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ABSTRACT
Reinforcement learning for recommendation (RL4Rec) methods are

increasingly receiving attention as an effective way to improve long-

term user engagement. However, applying RL4Rec online comes

with risks: exploration may lead to periods of detrimental user expe-

rience. Moreover, few researchers have access to real-world recom-

mender systems. Simulations have been put forward as a solution

where user feedback is simulated based on logged historical user

data, thus enabling optimization and evaluation without being run

online. While simulators do not risk the user experience and are

widely accessible, we identify an important limitation of existing

simulation methods. They ignore the interaction biases present in

logged user data, and consequently, these biases affect the resulting

simulation. As a solution to this issue, we introduce a debiasing step

in the simulation pipeline, which corrects for the biases present in

the logged data before it is used to simulate user behavior. To eval-

uate the effects of bias on RL4Rec simulations, we propose a novel

evaluation approach for simulators that considers the performance

of policies optimized with the simulator. Our results reveal that the

biases from logged data negatively impact the resulting policies,

unless corrected forwith our debiasingmethod.While our debiasing

methods can be applied to any simulator, we make our complete

pipeline publicly available as the Simulator for OFfline leArning and

evaluation (SOFA): the first simulator that accounts for interaction

biases prior to optimization and evaluation.

CCS CONCEPTS
•Computingmethodologies→ Interactive simulation;Rein-
forcement learning; • Information systems→ Information re-
trieval;Recommender systems.
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1 INTRODUCTION
In recent years, interest in Reinforcement Learning for Recommen-

dation (RL4Rec) has greatly increased in both academia and industry.

The key idea behind Reinforcement Learning (RL) is to optimize a

policy that matches states to actions, so that an agent performing

these actions maximizes a cumulative reward [31]. RL does not just

consider the immediate reward of an action, but also the effect it has

on subsequent actions, allowing it to learnw.r.t. long-term goals. For

Recommender Systems (RSs), long-term goals are usually some form

of long-termuser engagement, e.g., the cumulative number of clicks or

the dwell time over sessions of multiple recommendations [42]. Fur-

thermore, RL is particularly suited for exploring the item space over

multiple interactions [41], learningarecommendationpolicydirectly

fromcomplex recommendation scenarios [7, 32, 40, 41], andadapting

quickly to real-time user feedback [37]. Figure 1(a) displays the typi-

calflowofRL4Rec: a state is thehistorical interactionsof auserwho is

about to receive a recommendation, an action is an itembeing recom-

mended by the policy of the recommender system, and the reward is

implicit or explicit user feedback (e.g., a click, a rating, dwell time, an

order, etc.). The goal of RL4Rec is tomaximize the cumulative reward

over multiple sequential recommendations. RL methods learn from

experience; in the RS setting this means that they learn by recom-

mending items to users and observing their subsequent interactions.

Despite these advantages, the RL4Rec approach brings riskswhen

applied online: during learning, exploratory or incorrect actions

could be taken, which can be detrimental to the user experience [11,

17]. Since RL learns from experience, it is almost unavoidable that

initially some disliked items are recommended. Furthermore, online

deployment takes time, costs money, and many researchers – both

in academia and industry – simply do not have access to an actual

platformwith live users.
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Figure 1: The general framework of RL4Rec, where a state
is user historical interactions, an action is an item being
recommended by the RS, and a reward is related to user
feedback. (a) shows RL4Rec applied online to interact with
actual users. (b) shows how RL4Rec typically interacts with
a simulation-based environment.

Analternative toonlineexperimentation isprovidedby simulation-
based experiments. Here, user feedback on items is simulated in or-

der to enable learning and evaluating RL-based RSs (see Figure 1(b)).

Recently, several simulators have been proposed, specifically for

RL4Rec [13, 16, 22, 25, 26, 35, 36, 41]. Some work is designed for

specific datasets and specific recommendation tasks [16, 26, 35, 41],

which makes them unavailable without access to similar data, and

inapplicable for simulating more general recommendation tasks.

For better applicability, other work has proposed simulators based

on fully synthetic data which is completely generated by statistical

distribution functions (e.g., Bernoulli distribution) [22]. The fully
synthetic approach has been criticized because it oversimplifies user

behavior [25]. As a result, the resulting simulated behavior is dissim-

ilar to the complex behavior of real users, and often recognized as

unrealistic feedback. To simulate user behavior while maintaining

many of its natural complexities, others have proposed to simulate

user feedbackbasedondatasets of user loggeddata [13, 25, 36]. These

simulators usually follow user preferences in the logged data (i.e.,
ratings provided by users) by basing their simulated behavior on

them. E.g., a click on an item is more likely to be simulated for a user

if in the logged data this user gave a high rating to this specific item.

Logged-data based simulators avoid oversimplifying preferences,

while still providing simulated user interactions forRL4Recmethods.

While these simulators allow for offline learning, we recognize

two significant limitations: they ignore the biases present in logged

data; and they have not been evaluated based on the performance of

their produced policies. Biases are very prevalent in user-RS inter-

action data. Two influential types of biases are popularity bias and
positivity bias. Popularity bias occurs because users tend to interact
with more popular items [21, 29], which results in the commonly ob-

served long tail distribution of the number of interactions per item in

logged data. Positivity bias occurs because users rate the items they

like more often [21], which leads to positive feedback being over-

represented. These types of biases in logged data may lead to biased

parameter estimation and prediction in many methods [19, 24], e.g.,
it is known to affect Matrix Factorization (MF) [24]. Nevertheless,

previous work on simulators has ignored biases and naively uses the

observed user-item interaction data when simulating user behavior.

As a result, we can expect these biases to affect the simulator and

the feedback it generates. For instance, due to positivity bias, we can

expect simulated users to be more positive to most items than actual

users would be. Consequently, a policy learned with such a simu-

lator would also be affected by the biases in the logged data. These

biased policies may result in detrimental performance if exposed to

actual users [3, 19, 24, 28]. Hence, there is a need for a simulator that

is based on logged data, but that mitigates the effect of bias in the

data.

Existing work has evaluated RL4Rec simulators by comparing

simulated user feedback with real user feedback from logged data.

For instance, some work evaluated the performance of a simulator

by considering howwell it predicts skip/click behaviors [36] or dwell

time [40]. While this type of evaluation can simulate a single user

interaction, it does not consider whether using a simulator actually

leads to a well-performing policy. However, there is no work that

directly considers the performance of the produced policies that

result from using a simulator, despite this being the ultimate goal.

E.g., if one wants to apply a policy learned in a simulator to a real-

world RL4Rec setting, it is generally desired that the policy has the

best performance possible. Moreover, simulators can be very effec-

tive ways to reproduce and benchmark RL4Rec methods, but such

comparisons are considerably less reliable if their results are biased.

In this paper, we propose a debiasing method for RL4Rec simu-

lators that mitigates the effect of bias in logged data. Furthermore,

we introduce a novel way of evaluating the effect of bias on the final

policy performance of a simulator. Our experimental results reveal

that bias in logged data affects simulators and the policies they pro-

duce.While both of these contributions can be applied to anyRL4Rec

simulator, we combine both steps in a newly proposed Simulator for

OFfline leArning and evaluation (SOFA). SOFA bases its simulation

on a user-item rating matrix learned from logged user data; unlike

existing simulators, SOFA corrects for interaction bias when learn-

ing this matrix. To evaluate SOFA, we use publicly available datasets

where part of the data was logged on randomly recommended items.

The main contributions of this work are as follows:

(1) A novel approach for debiasing simulators that mitigates the

effect of bias in logged data.

(2) A novel evaluation method to analyze the effect of bias on

RL4Rec.

(3) Two types of experiments, both based on real-world datasets

(Yahoo!R3 [19] and coat [24]) and based on a simulation study,

that show that bias in logged data affects simulators and the

policies they produce.

(4) SOFA, a novel simulator for RL4Rec, the first that corrects for

bias in logged data.

Werelease the codeofSOFA
1
so that futureworkcandevelopRL4Rec

algorithms while mitigating the effect of bias.

2 BACKGROUND: REINFORCEMENT
LEARNING FORRECOMMENDATION

RL methods are commonly studied in the context of an Markov

Decision Process (MDP), consisting of a state space S, an action

spaceA, a reward function R, the transition probabilities T , and

a discount factor γ [31]. We will now describe how we model the

recommendation task as an MDP [4, 5, 37, 42]:

State space S: A state represents all the current information on

whichadecisioncanbebased. ForRL4Rec, a statesut ∈S stores

historical interactions of useru till the t-th turn of interaction,
consisting of the recommended items and the corresponding

feedback, denoted as sut = ([i1,i2,...,it ],[f1,f2,...,ft ]), with ik
the item recommended by the RS in turn k , and fk the corre-

sponding user feedback. The initial state su
0
= ([],[]) is always

empty. While contextual information about the user could be

1
See https://github.com/BetsyHJ/SOFA.
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part of the state, in our experiments such information is not

available.

Action space A: Action at ∈ A taken by the RS consists of the

recommendation of a single item it in turn t .
Reward R: After receiving action at , consisting of item it being

recommended by the RS, the (simulated) user gives feedback

ft ∈ {0,1} (i.e., skip or click) on this item. This feedback is used

to generate the immediate reward rt =R(ft ).
Transition probabilities T :After theuserprovides feedback ft+1

on item it+1, the state transitions deterministically to the next

state sut+1 = ([i1,...,it+1],[f1,..., ft+1]). The interaction termi-

nates after 10 turns.

Discount factor γ : As usual in MDPs, γ ∈ [0,1] aims to balance

the effect of immediate rewards and future rewards. At its

extremes, ifγ =0, the RS only considers the immediate reward

when taking an action. Whenγ =1, all future rewards will be
taken into account evenly.

This completes our description of our RL4RecMDP, which allows

us to apply RL methods to recommendation. The main difference

between RL4Rec and the traditional recommendation task is that

RL4Rec methods: (i) make multiple sequential recommendations

while keeping track of previous interactions with a user, and (ii) try

to optimize the cumulative rewards, based on a discounted sum on

the observed user feedback ft , the reward function R, and the dis-

count factorγ . Unlike the traditional recommendation setup, RL4Rec

considers the long-term feedback/rewards anRS receives.We further

discuss related work on RL4Rec in Section 4.

3 BACKGROUND: INTERACTION
BIAS IN LOGGEDUSERDATA

Therecommendation task traditionallyhasauser setU= {u1,...,uN }

on the one hand and an item set I = {i1,...,iM } on the other hand.

Loggeduserdata isusuallyanobservedratingmatrixY ∈RN×M
.One

slotyu,i in this ratingmatrixY denotes the ratinguseruwouldgive to
item i . In practice, the complete rating matrix is rarely known, since

users usually do not rate every available item.We useO∈ {0,1}N×M

as an observation indicator: ou,i = 1 if we observe the rating yu,i
given by useru on item i , otherwiseou,i =0. In reality, observed user
behavior can be affected by many types of interaction bias. Figure 2

visualizes the effect of positivity bias and popularity bias on the

Yahoo!R3 dataset [19]. Positivity bias occurs because users rate the

items they like more often [21, 29] and results in positive feedback

being over-represented. In Figure 2(a), the naturally observed rat-

ings in the training set (Train) are compared with the test set (Test)

where users were provided ratings on randomly selected items. On

the randomly selected items we see only 2.6% of ratings are 5, while

in the naturally logged data, the proportions of 5 are about 24.6%.

Clearly, the natural user behavior results in a large “oversampling” of
positive feedback. In contrast, popularity bias occurs because users

tend to interact more with popular items [21]. Figure 2(b) shows

the number of interactions per item in the logged data and reveals

a clear long-tail distribution. As a result of types of bias like these,

the logged data is not uniform-randomly observed, and the missing

slots in the rating matrix are Missing Not At Random (MNAR) [19].
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Figure 2: Examples of positivity bias and popularity bias on
the Yahoo!R3 dataset [19]. (a) shows positivity bias caused by
the fact that users rate items they like more often. (b) shows
popularity bias caused by the fact that users tend to interact
withmore popular items.

3.1 Forms of Bias
Formally, MNAR is often modelled by separating the probability of

observance and the probability of a rating. Generally, the ratingyu,i
a user would give is not conditioned on whether the rating is given

or not:

P(yu,i ,ou,i )=P(ou,i |yu,i )P(yu,i ). (1)

We will now illustrate how this model can capture different forms

of bias:

(i) No Bias – if every rating is equally likely to be observed,

the ratings are not MNAR but Missing Completely At Ran-

dom (MCAR) and all users and items are equally represented:

∀(u,u ′) ∈U,(i,i ′) ∈I (
P(ou,i )=P(ou′,i′)

)
. (2)

(ii) Positivity Bias – when positivity bias is present, items that

would receive a higher rating are more likely to be given a

rating. One way to model positivity bias is to state that if an

item ismore preferred it is alsomore likely to be given a rating:

∀u ∈U,(i,i ′) ∈I (
yu,i >yu,i′ →P(ou,i )>P(ou,i′)

)
. (3)

(iii) Popularity Bias – when popularity bias is present, items

that are more popular are more likely to be given a rating.

Let pop(i) denote the popularity of an item; we can model

popularity bias by stating that if an item is more popular it is

also more likely to be given a rating:

∀u ∈U,(i,i ′) ∈I (
pop(i)>pop(i ′)→P(ou,i )>P(ou,i′)

)
. (4)

Now that we have described MNAR types of bias, we can consider

the effect they may have on RSs and RL4Rec simulators.

3.2 Effect of Bias
on Rating Estimation and User Simulation

Without correction, the types of interaction bias identified abovewill

affect rating prediction, and may thus further influence the RL4Rec

simulators and the policies they help produce (see Figure 3). To illus-

trate how this may happen, wewill use a simple example to estimate

the average rating of an item. Let avg(i) be the true average rating:
avg(i) = 1

N
∑
u ∈Uyu,i ; the naive (uncorrected) estimate is simply

the average of the observed ratings:

âvg(i)=
1∑

u ∈U1[ou,i =1]

∑
u ∈U:ou,i=1

yu,i . (5)

In expectation, this naive estimate is affected by the observance

probabilities:

Eo [âvg(i)]=
1∑

u ∈UP(ou,i =1)

∑
u ∈U

P(ou,i =1)·yu,i . (6)
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If we compare the expected average rating estimate with the forms

of bias discussed in Section 3.1, we see the following: (i) No Bias
– if no bias is present (Eq. 2) the estimate is correct in expectation:

Eo [âvg(i)]=avg(i). (ii)Positivity Bias – if positivity bias is present
(Eq. 3), the estimate is expected to overestimate the true rating:

Eo [âvg(i)] ≥ avg(i). This happens because higher ratings are over-
represented in observance, thus the average is skewed upwards. (iii)

Popularity Bias – popularity bias (Eq. 4) will also affect the esti-

mate, however, it dependsonhowpopularity is distributed.Themore

popular items will have a heavier influence on the estimate, thus, if

more popular items are highly rated on average, it will overestimate.

Conversely, it will underestimate if more popular items are lowly

rated on average.

While these effects go beyond estimating the average rating, un-

derstanding the effect of bias in this simple case helps us understand

the effect it has on rating prediction. E.g., if a model is trained to

predict ratings on the observed ratings, then under positivity bias

we can expect it to overestimate ratings on average. For the same

reasons overestimation happens on the expected average estimate:

the model is trained on a sample of ratings where positive ratings

were oversampled [24]. In turn, RL4Rec simulators are often based

on a predicted rating matrix, and clicks are more likely to occur if

an item i is recommended to a user i where a high rating ŷu,i was
predicted. Consequently, if logged data contains positivity bias, we

would expect a simulator based on that data to simulate users to click

more often due to the bias. In contrast, if users were asked to rate

randomly sampled items, resulting in MCAR data, then we expect

simulated users to click less on average. With more complicated

forms of bias, such as popularity bias, the effects of the bias on the fi-

nal user become less predictable. Nonetheless, without intervention

we can expect bias in logged data to affect the simulated users, and

unavoidably, it will thus also result in different learned RL4Rec poli-

cies. Therefore, it is important tounderstand the effects of interaction

bias on simulations, and to develop methods for mitigating them.

4 RELATEDWORK
RL-based Recommendation. Dulac-Arnold et al. [10] apply a Deep
Deterministic Policy Gradient (DDPG) algorithm to improve the

efficiency of recommender systems with a large number of items.

Following this framework, Chen et al. [4] propose a tree-structured

policy gradient recommendation framework, where a balanced hi-

erarchical clustering tree is built over the items and picking an item

is formulated as seeking a path from the root to a certain leaf of the

tree. A branch of research has used Deep Q-Networks (DQNs) (or

variants thereof) to improve recommendation performance. Zhao

et al. [38] adapt a DQN architecture to incorporate positive and

negative feedback of users. Others use DQN to deal with some spe-

cial recommendation scenarios, such as tip recommendation [7],

news recommendation [41], and recommendation mixed with ad-

vertisements [40]. Another line of research applies the Actor-Critic

framework, which combines the advantages of Q-Learning and pol-

icy gradients for accelerated and stable learning. The Actor-Critic

architecture ismore suitable for large and dynamic action spaces and

can reduce redundant computations when dealing with more com-

plex recommendation scenarios, such as, e.g., list-wise recommenda-

tion [39], page-wise recommendation [37], and dynamic treatment

recommendation [32]. Choi et al. [9] use biclustering to reduce the

state and action space, making the resulting MDP easy to solve with

RL. Chen et al. [5] propose a policy-gradient-based algorithm that

corrects for bias caused by the unobserved feedback of actions not

chosen by the previous RS. Zhang et al. [34] introduce a hierarchical

RL framework to improve the diversity of recommender systems.

Debiased Recommender Systems. Debiased recommendation focuses

on estimating the bias (e.g., positivity bias [21], popularity bias [21,
29]), and correcting for them. Existing work on debiasing mostly

focuses on missing interactions (e.g.,missing ratings) between users

and items, and considers the case when they are Missing Not At

Random (MNAR). When missing data is Missing Completely At

Random (MCAR), maximum likelihood inference that is only based

on the observed data is unbiased because of the key property of

Missing At Random (MAR) condition that the observation process

is independent of the value of unobserved data [12, 19]. In contrast,

MNAR data fails to have this key property and will probably lead

to biased parameter estimation and prediction because of using the

incorrect likelihood function.

Methods proposed for debiasing MNAR data can be grouped into

three categories. The first category applies missing data imputation

onMNAR data with the joint likelihood of modeling rating predic-

tion and the observation process [12, 19, 20]. The rating prediction

model is meant to complete the rating matrix, while the observa-

tion process model is meant to learn how the data point is missing

according to its value. The second category makes use of Inverse

Propensity Scoring (IPS) from causal inference [14], and integrates it

in the learning process [6, 15, 24]. Based on IPS, it is able to derive an

unbiased estimator for awide range of performance estimators, such

as Mean Squared Error (MSE) and Mean Absolute Error (MAE) used

in rating prediciton models. This type of debiasing work, which sep-

arates the estimation of bias from recommendationmodels, makes it

flexible to plug in any conditional probability estimation method as

the propensity estimator [24]. The third category is a hybrid method

that integrates the above two methods so as to obtain robust per-

formance by avoiding the potentially large bias due to imputation

inaccuracy and the high variance of the propensities [33].

User Simulations. A significant volume of research on RL algorithms

is focused on games. As a result, many platforms have been built for

learning and evaluating RL algorithms on games, such as the Arcade

Learning Environment (ALE) [1]. Brockman et al. [2] collect a large

series of such environments in the widely used OpenAI Gym plat-

form [2]. An important reason for early work to consider games is

that they can be simulated at scalewith relatively low computational

costs. Thus, RL algorithms can obtain a large number of interactions

required to find the optimal policies, making research much easier.

In contrast with games, only recently simulators for RL-based RSs

have been proposed. Rohde et al. [22] introduce RecoGym, which

simulates an RL environment for online advertising based on com-

pletely synthetic data.However, since it uses fully synthetic data, it is

unclear howwell RecoGymsimulates realistic user behavior. Shi et al.

[25] propose PyRecGym, which bases its simulation on logged user

data, and simulates amore general recommendation task. In order to

aid reproducibility and sharing of models in academia, Ie et al. [13]

create Recsim: a configurable simulation platform for evaluating

RL-algorithms on recommendation tasks. Recsimu [36] and Virtual-

Tabao [26] both use a Generative Adversarial Network to tackle

the challenges of complex item distributions based on e-commerce

datasets. Surprisingly, none of the existing RL4Rec simulators that
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Figure 3: (Top): Bias, indicated in red,whenpresent in logged
user interaction data, affects all subsequent steps in simula-
tors for RL4Rec. (Bottom): IBMS mitigates the effect of bias
before it reaches thepredictedratingmatrix; if completelyef-
fective, IBMS prevents bias from affecting any further steps.

are based on logged user data, consider the effect of bias in logged

data.
2
Thus we can expect that bias – known to be prevalent in inter-

actiondata–affects all existing simulators, andbyextension, thepoli-

cies theyproduce.To thebestofourknowledge,weare thefirst tocon-

sider the effects this bias may have, and whether it can be mitigated.

5 ANOVEL
METHOD FORDEBIASING SIMULATORS

We introduce a debiasingmethod for RL4Rec simulators and an eval-

uation method to measure the effect of debiasing on the policies

produced by simulators. Finally, we propose the SOFA simulator,

which applies both contributions.

5.1 Debiasing a Simulator
Ie et al. [13] define the main components of an RL4Rec simulator

to be a user model, an itemmodel, and a user-choice model. The user
model and itemmodel aim to capture user preference for items, while

the user-choice model simulates user feedback when an item is rec-

ommended by an RS. Generally, user preferences aremodelled using

a predicted user-item rating matrix. We focus on RL4Rec simulators

that use predicted user-item ratings and a user-choice model on top
of the predicted ratings (see Figure 1(b)).We consider the case where

the rating prediction model is learned from logged data.

As discussed in Section 3.1, logged data suffers from interaction

bias, which affects any rating prediction model learned from it. Con-

sequently, any simulatorusing suchapredictionmodelwill alsobebi-

ased. This poses a problem forRL4Rec, since simulated user behavior

should not be affected by theway a dataset was logged. As a solution

we propose the Intermediate BiasMitigation Step (IBMS), an interme-

diate step between the logged data and the learned prediction model

that aims tomitigate the bias originating from the data fromaffecting

the model. Figure 3 displays where the Intermediate Bias Mitigation

Step (IBMS) fits in the simulator pipeline: by mitigating the effect of

bias before the prediction model is learned, it minimizes its effect to

reach subsequent steps, including the final produced policy.

The IBMS can apply various debiasing methods; for this paper

we use the IPS approach widely used in causal inferece [14] and

complete-cases analysis [18]. First, we consider a standard rating

prediction loss. Let
ˆY be the predicted ratings,Y true ratings, and

ou,i = 1 indicate that a rating from user u and item i is present in
the logged data. The standard loss is based on all the pairs that are

present in the logged data:

LNaive =
1

|{(u,i) :ou,i =1}|

∑
(u,i):ou,i=1

δu,i (Y , ˆY ), (7)

2
Recsim [13] is an exception, as Ie et al. [13] mention bias in logged user data is a

challenge but they do not propose a solution.

where δu,i is chosen to match somemetric, with common choices

being MSE andMAE:

δMSE

u,i (Y , ˆY )= (yu,i−ŷu,i )
2, δMAE

u,i (Y , ˆY )= |yu,i−ŷu,i |.
(8)

We call this standard loss a naive approach, because it assumes all

ratings are equally likely to be present in the logged data, i.e., the
data is MCAR. In contrast, interaction data on RS is usually MNAR,

which leads to a biased estimate of the full-information loss (i.e., the
loss based on all ratings) since:

E[LNaive ]=
1∑N

u=1
∑M
i=1P(ou,i =1)

N∑
u=1

M∑
i=1

P(ou,i =1)δu,i (Y , ˆY )

,
1

N ·M

N∑
u=1

M∑
i=1

δu,i (Y , ˆY ).

Due to the effect of the bias introduced byP(ou,i =1), optimizing this

naive loss can lead to a gross misprediction of the predicted rating

matrix
ˆY [24, 30]. To mitigate the effect of bias in MNAR feedback,

Schnabel et al. [24] apply an IPS estimator [14]. If the probabilities

P(ou,i = 1) are known, they can be corrected for by weighting the

logged ratings:

LI PS =
1

N ·M

∑
(u,i):ou,i=1

δu,i (Y , ˆY )

P(ou,i =1)
. (9)

Basing LI PS on logged data provides an unbiased estimate of the

full-information loss:

E[LI PS ]=
1

N ·M

N∑
u=1

M∑
i=1

P(ou,i =1)δu,i (Y , ˆY )

P(ou,i =1)
=

1

N ·M

N∑
u=1

M∑
i=1

δu,i (Y , ˆY ).

For this to be truly unbiased, the exact P(ou,i = 1) values have to
be known. In practice, the logged data reveals which ratings were

logged and which were not, thus an estimation method can be fitted

onou,i =1 to infer amodel of P(ou,i =1). Schnabel et al. [24] propose
to use two simple propensity estimation methods: (i) Naive Bayes

withMaximum likelihood [19], and (ii) Logistic Regression based on

features of a user-item pair [23]. By IPS weighting the ratings, the

IBMS can prevent bias from affecting the rating prediction model of

a simulator. In the ideal case, this removes the effect of bias on the

resulting policies completely. In practice, we do not expect IBMS to

completely remove bias but mitigate it to a large degree. The IBMS

is applicable to any simulator that simulates interactions based on

a rating prediction model.

5.2 Evaluating the Effect of Bias in a Simulation
To evaluate how well the IBMS mitigates bias from affecting the

resulting policies, we compare the performance of a policy trained in

a simulator with and without the IBMS. Simulators are designed for

situationswhereonlinedeployment is impossible, thus, performance

also needs to be estimated offline in these situations. Existing work

has evaluated RL4Rec simulators by comparing their simulated feed-

back with logged user feedback [8, 26, 36], as shown in Figure 4(a).

The downside of this evaluation is that it does not consider the per-

formance of policies learned with the simulator, despite the fact that

finding an optimal policy is the ultimate goal of RL4Rec.

As an alternative, we propose an offline evaluation method that

does consider the final produced policies. Our evaluation method

only requires a sparse set of MCAR ratings, gathered on randomly
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(a) Evaluation based on observed user behavior.
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Solution-1:	Limiting	Action	Selection Solution-2:	Completing	Rating	Matrix

(b) Evaluation with sparse MCAR data.

Figure 4: Different evaluation methods. (a) shows the evalu-
ation of a simulator by comparing the simulated feedback
(e.g., ratings)with loggeduser feedback. (b) shows theprocess
of evaluating a simulator in an unbiased simulator created
from theMCAR data, where the problem caused by the spar-
sity of MCAR data is handled by two solutions: solution 1 is
to evaluate on policy with limiting action selection shown
on the left-hand side of (b), while solution 2 is to evaluate
in the simulator with the complete rating matrix generated
based onMCAR data shown on the right-hand side of (b).

selected items. Since publicly available datasets exist that meet this

requirement (see Section 6) thismethod is available to all researchers

in the field. Thus, we assume that a large number of MNAR ratings

and a sparse set of MCAR ratings are available. Then our evaluation

method consists of the following steps: (i) Train a policy using a sim-

ulator with the IBMS on theMNAR ratings, wewill call the resulting

policy the debiased policy. (ii) Train another policy using an identical
simulator on the MNAR ratings, expect it is does not apply IBMS,

resulting in the biased policy. (iii) Create another identical simulator,

except that it is basedon theMCARratings; call this theunbiased sim-

ulator. (iv) Finally, deploy both the biased and debiased policies in the

unbiased simulator to evaluate their performance by looking at cu-

mulative reward; the difference reveals the effect of the IBMS. The in-

tuitionbehind this approach toevaluation is that becauseMCARdata

is already debiased during logging, we can create an unbiased sim-

ulator. By comparing the behavior of two policies trained with and

without the IBMS in this simulator, we can see if IBMS truly removed

the effect of bias. Importantly, the actual behavior of the produced

policies is evaluated; this best indicates the usefulness of a simulator.

While the lack of bias in MCAR data is useful, its sparsity is still a

problem, as the simulator cannot simulate feedback on itemswithout

a rating. We propose two solutions, both visualized in Figure 4(b):

Solution 1 – Limiting Action Selection: During evaluation the

RS is limited to only recommend items for which ratings are

available in theMCARdata. Thus for eachuseru the simulator

finds the set of items i for which ratings ru,i are available in

the MCAR data. The advantage of this approach is that user

behavior is always based on realMCAR ratings. The disadvan-

tage is that it limits the behavior of the RS: it could be unable

to evaluate the actual behavior the RS would perform, since

many items are unavailable for certain users.

Solution 2 – Completing the RatingMatrix: To avoid limiting

the behavior of the RS, a pseudo Ground Truth (GT) rating

matrix could be generated using a rating prediction model

learned from theMCAR data. In contrast with ratingmatrices

based on MNAR data, the resulting pseudo GT is unbiased.

The advantage is that the RS is not limited in its behavior

during evaluation, thus the actual behavior it would perform

is evaluated. The disadvantage is that the pseudo GT is based

on predicted ratings, thus it may have some differences with

the true user preferences.

5.3 A Simulator
for Offline Learning and Evaluation

A predicted user-item rating matrix is first loaded to initialize the

simulator. To simulate a useru to interact with the RS, a simulator

initializes state su
0
as empty to simulate user login. In the t-th turn

of interaction, the RS recommends an item it as action at . After
receiving this item, the user-choicemodel of the simulator simulates

user feedback ft on item it , completes the state transition from state

sut to sut+1 and generates the immediate reward rt . The RS observes
feedback ft plus the next state s

u
t+1, and prepares for the next turn

of interaction. AfterK turns, the episode is terminated, and the RS

saves a sequence of transitions [(s1,a2,r2,s2),...,(sK−1,aK ,rK ,sK )]
into experience bufferD. The transitions inD can be subsequently

used to update the parameters of the RS.

To address the functional requirements of a simulator, we design

our Simulator for OFfline leArning and evaluation (SOFA), a debiased

simulator consisting of two components: (i) a debiased user-item

rating matrix to present users’ preference on items, and (ii) a user-

choice model to simulate user feedback, and provide the updated

state and immediate reward to RS:

(i) The debiased user-item rating matrix is produced using

the IBMSwhereweapplyPropensity-ScoredMatrix Factoriza-

tion (MF-IPS) [24]. Given a useru and an item i , MF computes

the predicted rating ŷu,i as: ŷu,i =pu⊤qi +au+bi +c,where
thepu andqi are embedding vectors of useru and item i , and
theau ,bi , and c are offsets for the user, item and global respec-

tively.MF-IPS is optimized byminimizing the prediction error

between the observed ratings yu,i and the predicted rating
ŷu,i , weighted inversely to P(ou,i =1):

argmin

P ,Q ,A


∑

(u,i):ou,i=1

δ (yu,i ,ŷu,i )

P(ou,i =1)
+λ

(
∥P ∥2F +∥Q ∥2F

) , (10)

whereP ,Q , andAdenote the embeddings of all users, all items,

and the offset terms, respectively. Thus the final predicted

rating matrix is: Ŷ =P⊤Q+A.
(ii) The user-choicemodel simulates user feedback on the item

being recommended from the RS, and provides the updated

state and immediate reward to RS. Thus, the following steps

are required for the user-choicemodel: (i) Feedback simulation:
We define ratings higher than 3 as positive preference, and
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others as negative preference following common settings in

RSs. Based on the assumption that users tend to click items

if they have a positive preference for these items, ifyu,it >3,
the user clicks item it , denoted as ft =1; otherwise, the user
skips the item, ft =0. (ii) State transition: just concatenate it
and ft with st−1 as the updated state st as defined in Section 2.
(iii) Reward generation: The immediate reward rt of click and
skip feedback is specifically set to 1 and -2, these values were
chosen because preliminary experiments showed they lead to

efficient and stable policy learning in experiments. Finally, the

user-choice model sends the updated state and the immediate

reward back to the RS.

6 EXPERIMENTAL SETUP
In response to the limitation of the existing simulators we point out

and the solution we propose, we analyze three research questions in

the experiments: (RQ1) Does interaction bias in logged data affect a

simulator? (RQ2)Can IBMSmitigate this bias effectively? (RQ3)How

does the intensity of bias affect the simulators and their resulting

policies? Below, we describe the datasets, and present the evalua-

tion details for the simulator and the produced policy including the

evaluation metrics and parameters used in our experiments.

Datasets. Our experiments are based on two real-world datasets and

several synthetic datasets we generated ourselves, each withMNAR

logged data as training set and MCAR data as test set.

Yahoo!R3 dataset [19]. TheMNAR logged data of this dataset con-

tains approximately 300,000 user-supplied ratings from15,400

users on 1,000 items in total. The MCAR data is collected

by asking 5,400 users to give ratings on 10 items randomly

selected from the 1,000 items. Following [24], we consider

positivity bias and use Naive Bayes to estimate propensities

P(ou,i ).
Coat dataset [24].Thedataset includes ratings from290users on24

self-selected itemsand16 randomly-selected items fromtotaly

300 items. Following [24], propensity P(ou,i ) is estimated by

using standard regularized logistic regression trainedwith the

profile of users (e.g., gender and age) and items (e.g., type and
color). The bias estimated in the above way is not specified as

a certain type of bias and can be recognized as a mixture of

different types of biases.

Synthetic data. In order to measure the effect of the degree of bias

on simulators, we generate several synthetic datasets with

varying degrees of positivity bias. Unlike real-world data, this

synthetic setupallowsus tokeepall factors constant except for

the positivity bias. The generation of synthetic data involves

two steps:

(i) Generate the complete true user-item rating matrix, de-

noted as GT. We follow Zou et al. [42] where the genera-

tion process is based on a standard Gaussian distribution.

Given N users and M items, we generate the associated

parameter vectors P ∈ RN×d
and Q ∈ RM×d

as profiles

of users and items. pu and qi denoting profile vectors of
user u and item i , are both drawn from the normal distri-

butionN(0,1). User preference on items is determined by

the inner-product of P andQ , denoted as P⊤Q . GT is gener-

ated by mapping P⊤Q into five rating bins with score from

1 to 5 according to a certain rating distribution P(Y = y).
In practice, we choose N = 300, M = 300, d = 10, and set

P(Y =y)= [0.526,0.242,0.144,0.062,0.026] fory= [1,2,3,4,5].
(ii) Generate MNAR logged data under the control of observa-

tion probability:

P(ou,i |yu,i )=αP(ou,i |yu,i ,pos-bias)+(1−α)P(ou,i |uniform).

(11)

We set the probability of uniform observation P(ou,i =
1 | uniform) = 5% so that ∼5% of the user-item rating ma-

trix is observed; thus, the remaining ∼95% is missing. We

set P(ou,i = 1|yu,i = y, pos-bias) = [0.029, 0.021, 0.035,

0.161, 0.577] for y = [1, 2, 3, 4, 5] to obtain a rating dis-

tribution similar to that of the Yahoo!R3 dataset. The in-

tensity of bias is controlled by α : if α = 1.0, the sampling

probability is determined by positivity bias; if α = 0, the
logged data is sampled completely at random. We vary

α ∈ {0.0,0.2,0.4,0.6,0.8,1.0} to generate MNAR logged data

with different degrees of positivity bias.

Hyperparameters. The simulators rely on the user-item rating ma-

trix generated byMF, includingMF-IPS andMF-Naive. We followed

the procedure of Schnabel et al. [24] to tune the MF hyperparame-

ters: the L2 regularization weight λ∈ {10
−6,...,1} and dimension of

embeddingsofusers and itemsd ∈ {5,10,20,40},were chosenbycross-
validation while considering to match the rating distributions of the

predicted ratings with the real rating distributions simultaneously.
3

For the policy used in the experiments, we use a basic DQN policy

with aGatedRecurrentUnit (GRU)-basednetwork to encodediscrete

state and approximate action-value function. Due to space limita-

tions, a detailed description of the architecture of this DQN policy is

provided in the released code. The required hyperparameters come

in two kinds: (1) Hyperparameters of the used DQN, e.g.,γ discount

factor, and the dimensionh of the look-up layer, and the dimension

hGRU of the GRU hidden state. (2) Hyperparameters used in learning

process, e.g., the size of replay bufferD, the speed of greedy epsilon

decay, the size of minibatch and the frequency of target network up-

date. Following Zou et al. [42], we fix the discount factorγ to 0.9, and

choose the other hyperparameters by running multiple experiments

and seeing which resulted in the most stable learning curves which

was measured by the average cumulative number of clicks over 10-

turn interactions with given simulators. The specific values of the

hyperparameters for different datasetswill be releasedwith the code.

Evaluation Metrics. To evaluate the performance of a policy, we use

the cumulative number of clicks received over 10 interaction turns

in the unbiased simulator. Additionally, we apply the evaluation

metricsMean Squared Error (MSE) andMeanAbsolute Error (MAE),

both of which are widely used for the rating prediction task. Finally,

Accuracy (ACC) and Click-ACC are also used to show the accuracy

of the predicted ratings and the predicted click/skip behavior gen-

erated by the click model, which maps high ratings into clicks and
low ratings into skips.

3
This is slightly different from the setting in [24] without matching the real rating

distributions. The median rating yields the minimal MSE loss when prediction error

is large. This may cause most of the simulated feedback to be negative, and policies

cannot learn useful information from the interactions.
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Figure 5: Rating distributions on Yahoo!R3 dataset.
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Figure 6:Rating distributions on the synthetic datawithα =1.

7 EXPERIMENTALRESULTS
7.1 Effect of Interaction Bias
Recall that in Figure 3, we illustrate the propagation of the effect of

bias fromuser interactions to reach theproducedpolicies.Weanalyze

the effect of bias on the task of predicting the ratingmatrix. InTable 1,

we find thatMF-IPS outperformsMF-Naive withmetricsMSE,MAE

and ACC on two real datasets
4
and synthetic data with α =1.

Moreover, for a better understanding of how bias affects MF, we

analyze the complete user-item ratingmatrices generated byMF-IPS

and MF-Naive. For the sake of brevity, we only present the anal-

ysis of positivity bias on Yahoo!R3 and synthetic data. Figure 5(a)

and 6(a) show the rating distributions of the MNAR logged data

(Train) and the unbiased data (Test for MCAR data of Yahoo!R3 or

GT for the synthetic data). Positivity bias in the logged data is ad-

equately demonstrated resulting in a large “oversampling” of the
higher ratings. Figure 5(b) and 6(b) show the rating distributions of

the complete user-item rating matrices generated by MF-IPS and

MF-Naive learned from the logged data.Wefind thatMF-Naive tends

to overestimate ratings, and this in turn confirms our theoretical

analysis in Section 3.2. MF-IPS canmitigate this kind of bias to some

extent, shownhere as a larger number of lower ratings thanwithMF-

Naive. We notice a mismatch in the rating distributions between the

true rating matrices and the generated rating matrices with ratings

concentrating at 2 for MF-IPS or 3 for MF-Naive. The main reason is

that MF models learned from the sparse logged data still suffer from

large prediction errors, and predicting ratings as the median yields

the minimal loss (e.g.,MSE loss).

To conclude, interaction bias affects the prediction of the rating

matrix based on logged data. Thus, any simulator using such a pre-

diction model will also be biased, and the quality of policies trained

using such a biased simulator will be affected.

7.2 Evaluation Results on Resulting Policies
Two DQN policies equipped with the same networks first interact

with two simulators, one with IBMS named SOFA and one with-

out IBMS named Naive-Sim, and update their parameters from the

interactions. Figure 7 and 8(a) shows the learning curves of these

DQNpolicies, which track average cumulative number of clicks over

4
The results are similar to those reported in [24], but slightly different because we

consider matching the real rating distributions.

0 250 500 750 1000 1250
training step (thousand)

1.0

1.5

2.0

2.5

cu
m

ul
at

iv
e 

nu
m

be
r Naive-Sim

SOFA

(a) Yahoo!R3.

0 20 40 60 80 100 120
training step (thousand)

1

2

3

4

cu
m

ul
at

iv
e 

nu
m

be
r Naive-Sim

SOFA

(b) Coat.

Figure 7: Learning curves tracking average cumulative num-
ber of clicks over 10-turn interactions with given simulators.
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Figure 8: Policy learning and evaluation with cumulative
number of clicks on the synthetic data with α =1.

10-turn interactions with given simulators SOFA and Naive-Sim

on Yahoo!R3, Coat and synthetic dataset with α =1. Results are an
average of 10 independent runs, lines showmean performance, and

shaded areas are confidence intervals.

We notice that learning curves show a downward trend at the

begining of learning, because the simulators follow the basic hypoth-

esis for RSs that users would dislike repeated recommended items

and directly skip them. The duplicate recommendation is detrimen-

tal to novelty and we should avoid it [27]. We can observe that these

policies converge after multiple learning steps, and the cumulative

numbers of click for the policies resulting from using Naive-Sim are

consistently higher than SOFA over the whole learning process. It

is noteworthy that the learning curves are based on the number of

clicks received during training; they are an unreliable estimate of

actual performance due to bias.

Figure 9 shows the evaluation results on the Yahoo!R3 and Coat

datasets with two solutions of evaluation on the sparse MCAR data:

(1) Solution-1: Limiting Action Selection, (2) Solution-2: Com-
pleting the RatingMatrix.

DQN policies resulting from using simulators outperform the ran-

dom recommendation policy on two real datasets. For Solution-1, the

gap of the cumulative number of clicks over interactions between the

different policies is not significant on Yahoo!R3. The most plausible

reason is that the limited action candidate set is too distinct from the

items that policies would actually recommend. For Solution-2, the

produced DQN policies clearly outperform random recommenda-

tion policies. In the first turn of interaction, policies show the same

results because DQN-based policies randomly recommend an item

in the first turnwhen the initial user state is empty. Then the policies

recommend the item following the ϵ-greedy strategy to choose the
action with highest Q-value, and obtain better performance than

random recommendation policy.

DQN policies resulting from using SOFA perform better than the

policies resulting from using Naive-Sim inmost cases, except for the

evaluation results for Solution-1 on Yahoo!R3 dataset, most likely

because the limited action candidate set results in very similar rec

ommendations for all the different policies. The evaluation results

on the debiased simulator show a reversal of relative differences

compared to the learning curves. This again supports our analysis
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Table 1: MAE, MSE, ACC, and Click-ACC performance of MF-IPS and MF-Naive compared with unbiased testset. Click-ACC
means the accuracy for the click or skip behaviors generated from the rating scores. ↓/↑ indicate smaller is better or worse.

Method

Yahoo!R3 Coat Synthetic (α =1)

MSE↓ MAE↓ ACC↑ Click-ACC↑ MSE↓ MAE↓ ACC↑ Click-ACC↑ MSE↓ MAE↓ ACC↑ Click-ACC↑

MF-IPS 1.518 0.999 0.336 0.889 1.129 0.878 0.311 0.827 1.445 0.997 0.284 0.901

MF-Naive 2.263 1.287 0.222 0.761 1.217 0.914 0.287 0.830 1.780 1.093 0.273 0.856
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Figure 9: Evaluation results of the produced policies on
Yahoo and Coat.

on Section 3.2 that the simulatorwithout IBMSoverestimates ratings

on average and simulates users to click more often because of bias.

This reversal also answersRQ1 positively: Interaction bias in logged
data does affect a simulator.

Wealsopresent evaluation resultson the syntheticdatawithobser-

vation of the logged data fully associated with positivity bias (α =1)
by deploying the resulting policies in the unbiased simulator directly

createdwith thecomplete true ratingmatrixGT, showninFigure8(b).

We observe results consistent with those on the real-world datasets:

DQN policies outperform the random recommendation policy, and

the policies resulting from using SOFA outperform the policy result-

ing from using Naive-Sim. Therefore, we answer RQ2 positively:
the proposed SOFAwith IBMS does mitigate enough bias to result

in better performing policies.

7.3 Effect of the Intensity of Bias
To answerRQ3, we evaluate the simulated feedback and the result-

ing policies in the synthetic simulator built with the complete true

rating matrix GT.

Figure 10(a) shows the performance of simulated feedback with

evaluation metric Click-ACC.When α equals 0with no bias in the

logged data, the performance of simulated feedback generated from

the rating matrices completed by MF-IPS andMF-Naive are similar.

With the increase of the bias in logged data, MF-IPS consistently

outperformsMF-Naive. Both achieve their best performance when

α = 0.4. With the increase of bias with α in range of 0.4–1.0, the

performance of MF-Naive gradually decreases because the bias in

logged data leads to grossly incorrect parameters estimation and

rating prediction models. In contrast, MF-IPS with IBMS is more

robust, which once again answersRQ2 positively.
Figure 10(b) and 10(c) show the cumulative numbers of clicks for

policies over 5 and 10-turn interactions respectively. When α is big-

ger than 0.5, leading to a large degree of bias in the logged data, SOFA
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Figure 10: Varing the intensity of bias. (a) shows the perfor-
mance of the simulated feedback with Click-ACC. (b) and
(c) report the evaluation results for the policies over 5- and
10-turn interactions.

can lead to a better policy over 5 and 10-turn interactions.When α is

smaller, SOFA performs worse over 10-turn interactions, but similar

over 5-turn interactions. A plausible explanation is that IPS suffers

from high variance and may underestimate ratings on average due

to overweighting the lower logged ratings. This underestimation of

the ratings results in less positive feedback than the real case, and

further affects the policy to obtain similar performance over 5-turn

interactions, but worse on turn-10.

Finally,weanswerRQ3:Whenthedegreeofbias in the loggeddata

isveryhigh, IBMSwithusingan IPSestimatorcanefficientlymitigate

the bias from affecting the simulators and their produced policies.

However, a minor flaw is that the IPS estimator used in IBMS can

suffer from variance when there is very little bias in the logged data.

8 CONCLUSION
In this paper, we have analyzed the phenomenon that interaction

bias in logged data affects RL4Rec simulators and the policies they

produce. To mitigate the effect of bias, we have proposed the Inter-
mediate Bias Mitigation Step (IBMS), an intermediate step between

the logged data and the learned prediction model. Furthermore, we

have introduced a novel way of evaluating the effect of bias on the

final policy performance of a simulator. Experimental results have

revealed that (1) interaction bias in logged data affects a simula-

tor, (2) the proposed IBMS can mitigate the bias, especially in the

case of serious bias. We have combined IBMS and the newly pro-

posed evaluation method, in a novel Simulator for OFfline leArning

and evaluation (SOFA) to help researchers in the field develop and

evaluate Reinforcement Learning for Recommendation (RL4Rec)

algorithms while mitigating the effects of interaction bias.

While we think that the IBMS is an important contribution to

RL4Rec, SOFA only simulates the single-item recommendation sce-

nario, where only one item is recommended at once. In practice, RSs
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often recommendmultiple items at once, and thus futurework could

consider the effect of interaction bias on simulators for multi-item

recommendation scenarios.Additionally, futurework could consider

simulators learned from logged data with implicit feedback and user

preferences modeled using ranking approaches.
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