankers may be found in observed historical data. For
example, in Figure 4.3, only interleaved lists that place dy at the top rank match the
observed data and not all possible assignments can be observed. In this example, clicks
on dy would result in wins for 1y, although the target lists place this document at the
same rank. This problem can be considered a form of sampling bias, but it is not clear
how it can be corrected for.

41.5 Document Constraints

Fidelity. DC has not been previously analyzed in terms of fidelity. We find that DC
violates both requirements (1) and (2). An example is provided in Figure 4.4. The
original lists 1; and 15, and the possible interleaved lists are shown. In the example,
I, wins in expectation, because it is less similar to the possible interleaved lists and
can therefore violate fewer constraints inferred from clicks on these lists. For example,
consider the possible constraints that d; (ranked higher by 1;) and d4 (ranked higher
by 15) can be involved in. Clicks on the possible interleaved lists could result in 14
constraints that prefer other documents over dg4, but in 24 constraints that prefer other
documents over d;. As a result, 1; violates more constraints in expectation, and 15 wins
the comparison in expectation under random clicks.

The example above also violates requirement (2). Consider two relevant documents,
d; and dj are clicked by the user. In this case, 1; should win the comparison as it Pareto
dominates 15. However, for the interleaved lists generated for this case, each original list
violates exactly one constraint, which results in a tie. The reason for the violation of both
requirements of fidelity is that the number of requirements each list and each document
is involved in is not controlled for. It is not clear whether and how controlling for the

49



4. Probabilistic Interleaving

number of constraints is possible when making comparisons using DC.

Soundness. As with BI and TD, soundness of the DC estimator can be easily established,
as it is based on the sample mean (Theorem 4.1.1).

Efficiency. The efficiency of DC was previously studied on synthetic data (He et al.,
2009). On the investigated cases (known-item search, easy and hard high-recall tasks
with perfect click feedback), DC was demonstrated to be more efficient than BC and TD.
DC has not been evaluated in a real live application.

Data Reuse. Finally, we consider applying DC to historical data. Doing this is in prin-
ciple possible, because constraints inferred from previously observed lists can easily be
compared to new target rankers. However, the fidelity of outcomes cannot be guaranteed
(as under live data). An example is shown in part (3) of Figure 4.4. Two new target lists
are compared using the historical data collected in earlier comparisons. Again, two docu-
ments are relevant, d; and ds. The target lists place these relevant documents at the same
ranks. However, 1; violates more constraints inferred from the historical data than 1, so
that a preference for 15 is detected using either historical observation. As with live data,
the number of constraints that can be violated by each original list is not controlled for.
Depending on how the historical result list was constructed, this can lead to outcomes
that are biased similarly or more strongly than under live data.

4.2 Probabilistic Interleave Methods

In this section, we present a new interleaved comparison method called probabilistic in-
terleave (PI). We first give an overview of the interleaving algorithm and provide a naive
estimator of comparison outcomes (§4.2.1). We show that this approach exhibits fidelity
and soundness, but that its efficiency is expected to be low. Then, we introduce two
extensions of PI, that increase efficiency while maintaining fidelity and soundness. The
first extension, PI-MA, is based on marginalizing over possible comparison outcomes for
observed samples (§4.2.2). The second extension, PI-MA-IS, shows how historical data
can be reused to further increase efficiency (§4.2.3).

4.2.1 Probabilistic Interleave

We propose a probabilistic form of interleaving in which the interleaved document list
1 is constructed, not from fixed lists 1; and 15 for a given query g, but from softmax
functions s(1;) and s(ly) that transform fixed result lists into probability distributions
over documents. The use of softmax functions is key to our approach, as it ensures that
every document has a non-zero probability of being selected by each ranker and for each
rank of the interleaved result list. As a result, the distribution of credit accumulated
for clicks is smoothed, based on the relative rank of the document in the original result
lists. If both rankers place a given document at the same rank, then the corresponding
softmax functions have the same probability of selecting it and thus they accumulate
the same number of clicks in expectation. More importantly, rankers that put a given
document at similar ranks receive similar credit in expectation. The difference between
these expectations reflects the magnitude of the difference between the two rankings. In
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Algorithm 7 Probabilistic Interleave.
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this way, the method becomes sensitive to even small differences between rankings and
can accurately estimate the magnitude of such differences.

The softmax functions s(1;) and s(1;) for given ranked lists 1; and 1, are generated by
applying a monotonically decreasing function over document ranks, so that documents
at higher ranks are assigned higher probabilities. Many softmax functions are possible,
including the sigmoid or normalized exponential functions typically used in neural net-
works and RL (Lippmann, 2002; Sutton and Barto, 1998). Here, we use a function in
which the probability of selecting a document is inversely proportional to a power of the
rank 7;(d) of a document d in list 1;:

1

T (d)T

s(L;) := Pi(d) (4.3)

= 71 5
doaep Tiay

where D is the set of all ranked documents, including d. The denominator is a normaliz-
ing constant that ensures that the probabilities sum to 1. Because this softmax function
has a steep decay at top ranks, it is suitable for an IR setting in which correctly ranking the
top documents is the most important. It also has a slow decay at lower ranks, preventing
underflow in calculations. The parameter 7 controls how quickly selection probabilities
decay as rank decreases, similar to the Boltzmann temperature in the normalized expo-
nential function (Sutton and Barto, 1998). In relation to traditional IR metrics, 7 can be
interpreted as a discount factor that controls the focus on top ranked documents, similarly
to, e.g., the rank discount in NDCG (Jirvelin and Kekéldinen, 2002). In our experiments
(84.3), we use a default of 7 = 3 and explore possible choices of 7 and their relation to
traditional evaluation metrics.

After constructing s(11) and s(13), 1 is generated similarly to TD (cf., Algorithm 7).
However, instead of randomizing the ranker to contribute the next document per pair,
one of the softmax functions is randomly selected at each rank (line 7). Doing so is
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mathematically convenient, as the only component that changes at each rank is the distri-
bution over documents. More importantly, this change ensures fidelity, as will be shown
shortly. During interleaving, the system records which softmax function was selected to
contribute the next document in assignment a (line 9). Then, a document is randomly
sampled without replacement from the selected softmax function (line 10) and added to
the interleaved list (line 11). The document is also removed from the non-sampled soft-
max function, and this softmax function is renormalized (line 12). This process repeats
until 1 has the desired length.

The interleaved result list is then shown to the user in response to the query and user
clicks c are observed, where each entry in c indicates whether the corresponding docu-
ment in 1 has been clicked. The observed clicks are used by the second step, comparison.
Comparison outcomes can be computed as under TD, i.e., by counting the clicks ¢; and
co assigned to each softmax function and returning o = (—1if ¢; > coelse Lif ¢y < ¢
else 0). An alternative method for computing comparison outcomes more efficiently is
developed in §4.2.2. Finally, the algorithm returns both the computed outcome, and, in
case the observed sample is to be reused as historical data, the generated (1, a, c).

PI exhibits fidelity for the following reasons. To verify condition (1), consider that
each softmax function is assigned the same number of documents to each rank in expec-
tation (by design of the interleaving process). Clicks are credited to the assigned softmax
function only, which means that in expectation the softmax functions tie under random
user clicks. To verify condition (2), consider that each softmax function has a non-zero
probability of contributing each document to each rank of the interleaved list. This prob-
ability is strictly higher for documents that are ranked higher in the result list underlying
the softmax function, because the softmax functions are monotonically decreasing and
depend on the document rank only. The softmax function that assigns a higher proba-
bility to a particular document d, has a higher probability of contributing that document
to 1, which gives it a higher probability of being assigned clicks on d,.. Thus, in expec-
tation, the softmax function that ranks relevant documents higher obtains more clicks,
and therefore has higher expected outcomes if clicks are correlated with relevance. In
cases where 1; and l; place d, at the same rank, the softmax functions assign the same
probability to that document, because the softmax functions have the same shape. Thus,
for documents placed at the same rank, clicks tie in expectation.

An issue related to fidelity that has not been addressed previously is what the mag-
nitude of differences in outcomes should be if, for example, a ranker moves a relevant
document from rank 3 to 1, or from rank 7 to 5. In our definition of fidelity, this question
is left open, as it requires additional assumptions about user expectations and behavior.
In PI, this magnitude can be determined by the choice of softmax function. For example,
when using the formulation in Eq. 4.3, rank discounts decrease as 7 — 0. Rank discounts
increase as T — 00, and probabilistic interleaving with deterministic ranking functions
is the limiting case (this case is identical to changing TD so that rankers are randomized
per rank instead of per pair of ranks). Interpreted in this way, we see that PI defines a
class of interleaved comparison metrics that can be adapted to different scenarios.

As discussed in §4.1.2, the simplest estimator of E[O] is the mean of the sample
outcomes (Eq. 4.1). Since the sample mean is unbiased and consistent, soundness is triv-
ially established. A limitation of this naive estimator is that its efficiency is expected to
be low. In comparison to existing interleaved comparison methods, additional noise is
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introduced by the higher amount of randomization when selecting softmax functions per
rank, and by using softmax functions instead of selecting documents from the contribut-
ing lists deterministically. In the next sections, we show how probabilistic interleaving
allows us to derive more efficient estimators while maintaining fidelity and soundness.

4.2.2 Probabilistic Comparisons with Marginalization

In the previous subsection, we described PI and showed that it has fidelity and sound-
ness. In this section, we introduce a more efficient estimator, PI-MA, that is derived by
exploiting known parts of the probabilistic interleaving process, and show that under this
more efficient estimator fidelity and soundness are maintained.

To derive PI-MA, we start by modeling PI using the graphical model in Figure 4.1(b).!
This allows us to rewrite Eq. 4.1 as:

B0 = 23 00— 137 5" oPlofay.ci L), (44)
1=0

i=1 0€0
where a;, ¢; and 1;, and g; are the observed assignment, clicks, interleaved list, and query
for the i-th sample. This formulation is equivalent to Eq., 4.1 because o is deterministic
given a and c.

In Eq. 4.4, the expected outcome is estimated directly from the observed samples.
However, the distributions for A and L are known given ¢. As a result, we need not con-
sider only the observed assignments. Instead, we can consider all possible assignments
that could have co-occurred with each observed interleaved list 1, i.e., we can marginalize
over all possible values of A for a given 1; and g;. This method reduces the noise that
results from randomized assignments, making it more efficient than methods that directly
use observed assignments. Marginalizing over A leads to the alternative estimator:

E[0] = %Z > > oP(da,c;)P(all;, g:). (4.5)

i=1 acA o€O

The estimator in Eq. 4.5 marginalizes over all possible assignments that could have led to
observing 1 by making use of the fact that this distribution is fully known. The probability
of an assignment given observed lists and queries is computed using Bayes’ rule:

P(lla,q)P(alg)
P(ljg)
Note that P(alq) = P(a) = ﬁ, because a and ¢ are independent. P(l|a, q) is fully

specified by the probabilistic interleaving process and can be obtained using:

P(all,q) = (4.6)

len(1)
P(lla,q) = P(Lalg)P(alg) = [ Pl |al] UL, r —1],¢)P(alg). 47
r=1

Here, len(1) is the length of the document list, 1[r] denotes the document placed at rank r
in the interleaved list 1, 1[1, » — 1] contains the documents added to the list before r, and

n contrast to (Hofmann et al., 2011c), we treat the outcome O as a random variable. This leads to an
equivalent estimator that is more convenient for the proof in Appendix 4.B.
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Figure 4.5: Example probabilistic interleaving (1) and comparison (2) with marginalization over all possible assignments.
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a[r] denotes the assignment at r, i.e., which list contributed the document at that rank.
Finally, P(1|q) can be computed as follows:

P(llg) = ) P(lja,q)P(a). (4.8)

acA

An example comparison using PI-MA is shown in Figure 4.5. In it, an interleaved
list is generated using the process shown in Algorithm 7, in this case | = [dy, d3, d3, d4]
(with the observed assignment a = [1, 2, 1, 2]), as marked in red. After observing clicks
on ds and d3, the naive estimator detects a tie (0 = 0), as both original lists obtain one
click. In contrast, the probabilistic comparison shown in step 2 marginalizes over all
possible assignments, and detects a preference for lo.

Next, we establish the soundness of PI-MA by showing that it is an unbiased and
consistent estimator of the target outcome F[O]. Because PI exhibits fidelity (cf. §4.2.1),
showing that PI-MA is a consistent and unbiased estimator of the same quantity estab-
lishes fidelity as well.

Theorem 4.2.1. The following estimator is unbiased and consistent given samples from
an interleaving experiment conducted according to the graphical model in Figure 4.1(b)

(Eq. 4.5):
E[0] = %Z > > oP(da,c;)P(all;, g:).

i=1 acA o€O

Proof. See Appendix 4.B. O

Theorem 4.2.1 establishes soundness for PI-MA (Eq. 4.5), which is designed to be
more efficient than the naive estimator (Eq. 4.4). We report on an empirical evaluation of
the effectiveness of these estimators in §4.4.

4.2.3 Probabilistic Comparisons with Historical Data

In the previous subsections, we derived two estimators for inferring preferences between
rankers using live data. We now turn to the historical data setting, where previously
collected data (e.g., from an earlier comparison of different rankers) is used to compare a
new ranker pair. As shown above (cf., §4.1), none of the existing interleaved comparison
methods can reuse data while maintaining fidelity and soundness. Here, we show that
this is possible for a new estimator, PI-MA-IS, that we derive from PI-MA.

In principle, PI-MA, as defined in Eq. 4.5 could be directly applied to historical
data. Note that, for a ranker pair that re-ranks the same set of candidate documents D
as the method used to collect the historical data, P(all, ¢) is known and non-zero for all
possible assignments. Such an application of the method designed for live data could
be efficient because it marginalizes over possible assignments. However, the soundness
of the estimator designed for live data would be violated because the use of historical
data would introduce bias, i.e., the expected outcome under historical data would not
necessarily equal the expected value under live data. Similarly, the estimator would not
be consistent.
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Figure 4.6: Example probabilistic comparison with historical data. We assume observed historical data as shown in Figure 4.5 above.
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To see why bias and inconsistency would be introduced, consider two pairs of rankers.
Pair S is the source ranker pair, which was compared in a live experiment using inter-
leaved result lists from which the comparison outcome was computed using the resulting
clicks. All data from this past experiment were recorded, and we want to compare a new
ranker pair 7" using this historical data. Observations for pair .S occur under the original
distribution Pg, while observations for pair 7" occur under the target distribution Pr. The
difference between Pg and Pr is that the two ranker pairs result in different distributions
over L. For example, interleaved lists that place documents ranked highly by the rankers
in S at the top are more likely under Ps, while they may be much less likely under Pr.
Bias and inconsistency would be introduced if, e.g., one of the rankers in 7" would be
more likely to win comparisons on lists that are more likely to be observed under Pg
than under Pr.

Our goal is to estimate E7[O], the expected outcome of comparing 7', given data
from the earlier experiment of comparing S, by compensating for the difference between
Pr and Ps. To derive an unbiased and consistent estimator, note that Py and Pg can be
seen as two different instantiations of the graphical model in Figure 4.1(b). Also note
that both instantiations have the same event spaces (i.e., the same queries, lists, click and
assignment vectors are possible), and, more importantly, only the distributions over L
change for different ranker pairs. Between those instantiations, the distributions over A
are the same by design of the interleaving process. Distributions over C (conditioned
on L) and @ are the same for different ranker pairs, because we assume that clicks and
queries are drawn from the same static distribution, independently of the ranker pair used
to generate the presented list.

A naive estimator of the expected outcome E7[O] from sample data observed under
Pg can be obtained from the definition of the importance sampling estimator in Eq. 2.3

with f(a,c) =3 ., 0P(ola, c):

Er[O Z 3" oPr(ofai, ;) il Pr(a;, c) 4.9)

i=1 0€O Ps(a“cl)

We refer to this estimator as PI-IS. It simply applies importance sampling to reweight
observations by the ratio of their probability under the source and target distributions.
Importance sampling has been shown to produce unbiased and consistent estimates of the
expected outcome under the target distribution, E7[O], as long as Ps and Pr have the
same event space, and Pg is non-zero for all events that have a non-zero probability under
Pr (this is given by our definition of probabilistic interleaving, as long as the softmax
functions under Pg are non-zero all documents that have non-zero probabilities under
Pr) (MacKay, 1998). Although this estimator is unbiased and consistent, it is expected
to be inefficient, because it merely reweights the original, noisy, estimates, which can
lead to high overall variance.

To derive an efficient estimator of E7[O], we need to marginalize over all possible
assignments, as in §4.2.2. Building on Eq. 4.9, we marginalize over the possible assign-
ments (so the assignments a; observed with the sample data are not used) and obtain the
estimator PI-MA-IS:

oPr(ola,c;)Pr(all;, g; Pr(Lig:) (4.10)
ZZ > | (@lli, i) 5 =

i=1 acA o€O (l| l)
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As in the previous section, P(al|l, q) is computed using Eq. 4.7, and P(l|q) is obtained
from Eq. 4.8. An example is given in Figure 4.6. In this example, the target lists are very
different from the original lists, which is reflected in the low probability of the observed
interleaved list under the target distribution (Pr(1|¢) = 0.0009). Although lpo performs
much better for the observed query, the small importance weight results in only a small
win for this target list.

The following theorem establishes the soundness of PI-MA-IS. By showing that
Eq. 4.10 is an unbiased and consistent estimator of E7[O] under historical data, we also
show that it maintains fidelity.

Theorem 4.2.2. The following estimator is unbiased and consistent given samples from
an interleaving experiment conducted according to the graphical model in Figure 4.1(b)
under Pg:

i=1 acA o€O ( z|%)
Proof. See Appendix 4.C. O

The efficiency of PI-MA-IS depends on the similarity between Pg and Pr. It is easy
to see that importance weights can become very large when there are large differences
between these distributions, leading to high variance. As observed by Chen (2005), this
variance can be quantified as the ratio between the variance of outcomes under the source
distribution and under the target distribution. We empirically assess the efficiency of the
estimator under a wide range of source and target distributions in (§4.4).

Note that PI-MA-IS does not depend on the assignments observed in the original data
(cf., Eq. 4.10). This means that it can be applied not just to historical data collected using
probabilistic interleaving, but to data collected under any arbitrary distribution, as long
as the distribution over result lists is known and non-zero for all lists that are possible
under the target distribution. This makes it possible to develop new sampling algorithms
that can make interleaved comparisons even more efficient. For example, data could be
sampled in a way that allows optimal comparisons of a set of more than two rankers, or
with the combined goal of maximizing both the quality of the lists presented to users, and
the reusability of the collected data. While doing so is beyond the scope of this thesis, it
is an important direction for future research.

4.3 Experiments

Our experiments are designed to assess the efficiency of the existing and proposed in-
terleaved comparison methods. All our experiments rely on the simulation framework
detailed in Chapter 3. In comparison to previous work, this setup allows evaluating in-
terleaved comparison methods on a large set of ranker pairs in a controlled experiment.
Previous work validated interleaved comparisons on real usage data (Chapelle et al.,
2012; Radlinski and Craswell, 2010; Radlinski et al., 2008b), which allowed assessment
of these methods in a realistic setting but limited the number of possible ranker compar-
isons. On the other hand, He et al. (2009) used a small number of hand-constructed test
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cases for their analysis. Our setup falls in between these as it is more controlled than the
former, but has fewer assumptions than the latter.

The following subsections detail the experimental procedures used to simulate inter-
leaved comparisons using live data (§4.3.1) and historical data (§4.3.2). In both settings,
we run experiments on the 18,919 queries of the training set of fold 1 of the MSLR-
WEB30k Microsoft learning to rank data set (cf., 3.4), and use the click models for
5-point graded relevance judgments as shown in Table 3.1.

To allow comparisons of many ranker pairs, we generate rankers from the 136 indi-
vidual features provided with the learning to rank data set. This means that our experi-
ments simulate the task of comparing the effectiveness of individual features for retrieval
using varying amounts of historical data, or a combination of historical and live data.
As specified in Definition 4.1.4, we compare the efficiency of rankers by comparing the
accuracy they obtain after observing a sample of a given size. We measure accuracy after
observing m queries as the portion of ranker pairs for which an interleaved comparison
method correctly predicts the direction of the difference in NDCG. To compute NDCG
difference, we use the manual relevance judgments provided with the learning to rank
data set. Then, an interleaved comparison method is deemed more efficient than another
if it Pareto dominates it (i.e., its accuracy is at least not significantly lower for all sample
sizes, and significantly higher for at least one sample size).

4.3.1 Interleaved Comparisons using Live Data

The main goal of our first experiment is to compare the efficiency of interleaved com-
parison methods in the live data setting. In this setting, we assume that click data can
be collected for any interleaved lists generated by an interleaving algorithm. This means
that data is collected directly for the target ranker pair being compared. Our experiments
for the live data setting are detailed in Algorithm 8.

Algorithm 8 Experiment 1: Interleaved comparisons using /ive data.

1: Input: interleave(-), compare(:), Q, R, dnpca(-,+), m, n
2: correct[l..m] = zeros(m)
3: for: =1..ndo
4: 0= []
q = random(Q)
Sample target rankers (1, r2) from R without replacement
for (j =1..m) do
(a,c,1) = interleave(q,r1,72)
append(O, compare(ri,r2,a,¢,1,q))
10: if sign(>- O) = sign(dnpeg(r1,72)) then
11: correct[j] + +
12: return correct[l..m|/n

R A

The experiment receives as input two functions interleave and compare, which to-
gether specify an interleaving method, such as BI in Algorithm 1 (interleave in lines
1-12, compare in lines 13—17). It also takes as input a set of queries Q, a set of rankers
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R, amethod é yp e Which computes the true NDCG difference between two rankers, the
maximum number of impressions per run m, and the number of runs n. The experiment
starts by initializing a result vector correct which keeps track of the number of correct
decisions of the interleaving method after each impression (line 2). Then, for each run,
a query and target ranker pair are sampled from Q and R (lines 5-6). The target ranker
pair is sampled without replacement, i.e., a ranker cannot be compared to itself (we also
exclude cases for which the rankers have the same NDCG, so that there is a preference
between rankers in all cases). Then, m impressions are collected by generating inter-
leaved lists (line 8) and comparing the target rankers using the observed data (line 9).
Comparison outcomes are aggregated over impressions to determine if a run would iden-
tify the preferred ranker correctly (line 10 and 11). Finally, the accuracy after up to m
impressions is obtained by dividing correct by the number of runs n. An efficient ranker
obtains a high accuracy after observing few impressions. The results of our experiments
for the live data setting are reported in §4.4.1.

4.3.2 Interleaved Comparisons using Historical Data

The goal of our second experiment is to assess the efficiency of interleaved compari-
son method under historical data. This setting assumes that interleaved lists cannot be
directly observed for the target rankers being compared. Instead, interleaving data previ-
ously collected using a different but known original ranker pair is available. We simulate
this setting by generating original ranker pairs, and collecting data for these original
ranker pairs, which is then used to estimate comparison outcomes for the target pair. The
detailed procedure is shown in Algorithm 9.

Algorithm 9 Experiment 2: Interleaved comparisons using historical data.

1: Input: interleave(-), compare(-), Q, R, Snpca(:, ), m,n

2: correct[l..m] = zeros(m)

3: fori=1..ndo

4: 0= []

5. g =random(Q)

6:  Sample original pair (r,,,7,,) and target pair (1, ,r:,) from R without replace-
ment

7. forj=1..mdo

8: (a,c,1) = interleave(q, 1o, ,70,)

9: Oli] = compare(r,, Tty Toys Toy, &, C, 1, q)
10: if sign(>_ O) = sign(dnpeg (e, 7t,)) then
11: correct[j] + +

12: return correct[l..m]/n

The arguments passed to Algorithm 9, as well as its initialization and overall struc-
ture, are identical to those for the live data experiments shown in Algorithm 8. The main
differences are in lines 6 to 9. In addition to the target ranker pair, an original ranker
pair is randomly sampled, again without replacement so that there is no overlap between
the rankers used in a given run (line 6). Then, for each impression, the interleaving data
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is collected for the original ranker pair (line 8). The target rankers are compared using
this data (line 9). Experiment outcomes are computed in terms of accuracy for the target
rankers as before. An efficient ranker obtains high accuracy with few historical samples.
The results of our experiments for the historical data setting are reported in §4.4.2.

4.4 Results and Discussion

In this section we detail our two experiments and present and analyze the obtained re-
sults. Our first experiment examines the efficiency of interleaved comparison methods
when comparing rankers using live data (§4.4.1). Our second experiment evaluates inter-
leaved comparison methods using historical data (§4.4.2). In addition to presenting our
main results, we analyze the interleaved comparison methods’ robustness to noise in user
feedback and to varying parameter settings.

4.4.1 Interleaved Comparisons using Live Data

In this section, we present the results of our evaluation of interleaved comparison meth-
ods in a live data setting, where interleaving methods interact directly with users. We
compare the baseline methods BI, TD, and DC and our proposed method PI-MA, de-
fined as follows:

e BI: the balanced interleave method as detailed in Algorithm 1 (§2.3.1), follow-
ing Chapelle et al. (2012).

e TD: the team draft method as detailed in Algorithm 2 (§2.3.1), following Chapelle
et al. (2012).

e DC: the document constraints method as detailed in Algorithm 3 (§2.3.1), follow-
ing He et al. (2009).

e PI-MA: probabilistic interleaving with marginalization over assignments as de-
fined in Eq. 4.5-4.8 (cf. §4.2.2).

We run experiments for m = 10,000 impressions, n = 1,000 times. The experiments
use the experimental setup described in §4.3.1.

The results obtained for our four user models are shown in Figure 4.7. Each plot
shows the accuracy achieved by each interleaved comparison method over the number of
impressions seen for a given user model. The performance of a random baseline would
be 0.5, and is marked in grey. Note that the performance of an interleaving method can
be below the random baseline in cases where no decision is possible (e.g., the method
infers a tie when not enough data has been observed to infer a preference for one of the
rankers; the rankers are sampled in such a way that there always is a difference according
to the NDCG ground truth). When comparing the efficiency of interleaved comparison
methods, we consider both how many impressions are needed before a specific accuracy
level is achieved, and what final accuracy is achieved after e.g., 10,000 impressions.

For the perfect click model (cf., Figure 4.7(a)) we find that the baseline methods BI,
TD and DC achieve close to identical performance throughout the experiment. The final
accuracies of these methods after observing 10,000 impressions are 0.78, 0.77, and 0.78
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Figure 4.7: Results, accuracy of interleaved comparison methods when comparing
rankers under live data. Accuracy is computed over 1,000 randomly selected ranker
pairs and queries, after 1-10,000 user impressions with varying click models.

respectively, and there is no significant difference between the methods. We conclude
that these methods are similarly efficient when comparing rankers on highly reliable live
data. Our proposed method PI-MA outperforms all baseline methods on live data under
the perfect click model by a large and statistically significant margin. After observing
only 50 impressions, PI-MA can more accurately distinguish between rankers than either
of the other methods after observing 10,000 impressions. Its final accuracy of 0.87 is
significantly higher than that of all baselines. Compared to the best-performing baseline
(here, BI), PI-MA can correctly detect a preference on 11.5% more ranker pairs after
observing 10,000 impressions.

Results for the navigational click model are shown in Figure 4.7(b). In comparison to
the perfect click model, this model has a higher position bias (higher stop probabilities),
and a steeper decay of click probabilities (quadratic, so that the difference between the
highest relevance grades is relatively bigger than under the perfect click model). The
increase in position bias is expected to lead to a decrease in efficiency (this effect was
identified for BI, TD, and DC in He et al. (2009)). This effect is confirmed by our results,
which can be seen in the slower increase in accuracy as compared to the perfect click
model. For example, under the navigational click model, approximately 50 impressions
are needed before all interleaved comparison methods achieve an accuracy of at least
0.7, while for the perfect model, only about 20 impressions need to be observed for the
same level of accuracy. The steeper decay in click probabilities is expected to lead to
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click data that better corresponds to the implementation of gain values in NDCG than
the linear decay implemented in the perfect click model. We find that the accuracy of
all methods after 10,000 iterations is slightly higher under the navigational model (the
accuracy for Bl is 0.79, for TD 0.80, for DC 0.78, and for PI-MA 0.88), but none of
the differences is statistically significant. We can conclude that under the navigational
model, interleaving methods have lower efficiency (due to increased position bias), but
they converge to at least the same level of accuracy (possibly slightly higher, due to
the better match with NDCG gain values) as under the perfect click model. Comparing
the individual methods, we again find that PI-MA performs significantly better than all
baseline methods. The increase in accuracy after 10,000 impressions is 10%.

The informational click model has a level of position bias that is similar to that of the
navigational click model, but a higher level of noise. Thus, users consider more docu-
ments per query, but their click behavior makes documents more difficult to distinguish.
Figure 4.7(c) shows the results for this click model. The interleaving methods’ efficiency
is similar to that under the navigational model for small sample sizes, with all methods
achieving an accuracy of 0.7 within 50 samples. However, the increase in noise affects
efficiency for bigger samples. After 10,000 impressions, BI achieves an accuracy of 0.72
(TD - 0.81, DC - 0.77, and PI-MA - 0.84). The performance of BI and of PI-MA is
significantly lower than under the navigational model. The performance of PI-MA is
significantly higher than that of BI and DC under the informational model, and higher
(but not significantly so) than that of TD. The performance of BI appears to be particu-
larly strongly affected by noise. This method performs significantly worse than all other
interleaved comparison methods in this setting. Outcomes computed under this method
rely on rank-differences at the lowest-clicked document. As individual clicks become
less reliable, so do the comparison outcomes.

Results for the almost random click model reflect the performance of interleaved
comparison methods under high noise and high position bias (Figure 4.7(d)). As ex-
pected, we find that efficiency decreases substantially for all methods. For example, TD
is the first method to achieve an accuracy of 0.7 after 500 impressions. After 10,000
impressions, BI achieves an accuracy of only 0.67 and the accuracy of DC is 0.71. TD
appears to be the most robust against this form of noise, maintaining an accuracy of
0.79. PI-MA performs better than the baseline methods on small sample sizes, because
marginalization helps avoid noisy inferences. Its performance after 10,000 impressions is
the same as for TD. In general, PI-MA is expected to converge to the same results as TD
in settings with high noise and high position bias, such as the one simulated here. In these
settings, the method cannot accurately trade-off between clicks at different positions.

Our results for the different user models indicate that PI-MA Pareto dominates the
baseline methods in terms of performance. Under reliable click feedback, the baseline
methods perform similarly well, while PI-MA is substantially more efficient at all sample
sizes. The reason is that PI-MA can trade off differences between ranks more accurately.
For all methods, efficiency decreases as position bias increases, which is in line with
earlier work. Increasing noise affects the interleaving methods differently. BI appears to
be affected the most strongly, followed by DC. TD is relatively robust to noise. PI-MA
reduces to TD under high levels of noise. None of the baseline methods was found to be
significantly more accurate than PI-MA at any sample size or level of click noise. We
conclude that PI-MA is more efficient than the baseline methods.
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Figure 4.8: Results, accuracy of variants of PI-MA in the live data setting and under
the perfect click model. Accuracy is computed on 1,000 randomly selected ranker pairs
and queries, after 1-10,000 user impressions using PI-MA with varying 7, and without
softmax functions / marginalization.

After comparing PI-MA to the baseline methods, we now turn to analyzing PI-MA
in more detail. PI-MA has one parameter 7. This parameter affects the trade-off between
clicked documents at different ranks, similar to the position discount in NDCG. Low
values of 7 result in slightly more randomization in the constructed interleaved result
lists, which means that documents at lower ranks have a higher chance of being placed in
the top of the result list and are more likely to be clicked. When comparing interleaving
outcomes to NDCG difference, we expect more accurate results for smaller values of 7,
as NDCG uses a relatively weak position discount (namely log(r)).

Our analysis is confirmed by our results in Figure 4.8(a) (here: perfect click model).
For settings of 7 that are smaller than the default value 7 = 3 (i.e., 7 € (1, 2), accuracy
is higher than for the default settings. Increasing the parameter value to 7 = 10 de-
creases accuracy. While all parameter settings 7 > 0 result in an interleaved comparison
method that exhibits fidelity as defined in Definition 4.1.2, an appropriate value needs to
be chosen when applying this method. Higher values place more emphasis on even small
differences between rankings, which may be important in settings where users are typ-
ically impatient (e.g., for navigational queries). In settings where users are expected to
be more patient, or tend to explore results more broadly, a lower value should be chosen.
In comparison, the baseline methods BI, TD, and DC make implicit assumptions about
how clicked documents at lower ranks should be weighted, but do not allow the designer
of the retrieval system to make this decision explicit.

Finally, we analyze PI-MA in more detail by evaluating its performance after remov-
ing individual components of the method. Figure 4.8(b) shows PI-MA (7 = 3), com-
pared to PI-MA without marginalization, and without softmax functions. We find that
the complete method has the highest efficiency, as expected. Without marginalization,
comparisons are less reliable, leading to lower initial efficiency. The performance differ-
ence is compensated for with additional data, confirming that PI and PI-MA converge to
the same comparison outcomes. When deterministic ranking functions are used instead
of softmax functions, we observe lower efficiency. Without softmax functions, PI-MA
does not trade off between differences at different ranks, leading to lower agreement with
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NDCG. We conclude that PI-MA is more efficient than variants of the method without
marginalization, and without softmax functions. This result confirms the results of our
analysis in §4.2.

4.4.2 Interleaved Comparisons using Historical Data

In this section, we evaluate interleaved comparison methods in a historical data setting,
where only previously observed interaction data is available. Our experiments do not
focus on how to collect such data, but rather assumes that data is available from previ-
ous experiments and the task is to use this data effectively. We compare the following
methods for interleaved comparisons using historical data:

BI: directly applies BI to historical data, as discussed in §4.1.3.

TD: applies TD to all assignments that match historical data, as discussed in §4.1.4.
e DC: directly applies DC to historical data, as discussed in §4.1.5.

PI-MA-IS: our full importance sampling estimator with marginalization over as-
signments, as defined in Eq. 4.10 (cf., §4.2.3). Note that unless specified otherwise,
we use a setting of 7 = 1 for both the source and the target distribution.

We use the experimental setup described in §3, and the procedure detailed in §4.3.2.
Each run is repeated n = 1,000 times and has a length of m = 10,000 impressions. Also,
for each run, we collect historical data using a randomly selected source ranker pair, and
use the collected data to infer information about relative performance of a randomly
selected target ranker pair.

In comparison to the live data setting, we expect interleaved comparison methods to
have lower efficiency. This is particularly the case for this setting where source and target
distributions can be very different from each other. When source and target distributions
are more similar to each other (such as learning to rank settings), efficiency under histor-
ical data is expected to be much higher, so the results presented here constitute a lower
bound on performance.

Figure 4.9 shows the results obtained in the historical data setting. For the perfect
click model (Figure 4.9(a)), we see the following performance. BI shows close to random
performance, and its performance after 10,000 impressions is not statistically different
from the random baseline. DC stays significantly below random performance. These
results suggest that the two methods cannot use historical data effectively, even under
very reliable feedback. The reason is that differences between the observed interleaved
lists and the lists that would be generated by the target rankers cannot be compensated
for. TD shows very low accuracy, close to zero. This result confirms our analysis that
indicated that this method cannot reuse a large portion of the historical data. Since few
lists are useable by this method, most comparisons result in a tie between the compared
target rankers.

The results in Figure 4.9(a) confirm that PI-MA makes it possible to effectively reuse
previously collected data. After 10,000 impressions, this method achieves an accuracy of
0.78. Following the trend of this experiment, accuracy is expected to continue to increase
as more impressions are added.
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Figure 4.9: Results, accuracy of interleaved comparison methods when comparing
rankers under historical data. Accuracy is computed over 1,000 randomly selected ranker
pairs and queries, after 1-10,000 user impressions with varying click models.

The relative performance of the interleaved comparison methods is the same for all
investigated click models. In comparison to the perfect click model, the efficiency of
PI-MA-IS decreases with increasing click noise as expected. However, the method per-
forms significantly better than the baseline methods under all levels of noise. For the
navigational model, performance after 10,000 impressions is 0.68 (Figure 4.9(b)), for
the informational model it is 0.61 (Figure 4.9(c)), and for the almost random model 0.57
(Figure 4.9(d)). This shows that efficiency degrades gracefully with increases in noise.
For high levels of noise (such as under the almost random click model) the required
amount of data can be several orders of magnitude higher than under the perfect click
model to obtain the same level of accuracy. Performance of the baseline methods in the
historical data setting does not appear to be substantially affected by noise.

After comparing interleaved comparison methods in the historical feedback setting,
we turn to analyzing the characteristics of PI-IS-MA in more detail. First, we inves-
tigate the effect of choosing different values of 7 during data collection and inference
(Figure 4.10(a)).

Under historical data, 7 has several effects. For the source rankers (7g), it determines
the level of exploration during data collection. As 7¢ — oo, the level of exploration
approaches random exploration. A high level of exploration ensures that result lists that
are likely under the target rankers are sufficiently well covered during data collection,
which reduces variance in the later comparison stage. This is confirmed by comparing
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Figure 4.10: Results, accuracy of variants of PI-MA-IS in the historical data setting and
under the perfect click model. Accuracy is computed on 1,000 randomly selected ranker
pairs and queries, after 1-10,000 user impressions using PI-MA-IS (a) with varying 7g
and 77, and (b) compared to PI-IS (without marginalization) and PI-MA (without impor-
tance sampling).

our results for PI-MA-IS with the parameter setting 7s = 1,70 = 3 to those for the
setting 7s = 3,77 = 3. Data collection in the first setting is more exploratory, which
leads to a significant increase in efficiency.

Changing 7 for the target distribution (77) also has an effect on variance, although
it is weaker than that observed for the source distribution. Two factors play a role here.
First, smaller values of 71 lead to comparisons that more accurately correspond to NDCG
position discounts (cf., §4.4.1, Figure 4.8(a)). Second, smaller values of 7 make the tar-
get distribution slightly broader, resulting in smaller differences between the source and
target distributions and therefore smaller importance weights. The relative importance of
these two effects can be estimated with the help of our results obtained in the live set-
ting. There, the accuracy for 7 = 1 after 10,000 impressions is substantially (7.5%) and
significantly higher than for 7 = 3. Under historical data, performance for the setting
7s = 1,70 = 1 is also significantly higher than for the setting 7¢ = 1,70 = 3. Here,
the increase is 17.6%, more than twice as high as in the live setting. We conclude that
a large portion of this increase is due to the reduced distance between source and target
distribution and the resulting reduction in variance. Finally, when comparing settings
with low exploration under the source distribution (g = 3), performance differs only
marginally. This suggests that a high amount of exploration during data collection is
crucial for achieving high efficiency of PI-IS-MA.

Finally, we examine how different components of PI-IS-MA contribute to the perfor-
mance of this method under historical data. Figure 4.10(b) shows our previous results for
PI-IS-MA and for the following additional runs:

o PI-IS: PI that uses the naive importance sampling estimator in Eq. 4.9 to compen-
sate for differences between source and target distribution (cf., §4.2.3).

e PI-MA: directly applies PI-MA as defined in Eq. 4.5-4.8 (cf. §4.2.2), without com-
pensating for differences between source and target distributions.
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Our results confirm the outcomes of our analysis and derivation of PI-MA-IS (cf., 4.2.3).
The variant PI-IS (i.e., without marginalization) is significantly less efficient than the full
method PI-IS-MA. This confirms that marginalization is an effective way to compensate
for noise. The effect is much stronger than in the live data setting because, under histori-
cal data, the level of noise is much higher (due to the variance introduced by importance
sampling). In the limit, we expect that the performance of PI-IS converges to the same
value as PI-IS-MA, but after 10,000 impressions its accuracy is 0.639, 17.5% lower. If
PI-MA is applied without importance sampling, it performs as well as PI-IS-MA for
small sample sizes. However, we also observe the bias introduced under this method, as
it converges to a lower accuracy after processing approximately 200 impressions, making
it less efficient in the long run. Performance of PI-MA when applied to historical data
is found to be 0.68 after 10,000 impressions, 12% lower than that of PI-MA-IS. These
results demonstrate that PI-MA-IS successfully compensates for bias while maintaining
high efficiency.

To summarize, our experiments in the historical data setting confirm that PI-MA-
IS can effectively reuse historical data for inferring interleaved comparison outcomes.
Alternatives based on existing interleaved comparison methods are not able to do this ef-
fectively, due to data sparsity and bias. The efficiency of PI-MA-IS under historical data
is found to decrease as click noise increases, as expected. More detailed analysis shows
that choosing a sufficiently exploratory source distribution is crucial for obtaining good
performance. Finally, our results show that marginalization and importance sampling
contribute to the effectiveness of PI-MA-IS as suggested by our analysis.

4.5 Conclusion

In this chapter, we introduced a framework for analyzing interleaved comparisons meth-
ods, analyzed existing methods, and proposed a probabilistic interleaved comparison
method that addresses some of the challenges raised in our analysis. The proposed frame-
work characterizes interleaved comparison methods in terms of fidelity, soundness, and
efficiency. Fidelity reflects whether a method measures what it is intended to measure,
soundness refers to its statistical properties, and efficiency reflects how much sample
data a method requires to make comparisons. This framework is a step towards formal-
izing the requirements for interleaved comparison methods. It allows us to make more
concrete statements about how interleaved comparison methods should behave than pre-
viously possible.

We analyzed existing interleaved comparison methods using the proposed frame-
work, and found that none exhibit a minimal requirement of fidelity, namely that the
method prefers rankers that rank clicked documents higher. We then proposed a new
interleaved comparison method, probabilistic interleave, and showed that it does exhibit
fidelity. Next, we devised several estimators for probabilistic interleave, and proved their
statistical soundness. These estimators included a naive estimator (PI), a marginalized
estimator designed to improve efficiency by reducing variance (PI-MA), and an estimator
based on marginalization and importance sampling (PI-MA-IS) that makes it possible to
reuse previously collected (historical) data.

We empirically confirmed the results of our analysis through a series of experiments
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that simulate user interactions with a retrieval system using a fully annotated learning
to rank data set and click models. Our experiments in the live data setting showed that
PI-MA is more efficient than all existing interleaved comparison methods. Further, ex-
periments on different variants of PI-MA confirmed that PI-MA with marginalization
and softmax functions is more efficient than variants without either component. In our
experiments with simulated historical click data, we found that PI-MA-IS can effectively
reuse historical data. Due to the increase in noise due to importance sampling, efficiency
is lower than under live data, as expected. We also experimentally confirmed that the dif-
ference between the source and target distributions has a strong effect on the efficiency
of PI-MA-IS.

This chapter focused primarily on interleaved comparison methods’ theoretical prop-
erties and on investigating their effectiveness in a controlled experimental setup. Our
analysis and experiments explicitly made a number of assumptions about the relation-
ship between relevance and user click behavior. These assumptions were based on earlier
work on click models, but there is still a large gap between the current models and the
very noisy observations of user behavior in real (web) search environments. As a step
towards testing these assumptions, we investigate interleaved comparison methods in a
real-world (web) search setting in the next chapter (Chapter 5). In particular, we inves-
tigate whether and how search result presentation affects users’ click behavior (caption
bias), and how these effects influence interleaved comparison outcomes.

We further follow-up on the work presented in this chapter by integrating our method
for estimating interleaved comparison outcomes from historical data, PI-MA-IS, with
an online learning to rank approach (in Chapter 7). In the present chapter, PI-MA-IS
was assessed theoretically, and in an online evaluation setting where source and target
distribution could be very different from another, and we were able to show that the
method can effectively reuse historical data. We expect higher efficiency in online learn-
ing to rank settings, where the differences between source and target rankers are typically
small, resulting in low variance of the estimated comparison outcomes. This hypothesis
is tested in Chapter 7, where we devise the first two methods for learning with historical
data reuse, based on PI-MA and PI-MA-IS.
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4. A Proof of Theorem 4.1.1

Theorem 4.1.1. The estimator in Eq. 4.2 is equal to two times the sample mean (Eq. 4.1).

Proof. Below, we use the fact that + >°" 0; = Lwins(ly) — wins(1;) (following from
the definition of wins(l;) (o = —1 and 0 = +1 for 1; and 1, respectively) and ties(l; 2)
(0 = 0) (cf., Chapter 2), and that the number of samples is n = wins(l;) + wins(ly) +
ties(llg).

2Byins = wins(ly) + gtiestha) o
wins(lz) + wins(ly) + ties(11,2)

_ (wins(lg) + %ties(llg) én)

n n

= % (2 ~wins(ly) + ties(ly 2) — (wins(lz) + wins(ly) + ties(ly2)))

1
= - — (wins(l2) — wins(1y)) Zo,

4 B Proof of Theorem 4.2.1

Theorem 4.2.1. The following estimator is unbiased and consistent given samples from
an interleaving experiment conducted according to the graphical model in Figure 4.1(b)

(Eq. 4.5):
Z Z ZOP ola, c;)P(all;, ;).

i=1 acA ocO

Proof. We start by defining a new function f:
f(CL,Q)=>_> 0P(o|C,a)P(alL, Q).
acA ocO

Note that Eq. 4.5 is just the sample mean of f(C, L, @) and is thus an unbiased and con-
sistent estimator of E[f(C, L, Q)]. Therefore, if we can show that E[O] = E[f(C, L, Q)],
that will imply that Eq. 4.5 is also an unbiased and consistent estimator of E[O].

We start with the definition of E[O]:

O] = Z oP(0)
o€0
P(O) can be obtained by marginalizing out the other variables:

0)= Z ZZZP(a,c,l,q,O

acA ceC 1eL ¢eqQ

70



4.C. Proof of Theorem 4.2.2

where, according to the graphical model in Figure 4.1(b), P(A, C,L, @, O) = P(O|C, A)
P(CI|L,Q) P(L|A, Q) P(A)P(Q). Thus, we can rewrite E[O] as

Z Z Z Z Z oP(ola,c)P(c|l,q)P(lla,q)P(a)P(q).

a€cA ceC leL ¢geQ o€O

Observing that P(L|A, Q) = %&Ll@ (Bayes rule) and P(A|Q) = P(A) (A
and @ are independent) gives us

=333 %" 3 oP(ofa, ) P(all, q) P(ell, ¢)p(llg) P(q).

acA ceC IeL ¢qeQ o0

Figure 4.1(b) implies P(C,L, Q) = P(C|L,Q)P(L|Q)P(Q), yielding:

Z Z Z Z Z oP(ola,c)P(all, q)P(c,1,q).

acA ceC leL ¢geQ o€O

From the definition of f(C, L, Q) this gives us:

=22 > felaPlela)

ceC 1eL ¢eQ

which is the definition of E[f(C, L, Q)], so that:

E[0] = E[f(C,L,Q)].

4.C Proof of Theorem 4.2.2

Theorem 4.2.2. The following estimator is unbiased and consistent given samples from
an interleaving experiment conducted according to the graphical model in Figure 4.1(b)
under Pg:

Z > ) " oPr(ola, ¢;)Pr(all;, ¢;) E:q§

i=1 acA ocO

Proof. Asin Theorem 4.2.1, we start by defining f:

F(C.L,Q) =" oPr(oa,C)Pr(alL,Q

acA ocO

Plugging this into the importance sampling estimator in Eq. 2.3 gives:

zul'u 7
Zf czalzaqz (C Q)

(C'La 127 QL)
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which is unbiased and consistent if Pg(C, L, ) is non-zero at all points at which Pr(C, L, Q)
is non-zero. Figure 4.1(b) implies that P(C,L, Q) = P( Q)P(L|Q)P(Q), yield-

ing:
~ (Cz‘lqu)PT(l | )PT(Qz)
E C'mlza 4 .
Zf %) Py (eIl 1) P (5 1ai) P )

Because we assume that clicks and queries are drawn from the same static distribution,
independent of the ranker pair used to generate the presented list, we know that Pr(Q) =
Ps(Q) and Pr(C|L, Q) = Ps(C|L, Q), giving us:

Pr(l;
Zf Ci, qu (l

From the definition of f(C, L, Q}) we obtain:

Z 3" 3" oPr(ola.¢)Pr(alli, ) E |' ;

i=1 acA o€O

;)
Ps(Li]g:)’

To show that Ps(C, L, Q) is non-zero whenever Pr(C, L, Q) is non-zero, we need only
show that Ps(L|Q) is non-zero at all points at which Pr(L|Q) is non-zero. This follows
from three facts already mentioned above: 1) P(C,L, Q) = P(C|L,Q)P(L|Q)P(Q),
2) Pr(Q) = Ps(Q), and 3) Pr(C|L,Q) = Ps(C|L, Q). Figure 4.1(b) implies that
P(L|Q) = >_aca P(Lla, Q) (Eq. 4.8), which is non-zero if P(L|A, Q) is non-zero for
at least one assignment. From the definition of the interleaving process (Eq. 4.7) we have
that Ps(L|A, Q) is non-zero for all assignments. O
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In the previous chapter we focused on the theoretical properties of interleaved compari-
son methods. Here, we focus on applying these methods to obtain feedback in a real-live
setting, web search. When we apply interleaved comparison methods for online eval-
uation, or online learning to rank in a search setting, we typically expect to obtain an
estimate of the relative quality of rankers in terms of how they rank relevant results. In-
terleaved comparison methods have been developed to obtain such estimates in the face
of position bias. Beyond compensating for position bias, these methods assume that user
clicks reflect relevance, although this relation may be noisy.

While interleaved comparison methods promise to reflect true user preferences, their
reliance on user clicks makes them susceptible to click bias' (cf., §2.3.2) when the as-
sumptions that these methods are based on are violated. For example, users have been
previously shown to be more likely to click on results with attractive titles and snip-
pets (Clarke et al., 2007; Yue et al., 2010b). An interleaved comparison where one ranker
tends to generate results that attract more clicks (without being more relevant) may thus
detect a preference for the wrong ranker.

This is the problem that we address in this chapter: How are interleaving outcomes
affected by differences in result presentation in practice? On the one hand, as previous
work has assumed, caption bias may affect rankers equally. This would increase variance
when computing interleaved comparison outcomes but not introduce bias. On the other
hand, typical ranker optimization changes may affect captions (for example, by favoring
titles with more highlighting), thereby creating a systematic effect on click behavior.
When interleaving methods are applied to measure preferences between rankers, it is
important to identify when caption bias may be occurring, and to be able to avoid it or
compensate for it. Specifically, we address the following three research questions:

RQ 8 (How) does result presentation affect user clicks (caption bias)?
RQ 9 Can we model caption bias, and compensate for it in interleaving experiments?

RQ 10 (How) does caption bias affect interleaving experiments?

'We use click bias to refer to any characteristic of a search result that systematically influences click behav-
ior in such a way that a result receives more or fewer clicks than would be warranted by the item’s content-based
relevance to the query alone. We use caption bias to refer to forms of click bias related to the visual presentation
of results on a search result page.
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We address these questions as follows. First, we introduce a general probabilistic,
feature-based approach for modeling caption bias in user clicks. We propose two types
of features to instantiate this model based on (1) an assumption that caption bias indepen-
dently affects clicks on each document, and (2) modeling interactions between caption
effects on nearby documents. Next, we show that the developed caption-bias models
can be integrated with existing interleaved comparison methods, by devising alternative
estimators for TD and PI-MA. Finally, we apply this approach to real interleaving ex-
periments, finding that the method identifies caption bias when expected and produces
de-biased interleaving outcomes.

The results of our analysis have implications for how and in what cases interleaving
methods can be applied in practice. In particular, the work presented in this chapter
contributes to a better understanding of IR evaluation using interleaving methods, and to
making them more reliable and robust.

The remainder of this chapter is organized as follows. We detail our approach for
modeling and compensating for caption bias in §5.1. Our experiments give insights into
the types of features that are most effective for modeling caption bias, the effectiveness
of our models for predicting click behavior and user preferences, and the effect of caption
bias on interleaved comparisons. They are presented and discussed in §5.2. We conclude
in §5.3.

5.1 Method

Our method is based on the following idea: when assigning credit for clicks to rankers
in an interleaving experiment, the credit can be reweighted to reflect the likelihood of
the user clicking on the result based on just caption bias. This is similar to the ideas
by (Chapelle et al., 2012; Yue et al., 2010b), although here we focus on improving the
fidelity rather than the sensitivity of interleaving experiments.

We reweight clicks by the inverse of their caption-based click odds. This means
that results that are very likely to be clicked due simply to their visual characteristics
receive a low weight, while higher weights are assigned to results whose representation
is less likely to attract clicks. Thus, clicks on relatively less “clickable” results are taken
to provide a more reliable indication of relevance, while more “clickable” results are
considered prone to attracting clicks unwarranted by their relevance and receive a lower
weight. This principle is implemented in the following 3-step approach: (1) model the
probability of a click as a combination of position, relevance and caption bias, (2) learn
the weights of this model using observations of past user behavior, and (3) factor out
the caption bias component from interleaving evaluations to make clicks better reflect
relevance. Below, we detail our caption bias model (§5.1.1) and features (§5.1.2), as well
as our approach for reweighting clicks in interleaved comparison methods (§5.1.3).

5.1.1 Modeling Caption Bias

Goal of our model is to relate a set of observations x (here: features that encode charac-
teristics of a document in a result list) to the probability of that document being clicked
by a user. A natural model of such a relation, with minimal assumptions, is the logistic
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regression model (Friedman et al., 2001). Such a model ensures that predictions are in the
form of a probability distribution, and it allows a straightforward interpretation of trained
regression weights in terms of their effect on the likelihood of an outcome. Because our
hypothesis is that a model that includes caption bias features can more accurately pre-
dict click probabilities than one with only relevance and position features, we explicitly
formulate our model in terms of relevance features x,., position features x,,, and caption
features x.. This results in the following model:

1
1 + e_BD_B'V'xr_Bpxp_/@cxc :

P(C|x,,xp,Xc) = (5.1

Here, P(C|x,,%,, X.) denotes the probability of a click on a result document, that is
characterized by relevance features x,., position features x,,, and caption features x..
The parameters of the model — the intercept 3y, and the coefficients 3, 3,, and 5. —
are estimated from training data using maximum likelihood estimation. While a model
that takes into account nonlinear combinations of bias features may produce more accu-
rate results, this model is easy to interpret, less prone to overfitting than more complex
models, and we find it to perform well when validated on the task of predicting clicks
(cf., §5.2.2).

The weights obtained after training the model in Eq. 5.1 can be interpreted in terms
of the effect of the corresponding feature on the click odds, a characteristic we make
use of when applying the trained model to reweight clicks as shown in §5.1.3. Note
that only caption features x. are used for reweighting, to compensate for caption bias.
The remaining features are included during model training only, to remove effects of
document relevance and position. In this way we obtain a model of a document’s click
likelihood given its presentation. The caption features used in this study are detailed
in §5.1.2. Relevance and position features are described below.

The relevance level of a document d to a query ¢ is modeled by x,, = ¢,.(d|q) as
a vector of five binary features. They represent 5-point relevance judgments that range
from “not relevant” to “highly relevant”. Our position features x,, = ¢,(d|q) follow the
formulation in (Yue et al., 2010b). Specifically, we use six binary indicator features that
indicate whether each document was presented at rank 1, 2, 3,4 t0 5,6 to 9, or 10 and
below.

In a preliminary study, we also considered two alternatives to the model described
above. First, we assessed document-wise models that do not take into account relevance
information, but simply model caption bias using visual and position features. However,
we found that models that do take relevance into account model click behavior more ac-
curately. Second, we evaluated a pairwise model that predicted which of two documents
was more likely to be clicked, based on features that captured visual differences between
them (i.e., predicting which of two documents is more likely to be clicked, similarly to
the approaches by Clarke et al. (2007) and Yue et al. (2010b)). Here, we found the per-
document formulation in Eq. 5.1 to be much more effective in explaining click behavior.
Therefore, we focus on this model in the rest of this chapter. Nevertheless, we found that
pairwise features, that capture the relationship between the document for which clicks
are predicted and its neighboring documents, can be combined with our per-document
model to further improve performance (implemented as pairwise features, cf., §5.1.2).
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5.1.2 Caption Bias Features

We use two types of visual features to model caption bias: per-document features and
pairwise features (both are encoded in the caption feature vector x. = ¢.(d|q)). Both
types of features are detailed below. For all features, we assume a standard result page
of a web search engine, where results are displayed with their title, URL, and a snippet
that shows how each document relates to the user’s query.

Per-Document Caption Features

Our per-document features are designed to capture characteristics of individual search
result captions, and model aspects that may make them likely to attract (or discourage)
clicks. We started with the features investigated in Clarke et al. (2007), such as short
snippet, term matches in the title, and URL length.

From the initial set of features, we restricted our features to those that we believe may
capture visual characteristics relevant to our task, yet are not likely to be strongly affected
by document relevance. In an initial study, we found a statistically significant effect of
e.g., the number of query term matches with the document title, and the number of phrase
matches with the snippet on click behavior. However, we think that these observations
were strongly affected by the rankers used to collect our training data. E.g., a ranker
may over- or under-emphasize the importance of matches in the document title, while
the 5-point relevance judgments (cf., §5.1.1) used to remove major effects of relevance
may not be sufficiently fine-grained to compensate for these ranker effects. To avoid
contamination of our caption bias model with such ranker effects, we removed features
for which these were a concern.

We binarized all per-document features to avoid cases where our caption bias model
would be dominated by individual unbounded values. For each “raw” feature (e.g., title
length), we started with natural thresholds, such as the first and third quartile, the mean,
and points identified by visual inspection of the feature’s histogram. Next, binary fea-
tures representing these bins were added to a model of document relevance and position,
which was then trained using logistic regression. The thresholds were then manually
tuned to maximize the model’s fit to the training data (i.e., thresholds were increased and
decreased and the model re-trained, until the magnitude of the residuals from the fitted
model did not decrease further).

Finally, all constructed binary features were combined in one model, and features
that did not have a significant effect on the models’ prediction (measured using a x? test,
and p < 0.001) were removed from the model. In this step we reduced the number of
features from 25 to the final set of 10 per-document features.

Our per-document features are presented in Table 5.1. The feature deep links refers
to links to subsections of a website that are grouped under a main title result as illustrated
in Figure 5.1. We included this feature because a strong relation with click behavior was
found, and this type of presentation is common to most major web search engines. The
length-related features short URL, short title, long title, short snippet, and long snippet
were converted to binary values as described above. For longer URLs, the number of
slashes was found more informative than the number of characters. Similarly, for title
length, the number of words was more informative than the number of characters. For
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Feature Description

Deep links The result is presented with deep links

Short URL The length of the displayed URL is 30 or less characters
URL slashes  The URL of the presented result contains more than 5 slashes
URL bold The presented URL has more than 1 highlighted section

Short title The presented title consists of less than 3 words
Long title The presented title consists of more than 7 words
Title start The title begins with an exact match of the query
Title bold The title contains more than 2 highlighted sections

Short snippet  The displayed snippet is shorter than 40 characters
Long snippet  The displayed snippet is longer than 170 characters

Table 5.1: Per-document features for capturing visual characteristics of individual result
captions.

Figure 5.1: Example search results of two commercial web search engines, with deep
links included in addition to the title link.

snippet length, the threshold for short snippets corresponds to roughly half a line of text,
while the threshold for long snippets corresponds to a length where the text would flow
onto a third line.

Here, we list only the final features and exclude features where no significant effect on
click behavior was detected (e.g., highlighting in the snippet). In addition to those listed,
we initially tested the following features proposed in earlier studies (Clarke et al., 2007):
the number of query term matches with the title, snippet, and URL respectively, and the
respective number of phrase matches. However, because our models were developed to
specifically capture changes in click behavior due to visual characteristics, we removed
these features that may be more strongly affected by document content.

Pairwise Caption Features

Our second set of features considers not individual documents, but pairs of documents.
The intuition behind these features is that documents presented in response to a query
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Feature Description

A URL length above / below The difference between the length of the URL of
the current document and of the document ranked
immediately above it / immediately below it

A URL slashes above / below The difference in the number of slashes in the URL

A URL bold above / below The difference in the number of words highlighted
in the URL

A title length above / below The difference in title length (in characters or
words)

A title bold above / below The difference in the number of highlighted words

or sections in the title

A snippet length above / below  The difference in the length of the snippet (in char-
acters or words)

A snippet bold above / below The difference in the number of highlighted words
or sections in the snippet

Table 5.2: Pairwise visual features for capturing caption bias.

attract clicks not only based on their own representations, but also depending on other,
surrounding documents. For example, a somewhat attractive result may attract clicks
when placed next to a poorly presented result, but may not get much attention when
placed next to a result with a better presentation. Although we found per-document
models to perform better individually, we hypothesized that click behavior could best be
captured by a combination of characteristics of a document’s own representation, and
those of surrounding documents.

As for our per-document features, we avoided unbounded features to prevent individ-
ual features from dominating the model (this may happen when e.g., directly including
the difference in URL length). We achieved this by encoding all pairwise features as
ternary values (i.e., with possible values (—1, 0, 1). Thus, e.g., the feature A URL length
above would be —1 if the URL length of the current document is less than that of the
document ranked immediately above it, 0 if there was no difference, and 1 if the URL
was longer than that of the document ranked above it.

A complete list of the investigated pairwise features is provided in Table 5.2. The
features A title bold above / below (in words) and A snippet bold above / below (in
words) are designed to capture relationships between neighboring documents that are as
close as possible to those explored in (Yue et al., 2010b), so that effects found here can be
compared to this earlier work. In addition, we include features that capture differences in
highlighting of the URL, and consider the number of highlighted sections (e.g., phrases)
in addition to that of individual words. Finally, we add features that capture the length
differences of URL, title, and snippet. As for the document-wise features, we exclude
features based on term matches, to focus on visual aspects of the search result captions.
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5.1.3 Reweighting Clicks

In this section we detail how we apply the caption bias models developed in §5.1.1 to
interleaved comparison methods to compensate for caption bias. The key idea is to
reweight observed clicks on result documents by the change in click odds for that doc-
ument that is due to caption bias. We base our method on two interleaved comparison
methods, TD (Radlinski et al., 2008b) (cf., §2.3.1) and PI-MA (Chapter 4). Extensions to
other interleaved comparison methods are straightforward following the same procedure.

We start from the interleaved comparison outcomes TD and PI-MA, and their esti-
mators of comparison outcomes (the sample mean as defined in Eq. 4.1 for TD, and our
estimator in Eq. 4.5 for PI-MA). To make explicit how comparison outcomes are com-
puted given an observed interleaved result list 1, clicks ¢, and assignments a by these
estimators we rewrite comparison outcomes o as’

len(1) len(1)

0= Z c[rla[r] — Z c[rjar], (5.2)

r=1 r=1

where len(1) is the length of 1, r is the rank of a document in 1, and ¢[r] € {0, 1} indicates
whether the document 1[r] was clicked. For brevity of notation, we take a[r] € {0, 1}
to indicate whether 1[r] was contributed by ranker 11, with its complement a[r] € {0,1}
indicating whether it was contributed by ranker 1. Thus c[r]a[r] evaluates to 1 iff 1[r] was
clicked, and contributed by ranker 1y, and to compute o, we simply take the difference in
the number of clicks that were contributed by 1; and 5.

Based on the formulation of o in Eq. 5.2 we correct for caption bias using the coeffi-
cients (. obtained from the trained model in Eq. 5.1. The exponential of the coefficient
for a feature can be interpreted as the change in the click odds of a document, given that
the feature is present (for binary features; coefficients for real-valued features are inter-
preted as the change in click odds ratio for one unit change). It is an approximation of
the change in click probability attributed to that feature.> We exploit this relationship by
reweighting each observed click on a document by the effect of the documents’ caption
features on its click odds, efe* where x,. = ¢c(d, q) is the caption feature vector for
the clicked document.

For an example of how click reweighting is applied, consider a result with a very
short URL (i.e., short URL is true), and 3 highlighted sections in the displayed result title
(title bold). Also, assume that the estimated weights for these features, obtained from the
trained caption bias model, are 0.4 and 0.7. Then, due to how the result was presented,
it was e!'! ~ 3 times as likely to be clicked than an equally relevant document presented
at the same rank and average presentation (i.e., with medium-length URL and less high-
lighting). Then, the observed click is reweighted with the inverse of this change in click

2In contrast to previous chapters, we define the outcome in terms of the click difference, instead of the sign
of the click difference. This formulation makes it easier to see how individual clicks are reweighted below. The
resulting TD estimator (without bias compensation) is equivalent to the aggregation method called A ;.1 in
(Chapelle et al., 2012).

3While the change in click odds only approximates the change in click probability (relative risk) under
caption bias, it has the advantage that it can be estimated from non-random samples using logistic regression.
It is considered a good approximation of relative risk under the “rare disease assumption,” in particular when
the relative risk is small (Schmidt and Kohlmann, 2008). Because clicks are relatively rare and the odds ratios
we observe are small, we consider these assumptions reasonable.
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odds, to correct for the attractive presentation and decrease the click’s contribution to the
outcome of the interleaving experiment.

Applying the resulting click weights to the estimator for TD, and after substituting
Eq. 5.2 in Eq. 4.1, we obtain the following alternative estimator, which reweights clicks
to compensate for caption bias:

n len(1) C[T] len(1) C[’I“]

. 1 _

i=1 r=1 r=

Thus, instead of weighting each observed click equally, this estimator for weighted TD
weights each observed click by its change in click odds due to caption bias.

The corresponding estimator for PI-MA is obtained by substituting Eq. 5.2 in Eq. 4.5
and again applying click reweighting:

len(1) len(1)

- 1 & clr clr
By 0] = LS (Y0 S e - > e | Plalla)

i=1 acA r=1 r=1

|

5.4)
Our method for modeling caption bias is experimentally validated in the next section,
and we apply the resulting model to interleaving experiments in §5.2.4.

5.2 Experiments and Results

In this section we detail our experimental setup and results in three parts. First, we
focus on training caption bias models (5.2.1). Results of this step give insights into
the features that were found to be useful for explaining click behavior and their relative
importance. Second, we assess the quality of the trained models, by comparing their
predictions to observed click behavior (5.2.2). Third, we show how our caption bias
models can be applied to infer user preferences from clicks (5.2.3). Finally, we apply our
best-performing caption-bias model to interleaving experiments and analyze its effect on
experiment outcomes (5.2.4).

5.2.1 Modeling Caption Bias

In our first experiment, we train several instantiations of our caption bias model as defined
in Equation 5.1. Analyzing which visual features contribute to explaining click behavior,
and what their relative importance is in each of the models, allows us to better understand
the observed caption bias. In this experiment, we consider the following instantiations of
our model:

highlighting - uses only pairwise highlighting features, similar to Yue et al. (2010b)

document-wise - uses the per-document features in Table 5.1
e pairwise - uses only the pairwise features listed in Table 5.2

combined - considers all visual features in Tables 5.1 and 5.2
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All four models were trained using standard logistic regression (with the function
glm) in R.* The training data was obtained from a large commercial web search engine.
The data is a random sample of queries and result pages collected on February 16, 2012.
To account for the effect of relevance, the log data was intersected with a large set of
previously collected relevance judgments. This intersection resulted in approximately
420,000 (non-unique) query—URL pairs.

A limitation of our setup is that, because we use query—URL pairs for which relevance
assessments were available, our training data set does not constitute a random sample.
Rather, the use of previously collected judgments introduces bias, as more judgments
were available for, e.g., frequent queries, and for documents that were previously ranked
highly by the search engine. However, this bias only affects our training data, and not the
data sets used for evaluation and analysis.

The weights for our trained models are shown in Table 5.3. Recall that when we
apply our model of caption features to reweighting clicks, we only use the weights of
the caption features to determine the relative change in click attractiveness, and ignore
position and relevance features (cf., §5.2.1). Therefore, we only report and analyze the
regression weights for these visual features.

For the highlighting model, we find a relatively weak effect for all included features.
URL bolding has a positive effect (i.e., more bold increases the click likelihood of a re-
sult), but only when compared to the document ranked below. Increased highlighting
in the title always increases click probabilities, and this effect is stronger than that of
highlighting in the snippet (in agreement with (Yue et al., 2010b)). For increased high-
lighting in the snippet, a small negative effect is detected, which may be caused by easily
identifiable caption spam.

For the document-wise model we identify several features that have a strong corre-
lation with click behavior. The highest regression weight is obtained for our deep links
feature. This result matches our observation that results with deep links tend to attract
more clicks (even on the title link), perhaps because they take up more space on the result
page. For highlighting in the result title, a much stronger effect is observed than for the
pairwise version of this feature. Finally, click probability is found to decrease for URLs
with many slashes, and for short snippets, as expected.

Results for the pairwise model are similar, although the trained weights are smaller
in magnitude. For URL length, a negative impact is detected when the current result has
a longer URL than the document above, however this effect is reversed when the URL is
compared to the result below.

Finally, in our combined model we find that all per-document features found to be
statistically significant previously again have a statistically significant impact, even when
combined with pairwise features. However, significant effects are also found for addi-
tional pairwise features, suggesting that the click behavior observed in our training data
can best be explained when document-wise and pairwise features are combined. The
pairwise features that had a statistically significant effect when included in the combined
model are A URL slashes below, A title length below, as well as all highlighting features
for result title and snippet.

4Obtained from http://www.r-project.org/.
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highlighting  document-wise pairwise combined

Per-document Deep links 1.041 (£0.021) 1.048 (£0.021)
features Short URL 0.470 (£0.022) 0.403 (£0.022)
URL slashes -0.425 (4+0.116) -0.493 (4+0.117)
URL bold 0.314 (£0.028) 0.271 (£0.027)
Short title 0.387 (£0.021) 0.264 (£0.023)
Long title 0.353 (£0.021) 0.461 (£0.021)
Title start 0.352 (£0.017) 0.292 (£0.017)
Title bold 0.845 (£0.036) 0.672 (£0.037)
Short snippet -0.534 (+0.129) -0.716 (+0.128)
Long snippet 0.192 (£0.048) 0.324 (£0.049)
Pairwise A URL slashes above -0.184 (40.020)
features A URL slashes below 0.160 (£0.015) 0.109 (£0.015)
A URL bold above
A URL bold below 0.104 (£0.028)
A title length above (in characters)
A title length below (in characters) -0.237 (£0.010) -0.270 (£0.011)
A title bold above (in words) 0.267 (£0.024) 0.305 (£0.024) 0.248 (40.023)
A title bold below (in words) 0.191 (£0.018) 0.260 (£0.018) 0.172 (£0.018)
A snippet length above (in characters) -0.159 (£0.010)
A snippet length below (in characters)
A snippet bold above (in sections) -0.042 (4£0.009) -0.127 (£0.017) -0.088 (£0.016)
A snippet bold below (in sections) -0.063 (40.007) -0.062 (+0.012) -0.049 (£0.012)

Table 5.3: Results (modeling caption bias): Visual features included in each trained model, with estimated regression weights and standard
error of the weight estimates. Of the candidate features for each model, only those with a statistically significant effect on click predictions
are included (with p < 0.001).
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To summarize, per-document features were found to be the most useful for predicting
click behavior from visual characteristics. A weaker impact was identified for pairwise
features, but a combined model best explains observed click behavior.

5.2.2 Evaluating Caption Bias Models

Above, we presented four models of caption bias given visual features. Here, we compare
the performance of these models by applying the models to predict user clicks on a new
data set.

The data for this experiment was again obtained from a commercial web search
engine, but was collected several days after the training data. We obtained three non-
overlapping random samples (by user), from February 23 to 26, 2012. Each data set
consists of queries, the presented search results, and the observed clicks. Below, we refer
to these evaluation sets as A, B, and C.

The task on which we evaluate the trained models of caption bias is to predict whether
a given document will be clicked or not, based on its visual characteristics and its position
in the result list. As ground truth, we use the actually observed clicks.

We measure performance in terms of perplexity, a measure that is typically used
to compare the quality of the predictions of a probabilistic model to observed outcomes,
e.g., to evaluate click prediction methods (Dupret and Piwowarski, 2008). It is formulated
as 2~ Xitiw loga P (¢i) where c; are observed events (here, whether a document was
clicked or not), P(c;) is the probability of an observed event predicted by our model, and
n is the number of observations. Intuitively, perplexity captures the degree of “surprise”
that remains after a predictive model is applied. When applying an ideal model that
can accurately predict all observed events, no surprise remains, and perplexity is 1. A
uniformly random model would obtain a perplexity of 2, indicating that the model would
not provide any information as to whether or not a result document is clicked.

In addition to the four models discussed in the previous section, we add a baseline
model, that does not take any visual features into account (but is trained using relevance
and position features, and predicts click behavior using document position alone). Our
results are presented in Table 5.4.

data set baseline highlighting document-wise pairwise combined

A 1.6644 1.6754 1.5784 1.6504 1.552
B 1.6274 1.6404 1.5404 1.6274 1.521
C 1.6464 1.6564 1.565 1.6334 1.540

Table 5.4: Results (evaluating caption bias models): Perplexity of all caption bias mod-
els when predicting clicks. Statistical significance is indicated in comparison with the
combined model.

Surprisingly, we find that the least predictive model is not the baseline (without any
visual features), but the highlighting model. It performs worse than the baseline in all
cases, even though it better explained click behavior on the training data. This suggests
that the highlighting model may be overfitting the training data. The pairwise model is
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little better than the baseline, suggesting that pairwise features alone may not be able
to accurately represent users’ click decisions. Better performance is achieved by our
document-wise model. The best performance (lowest perplexity) over all data sets is
obtained by our combined model. Apart from data set C, where the document-wise model
is not statistically different from the combined model, all other models on all other data
sets perform significantly worse than our best-performing model. Our results suggest
that a combined model of visual features, that takes both document-wise and pairwise
features into account, is the most successful at modeling users’ click decisions.

To better understand how well our combined model captures caption bias, we conduct
a more detailed analysis of its performance on different segments of queries drawn from
data set B. We analyze prediction performance by (1) query frequency, and (2) the type
of the information need expressed by the query.

Table 5.5 shows the perplexity of the baseline and combined models, split by query
frequency. We divide queries into three groups: head, which consists of the 20% most
frequent queries, body, which consists of queries between the 20th and 80th frequency
percentile, and tail, which consists of the 20% least frequent queries.

Segment baseline combined

Head 1.105Y 1.111
Body 1.4004 1.347
Tail 2.0574 1.855

Table 5.5: Perplexity of the baseline and combined models, split by query frequency
segment. Statistical significance is indicated in comparison with the combined model.

We find that on head queries, perplexity is best for both models, and that the per-
formance of the combined model is lower than that of the baseline. The reason is that
these very frequent queries are typically “easy”, because many users search for the same
things, usually with a clearly identifiable goal. For this type of query, users are likely to
recognize target result pages, e.g., by the URL. Thus, caption bias is low for this type of
query, as reflected in our results. For the less frequent body queries, perplexity is higher
for both models. Here, the performance of the combined model is significantly better
than that of the baseline model, indicating that caption characteristics play a role here.
The trend continues for the fail query segment. For this segment, the baseline performs
worse than random, which indicates that result position is not a good predictor of clicks
for these queries. The performance of the combined model is significantly better. The
large improvement of 10% suggests that users’ click decisions on this most difficult query
segment are particularly strongly affected by caption characteristics.

Table 5.6 shows the results obtained when splitting queries by the type of informa-
tion need. Here, we use two sources of information to categorize queries. First, we use
information provided by the search engine used for data collection. For queries with
one predominantly clicked result, this top result is given more space on the result page.
Our log data provides information on which queries were treated with such “enhanced
navigational” results, and we use queries marked as such as our first category. For the re-
maining queries, a simple click-entropy based classifier divides queries into navigational
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and non-navigational.

Segment baseline combined
Enhanced Navigational 1.143 " 1.149
Navigational 1.357 1.339
Non-navigational 1.924 4 1.744

Table 5.6: Perplexity of the baseline and combined models, split by the type of informa-
tion need. Statistical significance is indicated in comparison with the combined model.

We observe a similar pattern to that obtained using query frequency. For enhanced
navigational queries, perplexity is lowest, and the baseline model performs better than
the combined model. As for the head queries above, results for these queries are the least
likely to suffer from caption bias. These queries have one main target result, and this
result is easy to identify on the result page, so caption bias is expected to play a small
role here. For both navigational and non-navigational queries perplexity is higher for
both models but the combined model performs significantly better in both cases. Again,
the performance improvement of the combined over the baseline model is largest for
non-navigational queries, where caption bias is expected to be strongest.

To summarize, we validated our models of caption bias on the task of predicting
clicks on interleaved result lists. Our combined model, which includes both document-
wise and pairwise features to model caption bias, performed best overall. We also found
that our model worked best on queries where caption bias is expected to affect clicks the
most, namely infrequent, non-navigational queries.

5.2.3 Predicting Preferences

In the previous subsections, we presented our results for training and evaluating caption
bias models, and found that our combined model predicted observed click behavior best.
In this section, we show how applying this model to reweight clicks affects interleaving
scores on individual results, and show how such a reweighting can be used to predict user
preferences.

To show how compensating for caption bias affects interleaved comparisons in detail,
consider Table 5.7. For the query “today in two minutes”, four search results are shown.
The first has a visual representation that results in a weight of 1.003, which is close
to the average (i.e., the result is about as likely to be clicked as a result for which all
visual features are false / zero). Click probability increases, e.g., due to the short title,
and highlighting in the URL, but decreases due to the missing snippet and the lack of
highlighting in the title. Overall, the result is relatively unlikely to be clicked based
on attractiveness alone. In contrast, the lower-ranked results look more attractive, and
consequently receive lower click weights. In this result list, the two results with the
lowest weights (i.e., the most attractive visually) were clicked by the user. This suggests
that click behavior may have been affected by caption bias.

We can now compare the outcomes that would be obtained in the above example
when inferring a TD outcome with and without applying our model of caption bias.
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Rank Example results for the query “today in two minutes” Visual features Ranker Weight

1 URL bold, short title, short snippet, B 1.003
A URL slashes below = —1, A ti-
tle length below = —1, A title bold
below = —1, A snippet length below
= —1, A snippet bold below = —1

2% URL slashes, URL bold, long title, ti- A 0.343
tle bold, A title bold above = 1, A
snippet bold above = 1

short title, title bold, A URL slashes B 0.517
below = 1, A title length below (in

characters) = —1, A title bold below

= —1, A snippet length below = —1,

A snippet bold below = —1

hvw
long title, title bold, A title bold above A 0.274

=1, A snippet bold above = 1

Table 5.7: Example interleaving impression with visual features, contributing ranker, and click weight. The ranks of clicked results are
marked with “*’ and corresponding result titles are highlighted in purple.
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We observe that both clicked results were contributed by ranker A, leading to a win of
2 clicks over B. When applying the caption bias model, the low click weights of the
clicked results are taken into account, leading to a much smaller win of 0.617. This
example shows how the caption bias model decreases the impact of clicks that may have
been biased towards more attractive results.

As an additional proof-of-concept, we applied our caption-bias weighting scheme to a
small sample of search result impressions for which two different URLs had been clicked
by different users. When a model predicted a lower weight for one of the clicked URLs,
this URL would be inferred to be more likely to be clicked due to its presentation, and
the URL with the higher click weight would be inferred to be preferred due to its content.
For this small data set, we asked human annotators to judge which of two landing pages
(for the two competing URLSs) they would prefer for a given query.

Table 5.8 shows how often our model predictions agree with the human preference
judgments. For the baseline model, no preferences can be inferred, as both URLs were
clicked for the given query. Prediction quality of the pairwise model is the same as
a random model would achieve, while accuracy for the document-wise and highlighting
models are slightly higher. The best preference predictions are obtained by our combined
model.

baseline highlighting document-wise pairwise combined
0/8/0 44/1/41 43/11/32 43/0/43 47/0/39

Table 5.8: Preference predictions by caption bias models. For each model we include the
number of correct / no preference / incorrect predictions.

5.2.4 Interleaving Outcomes

In this section, we investigate whether and how interleaving outcomes can be affected
by differences in result presentation in practice. To this end, we apply our best caption
bias model (the combined model, as shown in Table 5.3) to interleaved comparisons
conducted on live web search traffic using the reweighting schemes introduced in §5.1.3,
and analyze how the inferred interleaving outcomes are affected by bias compensation.
We conducted six interleaving experiments (referred to as E1-E6 below), selecting
experiments that represented small changes in ranking quality that are typical of incre-
mental ranker improvements at major web search engines. We also selected pairs such
that the competing rankers used methods for applying previously collected clickthrough
data, and different weights to make the influence of clicks weaker or stronger. Select-
ing ranker pairs in this way increased our chances of detecting changes in interleaving
outcomes due to caption bias. If caption bias affects interleaving outcomes beyond in-
creasing noise, then we expect that compensating for caption bias results in outcome
changes of different magnitudes for these experiments. On the other hand, if caption
bias affects all rankers equally, then all experiment outcomes should be affected by bias
compensation equally. The direction of all experiments is chosen such that a baseline
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ranker (1;) is compared to a treatment ranker (1s). The hypothesis for all six interleaving
experiments is that the treatment ranker improves over the baseline ranker.

The interleaving experiments were run on a sample of live traffic from the same web
search engine as used in the previous two sections. These experiments were run within
three weeks of collecting the data sets for model training and evaluation, so that no ma-
jor changes in click behavior are expected. Interleaved result lists were generated using
TD.> After observing user clicks, four different scoring methods were applied to compute
interleaved comparison outcomes using the original TD (Eq. 4.1) and PI-MA (Eq. 4.5)
scoring schemes (without compensating for caption bias) and our caption-bias reweight-
ing schemes (Eqs. 5.3-5.4) (with the combined caption bias model). Note that in earlier
work, click preferences were recentered to let a value of 0.5 denote “no preference”
(i.e., the rankers are inferred to perform equally well), as shown in Eq., 4.2 (defined on
page 42). Then, the treatment ranker is detected to win the comparison if the estimated
outcome is statistically significantly higher than 0.5. Here we follow the same conven-
tion, and report all scores centered around 0.5.

Table 5.9 gives an overview of the interleaved comparison outcomes obtained with
TD and PI-MA, before and after caption bias reweighting. We can see that scores are gen-
erally close to 0.5. These scores reflect the incremental ranker changes typically tested
at major web search engines (e.g., changes that affect a small percentage of queries).
Despite the relatively small changes in ranking, most experiments detect a statistically
significant difference between the rankers.

Experiment TD PI-MA
Unweighted Weighted Unweighted Weighted
El 0.50334 0.50174 0.50184 0.50114
E2 0.50404 0.50204 0.50244 0.50164
E3 0.50174 0.50104 0.50084 0.50064
E4 0.50314 0.50054 0.5010% 0.5000
ES 0.50184 0.50144 0.50084 0.50084
Eo6 0.4999 0.4998" 0.5000 0.4999"

Table 5.9: Results (interleaving): Interleaving scores using TD (PI-MA) before (un-
weighted, Eqs. 4.1 and 4.5) and after (weighted, Eqgs. 5.3 and 5.4) applying caption-bias
models to six interleaved comparison experiments. Outcomes marked with 4 or ¥ de-
tected significant gains or losses of the treatment ranker in comparison with the original
ranker.

We first compare the outcomes obtained under TD and PI-MA (cf., the “unweighted”
columns in Table 5.9). Outcomes for all experiments agree in direction and in whether the

5 As a result, the implementation of PI-MA used here is a variant of the method described in §4.2.2. In par-
ticular, we use the same interleaving process as TD (that is, we do not interleave probabilistically) to minimize
effects on user experience. However, we compute comparison outcomes as if PI had been used for interleaving.
This results in comparisons that weight clicks by the magnitude of the difference in position between rankers.
For example, a ranker would gain a small win (in terms of weighted click) for moving a document up by one
rank, and a large win when the clicked document was moved up from a much lower rank.
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difference is statistically significant. However, the magnitude of outcomes differs. E.g.,
the change in comparison outcomes between TD and PI-MA smaller for E1 than for E4.
The reason is that, under TD, individual comparison outcomes are binary, independent of
the magnitude of the difference between rankers. Under PI-MA, outcomes are weighted
by the rank distance of clicked documents. E.g., if a click was observed on a document
placed at ranks 3 and 4 by the competing rankers, the magnitude of the interleaving
outcome would be much smaller than if one ranker had placed the document at rank 1
and the other at rank 10. Thus, for experiments where there is a large absolute difference
between TD and PI-MA outcomes, a large portion of the differences detected under TD
is expected to be caused by relatively small differences between rankings (e.g., E4).

After applying reweighting (cf., the “weighted” columns in Table 5.9), we find that
the detected interleaving gains are generally smaller than under the original scoring meth-
ods. This suggests that a portion of the observed clicks was on results with low weights
(i.e., with high click probability). In most cases, experiments for which significant differ-
ences between rankers were detected before reweighting, are still significantly different
after reweighting (E1, E2, E3, ES). However, most importantly, we see differences in the
strength of the effects of reweighting.

One example where comparison outcomes appear to be strongly affected by caption
bias is ranker pair E4. For this pair, the original comparison using TD results in a sta-
tistically significant gain for the treatment ranker (0.5031, a relatively big difference in
typical ranker evaluations). After reweighting, a much smaller (but still significant) im-
provement of 0.5005 is observed, indicating that most of the gain observed under TD
may be due to caption bias. Comparing to the outcome obtained under the probabilistic
method, we find that another portion of observed improvements is due to only small rank-
ing changes. After our model of caption bias is applied to PI-MA, no difference between
the rankers can be detected. This suggests that the initially detected improvement was
due to small ranking changes and caption bias, and that there is no true improvement in
ranker quality. We further analyzed the ranker pairs used in our interleaving experiments,
and found that the treatment ranker in E4 relied on click data the most. This suggests that
this experiment is particularly likely to be affected by caption bias.

For experiment E6, the comparison outcome changes from non-significant to signif-
icantly worse when caption bias reweighting is applied. Here, the original comparison
would support the conclusion that the compared rankers are equivalent. However, the
reweighted outcome indicates that the treatment ranker was really significantly worse
than the baseline ranker, when rank distances and caption bias are taken into account.

Our results support the hypothesis that caption bias can affect the outcomes of inter-
leaving experiments. The assumption that caption bias may affect both rankers equally,
leading to a mere increase in noise, is not supported, because our experiments showed
different behaviors when caption bias was compensated for. In experiments E1, E2, E3,
and ES the direction of the interleaving outcomes and their statistical significance were
maintained after applying caption bias reweighting. In E4 and E6 the inferred outcomes
changed, in E4 (where the treatment ranker strongly relied on click signals) from a signif-
icant improvement to a tie, in E6 from a tie to a significant loss for the treatment ranker.
We conclude that caption bias can affect the outcomes of interleaved comparison experi-
ments, and that, if caption bias is not compensated for, it can lead to drawing the wrong
conclusions about the relative quality of result rankings.
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5.3 Conclusion

In this chapter, we addressed the problem of caption bias in interleaving experiments.
Interleaved comparison methods promise to capture user preferences, because they rely
on interactions of actual users. However, when click behavior is systematically biased
by, e.g., the visual appearance of search results, interleaved comparison methods may
detect differences between rankers that are not related to true ranker quality in terms of
document relevance, or they may fail to detect true differences between rankers. Here,
we presented models of caption bias, and investigated how caption bias can affect click
behavior and interleaving outcomes.

We started our investigation of caption bias by introducing a set of models designed
to model bias using per-document features that capture visual characteristics of individ-
ual result documents, and pairwise features that capture relationships with neighboring
documents. We evaluated these models by using them to predict clicks. We found that
overall, per-document features were more successful in capturing click behavior than
pairwise features. However, best results were achieved using a combined model that
uses both feature sets. We also found that the combined caption bias model was the
most successful at predicting click behavior in cases where caption bias is expected to
be strongest (such as non-navigational queries). Finally, the combined model was the
most accurate in predicting judged preferences between pairs of documents. We con-
clude that the appearance of document captions and neighboring captions significantly
affects users’ click behavior.

We derived two extensions of the interleaved comparison methods TD and PI-MA
to integrate probabilistic caption bias models such as the one devised in this chapter to
compensate for caption bias. We showed that, when caption bias can be modeled accu-
rately, integrating the resulting model with interleaved comparison methods is possible
and leads to unbiased estimates of comparison outcomes.

Finally, we applied our best (combined) caption bias model to six interleaving ex-
periments conducted on live search traffic of a major commercial web search engine.
We found that compensating for caption bias led to small changes in all experiment out-
comes. Most importantly, there were differences in the magnitude of the effects. In one
experiment, an originally large and statistically significant difference between rankers
was nullified after rank differences and caption bias were taken into account. The out-
come of a second interleaving experiment changed from “not significant” to detecting
a significant loss for the treatment ranker. Our results show that the outcomes of inter-
leaving experiments can be affected by caption bias, and that without compensating for
caption bias wrong conclusions can be drawn.

The results of this chapter impact the research in online evaluation and online learn-
ing to rank as follows. While work on interleaved comparison methods was based on the
assumption that caption bias would affect rankers in an interleaving experiment equally,
thus leading to noise but not bias, we found that this is not always the case. With only
a small number of interleaving experiments we were able to identify cases where inter-
leaved comparison outcomes changed when caption bias was compensated for. However,
we also showed that probabilistic models of caption bias can be integrated with inter-
leaved comparison methods to compensate for caption bias. This means that in practice,
unbiased interleaved comparisons are possible and can be used for online evaluation and
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learning to rank for IR.

The models of caption bias developed in this chapter were shown to predict click
behavior more accurately than models without caption features. However, they consti-
tute only a first step towards capturing the complex effects that visual aspects of search
engine result pages may have on click behavior. An important direction for future work
is to develop more accurate models of caption bias, possibly taking into account recent
work on click modeling (Dupret and Piwowarski, 2008). Particularly, models that can
generalize across queries (Zhu et al., 2010), and that separate perceived relevance from
judged relevance (Zhong et al., 2010) are promising in this context.

In this and the previous chapters we focused on interleaved comparison methods as
a way of inferring feedback from natural user interactions in an online setting. These
methods are important by themselves, for online evaluation experiments, e.g., to evaluate
new retrieval technologies. However, in this thesis we are mainly interested in these
methods as a component of online learning to rank for IR systems. In Chapter 6, we
will focus on the principles that allow learning from interleaved comparisons. We also
compare them to approaches that learn from document-pairwise feedback.
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In the previous two chapters we developed and investigated interleaved comparison meth-
ods as a promising solution for inferring information about rankers from implicit user
feedback. In this and the next chapter, we focus on the question of how to learn reliably
and efficiently from the inferred feedback.!

Methods for online learning to rank for IR need to address a number of challenges.
First, the most robust methods for inferring feedback provide only relative information,
e.g., about the relative quality of documents (§2.3) or rankers (see the interleaved com-
parison approaches discussed in previous chapters). Algorithms for learning from such
relative feedback have been proposed (§2.5), and these form our baseline algorithms.
Second, even relative feedback can be noisy and biased. Our empirical results in this
chapter provide first insights into how algorithms for learning to rank from pairwise and
listwise relative feedback perform under noise.

A challenge in online learning to rank for IR that has not been addressed previously
is that algorithms for this setting need to take into account the effect of learning on users.
In contrast to offline approaches, where the goal is to learn as effectively as possible
from the available training data, online learning affects, and is affected by, how user
feedback is collected. Ideally, the learning algorithm should not interfere with the user
experience, observing user behavior and learning in the background, so as to present
search results that meet the user’s information needs as well as possible at all times. This
would imply passively observing, e.g., clicks on result documents. However, passively
observed feedback can be biased towards the top results displayed to the user (Silverstein
et al., 1999). Learning from this biased feedback may be suboptimal, thereby reducing
the system’s performance later on. Consequently, an online learning to rank approach
should take into account both the quality of current search results, and the potential to
improve that quality in the future, if feedback suitable for learning can be observed.

In this chapter, we frame this fundamental trade-off as an exploration—exploitation

I This chapter is based on work presented in Hofmann et al. (2011a, 2013b). However, the empirical results
presented here differ from our previous work as follows. First, the navigational click model is instantiated
differently (as shown in §3.3) to match the model used in Chapter 4. Second, we previously applied our
algorithms to the documents provided by the LETOR data sets in their original order. Because this order is non-
randomized, learners started from high-quality lists, which could result in higher absolute performance. In the
experiments presented here, we address this problem by breaking ties randomly (so that a result list generated
from a zero weight vector is completely randomized). Despite these changes, the results are qualitatively
identical to those presented earlier and support the same conclusions.
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dilemma. If the system presents only document lists that it expects will satisfy the user,
it cannot obtain feedback on other, potentially better, solutions. However, if it focuses
too much on document lists from which it can gain a lot of new information, it risks
presenting bad results to the user during learning. Therefore, to perform optimally, the
system must explore new solutions, while also maintaining satisfactory performance by
exploiting existing solutions. Making online learning to rank for IR work in realistic
settings requires effective ways to balance exploration and exploitation.

We investigate mechanisms for achieving a balance between exploration and ex-
ploitation when using pairwise and listwise methods, the two most successful approaches
for learning to rank in IR (§2.2). The pairwise approach takes as input pairs of documents
with labels identifying which is preferred and learns a classifier that predicts these labels.
In principle, pairwise approaches can be directly applied online, as preference relations
can be inferred from clicks. However, as we demonstrate in this chapter, balancing ex-
ploration and exploitation is crucial to achieving good performance.

Listwise approaches aim to directly optimize an evaluation measure, such as NDCG,
that concerns the entire document list. Since such evaluation measures cannot be com-
puted online, new approaches that work with implicit feedback have been developed (Yue
and Joachims, 2009). The existing algorithm learns directly from the relative feedback
that can be obtained from interleaved comparison methods, but we show that it over-
explores without a suitable balance of exploration and exploitation.

We present the first two algorithms that can balance exploration and exploitation
in settings where only relative feedback is available. First, we start from a pairwise
approach that is initially purely exploitative (§2.5.1). Second, we start from a recently
developed listwise algorithm that is initially purely exploratory (Yue and Joachims, 2009)
(§2.5.2). We assess the resulting algorithms using the evaluation framework described in
Chapter 3 to answer the following questions:

RQ 11 Can balancing exploration and exploitation improve online performance in on-
line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of
online learning to rank for IR approaches relate to balancing exploration and ex-
ploitation?

Our main result is that finding a proper balance between exploration and exploitation
can substantially and significantly improve the online retrieval performance in pairwise
and listwise online learning to rank for IR. In addition, our results are the first to shed
light on the strengths and weaknesses of pairwise and listwise learning in an online set-
ting, as these types of approaches have previously only been compared offline. We find
that learning from document-pairwise feedback can be effective when this feedback is
reliable. However, when feedback is noisy, a high amount of exploration is required to
obtain reasonable performance. When clicks are interpreted as listwise feedback, learn-
ing is similarly effective as under the pairwise interpretation, but it is much more robust
to noise. However, online performance under the original listwise learning approach
is suboptimal, as it over-explores. Dramatically reducing exploration allows learning
rankers equally well, but at much lower cost. Consequently, balancing exploration and
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exploitation in the listwise setting results in significantly improved online performance
under all levels of noise. We discuss in detail the effects on each approach of balancing
exploration and exploitation, the amount of noise in user feedback, and characteristics
of the data sets. Finally, we describe the implications of our results for making these
approaches work effectively in practice.

The remainder of this chapter is organized as follows. We present our methods for
balancing exploration and exploitation in the pairwise and listwise setting in §6.1. Our
experiments are described in §6.2, followed by results and analysis in §6.3. We conclude
in §6.4.

6.1 Approaches

In this section, we describe our approaches for balancing exploration and exploitation
for learning to rank in IR. These build on the pairwise and listwise baseline learning
algorithms shown in §2.5. Our approaches are based on the problem formulation of
online learning to rank for IR as a contextual bandit problem, as shown in §3.1.

6.1.1 Balancing Exploration and Exploitation in
Pairwise Learning to Rank

Our first approach builds off a pairwise formulation of learning to rank (Herbrich et al.,
1999; Joachims, 2002), in particular the stochastic gradient descent algorithm presented
in Sculley (2009). As detailed in §2.5.1, this algorithm optimizes a weight vector w for
linear combinations of ranking features x = ¢(d, ¢) to minimize a loss function formu-
lated in terms of the pairwise ranking loss (see Algorithm 4 on page 29). As shown by
Joachims (2002), the required pairwise feedback can be inferred from implicit feedback,
such as click data.

In previous applications of pairwise learning to implicit feedback scenarios, learning
was performed in a batch setting. First, implicit feedback was collected given an initial
ranking function. Then, the algorithm was trained on all collected implicit feedback.
Finally, this trained system was deployed and evaluated (Joachims, 2002). In this setting,
data collection is naturally exploitative. Users are shown results that are most likely to
be relevant according to a current best ranking function. In the online setting, such an
exploitative strategy is expected to result in the highest possible short-term performance.
However, it is also expected to introduce bias, as some documents may never be shown
to the user, which may result in sub-optimal learning and lower long-term performance.
This is confirmed in our experiments, as we will see below.

In supervised applications of pairwise learning to rank methods, the learning algo-
rithm is typically trained on the complete data set. Sculley (2009) developed a sampling
scheme that allows the training of a stochastic gradient descent learner on a random sub-
set of the data without a noticeable loss in performance. Document pairs are sampled
randomly such that at each learning step one relevant and one non-relevant document
were selected to form a training pair. In the online setting, we expect such a fully ex-
ploratory strategy to result in minimal training bias and best long-term learning.
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Algorithm 10 Balancing exploration and exploitation in the pairwise setting.

1: Input: D, n, \, wg, €
2: for query ¢; (t = 1..00) do

3 X=¢D|q) // extract features
// generate exploitative result list
S=wl X

5. 1 = sort_descending_by_score(D,s)[1 : 10]
: 1r] « first element of 1; ¢ 1 with probability €; element randomly sampled with-
out replacement from D \ 1 with probability 1 — e
7. Display 1 and observe clicked elements c.
8:  Construct all labeled pairs P = (x1, X2, y) for ¢; from 1 and c.
9:  for (x1,%2,y) in P do
10: if yw! | (x; —x2) < 1.0 and y # 0.0 then
11: Wi = w1 +ny(X1 — X2) — NAW_1 // update w

In the online setting where we learn from implicit feedback, we cannot directly deter-
mine for which document pairs we obtain feedback from the user. Any document list that
is presented in response to a query may result in zero or more clicks on documents, such
that zero or more pairwise constraints can be extracted. Due to position bias (Silverstein
et al., 1999), the higher a document is ranked in the result list presented to the user, the
more likely it is to be inspected and clicked.

Here, we ignore explicit dependencies between displayed documents, and define two
document lists, one exploratory and one exploitative, that are then combined to balance
exploration and exploitation. The exploitative list is generated by applying the learned
weights to compute document scores and then sorting by score, as in the baseline algo-
rithm. The exploratory list is generated by uniform random sampling of the documents
associated with a query.”

We employ a method for balancing exploration and exploitation that is inspired by
e-greedy, a commonly used exploration strategy in RL (§2.4.2).> The difference between
our approach and e-greedy is that we do not pick a single action at each timestep, but
rather select a number of actions that are presented simultaneously. This results in Algo-
rithm 10, which differs from our baseline algorithm in how the result list is constructed
(line 6).

We vary the relative number of documents from the exploratory and exploitative lists
as determined by € € [0, 1]. For each rank, an exploitative action (a document from the
exploitative list) is selected with probability 1 — e. A document from the exploratory list

2In practice, candidate documents are typically collected based on some feature-based criteria, such as a
minimum score. Here, we use the candidate documents provided with the learning to rank data sets used in our
experiment, where candidate selection may have been biased (Minka and Robertson, 2008). However, bias in
terms of feature values can be neglected here, as the specifics of the learned ranker are not the subject of this
study, and all learning methods are affected equally.

3More complex schemes of balancing exploration and exploitation are of course possible, but our focus
here is on demonstrating the benefit of such a balance over purely exploratory and purely exploitative forms of
soliciting feedback. A simple scheme is sufficient for this goal. We also experimented with a more complex
softmax-like algorithm and obtained qualitatively similar results. However, such an algorithm is more difficult
to tune than the e-greedy-like algorithm used here (Sutton and Barto, 1998; Whiteson and Stone, 2006a).
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is selected with probability €. Thus, values of e close to 0 mean that little exploration
is taking place, making the algorithm collect feedback in an exploitative way (¢ = 0
corresponds to the purely exploitative baseline setting). Values close to 1 mean more
exploration.

6.1.2 Balancing Exploration and Exploitation in
Listwise Learning to Rank

Our second online learning to rank approach builds off DBGD (Yue and Joachims, 2009).
This algorithm has been specifically developed for learning to rank in an online setting,
and it requires only relative evaluations of the quality of two document lists and in-
fers such comparisons from implicit feedback (Radlinski et al., 2008b). An overview of
DBGD is given in §2.5.2.

Given an appropriate function for comparing document lists, DBGD learns effec-
tively from implicit feedback. However, the algorithm always explores, i.e., it constructs
the result list in a way that minimizes bias between the exploratory and exploitative doc-
ument lists, which is assumed to produce the best feedback for learning. We now present
a comparison function f(1;,15) that does allow balancing exploration and exploitation.

We base our comparison method f(l;,12) on BI (Joachims, 2003; Radlinski et al.,
2008b), as detailed in §2.3.1 (in particular, Algorithm 1 on page 20). Extending this al-
gorithm to balance exploration and exploitation is easiest compared to other interleaved
comparison methods, and this is sufficient to test our hypothesis that balancing explo-
ration and exploitation in online learning to rank for IR can improve online performance.
Algorithms for balancing exploration and exploitation based on other interleaved com-
parison methods are possible and will be investigated in the future. A related approach,
which is based on PI-MA and PI-MA-IS (Chapter 4) and improves online performance by
reusing previously collected interaction data for more effective exploration, is presented
in Chapter 7.

In contrast to previous work, we alter BI to randomize not only the starting list and
then interleaving documents deterministically, but instead we randomly select the list to
contribute the document at each rank of the result list. In expectation, each list contributes
documents to each rank equally often. We call this altered version of Bl stochastic BI.

Constructing result lists using stochastic BI allows us to apply a method similar to e-
greedy. The resulting algorithm, which supplies the comparison method that is required
by DBGD, is shown in Algorithm 11. The algorithm takes as input two document lists 1;
and l,, and an exploration rate k. For each rank of the result list to be filled, the algorithm
randomly picks one of the two result lists (biased by the exploration rate k). From the
selected list, the highest-ranked document that is not yet in the combined result list is
added at this rank. The result list is displayed to the user and clicks c are observed. Then,
for each clicked document, a click is attributed to list 1; (i € {1, 2}) if the document is in
the top v of 1;, where v is the lowest-ranked click (as in Algorithm 1).

The exploration rate k& € [0.0,0.5] controls the relative amount of exploration and
exploitation, similar to €. It determines the probability with which a list is selected to
contribute a document to the interleaved result list at each rank. When k£ = 0.5, an
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Algorithm 11 f(1;,15) — k-greedy comparison of document lists using stochastic BI.

: Input: 13, 1o, &
1= [],n1 :0;71220
: while (len(l) < len(11)) A (len(l) < len(lz)) do
a < 1 with probability k else 2
j=min{i:1,[i] €1}
append(1,1,[])
Ng =MNg + 1
// present 1 to user and observe clicks c, then infer outcome (if at least one click was observed)
. dpae = lowest-ranked clicked document in 1
9: v=min{j: (dmax =hlj]) V (dmas = L2[j])}
10: ¢1 = len {i : c[i] = true A1[{] € 1;[1..v]}
11: co = len {i : c[i]| = true A 1[i] € 1p[1..0]}
// compensate for bias (Eq. 6.1)
12: ¢co = % * Co
13: return —1if c; > co else 1if ¢; < ¢ else 0

A o e

oo

equal number of documents are presented to the user in expectation.* As k decreases,
more documents are contributed by the exploitative list, which is expected to improve the
quality of the result list but produce noisier feedback.

As k decreases, more documents from the exploitative list are presented, which in-
troduces bias for inferring feedback. The bias linearly increases the expected number
of clicks on the exploitative list and reduces the expected number of clicks on the ex-
ploratory list. We can partially compensate for this bias since

Eles] = % % Elci], 6.1)

where E|[c;] is the expected number of clicks within the top v of list 1;, and n; is the
number of documents that 1; contributed to the interleaved result list. This compensates
for the expected number of clicks, but some bias remains, because the observed clicks
are converted to binary preference decisions before they are aggregated over queries.
While perfectly compensating for bias is possible, it would require making probabilistic
updates based on the observed result. This would introduce additional noise, creating
a bias-variance trade-off. Preliminary experiments show that the learning algorithm is
less susceptible to increased bias than to increased noise. Therefore we use this rela-
tively simple, robust bias correction. More complex, unbiased sampling schemes can be
developed using PI-MA and PI-MA-IS (Chapter 4), but this is beyond the scope of this
thesis.

4Note that the setting k = 0.5 corresponds to the fully exploratory baseline algorithm. Setting k& > 0.5
would typically not increase the amount of information that can be gained from a comparison, but would hurt
the expected reward, because fewer exploitative documents would be shown.
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6.2 Experiments

In this section, we describe the experiments that evaluate the algorithms presented in §6.1.
All experiments use the experimental setup detailed in Chapter 3. Here, we provide
further details and give an overview of the experimental runs we evaluate in the pairwise
and listwise setting.

For the experiments in this chapter we use the 9 LETOR 3.0 and 4.0 data sets (§3.4).
Click data is generated using the perfect, navigational, informational, and almost random
click models as shown in Table 3.1.5 As detailed in §3.5, we use the training folds of each
data set for training during the learning cycle and for calculating online performance
(in terms of discounted cumulative NDCG, with v = 0.995). We use the test sets for
measuring final performance (in terms of NDCG).

For each data set we repeat all runs 25 times and report results averaged over folds and
repetitions. We test for significant differences with the baseline runs (purely exploitative
for the pairwise approach (¢ = 0.0), purely exploratory for the listwise approach (k =
0.5)) using a two-sided student’s t-test (§3.5).

6.2.1 Pairwise Approach

In all pairwise experiments, we initialize the starting weight vector w to zero. In prelim-
inary experiments we evaluated offline performance for n € {0.0001,0.001, 0.01, 0.1},
and selected the setting that performed best over all data sets (n = 0.001). Our baseline
is the pairwise formulation of learning to rank with stochastic gradient descent as de-
scribed in §6.1.1, in the fully exploitative setting (¢ = 0; equivalent to Algorithm 4).
Against this baseline we compare increasingly exploratory versions of the algorithm
(e € {0.2,0.4,0.6,0.8,1.0}). All experiments are run for 1,000 iterations.

6.2.2 Listwise Approach

In all listwise experiments, we initialize the starting weight vector w to zero. We use the
best performing parameter settings from (Yue and Joachims, 2009): § = 1 and o = 0.01
(these settings resulted in good performance over all data sets in our preliminary ex-
periments). Our baseline is Algorithm 5, based on (Yue and Joachims, 2009), which
corresponds to a purely exploratory setting of & = 0.5 in our extended method.® Against
this baseline we compare exploit runs that balance exploration and exploitation by vary-
ing the exploration rate & between 0.4 and 0.1 as shown in Algorithm 11. Again, we run
all experiments for 1,000 iterations.

6.3 Results and Discussion

In this section, we present the results of our experiments, designed to test our main hy-
pothesis — that balancing exploration and exploitation can improve the online perfor-

SResults for the almost random click model are omitted, as they did not result in any new insights beyond
those obtained from the other three click models.

6In the listwise approach, the highest level of exploration is reached when the two candidate lists are inter-
leaved in equal parts, i.e., k = 0.5.
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mance of online learning to rank for IR systems. We first address this hypothesis for the
pairwise learning algorithm (§6.3.1), and then for the listwise learning algorithm (§6.3.2).
For both approaches we further analyze online and offline performance to identify factors
that affect online performance. Finally, we compare the two approaches under the novel
perspective of balancing exploration and exploitation (§6.3.3).

6.3.1 Pairwise Learning

We present our results for the experiments on the pairwise approach, described in §6.2.1,
in Table 6.1. It shows the online performance of the baseline approach (exploitative,
€ = 0) and increasingly more exploratory runs (¢ > 0.0) for the 9 LETOR 3.0 and 4.0
data sets and the perfect, navigational, and informational click models.

We expect good online performance for the exploitative baseline if the algorithm can
learn well despite any bias introduced due to the high level of exploitation. Generally,
an online learning to rank approach should exploit as much as possible, as it ensures that
users see the best possible result lists given what has been learned. However, if increased
exploration results in sufficiently high gains in offline performance, its short-term cost
may be outweighed by its long-term benefits, as it increases the quality of result lists
later on.

For the perfect click model, the best online performance is achieved in the baseline
setting for four out of nine data sets, ranging from 87.38 (NP2004, row 4) to 108.06
(HP2003, row 1). For these data sets, the exploitative baseline algorithm appears to
learn well enough, so that additional exploration does not lead to high gains in offline
performance that would outweigh its cost. For the three data sets TD2003 (row 5), TD-
2004 (row 6), and MQ2008 (row 9), online performance is higher at ¢ = 0.2 than in the
baseline setting, but the difference is not statistically significant. For the remaining data
sets, we see statistically significant improvements over the baseline at € = 0.4. Online
performance improves by 58% for the data set OHSUMED, and by 6% for the data set
MQ2007 (rows 7-8).

In the navigational click model, optimal online performance is achieved at higher
exploration rates than for the perfect click model. For five data sets, the best setting is
€ = 0.2, and for four data sets it is ¢ = 0.4. For all but one data set (MQ2008, row 18)
the improvements in online performance over the baseline are statistically significant.
Under noisier feedback, learning becomes more difficult, meaning that the quality of the
learned weight vectors that can be exploited is lower than under perfect feedback. This
reduces the benefit of exploitation, and lowers the cost of exploration, increasing the rel-
ative benefit of exploration. The biggest performance gains under increased exploration
are observed for NP2004 (row 13) and TD2003 (row 14), where the online performance
obtained in the best exploratory setting is 2.5 and 1.2 times that of the baseline set-
ting. High performance gains are also observed for HP2003 (81% improvement over the
baseline, row 10), HP2004 (98% improvement, row 11), NP2003 (72.8%, row 12), and
TD2004 (81.97%, row 15). The improvement for OHSUMED is 51% (row 16). Small
improvements are observed for MQ2007 (6%, row 17) and MQ2008 (1%, not statistically
significant, row 18).

Compared to the perfect click model, online performance with the navigational model
is much lower, as expected. The performance loss due to noise is between 2.7% (NP-
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€ 0.0 0.2 0.4 0.6 0.8 1.0

perfect click model

HP2003 108.06 99.96Y 87.58Y 76.04Y 50.75" 1.00Y
HP2004 101.75 84.38Y 73.88Y 60.47Y 4222Y  0.89Y

NP2003 104.51 98.67 89.72Y 72.00Y 46.31Y 1.57
NP2004 87.38 84.33 75.76Y 65257  44.62Y 0.98Y
TD2003 50.18 50.54 39.69Y 28.55Y 16.157 1.94Y
TD2004 47.49 48.82 34.00Y 2377 13.577 3.297
OHSUMED  49.31 78.074 69.944 60.51% 49.94 37.767
MQ2007 64.59 67.56% 68.354 63.99 57.88Y 51.14Y
MQ2008 89.20 89.67 85.74Y 80.58Y 73.78Y 66.70"
navigational click model
HP2003 50.01 90.344 88.314 80.38% 51.38 0.997
HP2004 41.80 82.76% 76.73% 65724 46.23 0.92"
NP2003 49.21 78.67% 85.03%4 74734 4990 1.68Y
NP2004 24.75 73314  86.53* 75.96% 53.164 0.89Y
TD2003 16.65 36.534 34264 25994 1537 2.017
TD2004 22.07 40.164 32.05% 22.85 13.31Y 3.307
OHSUMED  46.16 69.634 66.28% 58584 48774 37.83"
MQ2007 58.66 60.74%  62.08* 60.39%4 56.68Y 51.21"
MQ2008 79.53 79.60 80.38 77.70Y  72.85Y  66.23Y
informational click model

HP2003 4.26 12474  3836% 46374 39.114 0.97Y
HP2004 2.54 16.014 30.98% 39.854 28.094 0.93Y
NP2003 3.87 0.444 2548% 41974 38.204 1.60Y
NP2004 2.28 10.974 31.764 49.124 37.714 0.95"
TD2003 1.66 7.28% 1417 16.03* 10.624 1.96%
TD2004 4.71 14.094  20.034 17.45% 10.85% 3.25Y
OHSUMED 36.77 49.754 59.854 55.79% 48.004 37.81

MQ2007 55.02 56.334  56.42% 56.87* 55.06 51.14Y
MQ2008 72.68 72.22 72.36 72.15 70.85Y  66.33Y

Table 6.1: Results for the pairwise approach. Online performance (in terms of cumu-
lative NDCG) over 1,000 iterations for the exploitative baseline e = 0 and increasingly
exploratory runs (e > 0).

2004) and 27.7% (TD2003), when comparing the best settings for each click model and
data set.

In the noisier informational click model, the trends observed for the navigational
click model continue. Performance in the purely exploitative setting is substantially
lower than for the other click models, as the increase in noise makes learning more dif-
ficult. Compared to the navigational click model, online performance drops by another
8% (MQ2007) to 51% (HP2004).
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Under this click model, the cost of exploration further decreases relative to its ben-
efit, so optimal performance is again seen at higher exploration rates. For six data sets,
the best online performance is achieved at e = 0.6; for two data sets the best setting is
e = 0.4. All improvements are statistically significant when compared to the purely ex-
ploitative baseline. For the HP, NP, and TD data sets, online performance improves by as
much as an order of magnitude (rows 19-24). For the remaining data sets, improvements
are lower, at 63% (OHSUMED, row 25) and 3% (MQ2007, row 26). An exception is
MQ2008, for which there are no significant differences in online performance for runs
with e € [0.0, 0.6] (row 27).

Overall, we conclude that balancing exploration and exploitation for the pairwise
approach can lead to significant and substantial improvements in online performance.
This balance appears to be strongly affected by noise, with highest relative improvements
observed under the noisiest informational click model. Also, as click noise increases,
the amount of exploration required for good online performance increases. Best values
are € € [0.0,0.2] for the perfect click model, € € [0.2,0.4] for the navigational click
model, and € = [0.4, 0.6] for the informational click model. These findings confirm our
hypothesis that balancing exploration and exploitation in the pairwise approach improves
online performance.

Besides overall trends in online performance under different exploration rates, we
find performance differences between data sets. One such difference is that for the HP
and NP data sets online performance tends to be higher than the remaining data sets,
especially under the perfect and navigational click models. This suggests that these data
sets are easier, i.e., that click feedback can be used effectively to learn linear weight
vectors that generalize well. We can confirm this analysis by comparing the offline per-
formance that the pairwise approach achieves on these data sets. For the perfect click
model, an overview is included in Table 6.3 (on page 109). Indeed, offline NDCG@ 10
ranges from 0.704 (HP2004) to 0.760 (HP2003) for the “easy” data sets, and is substan-
tially lower for the more difficult data sets (from 0.272 for TD2003 to 486 for MQ2008).
While our NDCG scores are not directly comparable with those reported by Liu (2009)
(only NDCG@1 scores are equivalent, cf., §2.1), they show the same trend in terms of
relative difficulty.

Under the perfect click model we found differences between most data sets and OH-
SUMED and MQ2007. For these two data sets, online performance increased signifi-
cantly at e = 0.2, while for the remaining data sets, no significant improvements over
the purely exploitative baseline were observed. The significant improvements at an in-
creased exploration rate suggest that either big learning gains were realized for these data
sets with increased exploration (outweighing the cost of exploraiton), or that exploration
for these data sets is relatively low. As we detail below, both effects play a role here.

To analyze performance differences between the data sets, we study the learning
curves of these data sets at different levels of exploration. Figure 6.1 shows the offline
performance in terms of NDCG (on the whole result list) plotted over time (up to 1,000
iterations) for the data sets MQ2007, OHSUMED, NP2003, and HP2004. For the data
sets M Q2007 (Figure 6.1(a)) and OHSUMED (Figure 6.1(b)) we see that the best offline
performance is achieved at high exploration rates (the dark, dashed and dotted lines; the
difference between settings ¢ = 0.8 and € = 1.0 is negligible). For MQ2007, offline
performance at ¢ = 1.0 is 0.533, 3% higher than in the baseline setting. The biggest
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Figure 6.1: Final performance for the pairwise approach over time for the data sets
MQ2007, OHSUMED, NP2003, and HP2004, under the perfect click model and ¢ €

{0.0,0.8,1.0}.

difference between the final performance of the exploitative baseline and higher levels
of exploration under the perfect click model is observed for the data set OHSUMED
(Figure 6.1(b), offline performance is 0.657 for € = 1.0, 9% higher than in the baseline
setting). For this data set, the pairwise algorithm learns very poorly without at least some
exploration. Not shown is the learning curve for MQ2008. It follows the same trend,
with a final difference in offline performance of 4% (offline performance is 0.497 when
e =1.0).

Different behavior is observed for the remaining data sets. For the data sets NP2003
(Figure 6.1(c)), HP2003, TD2003, and TD2004 (not shown) there is no significant dif-
ference in offline performance between less and more exploratory settings under perfect
feedback. This is contrary to the expected behavior that the highest level of exploration
should result in best learning, as pure exploration corresponds to randomly sampling
document pairs for preference detection. Most likely, this unexpected behavior under
the perfect click model results from an effect similar to that observed in active learn-
ing. Because the current top results are shown, feedback is focused on the part of the
document space that is most informative for learning. The data set for which this effect
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is observed has only few relevant documents, so that focusing feedback on a promising
region can have a substantial benefit. The strongest effect is seen for data set HP2004
(Figure 6.1(d)), where offline performance improves when implicit feedback is collected
on exploitative result lists (¢ = 0, light and solid line) as opposed to more exploratory
settings.

Besides the gains in offline performance realized under the perfect click model for
OHSUMED and MQ2007 under increased exploration rates, we can also confirm the rel-
atively low risk of exploration for these data sets. In Table 6.1 we see that under pure
exploration, the drop in online performance for these two data sets and MQ2008 is much
smaller than for the remaining data sets. For example, online performance for MQ2008
at e = 1.0 is 66.7 (row 9), which corresponds to an NDCG of 0.3-0.4 for the average
result list presented to the user during learning. In contrast, online performance at this
level of exploration is 0.89 for data set HP2004 (row 2), which corresponds to an average
NDCG of less than 0.005. These differences are a result of the number of candidate doc-
uments per query, and the relative ratio of relevant to non-relevant documents provided
per query. As described in §3.4, OHSUMED and the MQ data sets have much fewer
candidate documents per query (approximately a factor of 10, compared to the other data
sets), and a much higher ratio of relevant to non-relevant documents. Under these con-
ditions, randomizing candidate documents has a much smaller negative effect on online
performance than for data sets with many (non-relevant) candidate documents. This re-
sults in the low cost of exploration observed for these data sets. For the HP, NP, and TD
data sets, the low ratio of relevant to non-relevant documents results in a much higher
cost of exploration.

While the low number of candidate documents for OHSUMED and the MQ data sets
results in a low cost of exploration, they also reduce its benefit. Comparing the learn-
ing curves in Figure 6.1(a)-6.1(b) to those in Figure 6.1(c)-6.1(d), we see that a much
smaller gain in offline performance is realized (the increase in offline performance over,
e.g., the first 100 iterations is much smaller). Thus, for data sets with a high ratio of
relevant documents, exploration is cheap, but its benefit is limited. An extreme case is
MQ2008, where the benefit of improving offline performance through increased explo-
ration is so small that it does not lead to significant improvements in online performance
(rows 9, 18, and 27 in Table 6.1). More generally, we find that the balance of explo-
ration and exploitation is affected by the magnitude of the learning gains (in terms of
offline performance) that can be realized under increased exploration, and the cost of the
exploration.

For all data sets, the absolute difference in final performance at varying exploration
rates is relatively small under the perfect click model. Much higher variance is observed
when we simulate noisy feedback. Figure 6.2 shows learning curves for the data set NP-
2003 at different settings of ¢ for the navigational and informational click models. For
the navigational click model (Figure 6.2(a)) final performance improves over time for all
€ > 0.0.

For the informational click model, final performance degrades dramatically in the
purely exploitative baseline settings (¢ = 0, 0.102). In this setting, performance de-
creases over time. The purely exploratory setting (¢ = 1.0) leads to reasonable final
performance, while the best performance is achieved with high exploration and some
exploitation (¢ = 0.8, 0.724). This finding also confirms our earlier observation that
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Figure 6.2: Final performance for the pairwise approach over time for the data set NP-
2003 for navigational, and informational click models and € € {0.0,0.8,1.0}.

best offline performance is not always achieved in the most exploratory setting (possibly
because feedback under increased exploitation focuses on promising documents).

Our analysis of offline performance results in a number of observations. We hypoth-
esized that the best learning would occur with perfect feedback and pure exploration
because this setting minimizes variance and bias in user feedback. As expected, learning
outcomes were best for perfect feedback and degraded with noisier feedback. However,
the effect of the exploration rate changed with the amount of noise in user feedback and
characteristics of the data set. For perfect feedback, little to no exploration sometimes
produced the best learning outcomes because exploitative result lists focused feedback
on more informative parts of the solution space. For data sets with a low ratio of relevant
to non-relevant documents, the low cost of exploration resulted in significant gains in
online performance under reliable feedback. Under noisy feedback, higher exploration
rates generally improved learning, though the best performance occurred with moderate
amounts of exploitation. Overall, our results confirmed that balancing exploration and
exploitation can significantly and substantially improve online performance in pairwise
online learning to rank for IR.

6.3.2 Listwise Learning

Our main results for the listwise approach are shown in Table 6.2. The experiments
described in §6.2.2 measure online performance of the exploratory baseline approach
(k = 0.5) and increasingly exploitative (k < 0.5) experimental runs on the 9 LETOR 3.0
and 4.0 data sets on the perfect, navigational, and informational click models.

In the listwise setting, we expect best learning (in terms of offline performance) for
the exploratory baseline approach. However, the online performance of the baseline
approach is expected to be low, as it does not sufficiently exploit what has been learned.
We hypothesize that increasing exploitation can improve online performance as long as
its benefits outweigh the resulting loss in offline performance.

For the perfect click model, all data sets except MO2008 (row 9) improve over the
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k 0.5 04 0.3 0.2. 0.1
perfect click model
HP2003 102.89 113.604 116.82% 122.38% 122.364
HP2004 95.81 103.38%4  108.874 112.76* 109.714
NP2003 95.41 101.24%  107.35% 110.24* 108.664
NP2004 99.67 108.414 114.834 118.01*+ 117.874
TD2003 38.97 41194 43864  44.59% 42724
TD2004 35.32 37.994 39.754  42.014  40.494
OHSUMED  69.03 71.778% 74474  75.08%  75.024
MQ2007 59.66 61.504 61.81* 61.86* 61.864
MQ2008 77.90 78.05 79.17 78.98 77.86
navigational click model
HP2003 84.07 98.984 103.774 108.43% 106.284
HP2004 73.83 85.144 88.744  91.224 95744
NP2003 76.23 87.38% 92504  96.944 93714
NP2004 83.75 95.934  97.894 106.28* 107.364
TD2003 31.41 34.04% 35.394 37.264  37.614
TD2004 30.72 33.174  34.624 33.294  33.18%
OHSUMED  67.06 69.134 70454  71.724 70474
MQ2007 56.46 57.20 58304  58.63* 57.73
MQ2008 74.84 74.70 76.79%  76.04 76.01
informational click model

HP2003 49.82 60.394  65.60* 7191*  75.684
HP2004 44.76 48.39 55.69%4  61.14* 60414
NP2003 47.72 58314  64.14% 66424 77174
NP2004 48.64 63.44%  66.434  79.944 78744
TD2003 21.81 22.67 24734 26,534 25834
TD2004 22.02 22.68 24.504 21.36 21.99
OHSUMED  62.83 63.47 65.17 63.81 61.02
MQ2007 54.89 54.79 55.45 54.66 55.12
MQ2008 71.38 72.43 72.77 71.93 73.17

Table 6.2: Results for the listwise approach. Online performance over 1,000 iterations

for baseline (k = 0.5) and exploir (k € [0.1,0.4]) runs.

purely exploratory baseline for all settings of k¥ < 0.5. For all these data sets, the best
online performance is obtained at a relatively low setting of & = 0.2. Increases in online
performance over the baseline range from 4% (MQ2007, row 8) to 19% (HP2003, row 1,
and TD2004, row 6). The data set MQ2008 is an exception. Although online performance
is highest for £ = 0.3, none of the exploitative settings perform significantly differently
from the exploratory baseline. As discussed in the previous chapter, this data set has
fewer candidate documents than other data sets, leading to a relatively low benefit of
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increased exploitation.

Results for the navigational click model are similar. For all data sets, online perfor-
mance is significantly higher under higher exploitation than in the baseline setting. Best
performance is achieved for k£ € [0.1,0.3]. For two data sets, & = 0.3 performs best.
For four of the remaining data sets, best performance is achieved at £k = 0.2, and for
three data sets, best online performance is achieved at £ = 0.1. Improvements of the best
setting of k over the baseline range from 3% (MQ2008, row 18) to 30% (HP2004, row
11). As expected, performance under the navigational click model is lower than under
perfect feedback.

The trend continues for the informational click model. Again, more exploitative
settings of k outperform the purely exploratory baseline in all cases. For six out of nine
cases, the improvements are statistically significant. These improvements range from
11% (TD2004, row 24) to 64% for the data set NP2004 (row 22). For the remaining three
data sets, no statistically significant differences between baseline and exploitative runs
are observed, but small increases over the exploratory baseline are observed at smaller k.

Together, these results demonstrate that, for all click models and all data sets, bal-
ancing exploration and exploitation in listwise learning to rank for IR can significantly
improve online performance over the purely exploratory baseline, which confirms our hy-
pothesis. The best overall setting for the exploration rate is ¥ = 0.2. This means that by
injecting, on average, only two documents from an exploratory list, the algorithm learns
effectively and achieves good online performance for all levels of noise. We conclude
that the original listwise algorithm explores too much and surprisingly little exploration
is sufficient for good performance.

Online performance is affected by noise in click feedback, as observed in the results
obtained for the different click models. Performance is highest with perfect feedback,
and decreases as feedback becomes noisier. Performance on some data sets is more
strongly affected by noisy feedback. For the HP, NP, and TD data sets, performance
for the informational model drops substantially. This may again be related to the large
number of non-relevant documents in these data sets. Because finding a good ranking
is harder, noise has a stronger effect. Despite this drop in performance, balancing ex-
ploration and exploitation consistently leads to better cumulative performance than the
purely exploratory baseline for all levels of noise.

As for the pairwise approach, we analyze the relationship between online and of-
fline performance by examining the learning curves for different levels of exploration.
Figure 6.3 shows the learning curves for the data sets MQ2007 and NP2003 at different
settings of k and the perfect click model. In contrast to the pairwise approach, there is
no significant difference in performance after 1,000 iterations. We find the same behav-
ior for all data sets. For NP2003, learning in the fully exploratory setting (kK = 0.5) is
slightly faster than in other settings. This is expected, as the best feedback is available at
maximal exploration. However, learning at lower exploration rates quickly catches up.
Thus, for the listwise approach, the exploration rate does not appear to have a significant
effect on offline performance when feedback is perfect.

Learning curves for the navigational and informational click models for the data set
NP2003 are shown in Figure 6.4. As expected, learning is faster when feedback is more
reliable. For the idealized perfect click model, offline performance after 1,000 iterations
ranges between 0.719 (K = 0.1) and 0.727 (k = 0.5) for different settings of k. For
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Figure 6.3: Offline performance (computed on the test set after each learning step)
over time for the data sets MQ2007 and NP2003 for the perfect click model and

k€ {0.1,0.2,0.5}.
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Figure 6.4: Final performance (with 5% confidence intervals) over time for the data set
NP2003 for navigational, and informational click models and k € {0.1,0.2,0.5}.

the noisy informational click model, final performance is between 0.477 (k = 0.5) and
0.649 (k = 0.5). Although final performance drops substantially as implicit feedback
becomes extremely noisy, performance improves over time for all data sets as there is
still a signal to learn from, i.e., relevant documents are more likely to be clicked than
non-relevant ones.

Once again there is an interaction effect between click model and exploration rate,
although it is different from that observed under the pairwise approach. Here, there is no
significant difference between the final performance at different settings of k& under the
perfect click model. Under the navigational click model, the effect of noise is small, and
offline performance is similar to the perfect click model. However, in the informational
click model, variance increases and there is a large difference between offline perfor-
mance at different settings of k. This is a direct and expected consequence of the noise
in inferred feedback. More surprising is that final performance improves for smaller &,
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since we expected feedback to be most reliable for the fully exploratory setting & = 0.5.
Instead, it appears that, since bias is only partially compensated for (cf., §6.1), the bias
that remains at lower values of k smoothes over some of the noise in the click model.
At lower exploration rates, fewer results from the exploratory list are presented and it
becomes harder for the exploratory list to win the comparison. Thus, instead of nois-
ier updates, the algorithm makes fewer, more reliable updates that, on average, result in
greater performance gains.

6.3.3 Comparing the Pairwise and Listwise Approach

For both the pairwise and the listwise approaches, our results show that a balance be-
tween exploration and exploitation is needed to optimize online performance. The mech-
anisms of how such a balance affects online performance, however, differ between the
two learning approaches. Below, we first compare the online and offline performance
of both approaches. Then, we discuss how exploration impacts the performance of both
approaches, and conclude with implications for putting them in practice.

Table 6.3 gives an overview of the offline performance of the pairwise and listwise
approaches in their best-performing setting under perfect click feedback. Like the online
performance, these are computed after 1,000 iterations (consisting of one query, result
list, and learning step each), which means that learning may not have converged and
higher results are possible. These results should therefore be interpreted as a rough in-
dication of what performance can typically be achieved by this approach in an online
learning setting with relative feedback.

pairwise listwise
N@l N@3 N@10 | N@1 N@3 N@10

HP2003 0.687 0.727 0.760 | 0.684  0.730  0.761
HP2004 0.559 0.650 0.704 | 0.582% 0.673* 0.725°

NP2003 0531 0.649 0.705 | 0.531  0.650 0.704
NP2004 0.529 0.658 0.714 | 0.521 0.656  0.710
TD2003 0.247 0271  0.272 | 0.318* 0.300° 0.295%
TD2004 0.315 0307 0.275 | 0.385% 0.343*  0.300°

OHSUMED | 0.515 0474 0.444 | 0510 0470 0441
MQ2007 0.352  0.359  0.400 | 0.329¥ 0.338Y 0.381V
MQ2008 0.347 0.390 0.486 | 0.333"V 0.376Y 0.475Y

Table 6.3: Offline performance (in terms of NDCG@N) for the pairwise (¢ = 1.0) and
listwise (k = 0.5) online learning to rank algorithms under the perfect click model.

In terms of offline performance, the pairwise and listwise approaches perform simi-
larly. The pairwise approach outperforms the listwise approach on five out of nine data
sets (in terms of NDCG@10), but the performance differences are significant for only
two data sets (MQ2007 and MQ2008). The listwise approach outperforms the pairwise
approach on four data sets, in three cases significantly (HP2004, TD2003, and TD2004).

109



6. Balancing Exploration and Exploitation

We note that the performance of the listwise approach is competitive, despite the limited
information available to the algorithm (relative feedback per ranker instead of per doc-
ument), and the weak information about the gradient that is inferred from this feedback
(based on random exploration of the gradient instead of computing a gradient, as for the
pairwise approach).

We compare the online performance of the pairwise and listwise approaches by com-
paring Tables 6.1 (page 101) and 6.2 (page 106). Under the perfect click model, and in
the purely exploratory baseline setting, the listwise approach performs worse than the
purely exploitative pairwise approach, as expected. However, at their optimal settings,
the two approaches perform similarly, with the listwise approach beating the pairwise
approach on four out of the nine data sets. We conclude that, under reliable feedback, the
pairwise and listwise approaches perform similarly well when used with an appropriate
balance of exploration and exploitation.

When click feedback is noisy, the listwise approach performs better than the pair-
wise approach. Under the navigational click model, the listwise approach outperforms
the pairwise approach in terms of online performance on six data sets. Under the in-
formational click model, this number increases to seven out of the nine data sets (at the
optimal levels of exploration). The reason is that the approaches react to noise differently.
For the pairwise approach in its exploitative baseline setting, increases in noise lead to
dramatically reduced offline performance. However, balancing exploration and exploita-
tion allows the algorithm to recover its performance. As a result, the optimal balance
between exploration and exploitation shifts towards increased exploration as feedback
becomes noisier. A relatively high amount of exploration, with about half the result list
constructed from exploratory documents, is needed to achieve good learning outcomes.
This relatively high amount of exploration, in turn, has a negative effect on online per-
formance.

The drop in performance due to noise is much less pronounced for the listwise
method. Online performance of the algorithm in its original, fully exploratory, version
is often an order of magnitude higher than for the original version of the pairwise ap-
proach when feedback is noisy. A possible reason is that, by aggregating feedback over
document lists, the algorithm becomes inherently robust to noise. Increasing exploitation
can further improve online performance. While increases in exploitation introduce some
amount of bias, this bias does not result in lower offline performance. Instead, it acts as
a safeguard against too frequent updates based on noisy data. This leads to less frequent
but more reliable updates of the weight vector, thereby improving offline performance.
Thus, as noise in click feedback increases, a moderate level of exploitation can improve
learning under the listwise approach.

Another advantage of the listwise approach is that the cost of exploration can be small
if the exploratory document list is similar to the exploitative one, which is more likely as
learning progresses. For the pairwise approach, the cost of exploration is generally high,
so the approach has a disadvantage when a similar level of exploration is required for
reasonable learning gains. Thus, at similar final performance and exploration rates, the
listwise approach tends to achieve higher online performance than the pairwise approach.

Our analysis suggests that the pairwise and listwise approaches are appropriate for
learning from relative feedback in different settings. When user feedback is reliable, the
pairwise approach should be preferred as it results in good offline performance. Also, in
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this setting, the pairwise approach requires little to no exploration for good offline perfor-
mance. It can exploit aggressively, leading to high online performance. However, when
feedback is noisy, the listwise approach should be preferred. In contrast to the pairwise
approach, it safeguards against dramatic loss in offline performance, as long as there is
some signal in the feedback that prefers truly relevant documents. In addition, under
noisy feedback, the listwise approach requires much less exploration than the pairwise
approach, and the cost of exploration is lower.

6.4 Conclusion

In this chapter, we studied the effect of balancing exploration and exploitation on online
learning to rank for IR. We introduced two methods for balancing exploration and ex-
ploitation in this setting, based on one pairwise and one listwise learning approach. To
the best of our knowledge, these are the first algorithms that can achieve such a balance
in a setting where only relative feedback is available.

Regarding the main research question addressed in this chapter, we found that bal-
ancing exploration and exploitation can substantially and significantly improve online
performance in pairwise and listwise online learning to rank for IR. The effect of bal-
ancing exploration and exploitation is complex and there is an interaction between the
amount of exploitation and the amount of noise in user feedback. When feedback is reli-
able, both pairwise and listwise approaches learn well and a high amount of exploitation
can be tolerated, which leads to high online performance. As feedback becomes noisier,
learning under high exploitation becomes unreliable for the pairwise approach. A higher
amount of exploration is required to maintain reasonable performance. For the listwise
approach, however, a smoothing effect occurs under high exploitation, so that learn well
despite a high level of exploitation. This allows the listwise approach to maintain good
performance under noisy feedback with a surprisingly small amount of exploration.

Our results also shed new light on the relative performance of online learning to rank
methods. The pairwise approach makes effective use of implicit feedback when there
is little noise, leading to high offline performance. However, it is strongly affected by
noise in user feedback. Our results demonstrated that a balance of exploration and ex-
ploitation is crucial in such a setting, with more exploration needed as feedback becomes
noisier. The offline performance of the listwise approach is similar to that of the pairwise
approach under perfect feedback, but it is much more robust to noise, due to the aggrega-
tion of feedback over result lists. The listwise approach shows lower online performance
than the pairwise approach in its purely exploratory baseline setting, but it performs well
when exploration and exploitation are properly balanced. This first comparison of pair-
wise and listwise learning to rank in an online setting suggests that listwise approaches
are a promising avenue of future development, because performance is competitive, ro-
bustness to noise is high, and only few approaches have been developed for the online
setting (for learning with relative feedback).

The results of this chapter show that it is important to consider the effects of online
learning to rank approaches on online performance. It is not sufficient to learn effectively,
but by explicitly addressing online performance users can be provided with significantly
better results throughout learning. We showed that balancing exploration and exploitation
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is one way in which online performance can be improved.

Our approach to balancing exploration and exploitation for listwise online learning
to rank were based on a simple stochastic extension of BI. Bias introduced by increased
exploitation could only be compensated for approximately, and had a complex effect of
online and offline performance. A similar solution can be devised for TD. Using the
probabilistic interleaving methods developed in Chapter 4, comparison outcomes can
be inferred from a much larger family of distributions over result lists. This opens up
a range of possibilities for constructing exploratory and exploitative result lists without
introducing bias. The basic mechanisms of balancing exploration and exploitation, e.g.,
that increased exploitation at the same offline performance increases online performance,
are expected to hold under all alternative approaches. However, more complex solutions,
e.g., enabled by PI-MA-IS, are expected to lead to further gains in online performance in
online learning to rank for IR.

In Chapter 4, we focused on methods for inferring accurate feedback through in-
terleaved comparisons, but did not consider the effects of the developed evaluation ap-
proaches on online performance. In the next chapter (Chapter 7), we investigate how
online performance is affected by existing interleaved comparison methods and the prob-
abilistic approach developed in the earlier chapter. In particular, we investigate how to
learn quickly and reliably from noisy user feedback in an online learning to rank setting.
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Reusing Historical Interaction Data for
Faster Learning

In our final research chapter, we investigate whether and how historical interaction data
can be reused to speed up online learning to rank for IR. This chapter builds on the results
of Chapter 4, in particular our interleaved comparison method for historical data reuse,
PI-MA-IS.

Learning quickly from the limited quality and quantity of feedback that can be in-
ferred from user interaction is a main challenge in learning to rank for IR. Learning
speed is particularly important in terms of the number of user interactions. The better
the system’s performance is after a smaller number of interactions, the more likely users
are to be satisfied with the system. Also, the more effective an online learning to rank
algorithm is, the more feasible it is to adapt to smaller groups of users, or even individual
users. Furthermore, user feedback is limited because the learning algorithm should be
invisible to system users, i.e., feedback is inferred from natural (noisy) user interactions.

A limitation of current online learning to rank approaches for IR is that they utilize
each observed data sample (consisting of a query, the displayed results, and observed
user clicks on the result list) only once. This was necessary because it was not clear
how feedback from previous user interactions (that were collected with different rankers)
could be reused. The interleaved comparison method PI-MA-IS that we developed in
Chapter 4 allows data reuse for ranker evaluation. It was found to be effective for making
ranker comparisons more reliable, especially when large amounts of historical data were
available. In this chapter, we investigate whether and how this evaluation method can
be integrated with online learning to rank approaches, and whether and in what way
these additional (historical, and possibly noisier or biased) evaluations can lead to faster
learning.

The central research question addressed in this chapter is:

RQ 14 Can previously observed (historical) interaction data be used to speed up online
learning to rank?

To answer this question, we develop the first two learning approaches for reusing
historical data in online learning to rank for IR: reliable historical comparisons (RHC),
which uses historical data directly to make feedback more reliable, and candidate pre-
selection (CPS), which uses historical data to preselect candidate rankers. In extensive
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experiments, we investigate whether and how historical data reuse can speed up online
learning to rank and lead to higher online performance. In addition, we analyze our
results to answer the following more detailed questions:

RQ 15 Is historical data more effective when used to make comparisons more reliable
(as in RHC), or when used to increase local exploration (as in CPS)?

RQ 16 How does noise in user feedback affect the reuse of historical interaction data for
online learning to rank?

We find that historical data can be effectively reused to speed up online learning to rank
for IR. Particularly effective is the CPS approach, which reuses historical data to preselect
candidate rankers, and can thereby compensate for noise in user feedback. Our results
directly impact the effectiveness of online learning to rank approaches, especially in
settings where feedback may be noisy.

The remainder of this chapter is organized as follows. We detail our two approaches
for reusing historical data in online learning to rank for IR in §7.1. We present our ex-
periments and results in §7.2 and §7.3, and provide further analysis in §7.4. We conclude
in §7.5.

7.1 Method

In this section, we detail our two approaches for online learning to rank for IR with reuse
of historical data. Both are based on our problem formulation of online learning to rank
as a contextual bandit problem (§3.1). Our methods are based on the listwise learning
algorithm DBGD (§2.5.2), and on our probabilistic interleave methods PI-MA and PI-
MA-IS (Chapter 4). Below, we detail our RHC method for reusing historical data for
reliable comparisons (§7.1.1) and our CPS method for candidate preselection (§7.1.2).

7.1.1 Reliable Historical Comparison

Our first method is based on the idea of using historical interaction data to supplement
live comparisons. This can improve the quality of interleaved comparisons in two ways.
When a live comparison resulted in a tie (e.g., because no clicks were observed, or all
clicks were on documents that were placed at the same ranks by both rankers), a ranker
difference may still be detected on the historical interactions. In cases where live compar-
isons are noisy, they can be compared with comparisons on historical interaction data to
improve reliability. The main challenge of such an approach is how to properly combine
live and historical estimates. Here, we present an approach that combines estimates ob-
tained using PI-MA and PI-MA-IS. We call this approach reliable historical comparison
(RHO).

We define RHC as an extension to a listwise linear learner, such as DBGD (see Algo-
rithm 5 on page 30) that uses PI-MA for ranker comparisons (Algorithm 7 on page 51).
To enable historical data reuse in DBDG, we set A > 0 (Algorithm 5, lines 1 and 11-14).
Then, we use the collected historical data h to supplement the interleaved comparisons
based on live data as shown in Algorithm 12. This algorithm replaces line 13 (computing
live comparison outcomes) in Algorithm 7.
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Algorithm 12 (RHC) Probabilistic interleaved comparison with reuse of historical data
for use in DBDG (Algorithm 5). This algorithm computes combined comparison out-
comes, e.g., as a replacement of line 13 in Algorithm 7.

1: Input: or(L,a,c), og(1y,15,1,a’,¢'), 11,1, L, a,c,h =n x (1},al, c})
2: o, < or(l,a,c) // compute live outcome following Eq. 4.5
// compute historical outcome, biased (Eq. 4.5) or unbiased (Eq. 4.10)
on < ||
for (I),a/,c;) € h do
append(og,on (11,1, a’, c))
Br 1
Bu <+ var(ogy)
oc + (B * mean(oy) + By * mean(or,))/(Br + Br)
return oc

R A A

RHC takes as input two functions for computing outcomes: oy, (-), which accepts
data from one live observation, and oy (-), which accepts as input the current target lists
as well as one historical observation. Furthermore, RHC takes as input the target lists 14
and I to be compared, one live observation, i.e., the interleaved list 1, assignments a, and
clicks c observed on the interleaved list. In addition, it accepts n historical data points
that were observed in previous comparisons of other, original, result lists 1 and 1;. The
algorithm first generates the live outcome oy, as in the live setting, using the live outcome
method o, (+) (line 2). Then, additional outcome estimates oy are computed using the
historical data and oy (+) (lines 4-5).

In this chapter, we instantiate oy (-) in two ways to explore the effects of bias and
variance on this approach. In Chapter 4, we showed that applying PI-MA directly to his-
torical data results in biased estimates of comparison outcomes. The alternative method
PI-MA-IS, which compensates for bias using importance sampling, is unbiased but can
suffer from high variance when only little data is available. In the online evaluation set-
ting we investigated in Chapter 4, we found that both methods are similarly effective for
relatively small amounts of data, while for large amounts of data the unbiased method is
more reliable. In contrast, in the online learning to rank task addressed here, we expect
the effect of bias and variance to be relatively small, because the amounts of historical
data are small, and because subsequent ranker pairs are more similar to those used to
obtain the historical samples than in the evaluation setting addressed previously.

Our first (biased) instantiation of og(-) uses PI-MA to estimate outcomes for the
target lists 1; and 15 given historical data (Eq. 4.5). It uses the historical 1’ and ¢’ to com-
pute comparison outcomes (and marginalizes over all possible assignments a € A), but
uses the target distribution P (based on the current target lists) to compute P(all;, ¢;)
(Eqgs. 4.6-4.8).

The resulting comparison method computes outcomes based on historical data but
may be biased. Under the current target rankers, document distributions may be differ-
ent from those under which the historical data was collected. This means that it is not
guaranteed that each target ranker has an equal chance of contributing its highly ranked
documents to the interleaved list, and to obtain clicks on these documents. As a result,
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the target list that is more similar to the historical lists has an advantage over the less
similar one.

Our second instantiation of oy (-) uses PI-MA-IS to compensate for bias using im-
portance sampling (Eq. 4.10). As in the biased scoring method, it uses the historical 1’
and ¢’ to compute comparison outcomes. In contrast to the biased method, each outcome
is then weighted by its probability of occurring under the target distribution (Pr) versus
the original (historical) distribution (Pg). Intuitively, this means that observations that are
more likely under the target distribution, and less likely under the original distribution,
obtain a high weight and vice versa. As shown in Theorem 4.2.2, PI-MA-IS produces
unbiased estimates of the comparison outcomes under the target distribution from his-
torical data (collected under the source distribution). While this approach is unbiased, it
may suffer from high variance when the target and source distributions are very different
from each other, which may lead to unreliable outcome estimates.

After computing the live and historical estimates oy, and oy, they are combined into a
final estimate o¢ using the Graybill-Deal estimator (Graybill and Deal, 1959) (line 6-8).
This combined estimator weights the two estimates by the ratio of their sample variances.
It was shown to result in a minimal variance combined estimate when the variances of the
individual estimators are known, and to have strictly lower variance than either individual
estimate when their variances are estimated on samples of size n > 10 (Graybill and
Deal, 1959). Here, the true variance of the estimators are unknown. For the historical
estimator, we can use the sample variance as an estimate of the true variance (line 7).

A limitation of combining historical and live estimates according to Algorithm 12
is that for any given comparison we only have one live data point collected under the
current target rankers, so that the variance of the live outcome(s) cannot be estimated.
Here, we set the weight of the live outcomes to 8, = 1 (line 6).! Our experiments in
§7.2 investigate whether this approximation is sufficient for improved performance. We
hypothesize that the reliability of comparisons can be improved using RHC, leading to
faster learning.

7.1.2 Candidate Preselection

Our second approach for reusing historical data to speed up online learning to rank for
IR uses historical data to improve candidate generation. Instead of randomly generating
a candidate ranker to test in each comparison, it generates a pool of candidate rankers
and selects the most promising one using historical data. We hypothesize that historical
data can be used to identify promising rankers and that the increased quality of candidate
rankers can speed up learning. We call this second approach candidate preselection
(CPS).

Like RHC, CPS is designed as an extension to DBGD (Algorithm 5). Again, we set
A > 0 to collect historical data. However, CPS uses the collected historical data, not
during the comparison step, but for selecting candidate rankers.

Our implementation of CPS is shown in Algorithm 13, which replaces the method
generate_candidate(-) in DBGD. As input, it takes a comparison function oy (-) that

IWe also experimented with batches of comparisons where the same original pair was used for several
subsequent comparisons. However, the performance loss due to the resulting smaller number of updates out-
weighed the gain due to improved variance estimates.
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Algorithm 13 (CPS) Generating candidate rankers with preselection, for use as g(d, wy)
in Algorithm 5.

1: Input: o (13,12,Y,a’,c'), we, 6,1, (, h=n x (I},al, cl)
2: e= []

// generate candidate pool
3: foriin (z = 1..n) do

append(e, generate_candidate(d, wy))
// compare and eliminate candidates using historical data
5: while len(e) > 1 do
6: p <« sample(e,?2)
7 oy []
8
9

Bl

for i (1 =1..¢) do
(I;,al, c}) < sample(h, 1)

10: append(og, o (I(p[1].w), l(p[2].w),V,a’,c’))

11:  if mean(og) < 0 then

12: remove(e, p[2])

13:  else if mean(og) > 0 then

14: remove(e, p[1])

15:  else

16: remove(e, sample(p, 1))

17: return e[0] // return remaining candidate

estimates comparison outcomes using historical data, a current weight vector wy, the step
size §, arguments 7 and ¢ that determine the size of candidate pools and the number of

historical comparisons to conduct per ranker pair, and a vector of historical observations
h.

The algorithm is called when a new candidate ranker is requested. It first generates
a pool of 7 candidate rankers by calling the original generate_candidate(-) function
(Algorithm 6) (lines 3—4). The most promising ranker is determined in rounds, where
in each round a randomly selected pair of rankers (line 6) competes. For each pair,
¢ comparisons are performed on historical data points randomly sampled from h with
replacement (8—10). After the individual historical estimates are obtained, their mean
is used to determine which ranker to eliminate from the pool. If there is a winner (i.e.,
og # 0), the losing ranker is removed. Otherwise, one of the rankers is selected to be
removed at random. When only one element remains in the candidate pool, it is returned
as the most promising candidate.

Our candidate selection approach ensures that a single candidate is selected after a
finite ((n — 1) x ¢) number of comparisons. Because only the best candidate needs to be
selected, the randomized approach is expected to provide a good balance of effectiveness
and efficiency. In cases where the compared candidates perform equally well, only one
candidate needs to be retained (chosen randomly).

Like in §7.1.1 above, we investigate the effect of bias and variance on this approach
by implementing the comparison method oy (-) in two different ways. First, we instanti-
ate oy (+) as PI-MA (Eq. 4.5), which has low variance but may result in biased estimates
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of comparison outcomes under historical data. Second, we instantiate oy (-) as PI-MA-
IS (Eq. 4.10), which removes bias using importance sampling, but may be affected by
variance more strongly.

We hypothesize that CPS can substantially improve the quality of candidate rankers
available for online learning, leading to faster learning than using live data only. Regard-
ing the biased and unbiased version of CPS, we expect only small performance differ-
ences, as the amount of historical data reused per live comparison is small.

7.2 Experiments

Our experiments are designed to investigate whether online learning to rank for IR can
be sped up by using historical data. We use the same experimental setup as in Chapter 6,
detailed in Chapter 3. Again, we run our experiments on the 9 LETOR 3.0 and 4.0 data
sets. Click data is generated using the perfect, navigational, informational, and almost
random click models as shown in Table 3.1. Online performance is measured in terms of
discounted cumulative NDCG with discount factor v = 0.995.

We compare the following three baseline runs and four experimental runs:

BI Baseline — learning with live data only, using BI (Joachims, 2003; Radlinski et al.,
2008b) for interleaved comparisons as detailed in Algorithm 1 on page 20 (Chap-
ter 2).

TD Baseline — learning with live data only, using TD (Radlinski and Craswell, 2010;
Radlinski et al., 2008b) for interleaved comparisons as detailed in Algorithm 2 on
page 21 (Chapter 2).

PI Baseline — learning with live data only, using PI-MA for interleaved comparisons as
detailed in Algorithm 7 (with Eq. 4.5) on page 51 (Chapter 4).

RHC-B Uses historical data to infer more reliable feedback (Algorithm 12, §7.1.1), with
biased comparison outcome estimates (PI-MA, Eq. 4.5).

RHC-U Uses historical data to infer more reliable feedback (Algorithm 12, §7.1.1), with
unbiased comparison outcome estimates (PI-MA-IS, Eq. 4.10).

CPS-B Uses historical data for candidate preselection (Algorithm 13, §7.1.2) with bi-
ased comparison outcome estimates (PI-MA, Eq. 4.5).

CPS-U Uses historical data for candidate preselection (Algorithm 13, §7.1.2) with un-
biased comparison outcome estimates (PI-MA-IS, Eq. 4.10).

For each data set, we run experiments over 1000 iterations (i.e., simulated interac-
tions), and repeat each experiment 25 times and average results over all folds and repe-
titions. Parameters for the DBGD learning algorithm are selected to match those found
to work best in previous work (wyq is initialized to zero, « = 0.01, § = 1, cf.,, (Yue
and Joachims, 2009)). For the remaining parameters, we report results on one setting
(for CPS, n = 6, ¢ = 10, and A = 10; for RHC, A = 10). The sensitivity to specific
parameter settings is analyzed in §7.4.
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7.3 Results

In this section, we present the results of the experiments described in §7.2, to answer
the main research question of this chapter: Can historical interaction data be reused to
speed online learning to rank? In addition to our main question, we also investigate how
historical data can best be reused (i.e., to improve the reliability of evaluations, as in our
RHC approach, or to improve the quality of candidate rankers, as in CPS), and whether
and how historical data reuse is affected by bias and variance in outcomes estimated from
historical data.

Table 7.1 shows the online performance obtained on all LETOR 3.0 and 4.0 data sets,
for the four click model instantiations specified in Table 3.1, the three baseline runs BI,
TD, PI, and the four experimental runs RHC-B, RHC-U, CPS-B and CPS-U. For reasons
discussed below, TD outperforms the other baseline methods. Therefore, we use TD as
our baseline for significance testing.

Overall, we see that the highest online performance is achieved by our CPS method
for all data sets and click models. The observed improvements over TD are statistically
significant and substantial. For example, for the data set HP2003, the highest perfor-
mance under the perfect click model is 116.85 (using biased estimates of comparison
outcomes), which constitutes an improvement of 7.3% over the best-performing baseline
method TD (cf., row 1). There are only four cases in which the observed improvements
are not statistically significant: for OHSUMED and M Q2008 under the informational
click model (rows 25 and 27), and for MQ2007 and MQ2008 under the almost random
click model (rows 35 and 36). In these cases, small improvements over the baseline are
observed, but they are not statistically significant.

To put the obtained absolute online performance scores in perspective, recall that we
measure discounted cumulative reward, i.e., high online performance is obtained when a
method both learns well (i.e., it achieves high offline performance, in terms of NDCG),
and it learns quickly, i.e., after a small number of interactions. In our experimental setup,
a method that presented perfect result lists (with NDCG = 1) on all interactions could
obtain an online performance of 200.0, while a method that would obtain no reward on
the first 500 interactions and perfect results after would achieve an online performance of
only 15.0. Scores obtained by our methods fall between these two extremes, indicating
that good rankers are learned within a few hundred simulated interactions.

For the baseline methods, which learn from live data only, we find that online per-
formance of BI and TD is very similar, while that of PI is significantly lower for most
data sets and click models. To understand why, we compare the offline performance
and learning speed of these methods (cf., the offline performance on data set NP2003 in
Figure 7.1).> We see that the final offline performance is very similar (differences are
not statistically significant), and that they also learn equally fast. Thus, PI learns as well
as BI and TD but loses online performance due to the increase in randomization during
interleaving. Compared to the evaluation setting, where PI was shown to outperform
BI and TD when applied to compare rankers over large amounts of data, PI performs
worse (Chapter 4). PI provides fine-grained information about the magnitude of ranker

2We present offline performance plots for only one data set, because plots for the remaining data sets are
qualitatively similar.
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BI TD PI | RHC-B RHC-U | CPS-B  CPS-U
perfect click model
HP2003 107.84 108.94 97.62Y | 89.43Y  96.54 116.854 114.60*
HP2004 99.82 99.72 89.72Y | 81.75Y  88.25" 108.874 107.444
NP2003 97.94 98.15 88.67Y | 81.93Y  87.36" 108.504 105.254
NP2004 102.96 102.72  93.50Y | 88.25Y  93.04" 114954 112414
TD2003 40.38 38.81 36.21Y | 29.84Y  33.34Y 46.934 45314
TD2004 36.19 35.87 34.55V | 27.62Y  30.65" 44.714 43.044
OHSUMED  70.68 70.14 6829 | 61.51Y  63.86" 75.114 74.804
MQ2007 59.87 60.18 58.23Y | 56.09Y  57.96" 63.124 63.734
MQ2008 79.03 7798 75577 | 76.67 77.28 84.184 83.444
navigational click model
HP2003 83.84 85.90 76.61Y | 78.05Y  83.80 112.204 110424
HP2004 75.32Y 80.02 68.91Y | 64.00Y  73.45Y 104.144 99.924
NP2003 77.90 79.99 72.06Y | 72.36Y  77.22 105.814 102.974
NP2004 83.18Y 86.79 75.25Y | 78517  84.37 111.094 108.224
TD2003 31.747 33.92 30417 | 27.01Y  29.60" 43.634 42.094
TD2004 31.12 31.05 29.19Y | 24.98Y  27.72Y 40.384 39.204
OHSUMED  67.50 67.64 65187 | 62.24Y  61.79"7 71.334 71.76*
MQ2007 56.56 57.06 55787 | 55.33Y  55.40Y 59.604 59.984
MQ2008 74.14 74.51 727787 | 74.45 73.11 80.464 79.124
informational click model
HP2003 55.63 55.65 46.877 | 42257  64.044 104.874  100.164
HP2004 42.99 45.02 37.52Y | 35917  55.604 92.054 81.104
NP2003 53.38 52.88 45387 | 43.80Y  63.594 101.834 98.644
NP2004 58.31 57.62 5232V | 47.80Y  72.704 105.464 98.184
TD2003 22.11 21.99 21.74 19.46V  24.53% 39.434 37.004
TD2004 23.66 22.87 21.60 20.87V  21.74 28.494 27.254
OHSUMED  63.39 6491 60.48Y | 59.80Y  57.06" 63.27 65.39
MQ2007 55.29 54.58 53.99 52.20Y  54.77 56.41 56.822
MQ2008 73.14 71.83  70.42 70.99 70.38 74.56 73.12
almost random click model

HP2003 38.27 40.90 36.32Y | 49.58%  58.024 96.734 89.294
HP2004 35.35 35.60 33.27 41.38%  49.764 79.824 80.104
NP2003 39.71 37.07 37.26 47.84%  60.014 93.944 92.224
NP2004 40.20 45.57 41.33 54.67%  65.204 90.784 92.724
TD2003 17.41 18.81 19.46 21.534 24964 35.364 34.024
TD2004 18.92 19.23  18.90 20.14 19.63 27.924 25.424
OHSUMED  56.41 56.43 57.14 58.35 53.80V 55.52 61.784
MQ2007 52.547 53.96 5227V | 52.77 52317 54.70 54.52
MQ2008 69.36 69.75 69.02 70.29 69.15 71.02 71.47

Table 7.1: Online performance (in terms of discounted cumulative reward) when learning
with interleaved comparison methods. Statistical significance is indicated in comparison
with the baseline method TD.
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differences, which leads to more accurate comparisons when outcomes are aggregated
over repeated samples. However, in the online learning to rank setting with live data
only, ranker comparisons are based on a single data sample, and information about the
magnitude of ranker differences is lost. Developing online learning methods that exploit
this additional information is a direction for future work.

Under the almost random click model, where the level of noise is highest, the online
performance achieved under BI, TD, and PI is equivalent. In one case (TD2003, row
32), PI even improves significantly over the baseline TD. Examining the offline perfor-
mance for PI under this noise model (shown for NP2003 in Figure 7.1(d)), we see that
PI performs significantly higher than BI and TD. This suggests that learning with PI is
more robust to noise than when using the other baseline methods. Most likely, the lack
of fidelity shown for these methods in Chapter 4 gets magnified under noise, leading to
slower learning for these methods.

Our methods that learn from historical data are enabled by PI, meaning that to im-
prove performance over the best-performing baseline, TD, the methods need to learn
substantially faster, to overcome the initial performance loss incurred by the randomiza-
tion inherent to PI. For the CPS method, we see that this is the case. The method achieves
much higher online performance than any of the methods that learn with live data only.
Furthermore, the performance gain for reusing historical data is particularly big when
click feedback is noisy, with gains of up to 104.5% under the informational click model
(HP2004, row 20), and up to 153.4% under the almost random click model (NP2003,
row 30). Looking at offline performance (Figure 7.1), we observe that CPS learns faster
than methods that learn from live data only. In particular, the speed-up increases with
noise in the click model, suggesting that CPS can effectively limit the effect of noise in
click feedback.

Performance for RHC is generally lower than that obtained by CPS or the baselines
that only take live data into account. However, with bias correction (RHC-U) and under
noisier feedback, performance of this method increases. First, under all click models,
we see that RHC-U generally outperforms RHC-B. This performance improvement is
statistically significant in most cases (rows 1-8, 10—15, 19-23, 26, and 28-32). In only
two cases, RHC-U performs significantly worse than RHC-B (on OHSUMED, rows 25
and 34), and in the remaining cases, the performance of the two variants of RHC is
equivalent. This performance improvement under RHC-U indicates the importance sam-
pling component used to correct for bias is effective. The resulting unbiased estimates
of comparison outcomes under historical data not only provide a good estimate of the
relative ranker quality, but also indicate how reliable these estimates are so that they can
be properly combined with live estimates.

Looking at the performance of RHC under the perfect click model, we see that its
performance is significantly worse than for the baseline TD on all data sets. Under the
slightly noisier navigational click model, the performance of RHC-B is still worse than
the baseline for most data sets, but that of RHC-U is equivalent to the baseline on six
data sets. Under the informational click model, performance of RHC-U improves sig-
nificantly over the baseline for five data sets (rows 19-24). Finally, under the almost
random click model, the online performance of both variants of RHC improves signifi-
cantly over the baseline for five data sets (rows 28-32), and is statistically equivalent for
the remaining four data sets (rows 33-36). Comparing again to offline performance, we
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Figure 7.1: Offline performance of the baseline and RHB and CPS online learning to rank
methods on the data set NP2003 in terms of NDCG after up to 1,000 user impressions
with varying click models.

find that RHC learns as quickly as the baseline methods, but cannot make as effective use
of the learned rankers, similar to PI. However, when feedback is noisy, the method does
succeed in making comparisons more reliable (cf., Figure 7.1(c)-7.1(d)). When feedback
is at its noisiest, even the biased method RHC-B learns significantly faster than any of the
baseline methods. Thus, we conclude that RHC can effectively leverage historical data to
make ranker comparisons more reliable, but this results in performance gains only when
click feedback is indeed noisy.

For CPS, the biased version of the method performs slightly better than CPS-U under
perfect clicks (the differences are statistically significant in 4 cases, in rows 1, 3—4, and
6). However, as feedback becomes noisier, these differences become smaller and fewer
differences are statistically significant. Under the navigational click model, results for
three data sets are statistically significant (rows 11-13), under the informational click
model, this is true for two data sets (rows 20 and 22), and under the almost random click
model, this is true for only one data set (row 34). It appears that, in contrast to RHC,
where historical estimates of interleaved comparison outcomes are combined with live
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estimates, accurately compensating for bias in CPS does not lead to further performance
improvements. Instead, correcting for bias using importance sampling increases the noise
of estimates, which may cause small drops in performance, especially when feedback is
very reliable otherwise. While this trend can be observed in our results, performance
differences between CPS-B and CPS-U are small. Therefore, the differences between
these two variants of CPS should be explored in more detail in the future.

Our main results show consistently high performance for our CPS method, which can
achieve significantly and substantially higher online performance than all other methods
tested. We find that reusing historical data using CPS allows faster learning than with
current online learning to rank methods that take only live data into account. For RHC,
we found that the method can reduce noise and improve online performance substantially,
but only when click feedback is noisy. In the next section, we analyze our results in more
detail.

7.4 Analysis

In this section, we first compare the performance of our methods to supervised learning
to rank approaches (§7.4.1). Then we compare our methods’ sensitivity to parameter
settings (§7.4.2 and 7.4.3).

7.4.1 Offline Performance

Most previous work on learning to rank for IR focused on supervised approaches, and
measured the offline performance achieved by learners after all training data had been
processed. Our approach is fundamentally different, as it learns online, from relative
feedback observed on the result lists presented to users. Despite this more limited form
of feedback, we showed in Chapter 6 that effective learning is possible. The algorithms
developed in this chapter further improve on the learning speed of baseline learning al-
gorithms.

To allow for some comparison with supervised learning to rank approaches, we show
the offline performance achieved by CPS-U in terms of NDCG at different cutoffs on the
perfect and informational click models in Table 7.2.> Note that this implementation of
NDCG differs from that used in the LETOR benchmark (as discussed in §3.5), however
at cutoff 1 (NDCG@1) the two metrics are equivalent.

Performance of CPS is competitive with the supervised learning to rank approaches
included in the LETOR benchmark (Liu, 2009). For all included data sets, CPS with
perfect feedback beats a simple regression approach. In addition, CPS beats more than
half the included (supervised pairwise and listwise) approaches in terms of NDCG@1
on the data sets HP2003, NP2004, and TD2003. On one of these, NP2004, CPS im-
proves over the offline performance of all supervised methods reported in (Liu, 2009)
(best NDCG@1 achieved there is 0.533, while CPS achieves an NDCG@1 of 0.566).
This demonstrates that competitive offline performance can be achieved by CPS, despite

3Results differ slightly from those reported in Hofmann et al. (2013a), as some errors were corrected. The
corrected results are better, but show the same trend (in terms of the relative performance of the method under
perfect and informational feedback).
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perfect informational
N@1 N@3 N@10 | Nel1 N@3 Ne@10

HP2003 0.701 0.740 0.771 | 0.673 0.711  0.742
HP2004 0.590 0.682 0.732 | 0.529 0.613  0.663

NP2003 0.541 0.657 0.712 | 0.533 0.643  0.699
NP2004 0.566 0.682 0.738 | 0.535 0.647  0.700
TD2003 0.326 0301 0.296 | 0.262 0.263  0.266
TD2004 0.402 0359 0309 | 0291 0272  0.239

OHSUMED | 0.484 0454 0.424 | 0437 0.407 0.385
MQ2007 0.321 0327 0364 | 0.288 0.295 0.333
MQ2008 0.348 0389 0.486 | 0.309 0.350 0.454

Table 7.2: Offline performance after 1,000 iterations in terms of NDCG and cutoffs 1, 3,
and 10 for CPS-U under the perfect and informational click models.

the limited feedback, after only 1,000 iterations. Further improvements are possible for
longer run times.

The offline performance of CPS remains relatively high under the informational click
model. The reason is that the method compensates for some of the click noise. The
biggest drop in NDCG@1 is observed for the data set TD2004, with a decrease in offline
performance by 28% (from 0.427 to 0.307). The smallest decrease is observed for the
data set N P2003. There, offline performance under the informational click model is
only 1.5% lower (0.533) than under perfect feedback (0.541). Overall, our results show
that good offline performance can be achieved by CPS, even when feedback is noisy.

7.4.2 CPS — Sensitivity to Parameter Settings

Above, we reported results for only one set of parameters. Here, we investigate the
sensitivity of CPS to changes in these parameters. CPS has three parameters: the history
length A (default: 10), the size of the candidate pool 7 (default: 6), and the number of
historical comparisons per candidate pair  (default: 10). The algorithm is linear in 7,
and ¢ per live update (O(n(¢)). An increase in A does not significantly affect the run time
of the algorithm, but determines the number of historical samples kept in memory, from
which the samples for candidate comparisons are selected.

Figure 7.2 (parts a—c) shows the online performance achieved by CPS-U under the
navigational click model on the data set NP2003 when varying one parameter at a time.
The online performance of CPS-U in this setting with default parameter settings is 102.97,
as shown in Table 7.1 (row 12). Decreasing 7, the size of the candidate pool, to n = 2
leads to a decrease in performance of 12.3% percent (to 90.29). Increasing the number
of candidates to 10 increases online performance to 104.24, a much smaller change of
1.2%. This suggests that the performance reported above (§7.3) can be further increased
by using larger candidate pools. However, returns are expected to diminish as ever more
candidates are used.

For the number of repetitions performed to compare candidate rankers using histori-
cal data ((, default setting: ¢ = 10), effects are much smaller. We observe a small change
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Figure 7.2: Online performance (min, max, and mean with standard error) after 1,000
iterations for different settings of parameters (a) 7, (b) ¢, and (c) A for CPS and (d) A for
RHC on the NP2003 data set and the navigational click model. (Note the differences in
scale of the y-axes between plots (a)—(c) and (d).)

in mean online performance when changing the setting to ¢ = 5, but the change is not
statistically significant. Increasing the number of repetitions to ( = 15 results in a small
but significant drop in performance, likely because additional comparisons increase noise
without providing additional information. These results suggest that investing additional
computational resources in increasing ( is less beneficial than increasing 7, as shown
above.

Increasing the history length to A = 100 significantly decreases the performance of
CPS-U. The reason is that the more recent historical samples used with a smaller A are
collected on ranker pairs that are more similar to the current candidate rankers. When
older samples are used instead, the variance of historical outcome estimates increases
(under CPS-B, bias would increase), leading to diminished performance.

Overall, we find that performance under CPS can be further improved by increasing
the size of the candidate pool. For the remaining parameters, performance is relatively
stable and decreases gracefully when less optimal settings are used. Finally, our analysis
indicates that additional computational resources are best spent on increasing the size of
the candidate pool (). Although the linear increase in computation is expected to lead to
sub-linear performance gains, developers of deployed applications are typically willing
to invest in additional computing time when it translates to even small performance gains
(while in a scientific setting computational resources limit what experiments are feasible
to run).

7.4.3 RHC — Sensitivity to Parameter Settings

RHC has only one parameter, the history length A (cf., Algorithms 5 and 12, default: 10).
This parameter determines how many historical data points are kept in memory, and are
used to compare the current best ranker wy to the candidate ranker wj. This method is
linear in A per live update.

The sensitivity of RHC-U to changes in A is shown in Figure 7.2, part (d). Setting
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A = {5, 15} has no significant effect on online performance. The slightly lower perfor-
mance of the original setting of A = 10 is likely due to noise. We can conclude that
the performance of this algorithm is relatively robust to changes in A (thus, investing in
additional resources to increase A is not recommended).

7.5 Conclusion

In this chapter, we investigated whether and how historical data can be reused to speed
up online learning to rank for IR. We proposed two approaches for integrating estimates
based on historical data with a stochastic gradient descent algorithm for online learning to
rank. Our first approach, RHC, uses historical comparison estimates to complement live
comparisons and to make them more reliable. Our second approach, CPS, uses historical
data for preselecting candidate rankers, thereby improving the quality of the rankers that
are evaluated in live interactions with search engine users.

Our experimental evaluation of the proposed methods, based on the nine LETOR data
sets and four click models that allowed us to investigate online performance of the meth-
ods under varying levels of click noise, yielded several insights. First, we found that CPS
can substantially and significantly speed up online learning to rank for IR. We observed
high gains in online performance over methods that use live data only for all click mod-
els. Second, performance gains of CPS were particularly high when click feedback was
noisy. This result demonstrates that CPS is effective in compensating for noise in click
feedback. Third, RHC was found to make ranker comparisons more reliable. However,
positive effects on learning were observed only under noisy feedback and performance
gains were lower than those obtained by CPS. Finally, we found that compensating for
bias in click feedback substantially improved the performance of RHC, where histori-
cal estimates of interleaving outcomes are combined with live outcomes, but had small
(negative) effects on the performance of CPS.

This work is the first to show that historical data can be used to significantly and sub-
stantially improve online performance in online learning to rank for IR. It also demon-
strates that our interleaved comparison methods PI-MA and PI-MA-IS open up new di-
rections for collecting and using interaction data in online learning to rank for IR. In-
terestingly, best results were obtained by improving the quality of the candidate rankers
using CPS. This finding suggests that developing more complex sampling and explo-
ration schemes is a promising direction for follow-up work.

This chapter concludes our investigation of the principles under which online learning
to rank for IR can be reliable and efficient. In the next chapter (Chapter 8), we draw
conclusions from all research chapters and present our main findings and directions for
future work.
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In this thesis, we presented work towards enabling “self-learning search engines” that can
automatically adjust to user behavior and preferences. Broadly, we investigated whether
search engines can learn effectively from user interactions. Online learning to rank for IR
is different from the most commonly used supervised learning approaches, because user
interactions with such a system are most suitable for interpretation as relative feedback,
and because feedback can be noisy and biased (e.g., due to the order in which search re-
sults are displayed). In addition, online learning to rank algorithms need to learn quickly
from the available user interactions, and they need to make use of what has been learned
as well as possible to satisfy users’ expectations even while learning.

The four research chapters of this thesis addressed the challenges of online learning
to rank for IR as follows. First, in Chapter 4, we focused on how to extract information
that is as useful as possible from the noisy, biased user interactions that such a system can
observe. In particular, we analyzed interleaved comparison methods, which allow com-
parisons between rankers using click feedback, and proposed new methods to address
limitations of existing methods. Second, in Chapter 5, we investigated the limitations
of click data and interleaved comparison methods in a real-live application, web search.
Here, we focused on the effects search result presentation may have on user clicks, and
how such effects can influence the outcomes of interleaving experiments. In Chapter 6,
we turned to the online performance of online learning to rank for IR approaches, and
tested the hypothesis that balancing exploration and exploitation can improve online per-
formance in pairwise and listwise online learning to rank. Finally, in Chapter 7, we
focused on the reliability and speed of learning in the online setting. Building on the
interleaved comparison methods developed in Chapter 4, we developed two approaches
for speeding up learning by reusing previously observed interaction data.

Below, we provide a more detailed summary of the contributions and results of our
research, and answer the research questions set out at the beginning of this thesis (§8.1).
We conclude with an outlook on future research directions (§8.2).

8.1 Main Findings

The starting point of this thesis was the earlier finding that implicit user feedback in a
search setting is most reliable when interpreted relative to the presented rankings (Radlin-
ski et al., 2008b). In particular, interleaved comparison methods had previously been
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shown to be able to compare result rankings using click data (Radlinski and Craswell,
2010). The first research questions we addressed in Chapter 4 focused on formalizing the
characteristics of these methods:

RQ 1 What criteria should interleaved comparison methods satisfy?

RQ 2 Do current interleaved comparison methods satisfy these criteria?

To answer the first question, we proposed a framework for analyzing interleaved com-
parison methods in terms fidelity, soundness, and efficiency. Fidelity captures whether
the expected comparison outcomes of an interleaved comparison method reflect differ-
ences in ranking quality as appropriate for an IR experiment. Soundness reflects whether
the estimator of the method produces unbiased and consistent estimates of that expected
outcome. Efficiency reflects the number of data samples required by the method. This
framework allows more formal and systematic comparisons between interleaved com-
parison methods than was previously possible.

Using the proposed framework, we analyzed all existing interleaved comparison
methods, and found that none exhibited fidelity. This means that for each method, there
are cases where the expected outcome of the method does not reflect ranking quality
appropriately.

To address these shortcomings, we designed probabilistic interleave (PI), which takes
into account the magnitude of differences between rankings. We also designed an exten-
sion, PI-MA, to increase efficiency of the method.

RQ 3 Do PI and its extension PI-MA exhibit fidelity and soundness?

RQ 4 Is PI-MA more efficient than previous interleaved comparison methods? Is it
more efficient than PI?

We showed analytically that PI and PI-MA exhibit fidelity and soundness. Then, we em-
pirically compared the efficiency of PI-MA to existing interleaved comparison methods
and to PI. We found PI-MA to be more efficient than existing methods, and more efficient
than PI, which confirmed our analytical results.

We further extended PI to allow the estimation of interleaved comparison outcomes
from historical data that was collected during earlier comparisons of other (source) rankers.
This extension, PI-MA-IS, combines probabilistic interleaving with importance sam-
pling. Reusing historical data for interleaved comparisons was previously not possible,
resulting in the following questions:

RQ 5 Can historical data be reused to compare new ranker pairs?

RQ 6 Does PI-MA-IS maintain fidelity and soundness?
RQ 7 Can PI-MA-IS reuse historical data effectively?

The central question was whether it was possible to reuse data for interleaved compar-
isons. By showing that PI-MA-IS can indeed reuse such data, we were able to answer
this question affirmatively. We analytically showed that PI-MA-IS is sound, as it main-
tains both fidelity and soundness under data that was collected following a distribution
different from that would be obtained under the target ranker pair to be compared. We
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showed empirically that PI-MA-IS is the only interleaved comparison method that can
effectively reuse historical data.

In Chapter 5 we turned to questions about how user clicks may be affected by result
presentation, and how this may affect interleaving results:

RQ 8 (How) does result presentation affect user clicks (caption bias)?
RQ 9 Can we model caption bias, and compensate for it in interleaving experiments?

RQ 10 (How) does caption bias affect interleaving experiments?

We confirmed that result presentation has a strong effect on click behavior. We pro-
posed and trained models of such caption bias on usage data of a web search engine,
and found that click behavior was best explained by a combination of relevance, posi-
tion, and caption features. The most important caption features included whether a result
was presented with deep links, the amount of highlighting in the title, and the snippet
length. Also, we found that per-document features had a much stronger affect on click
behavior than document-pairwise features (such as whether a result title had more or less
highlighting than the document ranked immediately before or after it). Building on our
probabilistic caption-bias models, we developed extensions of two interleaved compari-
son methods, TD and PI-MA, that compensate for caption bias. In applying our model of
caption bias to six real-life interleaving experiments, we found first evidence that caption
bias can affect the outcome detected in an experiment, e.g., if the experiment includes
rankers that use click data during training.

After developing and investigating new approaches and models for interleaved com-
parisons, we focused on principles of learning from such feedback inferred from user
behavior. When learning from user feedback in an online setting, systems need to en-
sure that high-quality results are presented to satisfy user expectations, but also that the
presented results ensure that high-quality feedback can be collected for future learning.
In Chapter 6 we formulated this exploration-exploitation dilemma for online learning to
rank, and addressed the following research questions:

RQ 11 Can balancing exploration and exploitation improve online performance in on-
line learning to rank for IR?

RQ 12 How are exploration and exploitation affected by noise in user feedback?

RQ 13 How does the online performance of different types (pairwise and listwise) of
online learning to rank for IR approaches relate to balancing exploration and ex-
ploitation?

We developed the first two approaches (one pairwise, one listwise) for balancing ex-
ploration and exploitation in an online learning to rank setting, and found that such a
balance can substantially and significantly improve online performance. We found im-
portant differences between the two developed approaches and under different levels
of noise in click behavior. While the original (purely exploitative) pairwise approach
performs very well under perfect click feedback, it cannot learn from noisy click data.
Adding exploration could partially compensate for this performance loss. The original
(purely exploratory) listwise learning approach was found to over-explore under all levels
of noise, and its performance could be significantly improved by balancing exploration
and exploitation.
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In Chapter 7 we combined our interleaved comparison methods PI-MA and PI-MA-
IS to investigate whether reusing historical data for interleaved comparison methods
could be used to improve online learning.

RQ 14 Can previously observed (historical) interaction data be used to speed up online
learning to rank?

RQ 15 Is historical data more effective when used to make comparisons more reliable
(as in RHC), or when used to increase local exploration (as in CPS)?

RQ 16 How does noise in user feedback affect the reuse of historical interaction data for
online learning to rank?

We found that historical data could indeed be used to significantly and substantially im-
prove online learning to rank for IR. While a straightforward application of this data to
make comparisons more reliable (using RHC) resulted in moderate performance gains,
using this data for preselecting new candidate rankers resulted in much higher gains.
Performance gains were highest under noisy click data.

This thesis resulted in insights and algorithms for enabling large-scale online learning
to rank for IR. The software developed for our experiments, along with reference imple-
mentations of the developed interleaved comparison and online learning to rank methods
is available online (see Appendix A for details).

The goal of this thesis is to develop a better understanding of how search engines can
learn from user interactions, and to translate this understanding into new algorithms that
allow more effective learning in an online learning to rank setting. We advanced to-
wards this goal in several ways. We now better understand how rankers can be compared
using interleaved comparisons methods, and what the properties of these methods are.
This understanding was translated into a new set of interleaved comparison methods that
naturally take into account differences between result rankings, and that allow ranker
comparisons using data that was collected with other rankers. Also, we better understand
how the presentation of search results can affect user clicks, and we have developed a
model for measuring and compensating for those clicks in interleaved comparisons. We
learned to improve online performance of online learning to rank for IR by balancing
exploration and exploitation, and found that such a balance is particularly helpful in list-
wise learning. Finally, we showed that it is possible to speed up online learning to rank
for IR by reusing previous interactions for exploring candidate rankers.

The obtained results show that online learning to rank for IR can be efficient and
effective. We expect them to have an impact both on the theoretical development of on-
line learning to rank approaches, and on their practical applications. Our methods enable
online learning to rank in practice, and we hope that they will contribute to practical
search applications in the future. Many search settings have been addressed much less
thoroughly than web search, and achieving good search performance in settings such as
enterprise search or search of personal collections is notoriously difficult. These are the
settings that may most immediately benefit from our results. Another early application
is recency search, where first benefits of online learning have been demonstrated (Moon
et al., 2012). More immediately, our results on interleaved comparison methods is di-
rectly applicable to online evaluation in a manual tuning setting. Using these methods,
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rankers tuned using e.g., expert knowledge or supervised learning, can be compared on
real user interactions to assess their quality from a user perspective. However, in the
long term, we expect that complete online learning to rank solutions will be an important
solution to addressing situational relevance in a scalable manner.

Finally, mechanisms for learning from user interactions are much more broadly ap-
plicable than in an IR setting alone. Until now, these adaptations are often designed
manually, with limited adaptation online. Figuring out how to develop systems that
can automatically adapt to users by online learning is a major challenge. The princi-
ples identified here constitute a step towards that goal. For example, human feedback
may be noisy, and may be more easily interpreted as relative than absolute in many set-
tings, requiring effective algorithms for learning from such feedback. Similarly, many
settings where computers learn directly from their users may require a focus on online
performance, and a balance of exploration and exploitation. When these challenges are
addressed, online learning to rank could facilitate smarter and more natural interactions
between computers and human users.

8.2 Future Work

This thesis resulted in insights and algorithms for enabling online learning to rank for
IR. Beyond these, it opens up many interesting and important directions for future work.
Below, we outline three main areas: real-live applications, smarter exploration, and long-
term learning and planning.

Applications. One important direction for following up on this work is to develop ap-
plications that put the developed methods to work in real search settings. As online learn-
ing to rank methods are only at the beginning of their development, many questions need
to be addressed when making the transition to real-live applications. Within this thesis,
we focused on principles of obtaining feedback and learning from it in an online learning
to rank setting, independent of the particular search context in which these principles and
the resulting technology would be applied. A first step in applying these principles is to
identify sets of ranking features that can provide a good basis for online learning to rank
for a variety of IR settings. Many features have been explored for supervised learning to
rank. These may be similarly effective in the online learning setting. Additional relevant
work has been done in the area of recency search, and features that have been found to
effectively capture temporal aspects of query-document relationships may be applicable.

An orthogonal problem is to determine to what groups of users, queries, or higher-
level tasks learning to rank should be applied. In our experiments, we abstracted from
such fine-grained differences and instead applied online learning to rank with the goal of
identifying global patterns of ranking quality. However, when a system has many users,
large amounts of interaction data can be observed and used to learn rankings for relatively
small groups. Positive effects of personalization have been demonstrated in, e.g., web
search (Matthijs and Radlinski, 2011; Teevan et al., 2008), and we therefore think that
adapting to the preferences of individuals, or small groups of users, can further improve
the performance of search engines that use online learning to rank. Similarly, online
learning has been demonstrated to provide positive effects when adapting to individual

131



8. Conclusions

frequent queries, as well as to global ranking preferences (albeit in a setting with absolute
feedback (Moon et al., 2012)). Challenges that need to be addressed include finding
effective similarity metrics for identifying appropriate levels of adaptation and designing
mechanisms for interpolating between ranking functions learned for different levels of
granularity.

Our methods have been evaluated using simulated user interactions, except in Chap-
ter 5, where we studied effects of search result presentation on user clicks. For studying
principles of online learning and developing new algorithms, our setup had the advantage
that it enabled experiments in various settings, such as different amounts of noise in click
feedback. Naturally, assumptions underlying these simulations need to be tested before
moving these methods to a real setting. In addition to validating our results in more re-
alistic settings, such additional experiments can help develop more complex models of,
e.g., user interaction that can be applied to the online learning to rank setting. Interest-
ing areas include the application of the most recent click models or exploring the use of
implicit feedback beyond clicks.

Smart exploration. A second area of development is to further improve our under-
standing of the fitness landscape in an online learning to rank for IR setting. In some
aspects, this area is similar to the supervised learning setting, where optimizing for the
typically non-smooth and non-differentiable IR metrics proved to be hard, and several
approaches have been developed to address this problem (such as approximations). The
online learning to rank setting differs in that for many of the developed approaches it is
not clear in how far they can be transferred to a setting where only relative feedback is
provided for learning.

In this thesis, we demonstrated the importance of balancing exploration and exploita-
tion in online learning to rank. A better understanding of the fitness landscape in this
setting could help address the question of how best to explore. Current approaches for
online learning to rank for IR are based on stochastic exploration. An advantage is that
the resulting learning approaches make few assumptions about the structure of the fea-
ture and ranking solutions, and that they are very computationally efficient. However,
their random exploration may result in many wasteful exploration steps. Algorithms that
explore more systematically could substantially increase the speed of learning, and there-
fore online performance. Support is given by our results on improved candidate selection
with CPS. By exploring candidate rankers more thoroughly, learning could be sped up
and online performance improved significantly, particularly under noisy click feedback.
Future exploration methods could model the effects of changes on individual features, or
could try to explicitly model the fitness landscape. Obvious starting points for developing
smarter exploration methods for listwise learning are methods for exploration in policy
search RL (Heidrich-Meisner and Igel, 2009; Kalyanakrishnan et al., 2012). For the
pairwise approach, the cost of random exploration is high. Exploration methods based
on active learning approaches (Donmez and Carbonell, 2009; Tian and Lease, 2011; Xu
et al., 2007, 2010) are a promising alternative that may allow more targeted exploration
of promising areas of the solution space. This could reduce the cost of exploration, while
maintaining or even improving long-term learning.

A limitation of our work is that a number of parameters, such as the exploration rates
k and €, and the learning step sizes « and ¢ in Chapter 6, of our learning methods were
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fixed, typically to values that had resulted in good performance in previous work. In
supervised learning settings, such parameters would be tuned using cross-validation, but
this is not a realistic option in an online learning to rank scenario where no labeled train-
ing data is provided. Results of our experiments with the nine LETOR 3.0 and 4.0 data
sets showed that learning is effective even without additional tuning and that our findings
are stable across data sets and tasks. However, it is likely that better performance can be
obtained with additional tuning, both to a particular online learning to rank setting and
to changes in user behavior and preferences over time (in non-stationary settings). Con-
sequently, an interesting question is whether and how such a system could automatically
adjust its learning parameters to a specific setting.

Long-term planning and learning. A third direction for following up on the work
presented in this thesis is to explore and develop algorithms that adapt to long-term inter-
actions with their users. So far, we have modeled the interactions between search engine
and user as a contextual bandit problem. Relaxing the assumption of independence be-
tween system actions and queries makes the problem much more difficult to address, but
poses opportunities for a diverse range of interaction patterns.

One direction of development is to model interactions between user and search engine
as a full Markov Decision Process (MDP) (Sutton and Barto, 1998), where the agent’s
actions (e.g., retrieval results) can affect the state of the environment (e.g., the cognitive
state of the user). This could enable systems that learn to guide users paths through infor-
mation spaces, by building up towards more complex material, or by adding interactions
with the searcher that can lead to new associations between concepts. Formulating inter-
actions as a partially observable MDP (POMDP) (Kaelbling et al., 1998), would allow
the system to infer states (of the user) when information is partially hidden, similar to a
recent application in the related domain of ad-selection (Yuan and Wang, 2012). While
this and other existing solutions do not address the relative feedback setting, extensions
towards long-term online learning to rank for IR could make use of preference-based RL
methods that are being developed in the RL community (Fiirnkranz et al., 2012). The
resulting methods can pave the way towards more effective long-term interactions within
search sessions, over tasks, or over even longer periods of time.
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Software

The software used to run the experiments described in Chapters 4, 6, and 7 is made avail-
able as the online learning framework OL2R on http://ilps.science.uva.nl/
resources/online-learning-framework. OL2R contains all software required to
run the experiments, following the experimental setup detailed in Chapter 3.

Below, we describe the prerequisites for running OL2R (§A.1), and give short step-
by-step instructions for running evaluation and learning to rank experiments (§A.2).
Then, we detail the contents of the package, and finish with a brief outline of possible
extensions of this software (§A.3).

A.1 Prerequisites

OL2R is implemented in python, and has the following prerequisites:

e Python - version 2.7 or higher
e PyYaml
e Numpy - version 1.6.1 or higher

A.2 Getting Started

OLZ2R is provided as an archive in tar format on http://ilps.science.uva.nl/
resources/online-learning-framework. After downloading and extracting the
archive, two types of experiments can be run: online evaluation experiments replicate the
experimental setup of Chapter 4, and online learning experiments replicate the experi-
mental setup of Chapters 6-7.

Setting up and running both evaluation and learning experiments requires the follow-
ing four steps:

1. prepare the data

2. create a configuration file

3. run the experiment

4. summarize experiment outcomes

We provide an example for evaluation experiments in §A.2.1, and an example for learning
experiments in §A.2.2.
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A. Software

A.2.1  Running Evaluation Experiments

1. Data. OL2R accepts input data in SVMLight format.! The MSLR-WEBI0K and
LETOR 3.0 and 4.0 data sets are provided in the required format and can be obtained
from http://research.microsoft.com/en-us/projects/mslr/ and http://
research.microsoft.com/en-us/um/beijing/projects/letor/, respectively.
For example, download the MQ2008 data set of LETOR 4, and note the location of the
data as SDATA_DIR. All tools accept input files in either plain text format, or compressed
using gzip.

For evaluation experiments, data files need to be split in individual files per query —
to enable fast randomization of the queries during the experiment. For this purpose, a
script is provided with the package. It is called as follows:

Listing A.1: Splitting SVMLight data by query.

python src/python/split-query-file.py \
SDATA_DIR/INPUT_FILE $DATA_DIR/MQ2008-SPLIT SFEATURE_COUNT

2. Configuration. To set up an evaluation experiment, prepare a configuration file in
yml format.> For example, start from the template provided in Listing A.2, and save it as
config-eval.yml (replace DATA DIR and OUTPUT_DIR as appropriate).

Listing A.2: Example configuration for evaluation experiments.

query_dir: $DATA_DIR/MQ2008-SPLIT
feature_count: 46
num_runs: 10
num_qgueries: 1000
result_length: 10
# cascade model with 5 relevance grades
user_model: environment.CascadeUserModel
# for p-click and p-stop provide mappings from relevance grades to
# probabilities (here: perfect click model)
user_model_args:
--p_click 0:0.0, 1:0.2, 2: 0.4, 3: 0.8, 4:1.0
--p_stop 0:.0, 1:.0, 2:.0, 3:.0, 4:.0
# method names can be arbitrary strings and have to be unique
live_evaluation_methods:
- BI
- TD
- DC
- PI-MA
# provide arguments per method in matching order
live_evaluation_methods_args:

- # BI
—-class_name comparison.BalancedInterleave
—-ranker ranker.DeterministicRankingFunction --ranker_args None

—--startinglist random

For details, see http://svmlight.joachims.org/. A tool for converting whitespace or
comma separated files to SVMLight format is available at http://www.soarcorp.com/svm_
light_data_helper. jsp.

2PyYaml accepts input in Yaml version 1.1. See http://yaml.org/spec/1.1/ for details.
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A.2. Getting Started

- # ID
—-class_name comparison.TeamDraft
—-ranker ranker.DeterministicRankingFunction --ranker_args None
- # DC
—--class_name comparison.DocumentConstraints
—-ranker ranker.DeterministicRankingFunction --ranker_args None
—--startinglist random
- # PI-MA
—-class_name comparison.ProbabilisticInterleave
—-ranker ranker.ProbabilisticRankingFunction --ranker_args 3
output_dir: S$OUTPUT_DIR/experiment-1
output_prefix: evaluation-test-MQ2008
# set to False to avoid accidentally overwriting previous experiments
output_dir_overwrite: True

Note that all interleaved comparison methods that are compared to each other should be
configured to run in the same experiment. This ensures that all methods are run on the
same random sample of queries, which reduces variance in experiment outcomes.

3. Running the experiment. Evaluation experiments are run using configuration files
as follows:

Listing A.3: Running evaluation experiments.

python src/python/evaluation-experiment.py —-f config-eval.yml

The experiment output is stored in yml files in the output directory provided in the con-
figuration file.

4. Summarizing experiment outcomes. The output files produced by an evaluation
experiment can be summarized using the script provided with OL2R:

Listing A.4: Summarizing online evaluation experiments.

python src/python/summarize-evaluation-experiment.py --fold_dirs \
SOUTPUT_DIR --metrics live_outcomes.BI live_outcomes.TD \
live_outcomes.DC live_outcomes.PI-MA -t 1 5 10 50 100 500 1000 \
--print_every 10 --output_base $OUTPUT_DIR/experiment-1

Results are aggregated over runs and folds, and arbitrarily many folds can be listed
per experiment. Output is produced in the form of space separated files, one every
print_every runs, that can be further processed using e.g., gnuplot. The produced
files provide the accuracies and lower and upper bounds of the 95% binomial confidence
intervals for all compared interleaved comparison methods after t; ... t,, queries:

Listing A.5: File format of evaluation experiment summaries.

<line> .=. <query_count> <metric_mean> <lower_bound> <upper_bound>
<metric_mean> <lower_bound> <upper_bound>

<query_count> .=. <integer>

<metric_mean> .=. <float>

<metric_lower_bound> .=. <float>

<metric_upper_bound> .=. <float>
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A.2.2 Running Learning Experiments

1. Data. Data for online learning to rank experiments needs to be pre-processed to
normalize feature values per query. When using LETOR data sets, a normalized version
of the data is already provided in the QueryLevelNorm version of the data. For data sets
that are not normalized per query, we provide a script for pre-processing. Like all other
scripts provided with OL2R, this script accepts files in SVMLight format (as plain text
or compressed using gzip).

Listing A.6: Normalizing data sets per query.

python src/python/normalize-per-query.py \
SDATA_DIR/INPUT_FILE $DATA_DIR/OUTPUT_FILE S$FEATURE_COUNT

2. Configuration. The configuration files for learning experiments are similar to those
for evaluation experiments. For example, a test experiment on the MQ2008 data set can
be configured as follows:

Listing A.7: Example configuration for learning experiments.

test_queries: S$DATA_DIR/MQ2008/Foldl/test.txt
training_queries: $DATA_DIR/MQ2008/Foldl/Foldl/train.txt
feature_count: 46 # 64 for .Gov, 46 for MQO#, 136 for MSLR
num_runs: 10
num_queries: 500
# cascade model with 3 relevance grades
user_model: environment.CascadeUserModel
# for p-click and p-stop provide mappings from relevance grades to
# probabilities (here: perfect click model)
user_model_args:
--p_click 0:.0, 1:1.0, 2:1.0
--p_stop 0:.0, 1:.0, 2:.0
# baseline listwise learning system with team draft interleaving and
# deterministic rankers
system: retrieval_system.ListwiseLearningSystem
system_args: --init_weights zero —--comparison comparison.TeamDraft
—--delta 1.0 --alpha 0.01 --ranker_tie random
—-ranker ranker.DeterministicRankingFunction
output_dir: $OUTPUT_DIR
output_prefix: MQ2008-Foldl
# set to False to avoid accidentally overwriting previous experiments
output_dir_overwrite: True

In contrast to online evaluation experiments, online learning to rank experiments are
configured for one method at a time (here: baseline listwise learning system with TD).

3. Running the experiment. Learning experiments are run using configuration files as
follows:

Listing A.8: Running online learning to rank experiments.

python src/python/learning-experiment.py -f config-learn.yml
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4. Summarizing experiment outcomes. The output files produced by a learning ex-
periment can be summarized using the script provided with OL2R:

Listing A.9: Summarizing online learning to rank experiments.

python src/python/summarize-learning-experiment.py —--fold_dirs \
SOUTPUT_DIR > $SUMMARY_FILE

Arbitrarily many folds can be listed per experiment. Results are aggregated over runs and
folds. The output format is a space separated text file that can be further processed using
e.g., gnuplot. The output files contain the mean and standard deviation of the offline and
online performance after n queries.

Listing A.10: File format of learning experiment summaries.

<line> .=. <query_count> <offline_mean> <offline_stddev> \

<online_mean> <online_stddev>

<query_count> .=. <integer>
<offline_mean> .=. <float>
<offline_stddev> .=. <float>
<online_mean> .=. <float>
<online_stddev> .=. <float>

A.3 Package Contents and Extensions

Apart from the scripts demonstrated above, the OL2R consists of 8 packages that imple-
ment its functionality as follows:

comparison interleaved comparison methods for comparing rankers using
click data; contains the baseline interleaved comparison methods
described in §2.3.1, the probabilistic interleave methods devel-
oped in Chapter 4, and the RHC method developed in Chapter 7

environment click models for simulating user interactions

evaluation evaluation metrics (NDCG)

experiment entry level classes for learning and evaluation experiments

query parse and provide access to collections of queries (with document
features and relevance judgments)

ranker deterministic and probabilistic ranking functions

retrieval_system online learning retrieval systems, e.g., for pairwise and listwise
learning to rank; contains the baseline learner DBGD (§2.5.2), the
methods for balancing exploration and exploitation developed in
Chapter 6, and the CPS method developed in Chapter 7

utils various utility functions
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A. Software

The code is intended to be extended with new interleaved comparison methods and meth-
ods for online learning to rank for IR. The most obvious points for extension are:

comparison — extend AbstractInterleavedComparison to add new interleaving or
inference methods.

environment — extend AbstractUserModel to enable evaluation under different as-
sumptions about user behavior.

evaluation — extend AbstractEval to add evaluation metrics.

retrieval_system — extend AbstractLearningSystem to add a new mechanism for
learning from click feedback.
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Samenvatting

De hoeveelheid digitale data die we elke dag produceren is vele malen groter dan wat
we kunnen verwerken. Het vinden van zinvolle informatie in deze overvloed aan data is
daarom é¢n van de grootste uitdagingen van de 21e eeuw. Zoekmachines zijn één van
de mogelijkheden om grote dataverzamelingen te ontsluiten. Hun algoritmes hebben een
immense ontwikkeling doorgemaakt. Waar zoekmachines eerst simpelweg zoektermen
met documenten vergeleken, zijn het nu complexe systemen die vaak honderden signalen
met elkaar combineren om zo de best mogelijke zoekresultaten voor elke gebruiker te ge-
nereren.

De huidige methoden voor het afstellen van zoekmachineparameters kunnen zeer
effectief zijn, maar vergen vaak veel expertise en handmatige aanpassingen. Deze me-
thoden zijn gebaseerd op zogenoemde gecontroleerde leertechnieken (“supervised learn-
ing”), wat betekent dat ze leren van handmatig geannoteerde voorbeelden van relevante
documenten voor bepaalde zoekvragen. Goede handmatige voorbeelden zijn vaak niet of
onvoldoende beschikbaar, zoals bij gepersonaliseerde zoektoepassingen, bij toegang tot
gevoelige data en bij toepassingen die met de tijd veranderen.

Dit proefschrift richt zich op het ontwikkelen van nieuwe online leertechnieken,
gebaseerd op het principe van versterkend leren (“reinforcement learning”). In tegen-
stelling tot gecontroleerde technieken kunnen deze direct van de interacties tussen zoek-
machine en gebruiker leren. Deze interacties kunnen vaak eenvoudig verzameld wor-
den, maar zijn door onzuiverheden en ruis moeilijk te interpreteren. De belangrijkste
uitdaging is daarom het ontwikkelen van technieken die deze interactie goed kunnen
interpreteren. De resultaten van dit proefschrift omvatten onder meer een zuivere sto-
chastische methode die impliciete voorkeuren van gebruikers voor bepaalde zoekresul-
taten nauwkeurig kan detecteren en leermethodes die doeltreffend van de resulterende
relatieve feedback kunnen leren.

De verworven analytische en empirische resultaten laten zien hoe zoekmachines ef-
fectief van gebruikersinteracties kunnen leren. In de toekomst kunnen deze en vergelijk-
bare technieken nieuwe manieren mogelijk maken om waardevolle informatie uit steeds
grotere dataverzamelingen te ontsluiten.
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Zusammenfassung

Die Menge digitaler Daten, die wir tiglich produzieren, iibersteigt unsere Moglichkeiten
diese zu verarbeiten bei weitem. Eine der groflten Herausforderungen des 21. Jahrhun-
derts ist es deshalb, niitzliche Informationen in dieser Datenflut zu finden. Suchmaschi-
nen bieten eine Moglichkeit, grole Datensammlungen zu erschlieen. Thre Algorithmen
haben eine immense Entwicklung durchlaufen. Aus Maschinen die Suchanfragen Wort
fiir Wort mit Dokumenten vergleichen, sind komplexe Systeme geworden, die oft hun-
derte von Signalen kombinieren, um die bestmdglichen Suchergebnisse fiir jeden Nutzer
Zu generieren.

Heutige Methoden zur Optimierung von Suchmaschinen konnen sehr effektiv sein,
bendtigen aber meist ein groes Maf an Expertise und manuellem Aufwand. Sie basieren
auf sogenannten iiberwachten Lernmethoden (“supervised learning”), die von manuell
erstellten Beispielen relevanter Dokumenten fiir bestimmte Suchfragen lernen. Solche
manuell erstellten Beispiele sind in vielen Bereichen nur bedingt verfiigbar, zum Beispiel
bei personalisierten Suchergebnissen, bei Zugang zu sensitiven Daten, oder in Suchan-
wendungen in denen die Nutzeranforderungen sich mit der Zeit verédndern.

In dieser Dissertation werden neue online Lernmethoden entwickelt. Diese basieren
auf dem Prinzip des verstiarkenden Lernens (“reinforcement learning”) und erméglichen,
im Gegensatz zu iiberwachten Lernmethoden, die Entwicklung von Suchmaschinen, die
direkt von Interaktionen mit ihren Nutzern lernen. Spuren von Nutzerinteraktionen sind
ein natiirliches Nebenprodukt der normalen Nutzung von Suchmaschinen, und kénnen
deshalb die wirklichen Erwartungen von Nutzern widerspiegeln. Die wichtigste He-
rausforderung ist es jedoch, diese Interaktionen korrekt zu interpretieren, da sie durch
Rauschen und Trends (“bias”) beeinflusst werden. Die Beitrige dieser Dissertation um-
fassen unter anderem eine neue, wahrscheinlichkeitsbasierte, Methode, um Suchergeb-
nisse durch Auswertung von Nutzerverhalten miteinander zu vergleichen. Darauf auf-
bauend werden online Lernmethoden entwickelt, die die resultierenden Vergleiche ef-
fektiv verarbeiten kdnnen.

Die erzielten analytischen und empirischen Ergebnisse zeigen wie Suchmaschinen
effektiv von Nutzerinteraktionen lernen konnen. In Zukunft konnen diese und dhnliche
Technologien neue Moglichkeiten eréffnen, um wertvolle Information aus stets grof3eren
Datensammlungen zu erschliefen.

153



	Introduction
	Research Outline and Questions
	Main Contributions
	Thesis Overview
	Origins

	Background
	Information Retrieval
	Learning to Rank for IR
	Click Data and other Types of Implicit Feedback
	Interleaved Comparison Methods
	Click Bias

	Reinforcement Learning
	Contextual Bandit Problems
	Balancing Exploration and Exploitation
	Off-policy Evaluation

	Baseline Online Learning to Rank Approaches
	Learning from Document-Pairwise Feedback
	Dueling Bandit Gradient Descent


	Problem Formulation and Experiments
	Problem Formulation
	Experimental Setup
	Click Models
	Data Sets
	Evaluation Measures

	Probabilistic Interleaving
	Analysis
	Framework
	Definitions of Fidelity, Soundness, and Efficiency
	Balanced Interleave
	Team Draft
	Document Constraints

	Probabilistic Interleave Methods
	Probabilistic Interleave
	Probabilistic Comparisons with Marginalization
	Probabilistic Comparisons with Historical Data

	Experiments
	Interleaved Comparisons using Live Data
	Interleaved Comparisons using Historical Data

	Results and Discussion
	Interleaved Comparisons using Live Data
	Interleaved Comparisons using Historical Data

	Conclusion
	Proof of Theorem 4.1.1
	Proof of Theorem 4.2.1
	Proof of Theorem 4.2.2

	Caption Bias in Interleaving Experiments
	Method
	Modeling Caption Bias
	Caption Bias Features
	Reweighting Clicks

	Experiments and Results
	Modeling Caption Bias
	Evaluating Caption Bias Models
	Predicting Preferences
	Interleaving Outcomes

	Conclusion

	Balancing Exploration and Exploitation
	Approaches
	Balancing Exploration and Exploitation in Pairwise Learning to Rank
	Balancing Exploration and Exploitation in Listwise Learning to Rank

	Experiments
	Pairwise Approach
	Listwise Approach

	Results and Discussion
	Pairwise Learning
	Listwise Learning
	Comparing the Pairwise and Listwise Approach

	Conclusion

	Reusing Historical Interaction Data for Faster Learning
	Method
	Reliable Historical Comparison
	Candidate Preselection

	Experiments
	Results
	Analysis
	Offline Performance
	CPS – Sensitivity to Parameter Settings
	RHC – Sensitivity to Parameter Settings

	Conclusion

	Conclusions
	Main Findings
	Future Work

	Appendix
	Software
	Prerequisites
	Getting Started
	Running Evaluation Experiments
	Running Learning Experiments

	Package Contents and Extensions

	Bibliography
	Samenvatting
	Zusammenfassung

