
Expressive Power and Consistency Properties

of State-of-the-Art Natural Language Parsers

Gabriel Infante-Lopez and Maarten de Rijke

Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

E-mail: {infante,mdr}@science.uva.nl

Abstract. We define Probabilistic Constrained W-grammars (PCW-
grammars), a two-level formalism capable of capturing grammatical frame-
works used in two state of the art parsers, namely bilexical grammars
and stochastic tree substitution grammars. We provide embeddings of
these parser formalisms into PCW-grammars, which allows us to derive
properties about their expressive power and consistency, and relations
between the formalisms studied.

1 Introduction

State of the art statistical natural language parsers, e.g., [1, 3, 4] are procedures
for extracting the syntactic structure hidden in natural language sentences. Usu-
ally, statistical parsers have two clearly identifiable main components. One has
to do with the nature of the set of syntactic analyses that the parser can provide.
It is usually defined using a grammatical framework, such as probabilistic con-
text free grammars (PCFGs), bilexical grammars, etc. The second component
concerns the way in which the different parts in the grammatical formalism are
learned. For example, PCFGs can be read from tree-banks and their probabilities
estimated using maximum likelihood [11].

Clearly, the grammatical framework underlying a parser is a key component
in the overall definition of the parser which determines important characteris-
tics of the parser, either directly or indirectly. Among others, the grammatical
framework defines the set of languages the parser can potentially deal with, a
lower bound on the parser’s complexity, and the type of items that should be
learned by the second component mentioned above. Hence, a thorough under-
standing of the grammatical framework on which a parser is based provides a
great deal of information about the parser itself. We are particularly interested
in the following properties: (1) The expressive power of a grammar formalism.
(2) Conditions under which the probability distribution defined over the set
of possible syntactic analyses is consistent: if this is the case, the probabilities
associated with an analysis can be used as meaningful probabilistic indicators
both for further stages of processing [11] and for evaluation [7]. (3) The relation
to other grammatical frameworks; this provides insights about the assumptions
made by the various frameworks.



Since building a parser is a time consuming process, formal properties of the
underlying grammatical framework are not always a priority. Also, comparisons
between parser models are usually based on experimental evidence. In order to
establish formal properties of parsers and to facilitate the comparison of parsers,
we believe that a unifying grammatical framework, of which different parsers’
grammars can be obtained as instances, is instrumental. Our main contribu-
tion in this paper is the introduction of a grammatical framework capable of
capturing state of the art grammatical formalisms. Our framework is based on
so-called W-grammars, due originally to Van Wijngaarden [13]. We constrain W-
grammars to obtain CW-grammars, which are more suitable for statistical natu-
ral language parsing than W-grammars. PCW-grammars extend CW-grammars
with probabilities. In this paper we provide embeddings of bilexical grammars
[5] and stochastic tree substitution grammars [1] into PCW-grammars, and we
use these embeddings to derive results on expressive power, consistency, and re-
lations with other grammatical formalisms. Due to lack of space, embeddings of
further grammatical formalisms have had to be omitted.

In Section 2 we present our grammatical framework and establish results on
expressive power and conditions for inducing consistent distributions. In Sec-
tion 3 we capture the models mentioned above in our framework, and derive
consequences of the embeddings. In Section 4 we conclude.

2 Grammatical Framework

In this section we describe the grammatical framework we will be working with.
We introduce constrained W-grammars, then present a probabilistic version, and
also introduce technical notions needed in later sections.

2.1 Constrained W-grammars

A constrained W-grammar (CW-grammar) is a 6-tuple (V , NT , T , S,
m
−→,

s
−→)

such that:

– V is a set of symbols called variables. Elements in V are denoted with calli-
graphic characters, e.g., A,B, C.

– NT is a set of symbols called non-terminals ; elements in NT are denoted
with upper-case letters, e.g., X , Y , Z.

– T is a set of symbols called terminals, denoted with lower-case letters, e.g.:
a, b, c, such that V , T and NT are pairwise disjoint.

– S is an element of NT called starting symbol.

–
m
−→ is a finite binary relation defined on (V ∪NT ∪T )∗ such that if x

m
−→ y,

then x ∈ V . The elements of
m
−→ are called meta-rules.

–
s
−→ is a finite binary relation on (V ∪ NT ∪ T )∗ such that if r

s
−→ s then

r ∈ NT , s 6= ε and s does not have any variable appearing more than once.
The elements of

s
−→ are called pseudo-rules.



CW-grammars differ from Van Wijngaarden’s original W-grammars in that pseu-
do-rules have been constrained. The original W-grammars allow pseudo-rules to
have variables on the left-hand side as well as repeated variables on both the
right- and left-hand side. The constrained version defined above yields a dramatic
reduction in the expressive power of W-grammars, but, as we will see below, at
the same time it allows us to capture state of the art parsers.

CW-Grammars are rewriting devices, and as such they consist of rewriting
rules. They differ from the usual rewriting systems in that the rewriting rules do
not exist a-priori. Using pseudo-rules and meta-rules one builds ‘real’ rules that
can be used in the rewriting process. The rewriting rules produced are denoted
by

w
=⇒. These rules are built by first selecting a pseudo-rule, and then using

meta-rules for instantiating all the variables the pseudo-rule might contain.
For example, let W = (V , NT , T , S,

m
−→,

s
−→) be a CW-grammar where

V = {ADJ}, NT = {S, Adj , Noun}, T = {ball , big , fat , red , green, . . .}, while
m
−→ and

s
−→ are given by the following table:

meta-rules pseudo-rules

ADJ
m
−→ ADJAdj S

s
−→ ADJNoun

ADJ
m
−→ Adj Adj

s
−→ big

Noun
s
−→ ball

Suppose now that we want to build the rule S
w
=⇒ Adj Adj Noun. We take the

pseudo-rule S
s
−→ ADJ Noun and instantiate the variable ADJ with Adj Adj

to get the desired rule. The rules defined by W have the following shape: S
w
=⇒

Adj ∗ Noun. Trees for this grammar are flat, with a main node S and all the
adjectives in it as daughters; see Figure 1.

The string language L(W ) generated by a CW-grammar W is the set {β ∈

T + : S
w ∗
=⇒ β}. In words, a string β belongs to the language L(W ) if there is a

way to instantiate rules
w
=⇒ that derive β from S. A W-tree yielding a string l

is defined as the
w
=⇒ derivation producing l. A W-tree ‘pictures’ the rules (i.e.,

pseudo-rules + variable instantiations) that have been used for deriving a string;
Figure 1(a) shows an example. The way in which a rule has been obtained from
pseudo-rules or the way in which its variables have been instantiated remains
hidden. The tree language generated by a CW-grammar W is the set T (G)
defined by all W-trees generated by W yielding a string in L(G).

Theorem 1. CW-Grammars are weakly equivalent to context-free grammars.

Proof. Let W = (V , NT , T , S,
m
−→,

s
−→) be a CW-grammar. Let GW =

(NT ′, T ′, S′, R′) be a context-free grammar defined as follows (to avoid con-
fusion we denote the rules in R by →): NT ′ = (V ∪ NT ); T ′ = T ; S′ is the

starting symbol in W ; and X → α ∈ R iff X
m
−→ α or X

s
−→ α. It can be shown

that GW is well-defined and generates the same language as W .

Given a CW-grammar W , the context-free grammar underlying W , notation
CFG(W ), is the grammar GW defined in the proof of Theorem 1. In Figure 1
we show a derivation in W and the corresponding one in CFG(W ).



S

Adj

red

Adj

big

Adj

green

Noun

ball

S

∗ADJ ∗

ADJ

ADJ

Adj

red

Adj

big

Adj

green

Noun

ball

S

A

a

A

a

A

a

B

b

B

b

(a) (b) (c)

Fig. 1. (a) A tree generated by W . (b) The same tree with meta-rule derivations
made visible. (c) A derivation tree for the string “aaabb”

Lemma 1. Let W be a CW-grammar and let G = CFG(W ). For every τ in
T (G) there is a unique tree v ∈ T (W ) such that v is the product of hiding all
meta derivations in τ .

Proof. We sketch the proof using Figure 1. Suppose we want to derive the W -
tree corresponding to the tree in Figure 1(a) from the one in Figure 1(b). Besides
the G-tree we need to know which rules in G are meta-rules in W and which
non-terminals in G are variables in W . To obtain a W -tree from a G-tree we
replace all variables in CFG-rules (corresponding to pseudo-rules) by the yield
of the CFG-derivation (corresponding to a meta-derivation). To illustrate this
idea, consider the yield red big green below the variable ∗ADJ ∗ in Figure 1(b):
‘hide’ the meta-derivation producing it, thus obtaining the tree in Figure 1(a),
the W -tree. Since such a replacement procedure is uniquely defined, for every
tree in T (G) there is a unique way to hide meta-derivations, consequently for
every G-tree there is a unique W -tree, as desired.

Next, we give an example to show that CW-grammars are not strongly equivalent
to context-free grammars. In other words, trees generated by CW-grammars are
different from trees generated by context-free grammars.

Example 1. Let W = (V, NT, T, S,
m ∗
−→,

s ∗
−→) a CW-grammar with V = {A, B,

S}, NT = {A, B}, T = {a, b},
m
−→ = {A

m
−→ AA, A

m
−→ A, B

m
−→ BB,

B
m
−→ B}, and

s
−→ = {A

s
−→ a, B

s
−→ b, S

s
−→ AB}.

The grammar W generates the language {a∗b∗} through instantiations of

the variables A and B to strings in A∗ and B∗ respectively. The derivation
w
=⇒

for a string aaabb is as follows: S
w
=⇒ AAABB

w
=⇒ aAABB

w
=⇒ aaABB

w
=⇒

aaaBB
w
=⇒ aaabB

w ∗
=⇒ aaabb. The tree representing this derivation (Figure 1(c))

has only one internal level (labeled AAABB), and its leaves form the accepted
string. Observe that no CFG can generate the kind of flat structures displayed
in Figure 1(c) since any context-free grammar producing the same language as
W will have more than one intermediate level in its derivation trees.



2.2 Probabilistic CW-Grammars

Probabilistic CW-grammars (PCW-grammars, for short) are CW-grammars in
which the rules are augmented with a probability value, such that the proba-
bilities belonging to rules sharing the same left-hand side sum up to one. More
formally, in a probabilistic CW-grammar (V, NT, S,

m
−→,

s
−→) we have that

–
∑

x
m
−→py

p = 1 for all meta-rules x
m
−→p y having x in the left-hand side.

–
∑

x
s
−→py

p = 1 for all pseudo-rules x
s
−→p y having x in the left-hand side.

Next, we need to define how we assign probabilities to derivations, rules, and
trees. To start with derivations, if α′ m ∗

−→ α then there are α1, . . . , αk such that
αi

m
−→ αi+1, α1 = α′ and αk = α. We define the probability P (α′ m ∗

−→ α) of a

derivation α′ m ∗
−→ α to be

∏k−1
i=1 P (αi

m
−→ αi+1).

Now, let X
w
=⇒ α be a rule. The probability P (X

w
=⇒ α) is defined as the

product of P (α′ m ∗
−→ α) and

∑
α′∈A P (X

s
−→ α′), where

A = {α′ ∈ (V ∪ NT ∪ T )+ : X
s
−→ α′, α′ m ∗

−→ α}.

I.e., the probability of a ‘real’ rule is the sum of the probabilities of all meta
derivations producing it.

The probability of a tree is defined as the product of the probabilities of the
rules making up the tree, while the probability of a string α ∈ T + is defined as
the sum of the probabilities assigned to all trees yielding α.

Theorem 2. Let W be a CW-grammar, let G be CFG(W ), and let W ′ be a
PCW-grammar that extends W by assigning probability values to all rules in W .
There is a way to extend G into a PCFG G′ such that W ′ and G′ assigning
the same probability mass to all strings in the language accepted by G (which
coincides with the language accepted by W ).

Proof. Let G = (NT ′, T ′, S′, R′) be a PCFG with NT ′, T ′, S′ as defined in the

proof of Theorem 1 and R′ such that X → α ∈ R iff X
m
−→ α or X

s
−→ α. Note

that a
w
=⇒ derivation τ might be the product of many different derivations using

rules in R′ (G-derivations for short); call this set D(τ). From the definitions
it is clear that p(τ) =

∑
υ∈D(τ) p(υ). To prove the theorem we need to show

(1) that for τ and τ ′ two different
w
=⇒ derivations of the string α, it holds that

D(τ)∩D(τ ′) = ∅, and (2) that for every G-derivation υ there is a
w
=⇒ derivation

τ such that υ ∈ D(τ). Both results follow from Lemma 1.

For a given PCW-grammar W , the PCFG defined in the proof of Theorem 2 is
called the PCFG underlying W . As an immediate consequence of the construc-
tion of the PCFG given in Theorem 2 we get that a PCW-grammar is consistent
iff its underlying PCFG is consistent.



2.3 Learning CW-grammars from tree-banks

PCW-grammars are induced from tree-banks in almost the same way as PCFGs
are. The main difference is that the former require an explicit decision on the na-
ture of the hidden derivations. As we will see below, the two different approaches
to natural language parsing that we present in this paper differ substantially in
the assumptions they make in this respect.

2.4 Some further technical notions

Below we will use PCW-grammars to “capture” models underlying a number of
state of the art parsers. The following will prove useful. Let F and G be two
grammars with tree languages T (G) and T (F ) and languages L(F ) and L(G),
respectively. Then, F is f -equivalent to G if L(F ) = L(G) and there is a bijective
function f : T (F ) → T (G). Given two grammatical formalisms A and B, we say
that A is f -transformable to B, if for every grammar F in A there is a grammar
G in B such that F is f -equivalent to G.

3 Capturing State of the Art Parsers

In this section we use PCW-grammars to capture the models underlying two
state of the art parsers.

3.1 Bilexical grammars

Bilexical grammar [4, 5] is a formalism in which lexical items, such as verbs
and their arguments, can have idiosyncratic selectional influences on each other.
They can be used for describing bilexical approaches to dependency and phrase-
structure grammars, and a slight modification yields link grammars.

Background. A split unweighted bilexical grammar B is a 3-tuple (W , {rw}w∈W ,
{lw}w∈W ) where:

– W is a set, called the (terminal) vocabulary, which contains a distinguished
symbol ROOT

– For each word w ∈ W , a pair of regular grammars lw and rw, having start-
ing symbols Slw and Srw

, respectively. Each grammar accepts some regular
subset of W ∗.

A dependency tree is a tree whose nodes (internal and external) are labeled
with words from W ; the root is labeled with the symbol ROOT. The children
(‘dependents’) of a node are ordered with respect to each other and the node
itself, so that the node has both left children that precede it and right children
that follow it. A dependency tree T is grammatical if for every word token w that
appears in the tree, lw accepts the (possibly empty) sequence of w’s left children
(from right to left), and rw accepts the sequence of w’s right children (from left



to right). Weighted bilexical grammars are like unweighted bilexical grammars
but all of their automata assign weights to the strings they generate. Lemma 2
implies that weighted bilexical grammars are a subset of PCW-grammars.

Bilexical grammars as CW-grammars. With every bilexical grammar B

we associate a CW-grammar WB as follows.

Definition 1. Let B = (W, {lw}w∈L}, {rw}w∈L) be a split bilexical grammar.

Let WB = (V , NT , T , S,
m
−→,

s
−→) be the CW-grammar defined as follows:

– The set of variables V is given by the set of starting symbols Slw and Srw

from regular grammars lw and rw respectively, and w in W .

– The set of non-terminals NT is some set in 1-1-correspondence with W , e.g.,
it can be defined as NT = {w′ : w ∈ W}.

– The set of terminals T is the set of words W .

– The set of meta-rules is given by the union of {w′ m
−→ w : w ∈ W} and the

rules in all of the right and left regular grammars in B.

– The set of pseudo-rules is given by X ′ s
−→ Sl̄w

xSrw
where l̄w denotes the

regular expression inverting (reading backwards) all strings in L(lw).

Below, we establish the (weak) equivalence between a bilexical grammar B and
its CW-grammar counterpart WB . The idea is that the set of meta-rules, pro-
ducing derivations that would remain hidden in the tree, are used for simulating
the regular automata. Pseudo-rules are used as a nexus between a hidden deriva-
tion and a visible one: For each word w in the alphabet, we define a pseudo-rule
having w as a terminal, and two variables Slw and Srw

marking the left and right
dependents, respectively. These variables correspond to the starting symbols for
the left and right automata lw and rw, respectively. Instantiating the pseudo-
rule associated to w would use a left and a right derivation using the left and
the right automata, respectively, via meta-rules. The whole derivation remains
hidden in the

w
=⇒ derivation, as in bilexical grammars.

Lemma 2. Bilexical grammars are f -transformable to CW-grammars.

Proof. We have to give a function f : T (B) → T (WB), where B is a bilexical
grammar and WB the grammar defined in Definition 1, such that f is invertible.
A bilexical tree yielding the string s = w1, . . . , wn can be described as a sequence
u1, . . . , un of 3-tuples 〈αi, wi, βi〉 such that lwi

accepts αi and rwi
accepts β. The

desired function f transforms a dependency tree in a W-tree by transforming
the sequence of tuples into a

w
=⇒ derivation. We define f as f(〈α, wi, β〉) =

Wi
w
=⇒ αwiβ. The rule corresponding to 〈α, wi, β〉 is the one produced by using

the pseudo rule W ′
i

s
−→ Sl̄w

xSrw
and instantiating Sl̄w

and Srw
with α and β

respectively. Since the sequence of tuples forms a dependency tree, the sequence
of W-rules builds up a correct W-tree.



Expressive Power and Consistency. By Lemma 2 bilexical grammars are
weakly equivalent to context-free grammars. Moreover, the idea behind Exam-
ple 1 can be used to prove that bilexical grammars are not strongly equivalent to
CFGs. Briefly, bilexical grammars can create flat structures of the kind produced
by the grammar in Example 1; such structures cannot be produced by CFGs.

As a consequence of Lemma 2, learning bilexical grammars is equivalent to
learning PCW-grammars, which, in turn, is equivalent to learning the PCFGs
underlying the PCW-grammars. Eisner [4] assumed that all hidden derivations
were produced by Markov chains. Under the PCW-paradigm, his methodology is
equivalent to transforming all trees in the training material by making all their
hidden derivations visible, and inducing the underlying PCFG from the trans-
formed trees. Variables in the equivalent PCW-grammar are defined according
to the level degree of the Markov chain (we assume that the reader is familiar
with Markov models and Markov chains [11]). In particular, if the Markov chain
used is of degree one, variables are in one-to-one correspondence with the set of
words, and the consistency result follows from the fact that inducing a degree
one Markov chain in a bilexical grammar is the same as inducing the underly-
ing PCFG in the equivalent PCW-grammar using maximum likelihood, plus the
fact that using maximum likelihood estimation for inducing PCFGs produces
consistent grammars [2, 8].

3.2 Stochastic Tree Substitution Grammars

Data-oriented parsing (DOP) is a memory-based approach to syntactic parsing.
The basic idea is to use the subtrees from a syntactically annotated corpus
directly as a stochastic grammar. The DOP-1 model [1] was the first version
of DOP, and most later versions of DOP are variations on it. The underlying
grammatical formalism is stochastic tree substitution grammars (STSG), which
is the grammatical formalism we capture here.

Background. The model itself is extremely simple and can be described as fol-
lows: for every sentence in a parsed training corpus, extract every subtree. Then
we use these trees to form an stochastic tree substitution grammar. Formally, a
stochastic tree-substitution grammar (STSG) G is a 5-tuple 〈VN , VT , S, R, P 〉
where

– VN is a finite set of nonterminal symbols.
– VT is a finite set of terminal symbols.
– S ∈ VN is the distinguished symbol.
– R is a finite set of elementary trees whose top nodes and interior nodes

are labeled by nonterminal symbols and whose yield nodes are labeled by
terminal or nonterminal symbols.

– P is a function which assigns to every elementary tree t ∈ R a probability
P (t). For a tree t with a root node symbol root(t) = α, P (t) is interpreted
as the probability of substituting t on a node α. We require, therefore, for a



A

B A

B A B

B

a

S

A

a b

B

A

a b

C

(a) (b)

Fig. 2. (a) A derivation tree. (b) An elementary tree.

given α that
∑

{t:root(t)=α} = 1 and that 0 < P (t) ≤ 1 (where t’s root node

symbol is α).

If t1 and t2 are elementary trees such that the leftmost non-terminal frontier
node symbol of t1 is equal to the root node symbol of t2, then t1 ◦ t2 is the
tree that results from substituting t2 in this leftmost non-terminal frontier node
symbol in t1. The partial function ◦ is called leftmost substitution or simply
substitution. Trees are derived using left most substitution.

STSGs as CW-grammars. STSGs are not quite context-free grammars. The
main difference, and the hardest to capture in a CFG-like setting, is the way
in which probabilities are computed for a given tree. The probability of a tree
is given by the sum of the probabilities of all derivations producing it. CW-
grammars offer a similar mechanism: the probability of the body of a rule is the
sum of the probabilities of all meta-derivations producing it. The idea of the
equivalence is to associate to every tree produced by a STSG a ‘real’ rule of the
PCW-grammar in such a way that the body of the rule codifies the whole tree.

To implement this idea, we need to code up trees as strings. The simplest
way to achieve this is to visit the nodes in a depth first left to right order and
for each inner node use the applied production, while for the leaves we type the
symbol itself if the symbol is a terminal and a primed version of it if the symbol
is a non-terminal. For example, the derivation describing the tree in Figure 2(a)
is (A, BAB)B′(A, BAB)B′A′B′(B, a)a.

The first step in capturing STSGs is to build rules capturing elementary
trees using the notation just introduced. Specifically, let t be an elementary
tree belonging to a STSG. Let S be its root and α its string representation.
The CF-like rule S′ → α is called the elementary rule of t. Elementary rules
store all information about the elementary tree. They have primed non-terminals
where a substitution can be carried out. E.g., if t is the elementary tree pictured
in Figure 2(b), its elementary rule is S′ → (A, B)(A, ab)ab(B, AC)(A, ab)abC′.
Note the primed version of C in the frontier of the derivation.

Definition 2. Let H = (VN , VT , S, R, P ) be a STSG. Let WH = (V , NT , T ,

S′,
m
−→,

s
−→) be the following CW-grammar.



– V is the primed version of VT .
– (A, α) is in NT iff (A, α) → ε appears in some elementary tree.
– T is exactly as VT .
– S′ is a new symbol.
– The set of meta-rules is built by transforming each elementary tree to its

corresponding elementary rule.
– The set of pseudo-rules is given by (A, α)

s
−→ ε if A → α appears in a

elementary tree, plus rules S′ s
−→ S.

Two remarks are in order. First, all generative capacity is encoded in the set of
meta-rules. In the CW-world, the body of a rule (i.e., an instantiated pseudo-
rule) encodes a derivation of the STSG. Second, the probability of a ‘real’ rule
is the sum of the probabilities of meta-derivations yielding the rule’s body.

Lemma 3. STSGs are f-transformable to CW-grammars, with f invertible.

Proof. Let H = (VN , VT , S, R, P ) be a STSG and let WH be the CW-grammar
given in Definition 2. Let t be a tree produced by H . We prove the lemma using
induction on the length of the derivation producing t. If t has length 1, there is
an elementary tree t1 such that S is the root node and yields α, which implies
that there is a meta-rule obtained from the elementary rule corresponding to the
elementary tree t1. The relation is one-to-one as, by definition, meta-rules are in
one-to-one correspondence with elementary trees.

Suppose the lemma is true for derivation lengths less than or equal to n.
Suppose t is generated by a derivation of length n + 1. Assume there are trees
t1, t2 with t1 ◦ t2 = t. By definition there is a unique meta-rule r1 corresponding
with t1 and by inductive hypothesis there is a unique derivation for t2.

Corollary 1. Let H = (VN , VT , S, R, P ) be an STSG, and let WH be the CW-
grammar given in Definition 2. There is a one-to-one correspondence between
derivations in H and WH .

Lemma 4. Let H = (VN , VT , S, R, P ) be an STSG, and let WH be the CW-
grammar given in Definition 2. Both grammars assign the same probability mass
to trees related through the one-to-one mapping described in Lemma 1.

Proof. A tree has a characteristic W-rule, defined by its shape. Moreover prob-
ability of a W-rule, according to the definition of PCW-grammars, is given by
the sum of the probabilities of all derivations producing the rule’s body, i.e.,
all STSG derivations producing the same tree. As a consequence, a particular
STSG tree, identified from the body of the corresponding W-rule, has the same
probability assigned by the equivalent CW-Grammar.

Expressive Power and Consistency. By Corollary 3, STSGs are weakly
equivalent to context-free grammars. The consistency of an STSG depends on
the methodology used for computing the probabilities assigned to its elementary
trees. DOP-1 is one particular approach to computing these probabilities. Under



the DOP-1 perspective, a tree t contributes all its possible subtrees to a new
tree-bank from which the probabilities of elementary trees are computed. Prob-
abilities of an elementary tree are computed using maximum likelihood. Since
the events in the new tree-bank are not independently distributed, the resulting
probabilities are inconsistent and biased [9]. Solutions taking into account the
dependence between trees in the resulting tree-banks have been suggested [12].

Even though consistency conditions cannot be derived for the DOP-1 esti-
mation procedure given that it does not attempt to learn the underlying PCFG,
our formalism suggests that probabilities should be computed differently from
the way it is done in DOP-1. By our embedding, a tree t in the tree-bank corre-
sponds to the body of a pseudo-rule instantiated through meta-derivations; t is
the final “string” and does not have any information on the derivation that took
place. But viewing t as a final string changes the problem definition! Now, we
have as input a set of elementary rules and a set of accepted trees. The problem
is to compute probabilities for these rules: an unsupervised problem that can be
solved using any unsupervised technique. The consistency of the resulting STSG
depends on the consistency properties of the unsupervised method.

4 Discussion and Conclusion

We introduced probabilistic constrained W-grammars, a grammatical framework
capable of capturing a number of models underlying state of the art parsers. We
established expressive power properties for two formalisms (bilexical grammars,
and stochastic tree substitution grammars) together with some conditions under
which the inferred grammars are consistent. We should point out that, despite
their similarities, there is a fundamental difference between PCW-grammars and
PCFGs, and this is the two-level mechanism of the former formalism. This mech-
anism allows us to capture two state of the art natural language parsers, which
cannot be done using standard PCFGs only.

We showed that, from a formal perspective, STSGs and bilexical grammars
share certain similarities. Bilexical grammars suppose that rule bodies are ob-
tained by collapsing hidden derivations. That is, for Eisner, a rule body is a
regular expression. Similarly, Bod’s STSGs take this idea to the extreme by tak-
ing the whole sentence to be the yield of a hidden derivation. PCW-grammars
naturally suggest different levels of abstraction; in [6] we have shown that these
levels can be used to reduce the size of grammars induced from tree-banks, and,
hence, to optimize parsing procedures.

From a theoretical point of view, the concept of f -transformable grammars,
which we use heavily in our proofs, is a very powerful one that relaxes the known
equivalence notions between grammars. Since arbitrary functions f can be de-
fined between arbitrary tree languages and CFG-like trees, they can be used
to map other formalisms to context-free trees. Examples include Collins’ first
model (based on Markov rules) [3], Tree Adjoining Grammars [10] or Catego-
rial Grammars [14]. As part of our future research, we aim to capture further



grammatical formalisms, and to characterize the nature of the functions f used
to achieve this.

Acknowledgments

Both authors were supported by the Netherlands Organization for Scientific
Research (NWO) under project number 220-80-001. In addition, Maarten de
Rijke was also supported by grants from NWO, under project numbers 365-20-
005, 612.069.006, 612.000.106, 612.000.207, and 612.066.302

References

1. R. Bod. Beyond Grammar—An Experience-Based Theory of Language. Cambridge
University Press, Cambridge, England, 1999.

2. Z. Chi and S. Geman. Estimation of probabilistic context-free grammars. Compu-

tational Linguistics, 24(2):299–305, 1998.
3. M. Collins. Three generative, lexicalized models for statistical parsing. In Proc.

ACL’97 and EACL’97, pages 16–23, Madrid, Spain, 1997.
4. J. Eisner. Three new probabilistic models for dependency parsing: An exploration.

In Proceedings of COLING-96, pages 340–245, Copenhagen, Denmark, 1996.
5. J. Eisner. Bilexical grammars and their cubic-time parsing algorithms. In H. Bunt

and A. Nijholt, editors, Advances in Probabilistic and Other Parsing Technologies,
pages 29–62. Kluwer Academic Publishers, October 2000.

6. G. Infante-Lopez and M. de Rijke. Alternative approaches for generating bodies
of grammar rules. In Proc. ACL’04, Barcelona, Spain, 2004.

7. G. Infante-Lopez and M. de Rijke. Comparing the ambiguity reduction abilities of
probabilistic context-free grammars. In Proc. of LREC’04, 2004.

8. S. Joan-Andreu and J.-M. Bened́ı. Consistency of stochastic context-free grammars
from probabilistic estimation based on growth transformations. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 19(9):1052–1055, 1997.
9. M. Johnson. The DOP estimation method is biased and inconsistent. Computa-

tional Linguistics, 28(1):71–76, 2002.
10. A.K. Joshi. Tree Adjoining Grammars: How much context sensitivity is required

to provide a reasonable structural description. In I. Karttunen D. Dowty and
A. Zwicky, editors, Natural Language Parsing, pages 206–250, Cambridge, U.K.,
1985. Cambridge University Press.

11. C. Manning and H. Schütze. Foundations of Statistical Natural Language Process-

ing. The MIT Press, Cambridge, MA, 1999.
12. K. Sima’an and L. Buratto. Backoff parameter estimation for the DOP model. In

Proc. of ECML, 2003.
13. A. van Wijngaarden. Orthogonal design and description of a formal language.

Technical Report MR76, Mathematisch Centrum., Amsterdam, 1965.
14. M. Wood. Categorial Grammars. Routledge., London, 1993.


