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ABSTRACT
User interactions with recommender systems (RSs) are affected by

user selection bias, e.g., users are more likely to rate popular items

(popularity bias) or items that they expect to enjoy beforehand (pos-

itivity bias). Methods exist for mitigating the effects of selection bias

in user ratings on the evaluation and optimization of RSs. However,

these methods treat selection bias as static, despite the fact that the

popularity of an itemmay change drastically over time and the fact

that user preferences may also change over time.

We focus on the age of an item and its effect on selection bias and

user preferences. Our experimental analysis reveals that the rating

behavior of users on the MovieLens dataset is better captured by

methods that consider effects from the age of item on bias and pref-

erences. We theoretically show that in a dynamic scenario in which

both the selection bias and user preferences are dynamic, existing de-

biasing methods are no longer unbiased. To address this limitation,

we introduce DebiAsing in the dyNamiC scEnaRio (DANCER), a

novel debiasing method that extends the inverse propensity scoring

debiasingmethod toaccount fordynamic selectionbias anduserpref-

erences. Our experimental results indicate that DANCER improves

rating prediction performance compared to debiasing methods that

incorrectly assume that selection bias is static in a dynamic scenario.

To the best of our knowledge, DANCER is the first debiasingmethod

that accounts for dynamic selection bias and user preferences in RSs.
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1 INTRODUCTION
User interactions with recommender systems (RSs) are subject to

selection bias, as a consequence of the selective behavior of users and

of the fact that RSs actively restrict the items fromwhich a user can

choose [32, 34, 37, 41, 43].A typical formof selectionbias inRSs ispop-
ularity bias: popular items are often overrepresented in interaction

logsbecauseusersaremore likely torate them[7,37,43].Withoutcor-

rection, bias canaffect user preferenceprediction [22, 41, 56] and lead

to problems of over-specialization [1], filter bubbles [33, 36], and un-

fairness [9]. To correct for selection bias in interaction data fromRSs,

the task of debiased recommendation has been proposed. A widely-

adoptedmethod for this taskmakes use of inverse propensity scoring

(IPS), a causal inference technique [24], and integrates it in the learn-

ing process of rating-prediction for recommendation [10, 22, 27, 41].

It estimates the probability of a rating to be observed in the dataset,

and inverselyweights ratings according to these probabilities so that

in expectation each user-item pair is equally represented.

While the existing IPS-based debiasing method improves recom-

mendations over methods that ignore the effect of bias, we identify

twosignificant limitations.Theway that IPS-baseddebiasing is being

applied for recommendations assumes that (1) the effect of selection

bias is static over time, and (2) user preferences remain unchanged as

items get older. Aswewill show in Section 4, current IPS-basedmeth-

ods are unable to debias recommendations when the selection bias

and user preferences are dynamic, i.e.,when they change over time.

In practice, selection bias is usually dynamic, not static [9, 26].

Typically, the popularity of an item changeswith item-age [8, 26], i.e.,
the time since its publication. Figure 1 shows the number of ratings

items received as they get older in the MovieLens dataset (red line).
1

On average, items receive the most attention during a short initial

periodof timeafter beingpublished.Hence, insteadof static selection

bias, real-world user behavior may be better captured with dynamic
selection bias that assumes different probabilities of observing user

ratings at different item-ages. Besides selectionbias, user preferences

may also change over time [2, 25, 50]. In this paper, we will focus on

the effect of item-age on user preferences, and thus, on capturing

the change in user preferences as items become older. From Figure 1,

it is clear that the average observed user rating varies with the item-

age (blue line), despite the increased variance observed due to a

decreasing number of logged interactions. We use the term dynamic
scenario to refer to the combination of dynamic selection bias and

dynamic user preferences occurring in a recommendation setting.

In this paper we first analyze real-world logged data to verify that

the dynamic scenario is real: selection bias and user preferences

are dynamic. The dynamic scenario poses a two-fold problem for

existing IPS-based debiasing methods for RSs. First, they are not

1
https://grouplens.org/datasets/movielens/latest/

https://orcid.org/0000-0002-0458-9233
https://orcid.org/0000-0002-1086-0202
https://doi.org/10.1145/3488560.3498375
https://doi.org/10.1145/3488560.3498375
https://grouplens.org/datasets/movielens/latest/


WSDM ’22, February 21–25, 2022, Tempe, AZ, USA Jin Huang, Harrie Oosterhuis, andMaarten de Rijke

0 5 10 15 20

Item-age (year)

3.4

3.6

3.8

A
vg

-r
at

in
g

0

10

20

30

N
r.

R
at

in
gs

(t
ho

us
an

d)

Figure 1: The number of ratings (indicative of popularity) and
the average (observed) rating of items for different item-ages
on theMovieLens-Latest-small dataset.

unbiased in dynamic scenarios. Second, existing methods [7, 41] for

estimating static selection bias cannot be used to estimate dynamic

selection bias. Hence, we propose and evaluate a debiasing method

to account for dynamic selection bias and dynamic user preferences.

All in all, we make a three-fold contribution: (1) an analysis and

estimation of dynamic selection bias and dynamic user preferences

in the MovieLens dataset; (2) DANCER: a general debiasing method

that is adaptable for DebiAsing in the dyNamiC scEnaRio; and

(3) time-aware matrix factorization (TMF)-DANCER: to our knowl-

edge it is the first recommendationmethod that corrects for dynamic

selection bias and models dynamic user preferences.

2 RELATEDWORK
General Recommendation. Early work on RSs typically uses collab-
orative filtering (CF) to predict user ratings on items or make rec-

ommendations to users based on the feedback of similar users with

similar behavior. It is customary todivide recommendation tasks into

the rating prediction task with explicit feedback (e.g., user ratings)
and the top-𝐾 ranking taskwith implicit feedback (e.g., clicks). In this
paper, we focus on rating prediction with explicit feedback. The tra-

ditional matrix factorization (MF) algorithm directly embeds users

and items as vectors andmodels user-item interactionswith an inner

product [15, 30]. Some recent work has used deep neural networks

to improve CF, e.g., by using multi-layer perceptrons [12, 19], con-

volutional neural networks [18], or graph neural networks [17, 48].

While they significantly improve recommendation accuracy [28],

they ignore the effect of time.

Time-aware Recommendation. Recently, a wide range of algorithms

have been proposed that consider temporal information to improve

RSs. Such methods are often classified as time-aware or sequence-
aware recommendationmethods. Sequence-aware recommendation

methods focus on the sequential order of interactions and aim to

capture a user’s short-term preferences [38]. Various deep learning

methods have been applied to this task [38, 59] such as recurrent

neural networks [21, 51, 57], graph neural networks [52, 54], and

networks with attention [11, 23, 45].

We focus on time-aware recommendationmethods [6] rather than

sequence-aware recommendation methods, by considering changes

in user preferences over exact time-periods. One of the best known

examples is time-awarematrix factorization (TMF) [29], which takes

the effect of time into consideration by adding time-dependent terms

to the MFmodel, thus allowing predicted ratings to vary over time.

Koren [29] lists and compares various variants of TMF, in howwell

they can capture item-related or user-related temporal effects. Xiong

et al. [53] propose time-aware tensor factorization (TTF): a factor-

ization based model that uses additional latent factors for each time

period based on a probabilistic latent factor model. Lastly, the effect

of time is sometimes modelled by utilizing contextual attributes

related to time (e.g., day of the week or season of the year) as input
features for context-aware RSs [4, 6, 35, 47].

Debiased Recommendation. User selection bias is prevalent in logged
data, meaning that many logged user ratings are missing not at ran-

dom (MNAR) [20, 32, 41]. Two typical forms of bias in RSs are known

as popularity bias and positivity bias. Popularity bias is characterized
by a long tail distribution over the number of interactions per item

in logged data because users are more likely to interact with more

popular items [37, 43]. Positivity bias leads to an over-representation

of positive feedback because users rate the items they like more of-

ten [37]. The effect of these biases is generally dynamic: they can

change drastically over time [9, 26, 58]. For instance, items are rarely

popular for very extended periods of time, and therefore, we may

expect a dynamic effect between the age of items and popularity bias.

Existingdebiasingmethods for reducing the effect of selectionbias

address MNAR problems as follows: (1) the error-imputation-based

model (EIB) fills in missing ratings with predicted values, which

may introduce bias due to inaccurate predictions [42], (2) inverse

propensity scoring (IPS) weights the loss associated with each ob-

served rating inversely to their propensity, i.e., the probability of

observing that rating [10, 27, 41], and (3) the doubly robust (DR)

method integrates the EIB and IPS approaches to overcome the high

variance of IPS and the potential bias of EIB [49].

While the impact of dynamic bias has previously been pointed

out [26, 58], no prior debiasingmethod considers a scenario inwhich

both selection bias and user preferences change over time. All exist-

ingdebiased recommendationmethods assumea static effect of selec-

tion bias regardless ofwhether theymodel dynamic user preferences.

Hence, there is currently no method that can effectively correct for

bias in the dynamic scenario. This is the research gap thatwe address.

3 PROBLEMDEFINITION
We follow the common RS setting where items from the set I =

{𝑖1,...,𝑖𝑀 } arerecommendedtousers fromthesetU= {𝑢1,...,𝑢𝑁 } [44].
Users have preferences towards items, generally modelled by a label

𝑦𝑢,𝑖,𝑡 (e.g., a rating𝑦𝑢,𝑖,𝑡 ∈ {1,2,3,4,5}) per user𝑢 ∈U and item 𝑖 ∈I.
Similar to time-aware recommendations [6, 29, 53], we also consider

the effect of time on user preferences: let T = {𝑡1,...,𝑡𝑇 } be a set of𝑇
time periods; we allow the user preference𝑦𝑢,𝑖,𝑡 to vary over differ-

ent periods 𝑡 ∈T . Our goal is to optimize an RS that best captures the

user preferences across all items 𝑖 and time periods 𝑡 . We formulate

this goal as a loss function: let𝑦𝑢,𝑖,𝑡 be a predicted rating by the RS

and 𝐿(𝑦,𝑦) a comparison function between the predicted rating and

actual rating. Then our loss is:

L=
1

|U| · |I| · |T |
∑︁
𝑢∈U

∑︁
𝑖∈I

∑︁
𝑡 ∈T

𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 ) . (1)

The function 𝐿 can be chosen according to common RS metrics, for

example, the prevalent Mean Squared Error (MSE) metric:

𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 )= (𝑦𝑢,𝑖,𝑡 −𝑦𝑢,𝑖,𝑡 )2 . (2)

The choice forRSs toperformwell across all timeperiods 𝑡 inT is par-

tiallymade for practical reasons; arguably, at any particular time one

only needs RSs to performwell for the present and future [25]. How-

ever, in practice, data is only available about past user preferences,

thus making optimization w.r.t. future preferences infeasible. More-

over, we expect that if RSs’ performance generalizes well across the
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time periods in T , it likely also generalizes well into the near future.

In our setting, logged interaction data is available to provide user

ratings that can be used for optimization. However, it is unrealistic

for all users to provide ratings for all items. In practice user interac-

tion data is very sparse. We will use an observation indicator matrix

O ∈ {0, 1} |U | · |I | · | T |
that indicates what ratings are recorded in

the logged interaction data and during which time period. We use

𝑜𝑢,𝑖,𝑡 ∈O to indicate this per rating: 𝑜𝑢,𝑖,𝑡 =1 indicates that the rating

for user 𝑢 on item 𝑖 during time period 𝑡 has been recorded in the

logged data, and 𝑜𝑢,𝑖,𝑡 =0 that it is missing. The matrixO is strongly

influenced by selection bias: certain ratings are much more likely

to be observed than others. This can be due to self-selection bias:

users choosing to rate certain items more often [37, 43]; or algorith-

mic bias: the RS used for logging choosing to show certain items

more often [3, 14]. Well-known prevalent biases in RS data include:

(1) popularity bias [37, 43] – often a small group of popular items

receive most interactions; and (2) positivity bias [37] – users are

usuallymore likely to rate items they prefer.Wemodel selection bias

using the probability of a rating being recorded: 𝑝𝑢,𝑖,𝑡 =𝑃 (𝑜𝑢,𝑖,𝑡 =1),
which we also refer to as the observation probability or propensity.
Again, we deviate from the common existing method by explicitly

allowing 𝑝𝑢,𝑖,𝑡 to vary over different time periods 𝑡 . This enables our

method to not onlymodel a bias such as popularity bias but also how

that bias changes as items get older and decline in popularity.

4 ESTIMATION IGNORINGDYNAMIC BIAS
Before we introduce our recommendation method for dealing with

the dynamic scenario in which both selection bias and user prefer-

ences are dynamic, we will show that, in a dynamic scenario, the

existing recommendation methods that either assume no bias or

static bias are not unbiased. The standard estimation of howwell the

predicted user preferences reflect the true user preferences shown in

Eq. 1 is the full-information loss (i.e., the loss based on all the ratings),
which is impractical since user preferences are only partially known

in the logged data. The naive loss ignores the effect of selection bias

completely and thus assumes that the observed data represents the

true user preferences unbiasedly. Under this assumption, the naive

loss can be estimated by a simple average on the observed ratings:

LNaive=
1

|{𝑢,𝑖,𝑡 :𝑜𝑢,𝑖,𝑡 =1}|
∑︁

𝑢,𝑖,𝑡 :𝑜𝑢,𝑖,𝑡=1

𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 ). (3)

And thewidely-useddebiasingmethoduses IPSestimation [24, 31] to

correct for the probability that a user rates an item [41]. It uses static

propensities𝑝𝑢,𝑖 that are theprobabilityofobservinga rating for item

𝑖 by user𝑢 in any of the time-periods [32, 39]. These propensities ig-

nore the dynamic aspect of selection bias, i.e., that these probabilities
can vary per time period 𝑡 , resulting in the static IPS estimator:

LstaticIPS=
1

|U| · |I| · |T |
∑︁

𝑢,𝑖,𝑡 :𝑜𝑢,𝑖,𝑡=1

𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 )
𝑝𝑢,𝑖

. (4)

Now that we have described the naive and static IPS-based loss func-
tions for recommendation (that assume no bias and only static bias,

respectively), we can consider the effect of dynamic selection bias.

4.1 Effect of Dynamic Selection Bias
Ignoring dynamic selection bias, the recommendation methods that

use the naive or static IPS estimation are not unbiased in dynamic

scenarios. To illustrate how this may happen, we use a simple exam-

pleX with one user𝑢, one item 𝑖 and two time periods 𝑡1 and 𝑡2. Let

𝑦𝑡1 and𝑦𝑡2 be the user ratings on the item at 𝑡1 and 𝑡2 respectively;

𝑝𝑡1 and 𝑝𝑡2 denote the probabilities of observing the ratings at 𝑡1 and

𝑡2, respectively. We omit the subscript of𝑢 and 𝑖 if no confusion can

arise. Due to dynamic user preferences and dynamic selection bias,

the user ratings and observation probabilities are not constant over

the different time periods:𝑦𝑡1 ≠𝑦𝑡2 , 𝑝𝑡1 ≠𝑝𝑡2 . Remember that in this

example the loss we wish to estimate is:

LX =
1

2

(
𝐿(𝑦𝑡1 ,𝑦𝑡1 )+𝐿(𝑦𝑡2 ,𝑦𝑡2 )

)
. (5)

The expected naive loss over the observation variables becomes:

E
[
LX
Naive

]
=𝑝𝑡1𝐿(𝑦𝑡1 ,𝑦𝑡1 )+𝑝𝑡2𝐿(𝑦𝑡2 ,𝑦𝑡2 )−

𝑝𝑡1𝑝𝑡2

2

(
𝐿(𝑦𝑡1 ,𝑦𝑡1 )+𝐿(𝑦𝑡2 ,𝑦𝑡2 )

)
.

(6)

Clearly, it is not proportional to the true loss LX
when selection

bias and user preferences are dynamic: if𝑦𝑡1 ≠𝑦𝑡2 and 𝑝𝑡1 ≠𝑝𝑡2 , then

E
[
LX
Naive

]
̸∝LX

. This happens because the rating with the higher

probability of beingobserved is over-represented in the observations.

Then the static IPS-based debiasingmethod uses static propensity

𝑝𝑢,𝑖 =𝑝𝑡1+(1−𝑝𝑡1 )𝑝𝑡2 that is the probability of observing a rating at
time 𝑡1 or 𝑡2. If we consider the expected value of this estimator:

E
[
LX
staticIPS

]
=
1

2

(
𝑝𝑡1

𝑝𝑢,𝑖
𝐿(𝑦𝑡1 ,𝑦𝑡1 )+

𝑝𝑡2

𝑝𝑢,𝑖
𝐿(𝑦𝑡2 ,𝑦𝑡2 )

)
, (7)

we see that it is not proportional to the true loss in the dynamic

scenario: if𝑦𝑡1 ≠𝑦𝑡2 and 𝑝𝑡1 ≠𝑝𝑡2 , then E
[
LX
staticIPS

]
̸∝LX

, because

the static IPS estimation fails to address the problem that the user’s

rating at a time with a higher probability of being observed is more

likely to be represented in logged data than at any other time. We

note that the above counterexample holds regardless of whether

the prediction of user ratings allows for dynamic preferences, i.e.,
whether𝑦𝑡1 =𝑦𝑡2 or𝑦𝑡1 ≠𝑦𝑡2 .

Our example is overly simplistic as it only contains a single user

and a single itemand two time periods; however, it can trivially be ex-

tended to any number of items, users or time periods. Thus, it is a sig-

nificant problem forRSs that optimizationwith thenaive or static IPS
is not unbiased if both the user preferences and the selection bias are

dynamic; it will lead to biased optimization. Selection bias and user

preferencesarepracticallynever static in thereal-world; in supportof

this claim, Sections 7 and 8 provide evidence that the dynamic nature

of bias and preferences can be observed in the MovieLens dataset.

5 DANCER: DEBIASINGRECOMMENDATIONS
IN THEDYNAMIC SCENARIO

WeintroduceDANCER, amethod forDebiAsing in thedyNamiCscE-

naRio.We applyDANCER to time-awarematrix factorization (TMF),

resulting in a novel rating prediction method that corrects for dy-

namic bias andmodels dynamic preferences.We introduce a propen-

sity estimation method to estimate the probabilities of ratings being

observed per time period.

5.1 Debiasing Recommendations
As discussed in Section 4, existing debiasing methods that use the

naive or static IPS estimation are unable to debias in the dynamic sce-

nariowhere selection bias anduser preferences are both dynamic. As
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a solution, we propose DANCER.With accurate propensities 𝑝𝑢,𝑖,𝑡 ,

dynamic selection bias can be fully corrected by applying DANCER

to inversely weight the evaluation of the predicted ratings:

LDANCER=
1

|U| · |I| · |T |
∑︁

𝑢,𝑖,𝑡 :𝑜𝑢,𝑖,𝑡=1

𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 )
𝑝𝑢,𝑖,𝑡

. (8)

Unlike the naive approachLNaive (Eq. 3) and the static IPS approach
with a static estimator LstaticIPS (Eq. 4), the proposed debiasing

methodLDANCER is unbiased in the dynamic scenario:

E[LDANCER]=
1

|U| · |I| · |T |
∑︁
𝑢∈U

∑︁
𝑖∈I

∑︁
𝑡 ∈T

E
[
𝑜𝑢,𝑖,𝑡

]
𝑝𝑢,𝑖,𝑡

·𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 )

=
1

|U| · |I| · |T |
∑︁
𝑢∈U

∑︁
𝑖∈I

∑︁
𝑡 ∈T

𝐿(𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 ) ∝L . (9)

Because DANCER utilizes propensities that vary per time period 𝑡 , it

can correct for dynamic effects of bias that the existing static IPS esti-

matorscannot.For instance, inourexampleXwithauser, an itemand

two timeperiods (seeSection4), the expectedDANCER lossbecomes:

E
[
LX
DANCER

]
=
1

2

(
𝑝𝑡1

𝐿(𝑦𝑡1 ,𝑦𝑡1 )
𝑝𝑡1

+𝑝𝑡2
𝐿(𝑦𝑡2 ,𝑦𝑡2 )

𝑝𝑡2

)
=LX, (10)

wherewe can see thatLX
DANCER

is an unbiased estimation of the true

loss LX
. Combined with a time-aware recommendation method,

DANCER is able to predict that the user ratings change over time.

5.2 A Debiased Time-Aware Recommendation
Becauseweexpect both selectionbias anduser preferences to change

over time in a dynamic scenario, the rating prediction that is opti-

mized byDANCER should also be able to account for changes in user

preferences. While DANCER is not model specific, we will apply it

to a time-awarematrix factorization (TMF) [29]model that accounts

for temporal effects. We refer to this combination of TMF and de-

biasing method as TMF-DANCER. Given an observed rating 𝑦𝑢,𝑖,𝑡
from user𝑢 on item 𝑖 at time 𝑡 , TMF computes the predicted rating

𝑦𝑢,𝑖,𝑡 as:𝑦𝑢,𝑖,𝑡 =𝒑𝑇𝑢 𝒒𝑖+𝑏𝑢+𝑏𝑖+𝑏+𝑏𝑡 , where the 𝒑𝑢 ∈R𝑑 and 𝒒𝑖 ∈R𝑑
are embedding vectors of user𝑢 and item 𝑖 , and 𝑏𝑢 ∈R, 𝑏𝑖 ∈R, and
𝑏 ∈R are user, item and global offsets, respectively. Crucially, 𝑏𝑡 is

a time-dependent offset and models the impact of time in rating pre-

diction. Under this model, the proposed TMF-DANCER is optimized

by minimizing the following loss:

arg min

𝑷,𝑸,𝑩


∑︁

𝑢,𝑖,𝑡 :𝑜𝑢,𝑖,𝑡=1

𝛿 (𝑦𝑢,𝑖,𝑡 ,𝑦𝑢,𝑖,𝑡 )
𝑝𝑢,𝑖,𝑡

+𝜆
(
∥𝑷 ∥2𝐹 +∥𝑸 ∥2𝐹 +∥𝑩∥

2

𝐹

), (11)

where 𝑷 , 𝑸 and 𝑩 denote the embeddings of all users, all items and

all the offset terms, respectively; 𝛿 is the MSE loss function.

5.3 Propensity Estimation
DANCER requires accurate propensities 𝑝𝑢,𝑖,𝑡 to remove the effect

of dynamic selection bias. Because it is the first method to consider

dynamic selection bias in RSs, it thus also needs a novel method to

estimate 𝑝𝑢,𝑖,𝑡 =𝑃 (𝑜𝑢,𝑖,𝑡 =1), i.e., the probability that the rating for
user𝑢 and item 𝑖 is observed at time 𝑡 .Wepropose to apply aNegative

Log-Likelihood (NLL) loss to the propensity estimates 𝑝𝑢,𝑖,𝑡 and the

observations made in a dataset (indicated by 𝑜𝑢,𝑖,𝑡 ):

LPE=
1

|U| · |I| · |T |
∑︁
𝑢∈U

∑︁
𝑖∈I

∑︁
𝑡 ∈T

𝐿𝑜 (𝑝𝑢,𝑖,𝑡 ,𝑜𝑢,𝑖,𝑡 ), (12)

where the function 𝐿𝑜 is the NLL for each individual propensity:

𝐿𝑜 (𝑝𝑢,𝑖,𝑡 ,𝑜𝑢,𝑖,𝑡 )=𝑜𝑢,𝑖,𝑡 ·log 𝑝𝑢,𝑖,𝑡 +(1−𝑜𝑢,𝑖,𝑡 ) ·log(1−𝑝𝑢,𝑖,𝑡 ). (13)

Due to the large number of estimated propensities 𝑝𝑢,𝑖,𝑡 , we argue

that it is best topredict themwithamodel. Similar to the ratingpredic-

tion task, TMF and TTF [53] are potential choices to model how the

propensities vary over users, items and time periods. Alternatively,

one can also make simplifying assumptions in the estimations of

dynamic popularity bias. For instance,𝑝𝑢,𝑖,𝑡 =Pop(𝑖,𝑡) :=
∑

𝑢′ ∈U𝑜𝑢′,𝑖,𝑡
|U |

uses the ratio of ratings received by item 𝑖 at time 𝑡 . The Pop(𝑖,𝑡)
estimate is easy to compute, but it does assume that there are no

differences between users when it comes to providing ratings.

Finally, we note that our proposed propensity estimation method

Eq. 12 builds on existingmethods for propensity estimation for static

selection bias. Saito et al. [40] use MF instead of TMF or TTF. Sim-

ilarly, the Pop(𝑖) :=
∑

𝑢′ ∈U
∑

𝑡 ′ ∈T𝑜𝑢′,𝑖,𝑡 ′
|U | · | T | is a commonway to measure

(static) popularity bias [7, 13, 58]. Our propensity estimationmethod

makes thesemethodsapplicable to thedynamic scenario, andenables

them to provide propensities for the DANCER debiasing method.

6 EXPERIMENTS
In our experiments, we focus on the age of an item (item-age) and the

dynamic effect it has on selectionbias anduser preferences. Fromthis

point onwards, our notationwill use 𝑡 to denote how long an itemhas

been available in the system,wewill refer to this as the age of the item.

Because the distribution of ratings is very skewed towards young

items, we divide the item-ages into seven bins whose edges are

[0,1,3,5,8,11,15,∞] in years. For instance, a rating on an itemwhen

it is two-and-a-half years old will be assigned to 𝑡 =2, and a rating

when it is 15 years old will be assigned 𝑡 =7. This can be interpreted

as a specific choice for the time periods T and thus does not change

any of the previously stated theory.

We first wish to investigate whether real-world selection bias and

user preferences are affected by item-age – and are thus dynamic

– and whether TMF-DANCER is more effective in a dynamic sce-

nario than existing rating prediction methods that do not consider

dynamic bias. Our experimental analysis is organized around three

researchquestions: (RQ1)Does item-age affect selectionbias present

in logged data? (RQ2) Does item-age affect real-world user prefer-

ences? (RQ3) Does the proposed TMF-DANCERmethod better miti-

gate the effect of bias in the dynamic scenario than existing debiasing

methodsdesigned forstatic selectionbias?Toanswer thesequestions,

we make use of three different tasks based around the MovieLens-

Latest-small dataset [16]. The following sections will each introduce

one of these tasks and answer the corresponding research question.

All tasks use embeddings with 32 dimensions, hyperparameter

tuning is applied per method and task in the following ranges:

learning rate 𝜂 ∈ {10−5, ...,0.1} and 𝐿2 regularization weights 𝜆 ∈
{0, 10−7, 10−6, ... , 1.0}. Our implementation and hyperparameter

choices are available at https://github.com/BetsyHJ/DANCER.

7 RQ1: IS SELECTIONBIAS DYNAMIC?
To answer RQ1: Does item-age affect selection bias present in real-
world logged data?, we will evaluate whether methods that consider

item-age can better predict which items will be rated than methods

that do not. If item-age has a large effect on selection bias, it should

be an essential feature for predicting whether users will rate an item.

https://github.com/BetsyHJ/DANCER
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7.1 Experimental Setup for RQ1
The goal of our first task is to predict which ratings will be observed

in real-world data, in other words, across users𝑢, items 𝑖 and item-

ages 𝑡 the aim is to predict the observation𝑜𝑢,𝑖,𝑡 variables.With𝑝𝑢,𝑖,𝑡
as the predicted probability of observation, the metrics for this task

are the NLL (Eq. 13) and Perplexity (PPL):

2
− 1

|U|· |I|· |T |
∑

𝑢∈U
∑

𝑖∈I
∑

𝑡 ∈T𝑜𝑢,𝑖,𝑡 ·log2𝑝𝑢,𝑖,𝑡+(1−𝑜𝑢,𝑖,𝑡 ) ·log2 (1−𝑝𝑢,𝑖,𝑡 ) . (14)

To evaluate whether item-age has a significant effect on the observa-

tion probabilities – and thus the dynamic selection bias in the data

–, we compare the performance of observation prediction methods

that assume static bias with others that take item-age into account.

Our comparison contains three baselines, one static method and

four time-awaremethods; when specifying themethods, we use𝜎 to

denote the sigmoid function,𝒑𝑢 for a learned user embedding, 𝒒𝑖 for
an item embedding, 𝒂𝑡 for an embedding representing an item-age,

and 𝑏𝑡 is a learned parameter that varies per item-age 𝑡 .

(1) Constant: The fraction of all ratings, this assumes no selection

bias is present: 𝑝𝑢,𝑖,𝑡 =

∑
𝑢′ ∈U

∑
𝑖′ ∈I

∑
𝑡 ′ ∈T𝑜𝑢′,𝑖′,𝑡 ′

|U | · |I | · | T | .

(2) Static Item Popularity (Pop): The fraction of all ratings that
have been given to the item; this assumes that selection bias is

static over users and time: 𝑝𝑢,𝑖,𝑡 =

∑
𝑢′ ∈U

∑
𝑡 ′ ∈T𝑜𝑢′,𝑖,𝑡 ′

|U | · | T | .

(3) Time-aware Item Popularity (T-Pop): The item popularity

per item-age; defined as the fraction of all ratings that have been

given to item 𝑖 of age 𝑡 : 𝑝𝑢,𝑖,𝑡 =

∑
𝑢′ ∈U𝑜𝑢′,𝑖,𝑡

|U | .

(4) Static matrix factorization (MF): A standard MFmodel that

assumes selection bias is static: 𝑝𝑢,𝑖,𝑡 =𝜎 (𝒑𝑇𝑢 𝒒𝑖 ).
(5) Time-awarematrix factorization (TMF) [29]: TMF captures

the drift in popularity as items get older by adding an age-

dependent bias term: 𝑝𝑢,𝑖,𝑡 =𝜎 (𝒑𝑇𝑢 𝒒𝑖+𝑏𝑡 ).
(6) Time-aware tensor factorization (TTF) [53]: TTF extends

MF by modelling the effect of item-age via element-wise multi-

plication: 𝑝𝑢,𝑖,𝑡 =𝜎 (𝒑𝑇𝑢 (𝒒𝑖×𝒂𝑡 )).
(7) TTF++: We propose a variation on TTF that models the effect

via summation instead: 𝑝𝑢,𝑖,𝑡 =𝜎 (𝒑𝑇𝑢 (𝒒𝑖+𝒂𝑡 )).
(8) Time-awarematrix & tensor factorization (TMTF): Lastly,

we propose a novel integration of TMF with TTF++: 𝑝𝑢,𝑖,𝑡 =

𝜎 (𝒑𝑇𝑢 (𝒒𝑖+𝒂𝑡 )+𝑏𝑡 ).
Allmodels areoptimizedwith theNLL loss as described inSection5.3.

We split the dataset into training, validation and test partitions

following a ratio of 7:1:2. The MovieLens-Latest-small dataset [16]

consists of 100,836 ratings applied to 9,742 movies by 610 users be-

tween 1996 and 2018. We apply two splitting strategies to the data:

(1) a time-based split thatperuserplaces the latest 20%of their ratings

into the test set [6]; and (2) a random split that uniformly samples

20% of ratings per user. The time-based split is more realistic but

makes the training and test data follow different distributions: i.e.,
there will be more ratings on younger items in the training set than

in the test set. Alternatively, the random split ensures both partitions

follow the same distribution but is less realistic: i.e., ratings in the

test set may have taken place before ratings in the training set. For

both settings, the training and validation set are uniformly randomly

sampled from the data outside the test set. Since most users have an

active lifecycle of less than one year, the time-based split results in a

ratio between observed andmissing ratings that is four times higher

Table 1:RQ1–Performance inobservationprediction.Results
are averages of 10 independent runs, the standard deviations
are shown in brackets. † indicates a significant improvement
overMF (𝑝 <0.01) according to the paired-samples t-test.

Method

Random Time-Based

NLL PPL NLL PPL

Constant 0.0973 1.1022 0.0337 1.0343

Pop 0.0890 1.0931 0.0404 1.0412

MF 0.0697 (0.0015) 1.0722 (0.0016) 0.0271 (0.0000) 1.0275 (0.0000)

T-Pop 0.1234 1.1314 0.0523 1.0537

TMF 0.0658
†

(0.0001) 1.0680
†

(0.0001) 0.0267†(0.0000) 1.0271†(0.0000)
TTF 0.0637

†
(0.0002) 1.0657

†
(0.0003) 0.0273 (0.0004) 1.0277 (0.0004)

TTF++ 0.0632
†

(0.0002) 1.0653
†

(0.0002) 0.0268
†

(0.0001) 1.0271
†

(0.0001)

TMTF 0.0621†(0.0001) 1.0641†(0.0001) 0.0268† (0.0000) 1.0272
†

(0.0000)

than the ratio in the test set; to account for this large difference in

distributions we scale the predicted 𝑝𝑢,𝑖,𝑡 by 0.25 in this setting. This

leads to considerable performance improvements for all methods.

Lastly, we ignore ratings outside of the user’s presence in the dataset,

i.e., before their first rating or after their last; this prevents the meth-

ods from having to predict when users became active so that they

can focus on the effect of item-age.

7.2 Results for RQ1
The results for the first task are presented in Table 1. Clearly, under

both splitting strategies, the time-aware methods TMF, TTF++ and

TMTF are significantly more accurate than Pop and MF, which as-

sume that selection bias is static, while MF outperforms Constant,

which assumes no bias. Interestingly, T-Pop performs worst among

all themethods, probably due to the high variance caused by sparsity.

Under the random splitting strategy, TTF and TTF++ outperform

TMF, while TMTF outperforms all other methods. Thus it appears

that modelling item-age via a learned embedding better captures its

effect than a single learned parameter, but moreover, TMTF shows

us that combining both results in the most accurate method. Under

the time-based splitting strategy, TMF performs slightly better than

TTF++ and TMTF, while TTF performs worse than them. Also, Pop

performs worse than Constant. A plausible reason for this incon-

sistency is the difference in distribution between the training and

test set caused by the time-based split. The number of ratings per

year displayed in Figure 2 displays this difference. This suggests that

TMF is more robust to differences in distribution and that the other

methods are somewhat overfitted on the training set. Nevertheless,

most time-awaremethods still predict the selection bias significantly

better than the static MF.

We thus conclude that time-aware methods can better predict se-

lection bias in real-world data than staticmethods.While the skewed

rating distribution in Figure 1 already suggests that item-age has a

large influence, our experimental results strongly showthat item-age

is an essential factor for accurately capturing the selection bias in

users’ rating behavior. Consequently, we answerRQ1 affirmatively:

item-age significantly affects the selection bias present in real-world

data. This result strongly implies that the assumption of static bias

in previous work is incorrect, at least in recommendation settings

similar to that of the MovieLens dataset.
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8 RQ2: AREUSER PREFERENCES DYNAMIC?
To answer RQ2: Does item-age affect real-world user preferences?,
we compare rating prediction methods that assume preferences are

static with ones that allow for dynamic preferences. If item-age has

a significant effect, the latter group should perform better.

8.1 Experimental Setup for RQ2
The average rating per item-age in Figure 1 does not reveal a clear in-

fluence from the item-age on rating behavior. However, the averages

should not be taken at face value because they are subject to selection

bias. Users are generally more likely to rate movies they like (i.e.,
positivity bias [37]), thus it is possible that while the true average
rating drops, the observed remains stable due to selection bias.

To find out whether item-age has a substantial effect, we com-

pare methods that assume static preferences with others that al-

low for dynamic preferences in terms of the Mean Squared Er-

ror (MSE),MeanAbsolute Error (MAE) andAccuracy (ACC)metrics.

We train and evaluate in two settings: (1) in the observed setting the
dataset is used without any corrections to mitigate selection bias;

and (2) in the debiased setting self-normalized inverse propensity

scoring (SNIPS) [46, 55] is applied during training and metric cal-

culation to mitigate the effect of selection bias. The advantage of

the debiased setting is that – in expectation – it bases evaluation on

the true rating distribution; however, it has drawbacks: it requires

accurate propensities and can be subject to increased variance. The

observed setting will provide biased estimates but does not have

these drawbacks. Our evaluation considers both settings so that their

advantages can complement each other.

The comparison includes two baselines:

(1) StaticAverage ItemRating (Avg): Theaverageobserved rating

across all item-ages:𝑦𝑢,𝑖,𝑡 =

∑
𝑢′,𝑖,𝑡 ′ :𝑜𝑢′,𝑖,𝑡 ′ =1𝑦𝑢′,𝑖,𝑡 ′∑
𝑢′ ∈U

∑
𝑡 ′ ∈T𝑜𝑢′,𝑖,𝑡 ′

.

(2) Time-aware Average ItemRating (T-Avg): the average ob-

served rating per item-age:𝑦𝑢,𝑖,𝑡 =

∑
𝑢′,𝑖,𝑡 :𝑜𝑢′,𝑖,𝑡 =1𝑦𝑢′,𝑖,𝑡∑

𝑢′ ∈U𝑜𝑢′,𝑖,𝑡
.

In addition, we also compare with the static MF and the time-aware

TMF, TTF, TTF++ and TMTF. Thesemethods are analogous to those

used in Section 7; the main difference is that for this task the 𝜎 sig-

moid function is not applied. Additionally, we add a global offset

𝑏, a user offset 𝑏𝑢 , and an item offset 𝑏𝑖 to MF, TMF and TMTF. All

methods are optimized to minimize MSE; in the debiased setting

optimization is performed with DANCER following Section 5. We

use the propensity values estimated for the previous observation

prediction task by TMTF under the random-split (see Section 7.1).

The dataset is again partitioned into a training, validation and

test set according to a ratio of 7:1:2. Unlike for the previous task

(Section 7.1), the data for this task only consists of observed ratings,

and furthermore, the partitioning is only made via uniform random

sampling. As displayed in Figure 2, we find that a time-based split

leads to extremely different rating distributions. This makes it in-

feasible to obtain convincing conclusions from the results of this

task. Nevertheless, because a random split is perfectly suitable for

evaluating a possible relationship between user preferences and

item-age, our results are completely appropriate to answerRQ2.

8.2 Results for RQ2
Table 2 displays the evaluation results for the second task; in both

settings the time-aware methods outperform the static MF. There
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Figure 2: Average rating and number of ratings over item-age
in the time-basedpartitioned training (left) and test set (right).
is a single exception: TTF performs worst in both settings, probably

due to over-fitting. The differences between the other time-aware

methods and static MF are larger in the debiased setting than in the

observed setting. This suggests that selection bias in the data reduces

the dynamic effect of item-age on the observed ratings.We speculate

that the effect of positivity bias could increase with item-age: users

are less likely to try and ratemovies that are older unless they already

expect to enjoy them. Due to sparsity, T-Avg performs worse than

Avg in both settings. Interestingly, Avg performs even better than

MF in the debiased setting; this confirms prior observations that Avg

is more robust in highly biased scenarios [7]. Regardless, in both

settings most time-aware methods significantly outperformMF and

the two baselines, and therefore, we answerRQ2 in the affirmative:

item-age has a significant effect on user preferences.

Our conclusions for RQ1 and RQ2 indicate that the dynamic sce-

nario, where selection bias and user preferences change over time,

better captures real-world logged data, than a static view. Moreover,

Section 4 showed that the existing static IPS approach cannot debias
in this scenario. Consequently, our answers to RQ1 and RQ2 reveal

a real need for a method that can deal with the dynamic scenario.

9 RQ3: CANTMF-DANCERBETTER
MITIGATEDYNAMIC SELECTIONBIAS?

Section 4 showed that the static IPS-based debiasingmethod is biased

in adynamic scenario. Subsequently, in Section7and8wediscovered

that selection bias and user preferences in theMovieLens dataset are

indeed dynamic. Therefore, we can already conclude that theoret-
ically TMF-DANCER is the first method that is potentially unbiased

for the dynamic scenario. Our final research question considers

whether this theoretical advantage translates into improved rec-

ommendation performance:RQ3:Does the proposed TMF-DANCER
method better mitigate the effect of bias in the dynamic scenario than
existing debiasing methods designed for static selection bias?

9.1 Experimental Setup for RQ3
The most common technique for evaluating debiasing methods for

recommendation, without actual deployment to real-world users,

makes use of unbiased test sets [41, 49]. This requires a dataset that

has a training set consisting of biased logged ratings and a test set of

user ratingsonuniformly randomly selected items. Sucha test set can

be created by randomly sampling items and asking users to provide a

rating for them, thus avoiding the selection bias that usually heavily

affectswhat items are rated. However, the publicly available datasets

that meet this criterion – Yahoo!R3 [32] and Coat Shopping [41] –

lack any form of temporal information.
2
As a result, we cannot apply

DANCER or any other form of dynamic debiasing to them.

2
A recent music dataset [5] contains randomized observations and temporal informa-

tion, but it only tracks user behavior during short sessions rather than for extended

periods of time.
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Table 2: RQ2 – Performance comparison of differentmethods in predicting ratings logged inMovieLens-Latest-small. † indicates
that the improvement of themodels overMF is significant (𝑝 <0.01). ↑/↓ indicates whether larger or smaller values are better.

Method

Observed Debiased

MSE ↓ MAE ↓ ACC↑ SNIPS-MSE↓ SNIPS-MAE↓ SNIPS-ACC↑
Avg 0.9535 0.7540 0.2241 1.1436 0.8360 0.2048

MF 0.7551 (0.0046) 0.6679 (0.0021) 0.2515 (0.0016) 1.2911 (0.0242) 0.8985 (0.0095) 0.1829 (0.0065)

T-Avg 1.0850 0.7974 0.2181 1.3105 0.8865 0.1955

TMF 0.7505 (0.0058) 0.6656 (0.0026) 0.2525 (0.0014) 1.1210
†

(0.0464) 0.8383
†

(0.0173) 0.1944
†

(0.0067)

TTF 1.1515 (0.0542) 0.8187 (0.0181) 0.2120 (0.0054) 1.8834 (0.1247) 1.0879 (0.0388) 0.1504 (0.0058)

TTF++ 0.7526 (0.0011) 0.6645
†

(0.0006) 0.2552† (0.0007) 1.0839
†

(0.0159) 0.8067
†

(0.0067) 0.2134† (0.0059)

TMTF 0.7503† (0.0014) 0.6637† (0.0008) 0.2533
†

(0.0009) 1.0727† (0.0173) 0.8026† (0.0047) 0.2127
†

(0.0060)

As an alternative to using real-world datasets, we utilize a semi-

synthetic simulation based on a real-world dataset for our evaluation.

This simulation first estimates a simulated Ground Truth (sim-GT)

based on the actual dataset, and then generates a new biased training

set from this sim-GT. Debiasing methods can be applied to the gen-

erated training set and evaluated on the sim-GT, since in this setting,

the debiased estimates should match the sim-GT as close as possible.

The creation of our semi-synthetic simulation has three steps:

(1) First, we estimate the complete rating matrix using the TMF

method, which simply uses an age-dependent bias term tomodel

the dynamics of user preferences, thus making the simulation

understandable and not prone to overfitting. This provides us

with an estimated rating for each item, user and item-age com-

bination which we will treat as the sim-GT. By optimizing TMF

with the real user ratings in the debiased setting, we hope the

sim-GT reflects the real-world scenario as closely as possible.

(2) Second, dynamic selection bias is simulated using MF to model

the interactions between items and item-ages. Following Sec-

tion 7, we fit the following model: 𝑝𝑢,𝑖,𝑡 = 𝜎 (𝒒𝑇𝑖 𝒂𝑡 ), to predict

if the ratings are observed in the MovieLens dataset. To mimic

real-world dynamic popularity bias more closely, we follow the

user presence of the original dataset: propensities are zero before

a user’s first rating and after their last rating in the dataset, we

also normalize the predicted probabilities so that their mean

value is 4%, the same value as the dataset has.

(3) Third, to prevent overlap between the training and test set, we

utilize both random and time-based splitting: per user, 50% of

items are randomly selected for the test set, and a split timestep

is chosen at 80% of the user presence. The test set consists of

all sim-GT ratings on the randomly selected items at the last

presence of each user; as a result, the test set reflects future

preferences onpreviously unseen items. The training set uses the

other 50% of items per user and samples from the ratings before

the split timestamp following the estimated propensities 𝑝𝑢,𝑖,𝑡
from the previous step. The result is a training set where due to

dynamic selection bias only∼2%of the𝑦𝑢,𝑖,𝑡 ratings are observed.

Figure 3 compares the original MovieLens dataset with our semi-

synthetic simulation. The popularity of items, in terms of howmany

ratings they receive, is closely approximated by the simulated train-

ing set. In terms of average rating, there is some deviation from the

simulated training set and MovieLens: the simulated training set

rates older items lower than MovieLens. It seems likely that this

is the result of positivity bias, which is not part of our simulation.
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Figure 3: RQ3 – The proportion of ratings and the average rat-
ing of items over item-age onMovieLens, the simulated train-
ing set (sim-train) and the simulated Ground Truth (sim-GT).

Nonetheless, we clearly see that both dynamic selection bias and

dynamic user preferences are represented in our simulation.

We compare the performance of TMF-DANCERwith the follow-

ing baselines: (1) Four methods that ignore bias altogether: Avg,

T-Avg, MF and TMF (see Section 8). (2) Twomethods optimized with

the static IPS estimator: MF-staticIPS [41] and TMF-staticIPS, which

use the Static ItemPopularity propensities fromSection 7. (3)A static

preference method with dynamic debiasing: MF-DANCER, which

optimizes a (static)MFwhile correcting for the effect of dynamic bias.

Finally, to evaluate whether TMF-DANCER is robust to misspec-

ified propensities, we compare its performance with using Time-

Aware General Popularity (TG-Pop): 𝑝𝑢,𝑖,𝑡 =

∑
𝑢′ ∈U

∑
𝑖′ ∈I𝑜𝑢′,𝑖′,𝑡

|U | · |I | , and

Time-aware Item Popularity (T-Pop) (see Section 7.1).

9.2 Results for RQ3
The main results of our comparison are displayed in Table 3. Based

on the displayed results we can make four observations: (1) The av-

eragemethods (Avg and T-Avg) perform considerably worse than all

other methods. Clearly, matrix factorization is preferable over aver-

aging baselines. (2) The time-based methods outperform their static

counterparts by substantial margins: TMF ≻MF, TMF-StaticIPS ≻
MF-StaticIPS, and TMF-DANCER ≻MF-DANCER, except T-Avg ≺
Avg due to sparsity. This shows that assuming static preferences can

substantially hurt the performance of a method when user prefer-

ences are actually dynamic. (3) The debiased methods increase per-

formance: MF-DANCER ≻MF and TMF-DANCER ≻ TMF-StaticIPS

≻ TMF. There is a single exception: MF ≻ MF-staticIPS under the

assumption of static bias. This surprising observation shows that

DANCER is more robust to certain dynamic scenarios. (4) Finally,

the best performing method is TMF-DANCER, which both mod-

els dynamic preferences and is debiased under the assumption of

dynamic selection bias. While it is not a surprise that this method
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Table 3: RQ3 – Performance of TMF-DANCER comparedwith
differentmethods. † indicates that the improvement of TMF-
DANCERoverall thebaselines issignificantat thelevelof0.01.

Method MSE↓ MAE↓ ACC↑
Avg 0.3155 0.4321 0.3623

T-Avg 0.3280 0.4326 0.3614

MF 0.1811 (0.0030) 0.3314 (0.0028) 0.4680 (0.0040)

TMF 0.1338 (0.0019) 0.2818 (0.0022) 0.5396 (0.0038)

MF-StaticIPS 0.1879 (0.0035) 0.3377 (0.0032) 0.4598 (0.0044)

TMF-StaticIPS 0.1086 (0.0021) 0.2491 (0.0027) 0.6065 (0.0057)

MF-DANCER 0.1533 (0.0016) 0.3032 (0.0017) 0.5074 (0.0023)

TMF-DANCER 0.1045† (0.0014) 0.2444† (0.0018) 0.6151† (0.0039)

Table 4: RQ3 – Performance of TMF-DANCERwith estimated
propensities and the (simulated) ground truth propensities.

Method MSE↓ MAE↓ ACC↑
TG-Pop 0.1182 (0.0012) 0.2644 (0.0016) 0.5677 (0.0032)

T-Pop 0.1041 (0.0015) 0.2448 (0.0022) 0.6115 (0.0055)

Ground Truth 0.1045 (0.0014) 0.2444 (0.0018) 0.6151 (0.0039)

performs well in the scenario that it assumes, the differences with

other methods are considerable and statistically significant.

In addition, Table 4 displays the performance of TMF-DANCER

using different propensities.We see that with estimated propensities

the performance of TMF-DANCER is comparable to when it is using

the actual sim-GT propensities. Moreover, TMF-DANCER outper-

forms the most baselines, except TMF-StatisIPS, even when using

simple time-aware propensity estimation.

To better understand the improvements of TMF-DANCER, Fig-

ure 4 shows the average predicted rating from different methods

across item-ages and the actual average rating. The MFmethods are

unable tomodel changes in ratings as items get older; the differences

in the average ratings are purely caused by different item distribu-

tions: i.e., items that become available later in the dataset will never

achieve the oldest item-ages. The TMFmethods better capture the

overall trend. TMFwithout debiasing consistently overestimates rat-

ings; TMF-staticIPS reduces overestimation by correcting for static

bias; the overestimation becomes worse for older items in both mod-

els. Instead, TMF-DANCER approximates the actual average rating

at each item-age; its accuracy is quite consistent over time.

Lastly, to get more insights into the behavior of TMF-DANCER,

Figure 5 shows the propensities and (predicted) ratings per item-age

and averaged across users for two handpicked movies. We observe

that TMF-DANCER outperforms TMF, especially when the popular-

ity of items decreases as items get older.

Finally, we can answerRQ3 in the affirmative: the TMF-DANCER

method better mitigates the effect of bias in a dynamic scenario

than existing debiasing methods designed for static selection bias.

This conclusion still holds when propensities are estimated, and the

accuracy of TMF-DANCER is consistent across item-ages.

10 CONCLUSION
In this paper, we considered the dynamic scenario in recommen-

dation where selection bias and user preferences change over time.

Our experimental results revealed that in the real-world MovieLens
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Figure 4: RQ3 –Average rating on items predicted by different
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Figure5:RQ3–Averagepropensitiesandpredictedaveragerat-
ing over item-age of the very popularmovie “MadMax (1979)”
and the less popular “Kid in King Arthur’s Court (1995)”.

dataset: (1) selection bias changes as items get older, and (2) user

preferences are also affected by the age of items. Therefore, it appears

that the dynamic scenario better captures the real-world situation,

and thus, poses a serious problem that existing static IPS-based

method cannot correct for dynamic bias in dynamic scenarios. As

a solution, we proposed the DANCER debiasing method that takes

into account the dynamic aspects of bias and user preferences, the

first method that is unbiased in the dynamic scenario. The results on

a semi-synthetic simulation based on theMovieLens dataset showed

that TMF-DANCER provides significant gains in performance that

are consistent across item-ages and robust to misspecified propen-

sities. Our findings about the dynamic scenario have implications

for state-of-the-art recommendation methods, as they are strongly

affected by dynamic selection bias. With the DANCER debiasing

method, RSs can now be expanded to deal with dynamic scenarios.

A limitation of our work is that we only considered the rating pre-

diction task and the effect of item-age on bias and preferences; future

work should consider the ranking task and look at other aspects of

time, e.g., seasonal effects, weekday, time of day, etc.
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