
Journal of Logic, Language and Information (2006) 15: 219–231 C© Springer 2006
DOI: 10.1007/s10849-005-9002-x

A Note on the Expressive Power of Probabilistic
Context Free Grammars

GABRIEL INFANTE-LOPEZ
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Argentina
E-mail: gabriel@famaf.unc.edu.ar

MAARTEN DE RIJKE
Informatics Institute, University of Amsterdam, The Netherlands
E-mail: mdr@science.uva.nl

(Received 05 July 2005; in final form 27 September 2005)

Abstract. We examine the expressive power of probabilistic context free grammars (PCFGs), with
a special focus on the use of probabilities as a mechanism for reducing ambiguity by filtering out
unwanted parses. Probabilities in PCFGs induce an ordering relation among the set of trees that yield
a given input sentence. PCFG parsers return the trees bearing the maximum probability for a given
sentence, discarding all other possible trees. This mechanism is naturally viewed as a way of defining
a new class of tree languages. We formalize the tree language thus defined, study its expressive power,
and show that the latter is beyond context freeness. While the increased expressive power offered by
PCFGs helps to reduce ambiguity, we show that, in general, it cannot be decided whether a PCFG
removes all ambiguities.

1. Introduction

Probabilities have been used in many aspects of natural language processing. In the
context of context free grammars (CFGs), probabilities have been used to define a
probability distribution over the set of trees defined by a CFG. The resulting for-
malism, probabilistic context free grammars (PCFGs), extends CFGs by assigning
probabilities to the production rules of the grammar. PCFGs have been successfully
used as the formalism underlying many approaches to natural language parsing, see
e.g., (Eisner, 1996, 2000, Charniak, 1995; Çollins, 1999; Bod et al., 2002; Klein and
Manning, 2003; Infante-Lopez and de Rijke, 2004; Infante-Lopez, 2005), to name
just a few. In these approaches to parsing, probabilities have a very specific role:
they are used as a filtering mechanism. To see just how, we can think of the parsing
procedure for a CFG as a two-fold procedure. Suppose a sentence is given. First,
a set of candidate trees is proposed, and, second, a tree is non-deterministically
chosen from this set of candidate trees. The selected tree, then, is returned as
output.



220 G. INFANTE-LOPEZ AND M. DE RIJKE

CFGs define the set of candidate trees for a given input sentence as the set of all
trees that yield the sentence. In contrast, in the context of parsing, PCFGs are used to
define the set of candidate trees as the set of trees that yield the input sentence with
maximum probability. In other words, in the context of parsing, probabilities are
used to reduce the set of candidate trees suggested by the bare CFG. It is well-known
that ambiguity is a serious challenge for parsers. The size of the set of candidate
trees gives an indication of the ambiguity a given input sentence: in some cases, the
number of parse trees assigned to a sentence may grow exponentially in the length
of the sentence (Wich, 2000, 2001). Hence, it is vital to deploy strategies that help
reduce the size of the set of candidate trees. Such strategies, which we call filtering
mechanisms, filter out undesired trees from the set of candidate trees. Probabilities
can play a very important role as a filtering mechanism.

While there are many studies covering the role that probabilities play in the
context of formal languages, the focus of these studies is rarely on the abil-
ity to reduce ambiguity. Properties of formal languages regarding consistency
(Booth and Thompson, 1973; Wetherell, 1980; Chaudhuri and Rao, 1986), learn-
ability conditions (Horning, 1969), parameter estimation (Manning and Schütze,
1999), etc. are very well-known. However, little is known about the power of
probabilities as a mechanism for reducing ambiguity, and this is where our
focus lies. How important and how powerful are probabilities as a filtering
mechanism?

To give an example of the kind of issues that we are after, suppose that a PCFG
G is given and that its probabilities are used to select a subset T ′ of trees in the tree
language generated by G. It might be the case that there exists a non-probabilistic
CFG G ′ such that its tree language is equal to T . Clearly, if such a grammar G ′ exists
for all PCFGs G, then probabilities are not really needed from a formal language
perspective. In contrast, if this is not the case, the role that probabilities play in
parsing becomes essential, and we need to address questions that differ from those
answered in (Booth and Thompson, 1973; Wetherell, 1980; Chaudhuri and Rao,
1986).

In this paper we focus on answers to fundamental questions regarding the use
of probabilities as a filtering mechanism. We pay special attention to the following
questions:

1. Is it possible to select the set of candidate trees produced by a PCFG using a
vanilla context free grammar? The question is relevant because, if the answer
is affirmative, this means that for a given PCFG there is a CFG that specifies
the same set of candidate trees as the PCFG for all sentences; as a consequence,
probabilities would not be essential.

2. Can we decide whether a given PCFG filters out all but one tree for all sentences
in the language? An affirmative answer to this question is equivalent to saying
that the given PCFG has solved all ambiguities in the language accepted by the
grammar.



THE EXPRESSIVE POWER OF PROBABILISTIC CONTEXT FREE GRAMMARS 221

In this paper, we answer both questions. Specifically, we show the following:

• Probabilities cannot be mimicked by rules, i.e., their use is fundamental from a
formal language perspective: whenever used as a filtering mechanism, probabil-
ities can define a set of trees that can not captured by CFGs.

• It is not possible to decide whether a PCFG filters all trees but one for all sentences,
i.e., it is not possible to decide whether the filtering mechanism resolves all
ambiguities.

The techniques used to obtain these results are standard. Our emphasis, though,
is on their implications: probabilities are valuable not only from a machine learning
perspective, but also from a formal language perspective.

The remainder of the paper is organized as follows. In Section 2 we present
some background notation. In Sections 3 and 4 we address questions 1 and 2
above, respectively. Finally, we discuss related work in Section 5, and in Section 6
we conclude the paper.

2. Maximum Probability Tree Grammars

In this section we define the basic concepts we need in our discussion. A context
free grammar (CFG) is defined as quadruple 〈T , N T , S, R〉, consisting of a terminal
vocabulary T , a non-terminal vocabulary N T , a distinguished symbol S ∈ N T ,
usually called the start symbol or axiom, and a set of productions or rewrite rules
R. The sets T , N T , and R are finite; T and N T are disjoint (T ∩ N T = ∅). For our
purposes, CFGs play two roles. The first is to provide sentences with a syntactic
explanation. As is well-known, this syntactic explanation is given by the way in
which a sentence is rewritten from the start symbol. Formally, let G be a CFG and
x a sentence in T ∗. A left-derivation t(x) is a sequence of rules 〈r1, . . . , rm〉 such
that

S r1=⇒ α1
r2=⇒ α2

r3=⇒ · · · rm=⇒ αm,

where αi ∈ (T ∪ N T )∗, αm = x , and ri is a rule in R that rewrites the left-most
non-terminal of αi−1. The set of all left-most derivations, called the tree language,
is denoted by T (G), and x is called the yield of t(x).

The second main role of CFGs is to define the set of sentences that are considered
to be grammatical by the grammar. More precisely, let G be a CFG. The language
accepted by G (notation: L(G)) is L(G) = {x : T (x) ∈ T (G)}.

Let G be a CFG and x a sentence. A complete parser is a procedure that computes
the following set:

T (x) = {t(x) ∈ T (G)}.



222 G. INFANTE-LOPEZ AND M. DE RIJKE

A parser is a procedure that, besides computing T (x), chooses one tree non-
deterministically from it. Formally,

Parser(x) = random(T (x)),

where random(X ) is a function that selects an element from the set X , assigning to
each element the same probability of being chosen.1 For a given grammar G and a
sentence x in L(G), there may be multiple trees yielding the same sentence x .

In some cases the size of the set T (x) grows exponentially in the length of x
(Wich, 2000), and many of the trees in T (x) are trees that we do not want as a result.
These undesired trees need to be filtered out from the set T (x). One widely used
way of achieving this is to use probabilistic context free grammars. A probabilistic
context free grammar (PCFG) is a pair (G, p), where G is a CFG and p a positive
function defined over the set of rules such that for all A in N T :∑

α∈(N∪N T )∗
p(A → α) = 1.

Even though probabilities in a PCFG are defined over the set of rules, they are
used to define a probability distribution p over the set of derivations T (G). The
probability of a tree in T (G) is defined as follows. Let (G, p) be a PCFG, and
let t(x) = 〈r1, . . . , rm〉 be a tree in T (G). The probability assigned to t(x) is
p(t(x)) = p(r1) · . . . · p(rm). That is, the probability assigned to a tree is the product
of the probabilities assigned to the rules building up the tree (Manning and Schütze,
1999).

The distribution generated by the probabilities is used to select a subset of trees
from the set of all possible trees yielding a sentence. A procedure that computes
this subset is called a probabilistic parser. More formally, let G be a PCFG and
let x be a sentence in L(G). A probabilistic complete parser for a grammar G is a
procedure that takes as input a sentence in the language and computes the following
function:

PParser(x) = {t(x) ∈ T (G) : arg max
t(x)

{p(t(x))}}.

Finally, a probabilistic parser is defined as the non-deterministic choice of a tree
returned by a probabilistic complete parser. We can view a probabilistic parser as
a two-step algorithm, with one step implementing a probabilistic complete parser
and a second implementing a non-deterministic choice function.

1 Note that, formally peaking, non-deterministic choice and uniformly distributed choice are not the
same concept: non-determinism implies that there is no information about the underlying distribution,
which clearly is not the case when using a uniform distribution. In this paper we do not distinguish
between the two terms.



THE EXPRESSIVE POWER OF PROBABILISTIC CONTEXT FREE GRAMMARS 223

2.1. FILTERING OUT TREES USING PROBABILITIES

In this subsection, we consider the class of languages induced by probabilities
when we view the latter as a filtering mechanism. Let G be a PCFG. The set of
most probable trees produced by G (noted M(G)) is a subset of T (G) that is defined
as follows:

M(G) =
⋃

x∈L(G)

P Parser (x).

Note that there may be more than one tree bearing maximum probability for a
given sentence. We allow for this: M(G) contains them all. Note also that M(G) is
a subset of T (G). Furthermore, the sets M(G) and T (G) are the same set if, and
only if, for every sentence all trees in L(G) share the same probability mass.

Based on the set of most probable trees M(G), we define a new class of tree
languages. The idea behind this class of languages is that they are like PCFGs
but instead of taking the full set of trees they only take the most probable ones.
More formally, a maximum probability tree grammar (MPTG) is a PCFG where its
tree language is defined as the set of most probable trees, while the set of strings
accepted by the MTPG remains the same.

Note that all state-of-the-art parsers based on PCFGs filter trees out in the way
we have just defined (Eisner, 1996, 2000, Charniak, 1995; Çollins, 1999; Klein and
Manning, 2003; Infante-Lopez and de Rijke, 2004; Infante-Lopez, 2005). They
return the trees yielding a given sentence that bear maximum probability, and thus,
they implicitly define an MPTG.

3. Expressive Power

We turn to the first of the research questions formulated in Section 1: What kind of
expressiveness do MPTGs have? Can they be captured by CFGs? More concretely,
does the mechanism of retaining only trees with maximum probability defined in
MPTGs define tree languages that cannot be captured by CFGs? We show that the
set of trees identified by a probabilistic CFG plus a maximization procedure cannot
be generated or specified directly by any CFG. In other words, probabilistic CFGs
plus a maximization step define tree languages that are beyond the expressive power
of CFGs. To put it more formally: MPTGs are not strongly equivalent to CFGs.

THEOREM 1. MPTGs are not strongly equivalent to CFGs.

Our strategy for proving Theorem 3 is based on a context free inherently ambiguous
language. Recall that a context free inherently ambiguous language L is a language
such that all CFGs generating it have at least one string in L that has two trees
yielding it (Hopcroft and Ullman, 1979; Parikh, 1966). What we present below is



224 G. INFANTE-LOPEZ AND M. DE RIJKE

Figure 1. An MPTG for an inherently ambiguous language.

an inherently ambiguous language generated by a PCFG that assigns a unique tree
bearing maximum probability to each string in the language. As a consequence, the
MPTG induced by the grammar is unambiguous, but the tree language cannot be
captured by a CFG because the language is inherently ambiguous, i.e., for all CFGs
generating it, there is at least one sentence that is the yield of two different trees.

Let us make matters concrete now. The grammar G = (T, N T, S, R) is defined
as follows. Put T = {a, b, c, d}, N T = {S, S2, A, B, C}, and let the set of rules R be
as described in Figure 1. In order to better understand the complexity of G we split
it into two different grammars G1 = (T1, N T1, S, R1) and G2 = (T2, N T2, S, R2),
where

1. T1 = {a, b, c, d},
2. N T1 = {S, A, B},
3. T2 = {a, b, c, d},
4. N T2 = {S, S2, C}, and
5. R1 and R2 are as defined by Figure 2.

Observe that G generates the following string language:

L = {anbncmdm : n, m ∈ N} ∪ {anbmcmdn : n, m ∈ N}.

L can be described as the union of the two context free languages generated by G1

and G2, respectively, namely L1 = {anbncmdm : n, m ∈ N} and L2 = {anbmcmdn :
n, m ∈ N}.

Figure 2. A decomposition of G.



THE EXPRESSIVE POWER OF PROBABILISTIC CONTEXT FREE GRAMMARS 225

We will now describe the tree language generated by G. Remember that G is a
MPTG, and not just a PCFG. The set of its derivations is the set of trees bearing
maximum probability. Define L3 = {anbncndn : n ∈ N}, and let T (L3) denote the
set of trees in T (G) that yield a sentence in L3. Our first observation is that all trees
in (T (G1)∪T (G2))\T (L3) have a unique derivation. Hence, they obviously belong
to M(G). For the trees in L3 there are two possible derivations: one generated by
G1 and the other generated by G2. In order to fully characterize M(G), we need to
determine which of the two derivations (if not both) belongs to M(G).

Below, we show that only the derivations produced by G1 belong to M(G).
In other words, all derivations produced by G2 are filtered out. To obtain this
characterization, we first characterize the trees in T (L3).

LEMMA 2. Let x be a string in L3, and let t1(x) be a tree in T (G1) and t2(x)
a tree in T (G2). Then, the number of rules appearing in t1(x) is the same as the
number of rules appearing in t2(x). Moreover, the rule S →2/3 AB appears once
in t1(x), while the rule S →1/3 S2 appears once in t2(x).

Proof. Let x be a string in L3 = {anbncndn : n ∈ N}. We prove the lemma by
induction on n, the superscript in the definition of L3. For the base case, let n be 1;
then the lemma follows from the fact that the two possible trees, both pictured in
Figure 3, have the same number of rules, and it is clear that the rule S →2/3 AB
appears once in t1(x), while the rule S →1/3 S2 appears exactly once in t2(x).

Let the statement be true for k < n, and let us show it for x = anbncndn .
Note, first of all, that for a word in L3, the two possible trees follow the schema of
Figure 4.

Figure 3. Two derivations for abcd .

Figure 4. Derivations for anbncndn .



226 G. INFANTE-LOPEZ AND M. DE RIJKE

Now, using this observation for the first part of the lemma, the string
an−1bn−1cn−1dn−1 can be derived by collapsing the A, B, S2 and C non-terminals,
respectively. According to the inductive hypothesis, the resulting trees have the
same number of rules, and in the process of collapsing we have eliminated the
same number of rules from the two trees, proving the first part of the lemma. For
the second part of the lemma, consult Figure 4 again, where it can be seen that the
rules S →2/3 AB and S →1/3 S2 appear once in t1(x) and t2(x), respectively.

Lemma 3 says that the probabilities of two derivations in L3 yielding the same
sentence are determined by the first rule in each grammar. That is, we can distin-
guish between the two possible probabilities assigned to the two derivations for a
sentence in L3 by simply observing the probability of the first rule in each of the
derivations.

LEMMA 3. Let x be a string in L3, t1(x) in T (G1) and t2(x) in T (G2). Then
p(t1(x)) > p(t2(x)).

Proof. The proof is immediate from Lemma 3. All derivations for a given
string x in L3 have the same number of rule applications, and except for the first
rule applied (either S →2/3 AB or S →1/3 S2), all rules have equal probabilities
associated with them. This means that the tree using the G1-rule S →2/3 AB has
the higher probability, as desired.

LEMMA 4. M(G) is equal to T (G1) ∪ {t(x) ∈ T (G2) : x ∈ L2 \ L3}.
Proof. The lemma is a direct consequence of Lemma 3.

Finally, with this characterization we can prove Theorem 3.
Proof. (Of Theorem 3) Note first that for every string in L(G) there is a unique

tree in M(G): if the string belongs to L1\L3 or to L2\L3 this is because the grammars
G1 and G2 assign a unique derivation tree to each string. If, however, x ∈ L3, then,
by maximizing probabilities, we discard the tree belonging to T (G2), thus only
leaving the tree in T (G1), as shown in Lemma 3.

In sum, using probabilities we have obtained a unique tree for every sentence
in an inherently ambiguous language. It is a well-known fact that CFGs cannot
disambiguate an inherently ambiguous language (Hopcroft and Ullman, 1979).
Hence, since L is inherently ambiguous (Parikh, 1966), there cannot be a CFG that
generates all and only the trees in MPTG(G).

Theorem 3 provides an answer to question 1 from the Introduction, showing
that there is no way to mimic probabilities plus maximization using rules. Hence,
probabilities (plus maximization) add not only a statical perspective but also ex-
pressive power to CFGs. This increase in expressive power is due to a probabilistic
parser’s implicit (but global) requirement that it sees all rules building up a tree for
choosing the one with maximum probability.



THE EXPRESSIVE POWER OF PROBABILISTIC CONTEXT FREE GRAMMARS 227

4. Undecidability

While probabilities plus maximization buy us additional expressive power on top
of CFGs, they do not buy us everything. Specifically, given that probabilities help
to disambiguate a grammar’s language, it is natural to ask if we can predict (that is,
determine before parsing) whether a PCFG is capable of fully disambiguating its
language. We show that this is not possible. We establish the result by transforming
an arbitrary CFG into a PCFG such that the given CFG is unambiguous if, and only
if, the corresponding PCFG has only one tree in the candidate list of each sentence.
Our result then follows from the well-known fact that determining whether a CFG
is unambiguous is undecidable.

For each sentence x , probabilities single out a set PParser(x) of trees bearing
maximum probability. An ideal grammar is one that filters out all trees but one
for each sentence in the language. In other words, an ideal PCFG defines for each
sentence x , its set PParser(x) with cardinality equal to 1.

We want to prove that it is undecidable to determine whether a PCFG is ideal.
To this end, we first prove that for every context free grammar G there is a way
to extend it with probabilities such that the resulting set M(G) contains the same
set of trees as G. In other words, for any CFG we build a probabilistic version that
does not filter out any tree. Our undecidability result, then, follows from the fact
that our question is equivalent to determining whether a CFG is unambiguous.

We have to build the probabilistic counterpart of a CFG, in such a way that all
trees associated to a given sentence bear the same probability. In this case, the set
of trees with maximal probability is exactly the set of trees. We show the result for
grammars in Chomsky Normal Form whose definition we now recall.

A context free grammar G = (T, N T, R, S) is said to be in Chomsky Normal
Form (CNF) if, and only if, every rule in R is of one of the following forms:

• A → a for some A ∈ N T and some a ∈ T .
• A → BC , for some A ∈ N T and B, C ∈ N T − {S}.

Our strategy is to show that any grammar in CNF assigns the same probability
to all trees yielding the same string. To this end we show that all trees yielding
the same string in CNF use the same number of rules; we then build a grammar
assigning the same probability to all rules, and we obtain what we are looking for.

We now present the lemmas needed.

LEMMA 5. Let G = (T, N T, S, R) be a grammar in CNF. All trees yielding a
k-length sub-string of N T ∗ use the same number of rules.

Proof. Let us define a sequence A0, . . . , An, . . . of subsets of N T ∗ as follows:
A0 = {S}, A1 consists of elements α in N T ∗ such that α is derived from S in one
step, and, in general, α is in Ai if there is an element α′ in Ai−1 such that α′ ⇒ α.
The lemma is immediate from the fact that that all sets are pairwise disjoint, i.e.,
Ai ∩ A j = ∅ for every i = j .



228 G. INFANTE-LOPEZ AND M. DE RIJKE

COROLLARY 6. Let G be a CFG. Every derivation producing a string x of length
k in L(G) has the same number of rules.

LEMMA 7. Let G be a context free grammar. G can be transformed into a
probabilistic context free grammar G ′ with the special property that all rules have
exactly the same probability value.

Proof. Let G be a grammar in CNF, and let R be its set of rules. Let X be the
most frequent non-terminal in the left-hand sides of rules. Let n be the number of
times X is the left hand-side of a rule. Let Z1, . . . , Zn be brand new non-terminal
symbols. For every non-terminal Y we add as many rules Y → Zi as needed to have
the number of rules having Y in the left-hand side equal to n. We add probability
1/n to each of these new rules. The resulting grammar is a well-defined, though
not necessarily consistent, probabilistic context free grammar, and all rules have
exactly the same probability values as required.

The PCF grammar G ′ obtained from a grammar G as described in Lemma 4, is
called the uniform version of G.

Note that the uniform grammar produced by Lemma 4 need not be consistent,
given that some probability mass is going to non-terminating derivations – deriva-
tions that end up in the dummy non-terminal. Still, what is important to us is that the
set of trees accepted by the PCFG remains the same, and, even more importantly,
that every derivation producing the same sentence has the same probability value.

LEMMA 8. Let G be a context free grammar, and let G ′ be its uniform version.
Let x be a string in L(G). Then all left-most derivations producing x have the same
probability.

Proof. Since every string in the language has the same set of trees as G, the
dummy rule is not used in any derivation of final strings. According to Lemma 4,
every tree has the same number of rules. And since every rule has the same prob-
ability value, all trees that yields a sentence x have the same probability value.
Finally, the set of trees bearing maximum probability is exactly the set of trees in
the original grammar G.

As this lemma proves, trees defined through maximum probability tree grammars
include the class of trees defined via CFGs. As a direct consequence, we have the
following result.

THEOREM 9. Determining whether a PCFG disambiguates a tree language is
undecidable.

Proof. We have built a grammar that assigns the same probability mass to all
possible trees for a given string. As a consequence, the PCFG is unambiguous
if, and only if, the non-probabilistic grammar is. Deciding whether the PCFG is
unambiguous is equivalent to deciding whether a CFG in CNF is unambiguous,
which is known to be undecidable (Hopcroft and Ullman, 1979).



THE EXPRESSIVE POWER OF PROBABILISTIC CONTEXT FREE GRAMMARS 229

Theorem 4 answers question 2 from the Introduction, saying that it is not possible
to decide whether a PCFG has completely managed to solve all ambiguities. Note
that the results in the present section combined with the results in the previous one
imply that the class of tree languages described by PCFGs is a strict subclass of
the tree languages described by MPTGs. The inclusion is implied by the present
section while the proper inclusion is implied by the previous one.

5. Related Work

Before concluding, we briefly compare the work in this paper to the literature. Ours
is not the first study of the expressive power of weighted formal languages. Cortes
and Mohri (2000) show that the expressive power of weighted automata is beyond
regular languages. This result has in common with the result we present in Section 3
that both show that weighted systems accept a wider set of languages than bare,
unweighted systems. The two results also use the same strategy; they present a
language that does not belong to the bare grammatical formalism but that can be
captured by the weighted version.

Our approach differs from that of Cortes and Mohri (2000) in that we use
probabilities to select subtrees as a side-product of filtering. Cortes and Mohri
(2000) found a well-known context free language to be accepted by a weighted
automata under a general definition of acceptance. The approaches also differ in
that ours is concerned with the tree language and theirs with the string language.
Finally, the two results differ in that our proof is standard from a technical point of
view, while the other is rather involved.

The main result presented in Section 3 is not directly linked to statistics. As
discussed by Abney (1996), probabilities can help in many aspects of syntax (e.g.,
disambiguation, degrees of grammaticality, error tolerance, naturalness, structural
preferences, learning, lexical acquisition). We respond to the more principled ques-
tion “What can we do with probabilities (weights)?” rather than than “How can we
compute the probabilities (weights)?”. Abney argues that, intuitively, probabilities
can help disambiguation, but in Section 3 we have shown that they provide a mech-
anism that simply cannot be mimicked with rules. We went beyond mere intuitions
and presented technical facts.

6. Conclusions

This paper has focused on questions related to the importance of probabilities in the
context of parsing and, in particular, on their usage as a filtering mechanism. We have
shown that probabilities, when used as a filtering mechanism, can add expressive
power to grammars, defining a class of tree languages beyond the expressivity of
context free grammars.

The proofs we used to establish this result are standard — this is not where the
main contribution of the paper is. Our main contribution is the first rigorous proof



230 G. INFANTE-LOPEZ AND M. DE RIJKE

for the widely held belief that PCFGs (with a maximization procedure) are more
expressive than bare CFGs. Theorem 3 suggests that any grammatical formalism
that suffers from inherent ambiguity can increase its expressive power by means
of probabilities. At the same time, Theorem 4 implies that probabilities are not a
final answer to ambiguity: determining whether they will manage to remove all
ambiguities is undecidable.

Acknowledgements

Gabriel Infante-Lopez was partially supported by the Netherlands Organization for
Scientific Research (NWO) under project number 220-80-001. Maarten de Rijke
was supported by NWO under project numbers 017.001.190, 220-80-001, 264-70-
050, 354-20-005, 612-13-001, 612.000.106, 612.000.207, 612.066.302, 612.069.-
006, and 640.001.501.

References

Abney, S., 1996, “Statistical methods and linguistics,” in The Balancing Act: Combining Symbolic
and Statistical Approaches to Language, J. Klavans and P. Resnik, eds., Cambridge, MA: The
MIT Press.

Bod, R., Scha, R., and Sima’an, K. (eds.), 2002, Data Oriented Parsing, CSLI.
Booth, T. and Thompson, R., 1973, “Applying probability measures to abstract languages,” IEEE

Transaction on Computers C-33(5), 442–450.
Charniak, E., 1995, “Parsing with context-free grammars and word statistics,” Technical Report CS-

95-28, Department of Computer Science, Brown University, Providence.
Chaudhuri, R. and Rao, A.N.V., 1986, “Approximating grammar probabilities: Solution of a conjec-

ture,” Journal of the ACM 33(4), 702–705.
Collins, M., 1999, “Head-driven statistical models for natural language parsing,” Ph.D. thesis, Uni-

versity of Pennsylvania, PA.
Cortes, C. and Mohri, M., 2000, “Context-free recognition with weighted automata,” Grammars

2–3(3).
Eisner, J., 1996, “Three new probabilistic models for dependency parsing: an exploration,” in Pro-

ceedings of 16th International Conference on Computational Linguistics (COLING), Copenhagen,
Denmark, pp. 340–245.

Eisner, J., 2000, “Bilexical grammars and their cubic-time parsing algorithms,” in Advances in
Probabilistic and Other Parsing Technologies, H. Bunt and A. Nijholt, eds., Kluwer Academic
Publishers, pp. 29–62.

Hopcroft, J. and Ullman, J., 1979, Introduction to Automata Theory, Lanaguges, and Computation,
Reading, MA: Addison Wesley.

Horning, J.J., 1969, “A study of grammatical inference,” Ph.D. thesis, Stanford University.
Infante-Lopez, G., 2005, “Two-level probabilistic grammars for natural language parsing,” Ph.D.

thesis, University of Amsterdam.
Infante-Lopez, G. and de Rijke, M., 2004, “Alternative approaches for generating bodies of grammar

rules,” in Proceedings of the 42nd Annual Meeting of the ACL, Barcelona.
Klein, D. and Manning, C., 2003, “Accurate unlexicalized parsing,” in Proceedings of the 41st Annual

Meeting of the ACL.



THE EXPRESSIVE POWER OF PROBABILISTIC CONTEXT FREE GRAMMARS 231

Manning, C. and Schütze, H., 1999, Foundations of Statistical Natural Language Processing,
Cambridge, MA: The MIT Press.

Parikh, R.J., 1966, “On context-free languages,” Journal of the ACM 13, 570–581.
Wetherell, C.S., 1980, “Probabilistic Languages: A review and some questions,” ACM Computer

Surveys 4(12), 361–379.
Wich, K., 2000, “Exponential ambiguity of context-free grammars,” in Proceedings of the 4th Inter-

national Conference on Developments in Language Theory, pp. 125–138.
Wich, K., 2001, “Characterization of context-free languages with polynomially bounded ambiguity,”

in Proceedings of the 26th International Symposium on Mathematical Foundations of Computer
Science (MFCS).


