
, j ^ '' , « ...ig î IIIP,J[I.1J....I..II.IMI i M i m ^ p ^ p p p | p p p p « | q H | | | | p p p i j g p p | p Q ! !

Two-Levell Probab

forr Natura!

vyii a uit HM ia

^ L U J A É É

Ilff^ ^ w^mmmmmmmimmmmmmmmm^mn^^^^**"^? w^mmmmmmmimmmmmmmmm^mn^^^^**"^?

"J J

-- il'n^iinmM'^tmü^-^kimMiÊm'i^^Êmm^hj^mmMÈÊM

SIKSS Dissertation Series 2005-05.

Thee research reported in this thesis has been carried out under the auspices of SIKS.

thee Dutch Research School for Information and Knowledge Systems.

Forr further information about UvA or SIKS publications, please contact

Informaticss Institute

Universiteitt van Amsterdam

Kruislaann 403

10988 SJ Amsterdam

Thee Netherlands

phone:: +31-20-525 5359

fax:: +31-20-525 2800

e-mail:: i i @ s c i e n c e . u v a . n l

homepage:: h t t p : //www . s c i e n c e . uva . n l / i i /

homepage:: h t t p : / /www. s i k s . n l /

mailto:ii@science.uva.nl

Two-Levell Probabilistic Grammars

forr Natural Language Parsing

ACADEMISCHH PROEFSCHRIFT

terr verkrijging van de graad van doctor aan de
Universiteitt van Amsterdam

opp gezag van de Rector Magnificus
prof.mr.. P.F. van der Heijden

tenn overstaan van een door het college voor
promotiess ingestelde commissie, in het openbaar

tee verdedigen in de Aula der Universiteit
opp woensdag 6 april 2005, te 12.00 uur

door r

Gabriell Gaston Infante Lopez

geborenn te San Salvador de Jujuy, Argentina.

Promotores:: Prof.dr. M. de Rijke
Prof.dr.ir.. R. Scha

Thee investigations were supported by the Netherlands Organization for Scientific Re-
searchh (NWO) under project number 220-80-001.

Copyrightt © 2005 by Gabriel G. Infante-Lopez.

Drawingss on the cover by Santiago Infante Lopez.

Coverr designed by Lucrecia Resnik.

Printedd and bound by Soluciones Graficas.
http://www.solucionesgraficas.com.ar r

ISBN:: 90-5776-135-1

http://www.solucionesgraficas.com.ar

aa las penas,
aa las vaquitas nada

m m MK MK WpnW-WpnW-11*-^*-^ mm--JJ^^f^^^^f^^ JJ'' '"' 'J

ii ,'

i'.-ip'Wl l >> ^Tt-1-.ï»

wzgmkT&sz'.?^ wzgmkT&sz'.?^

Contents s

Acknowledgmentss xi

11 Introduction 1
1.11 Probabilistic Language Models 2
1.22 Designing Language Models 4

1.2.11 W-Grammars as the Backbone Formalism 5

1.33 Formal Advantages of a Backbone Formalism 6
1.44 Practical Advantages of a Backbone Formalism 7
1.55 What Can You Find in this Thesis? 8
1.66 Thesis Outline 8

22 Background and Language Modeling Landscape 11
2.11 The Penn Treebank 11

2.1.11 Transformation of the Penn Treebank to Dependency Trees . . 13
2.22 Probabilistic Regular Automata 14

2.2.11 Inferring Probabilistic Deterministic Finite Automata 16
2.2.22 The MDI Algorithm 17
2.2.33 Evaluating Automata 19

2.33 Probabilistic Context Free Grammars 21
2.44 W-Grammars 22
2.55 Further Probabilistic Formalisms 26

2.5.11 Dependency Based Approaches 27
2.5.22 Other Formalisms 29

2.66 Approaches Based on Machine Learning 31

vii i

33 The Role of Probabilities in Probabilistic Context Free Grammars 39
3.11 Introduction 39
3.22 Maximum Probability Tree Grammars 41

3.2.11 Filtering Trees Using Probabilities 42
3.33 Expressive Power 43
3.44 Undecidability 47
3.55 The Meaning of Probabilities 50

3.5.11 Using Probabilities for Comparing PCFG 50
3.5.22 Using Probabilities for Boosting Performance 54

3.66 Conclusions and Future Work 55

44 Constrained W-Grammars 57
4.11 Grammatical Framework 57

4.1.11 Constrained W-Grammars 57
4.1.22 Probabilistic CW-Grammars 63
4.1.33 Learning CW-Grammars from Treebanks 64
4.1.44 Some Further Technical Notions 65

4.22 Capturing State-of-the-Art Grammars 66
4.2.11 Bilexical Grammars 67
4.2.22 Markovian Context Free Grammars 71
4.2.33 Stochastic Tree Substitution Grammars 75

4.33 Discussion and Conclusion 79

55 Alternative Approaches for Generating Bodies of Grammar Rules 81
5.11 Introduction 81
5.22 Overview 82
5.33 From Automata to Grammars 83
5.44 Building Automata 84

5.4.11 Building the Sample Sets 84
5.4.22 Learning Probabilistic Automata 84
5.4.33 Optimizing Automata 88

5.55 Parsing the PTB 92
5.66 Related Work and Discussion 93
5.77 Conclusions 94

66 Splitting Training Material Optimally 95
6.11 Introduction 95
6.22 Overview 97
6.33 Building Grammars 98

viii i

6.3.11 Extracting Training Material 98
6.3.22 From Automata to Grammars 98

6.44 Splitting the Training Material 101
6.4.11 Initial Partitions 101
6.4.22 Merging Partitions 103

6.55 Parsing the Penn Treebank 110
6.66 Related Work 114
6.77 Conclusions and Future Work 115

77 Sequences as Features 117
7.11 Introduction 117
7.22 Detecting and Labeling Main Verb Dependents 118
7.33 PCW-Grammars for Detecting and Labeling Arguments 119
7.44 Transforming the Penn Treebank to Labeled Dependency Structures . 121
7.55 Building the Grammars 124

7.5.11 Grammars for Detecting Main Dependents 124
7.5.22 Grammars for Labeling Main Dependents 126
7.5.33 Grammars for Detecting and Labeling Main Dependents . . . 130

7.66 Optimizing Automata 131
7.77 Experiments 132
7.88 Related Work 138
7.99 Conclusions and Future Work 139

88 Conclusions 141
8.11 PCW-Grammars as a General Model 142
8.22 PCW-Grammars as a New Parsing Paradigm 142
8.33 Two Roads Ahead 144

AA Parsing PCW-Grammars 145
A.ll Introduction 145
A.22 Theoretical Issues 146
A.33 Practical Issues 148

A.3.11 Levels of Visibility 149
A.3.22 Optimization Aspects 149

A.44 Conclusions 152

BB Revising the STOP Symbol for Markov Rules 153
B.ll The Importance of the STOP Symbol 153
B.22 Collins's Explanation 153
B.33 Background on Markov Chains 155

ix x

B.44 The STOP Symbol Revisited 157

B.55 Conclusions 159

Bibliographyy 161

Abstractt 175

Samenvattingg 179

x x

Acknowledgments s

Well,, I finally reached the point where I can write the acknowledgments of my thesis. I
imaginedd this moment countless of times. I do not know how to include all the people
thatt have participated in one way or another in this thesis. My thesis has transcended
myy professional life and has become something I can not describe with words. Hence,
thesee acknowledgments are a way to say thank you to all the people that has played an
importantt role in my life during the last five years.

Myy PhD period started with Eliana and me moving to Enschede, The Netherlands.
Movingg from one culture to a completely different one was a tough experience. Fortu-
nately,, Eliana and I had each other to cope with the new situation. I would like to thank
Elianaa for her help, company and support during the first period of my PhD studies.

Duringg my time in Enschede, I worked at the Formal Methods and Tools Group, at
thee University of Twente. From that group, I would like to thank Joost-Pieter Katoen,
Holgerr Hermanns and Ed Brinksma for their support and understanding of my need to
movee to Amsterdam. In Twente I made very good friends. Among others, I would like
too mention Dino Distefano, Pedro D'Argenio and Wilco Braam.

Afterr one year in Enschede I moved to the University of Amsterdam, where I spent
onee year working in Modal Logic. I want to thank Carlos Areces and Maarten de
Rijkee for teaching me the little logic I know. Carlos was the bridge that took me from
Enschedee to Amsterdam.

II want to thank Maarten de Rijke. I want to thank him for all he taught me. Working
withh him was sometimes very tough but, now that I see it with some perspective, always
rewarding.. I also want to thank him for backing me up during difficult times. He made
mee feel that he believed that I could finish my studies and my thesis, sometimes he
believedd it more than I did. I want to thank him for all the opportunities he gave me,
evenn though I could not take advantage of all of them. I want to thank him for allowing
me,, after much discussion, to switch once again the direction of my PhD studies, this
timee to Natural Language Processing.

XI I

Remkoo Scha played an important role in the final development of this thesis when
hee became my co-supervisor. I want to thank him for his time, his patience and most
off all, his insightful comments.

Maartenn de Rijke, Remko Scha, Pieter Adriaans, Khalil Sima'an, Walter Daele-
mans,, Geert-Jan Kruijff and Peter Griinwald acted as members of my thesis commit-
tee,, and I am very grateful for their comments. Thanks to Laura Alonso i Alemany,
Davidd Ahn, Valentin Jijkoun, Karin Muller, and Stefan Schlobach who proof read the
manuscript.. I am very grateful to the Netherlands Organization for Scientific Research
(NWO)) for supporting the research that led to this thesis.

Manyy thanks go to my very good friends Gabriele Musillo and Caterina Caracciolo.
Forr their support, for all the chatting we had, for the difficult times and easy ones.
Gabrielee also convinced me that Natural Language Processing is an interesting area.
Hee was right. To Christof Monz, for all the good times we spent together.

Too the FaMAF and the people there: Nicolas, Javier, Pedro, Damian. They pro-
videdd me with working facilities during my long stays in Argentina.

Too Nicolas Wolovick, Sergio Urinovsky, Lucrecia Resnik, Maximiliano Orona,
Miguell Valero Espada and Manolo Gragera,, Marcos Kurban, Pilar Kurban, and Lorena
Sosa,, for becoming my family.

Too all the people that hosted me while I was traveling back and forth: Carlos, Juan,
Caterina,, Miguel, Manolo, Jorge, Ruben, Bea, Jesus. To Sisay Fissaha Adafre and
Maartenn Marx for their logistic help.

II want to thank Miguel Titan Valero Espada and Manolo Titan Gragera; their com-
panyy and help was invaluable.

II like to thank Laura who helped me a great deal during the last period of my thesis.
Shee provided me with things I had missed for a long time.

Too my mother, Marta Silvia, who gave me so many good examples of life. To my
fatherr Juan Carlos for all his encouragement. He saw me start my PhD studies but he
cannott see me finish. I deeply wish he could read this.

Finally,, I want to thank my little son Santiago, he provided me with the strength I
needed.. We both had to get used to my long periods of absence. Every time I came
backk he received me as if I had never left. He did not understand why I was away, but
II am sure that in the future, once he is able to understand this, he will agree with my
decisionn to continue my PhD studies, and that he will be proud of me. I think a person
shouldd pursue his dreams: I have pursued and realized this one. My next one is to be
physicallyy close to him:

Gabriell Infante-Lopez
Cordoba,, Argentina

February,, 2005

xti i

Chapterr 1

Introduction n

Naturall language is a very complex phenomenon. Undoubtedly, the sentences we utter
aree organized according to a set of rules or constraints. In order to communicate with
others,, we have to stick to these rules up to a certain degree. This set of rules, which
iss language dependent, is well-known to all speakers of a given language, and it is
thiss common knowledge that makes communication possible. Every sentence has a
clearr organization: words in an utterance glue together to describe complex objects
andd actions. This hidden structure, called syntactic structure, is to be recovered by a
parser.. A parser is a program that takes a sentence as input and tries to find its syntactic
organization.. A parser searches for the right structure among a set of possible analyses,
whichh are defined by a grammar. The language model decides what the syntactic
componentss of the sentence are and how they are related to each other, depending on
thee required level of detail.

Naturall language parsers are used as part of many applications that deal with natural
language.. Applications like question answering, semantic analysis, speech recognition,
etc.. may rely heavily on parsers. The degree of detail in the information output by the
parserr may change according to the application, but some amount of parsing plays a
rolee in many language technology applications, and parser performance may be crucial
forr the overall performance of the end-to-end application.

Designingg and building language models is not a trivial task; the design cycle usu-
allyy comprises designing a model of syntax, understanding its underlying mathematical
theory,, defining its probability distribution, and finally, implementing the parsing algo-
rithm.rithm. The building of every new language model has to complete at least these steps.
Eachh is very complex and constitutes a line of research in itself. To help handling the
intrinsicc complexity of these steps a sufficient level of abstraction is required. Abstrac-
tionn is important as it helps us deal with complex objects by representing them with
aa subset of their characteristic features. The selected features characterize the object

1 1

2 2 ChapterChapter I. Introduction

forr a given task or context. For example, the way we understand or see cars depends
veryy much on the task we want to carry out with them; if we want to drive them, we do
nott need to know how their engines work, whereas if we are trying to fix a mechanical
problemm we better do. Moreover, abstraction has proven to be an important scientific
principle.. The way abstraction helps humans in dealing with complex systems can
bestt be illustrated by the history of computer science. The complexity of systems has
increasedd hand in hand with the introduction of programming languages that allow for
increasingg levels of abstraction, climbing all the way from machine code to assem-
blyy language to imperative languages such as Pascal and C, to today's object-oriented
languagess such as Java.

Backk to natural language parsing — what does abstraction have to do with pars-
ing?? Our view is that state-of-the-art natural language models lack abstraction; their
designn is often ad hoc, and they mix many features that, at least conceptually, should
bee kept separated. In this thesis, we explore new levels of abstraction for natural lan-
guagee models. We survey state-of-the-art probabilistic language models looking for
characteristicc features, and we abstract away from these features to produce a gen-
erall language model. We formalize this abstract language model, establish important
propertiess of the models surveyed, and with our abstract model we investigate new
directionss based on different parameterizations.

1.11 Probabilistic Language Models

Roughlyy speaking, the syntactic analysis of natural language utterances aims at the
extractionn of linguistic structures that make explicit how words interrelate within utter-
ances.. Syntactic structures for a sentence x are usually conceived as trees ti(x), ...,
ttnn(x)(x) whose leaves form the sentence x under consideration. A grammar is a device
thatt specifies a set of trees. The trees in this set are said to be grammatical trees. Indi-
rectly,, the concept of a grammatical sentence is defined as follows: a sentence x is said
too be grammatical if there is a grammatical tree that yields x.

Mostt natural language grammars tend to assign many possible syntactic structures
too the same input utterance. In such situations, we say that the sentence is ambigu-
ous.ous. Ambiguity is the most important unsolved problem that natural language parsers
face.. This contrasts with human language processing, which in most cases selects a
singlee analysis as the preferred one for a given utterance. The task of selecting the
singlee analysis that humans tend to perceive for an input utterance — disambiguation
—— is an active area of research in the field of natural language processing. Because
off the roles of world knowledge, cultural preferences and other extra-linguistic fac-
tors,, disambiguation can be seen as a decision problem under uncertainty. In recent

/.. /. Probabilistic Language Models 3 3

years,, there have been different proposals for a solution, mainly based on probabilistic

models.. Probabilistic models assign probabilities to trees and then disambiguate by

selectingg the tree with the highest probability.

Fromm a formal language perspective, the notion of a language coincides with the

formall notion of a set of strings. Probabilistic languages extend this definition so

thatt a language is a probability distribution over a set of trees. In particular, a prob-

abilisticc language model is a probability distribution over a set of utterance-analysis

pairs.. Usually, a recursive generative grammar is used to describe a set of possible

utterance-analysiss pairs, possibly allowing multiple pairs for the same utterance. Cru-

cially,, defining a probabilistic language mode! allows us to view disambiguation as an

optimizationn task, where the most probable analysis T* is selected from among those

thatt a grammar G generates together with an input utterance U. If F is a probability

functionn over utterance-analysis pairs, i.e., a language model, we may describe this

optimizationn task as follows:

T*T* =

wheree argmax2.eX f(x) stands for the x e X such that f(x) is maximal, and where

P{U)P{U) is the same for all trees and, consequently, can be left out.

Thee step of enriching a given generative grammar with probabilities is a non-trivial

task.. Apart from the empirical question of how to do so in a way that allows good

disambiguation,, in the sense that the model selects the same preferred analysis as hu-

manss do, there are various formal and practical issues concerning the definition of a

correctt model. In order to fully understand a language model, it is necessary to abstract

awayy from specific peculiarities and to identify its relevant features. The latter can be

summarizedd as follows.

Sett of possible trees: For a given utterance, the language model chooses a tree that

articulatess the syntactic structure of the utterance from a fixed set of possible

trees.. For example, in a Context Free Grammar (CFG), this set is defined by the

grammar'ss tree language.

Probabilitiess Probabilistic language models assign a probability value to each tree,

andd this probability value is then used as a way to filter out unwanted trees. A

significantt part of the definition of a language model is used to establish the way

probabilitiess are assigned to trees. For example, in a probabilistic context free

argmaxx PfTjt / j
TeG TeG

P(T,, U)
a r g m a xx P(U\

argmaxx P{T,U),
TeG TeG

4 4 ChapterChapter 1. Introduction

grammar,, each rule has a probability value associated to it. and the probability of
aa tree is defined as the product of the probabilities assigned to the rules building
upp the tree.

Parameterr estimation Probabilistic models contain many parameters that define the
grammar'ss disambiguation behavior. These parameters have to be estimated.
Thee probability model specifies the set of values the parameters might take. This,
inn turn, defines the set of possible grammars.

Expressivee power The expressive power of language models gives us an idea of their
algorithmicc complexity, and it allows us to compare different models. For prob-
abilisticc models, determining their expressive power is a difficult job because the
parameterr estimation algorithm has to be taken into account.

Tweakingg State-of-the-art parsing algorithms are not just language models — they
havee been optimized considerably in order to improve their performance on real
naturall language sentences. Some of the optimized parameters are hard to model
andd are usually outside the language model.

Parsingg complexity Parsing complexity has become an issue again in recent years,
becausee of the appearance of theoretically appealing models that seem very hard
too implement efficiently. Parsing complexity should be as low as possible. The
aimm is to emulate the apparently linear time humans take to process a sentence.

Addressingg all of these items in a single thesis would be overly ambitious. This list is
meantt to provide the context — throughout this thesis we study various specific aspects
againstt this general background.

1.22 Designing Language Models

Designingg a parsing algorithm involves a sequence of decisions about:

1.. the grammatical formalism,

2.. a probabilistic version of the formalism,

3.. techniques for estimating probabilities, and

4.. a parsing algorithm.

Thiss cycle can be seen almost everywhere in the parsing literature (Collins, 1999; Eis-
ner,, 2000; Bod, 1998; Charniak, 1999; Ratnaparkhi, 1999). It seems that every inter-
estingg new parser uses a new formalism. The design is time consuming, and usually

7.2.. Designing Language Models 5 5

parserss are only evaluated empirically. It is clear, however, that better empirical re-
sultss do not necessarily convey a better understanding of the parsing problem. Usually,
descriptionss of state-of-the-art language models do not clearly state how the features
presentedd in the previous section are defined or implemented, or how they fit in the
designn cycle. The grammatical framework is rarely the only decision responsible for
thee parsers's performance; on top of the decision, there is a lot of tweaking involved.
Forr example, Collins (1997) defines a simple formalism, but in order to achieve his
results,, all the tweaking reported in (Bikel, 2004) is needed.

Designerss of parsers often conflate their decisions about the different features we
identifyy in Section 1.1. For example, let us zoom in on one of the characteristics
identifiedd in Section 1.1 and then step back to adopt a more abstract perspective, and
seee what this gives us. In the definition of today's state-of-the-art language models,
Markovv chains, and more specifically n-grams, are widely used because they are easy
too specify and their probabilities easy to estimate. ./V-grams are both a component
inn the definition of a model and a technique to assign probabilities. They are cen-
trall to language models, and, consequently, every property of language models must
bee evaluated with respect to n-grams. It might be helpful, though, to step back from
n-grams,, and think of them as special cases of probabilistic regular languages. Math-
ematicall properties of probabilistic regular languages are as well understood as those
off n-grams, but they fit more directly into the overarching theory of formal languages.
Thiss perspective allows us to clearly separate the definition of the model (using regular
languages)) and the procedure for estimating probabilities (using probabilistic regular
languagee induction techniques).

Inn this thesis, we propose a language modeling formalism that abstracts away from
anyy particular instance. We investigate three state-of-the-art language models and dis-
coverr that they share a very noticeable feature: the set of rules they use for building
treess is built on the fly, meaning that the set of rules is not defined a priori. The
formalismss we review have two different levels of derivations even though this is not
explicitlyy stated. One level is for generating the set of rules to be used in the second
step,, and the second step is for building the set of trees that characterize a given sen-
tence.. Our formalism, based on Van Wijngaarden grammars (W-grammars), makes
thesee two levels explicit.

1.2.11 W-Grammars as the Backbone Formalism

W-grammarsW-grammars were introduced in the 1960s by Van Wijngaarden (1965). They are a
veryy well-known and well understood formalism that is used for modeling program-
mingg languages (Van Wijngaarden, 1969) as well as natural languages (Perrault, 1984).
W-grammarss have been shown to be equivalent to Turing machines (Perrault, 1984),

6 6 ChapterChapter I. Introduction

whichh are more powerful than we need: most state-of-the-art language models use
grammaticall formalisms that are much closer to context freeness than to Turing ma-
chines.. In this thesis, we constrain the set of possible W-grammars in order to come
closerr to the expressive power of these grammatical formalisms. We denote this con-
strainedd version as CW-grammars.

Originally.. W-grammars did not use probabilities, but part of the work presented
beloww extends the formalism with probabilities. In this way, we define probabilistic
CW-grammarss (PCW-grammars). We show that probabilities are an essential com-
ponentt of the resulting formalism, not only because of the statistical perspective they
bring,, but also because of the expressivity they add. With PCW-grammars, we prove
thatt Markovian context free grammars (Collins, 1999; Charniak, 1997), bilexical gram-
marss (Eisner, 2000) and stochastic tree substitution grammars (Bod, 1998) are par-
ticularr instances of probabilistic CW-grammars. The probabilistic version of CW-
grammarss helps us to prove properties for these models that were previously unknown.

1.33 Formal Advantages of a Backbone Formalism

Fromm a theoretical point of view, general models help us to clarify the set of param-
eterss a particular instance has fixed, and to make explicit assumptions that underlie a
particularr instance. It might be the case that these assumptions are not clear, or that,
withoutt taking the abstract model into account, the designer of a particular instance is
completelyy unaware of them.

Thee role of probabilities: Our approach to parsing comes from a formal language
perspective:: we identify features that are used by state-of-the-art language mod-
elss and take a formalism off the shelf and modify it to incorporate the necessary
features.. When analyzing the necessary features from the formal language per-
spective,, the need for probabilities and their role in parsing are the first issue to
address.. In Chapter 3, we answer many questions regarding the role of prob-
abilitiess in probabilistic context free grammars. We focus on these grammars
becausee they are central to the formalism we present.

Consistencyy properties: General models do not add anything per se. Their impor-
tancee is rather in the set of instances they can capture and the new directions they
aree able to suggest. In Chapter 4, we show that bilexical grammars, Markovian
contextt free grammars and stochastic tree substitution grammars are instances of
ourr general model. Our model has well-established consistency properties which
wee use to derive consistency properties of these three formalisms.

1.4.1.4. Practical Advantages of a Backbone Formalism 7

1.44 Practical Advantages of a Backbone Formalism

Fromm a computational point of view, general models for which a clear parsing algo-
rithmm and a relatively fast implementation can be defined, produce fast and clear im-
plementationss for all particular instances. New research directions are also suggested
byy a general formalism. These directions are a consequence of instantiating the mod-
els'ss parameters in a different way or by re-thinking the set of assumptions the partic-
ularr instances have made. A brief description of the directions explored in this thesis
follows. .

Explicitt use of probabilistic automata: Earlier, we mentioned that Markov models
aree heavily used in parsing models and that they can be replaced by probabilistic
regularr languages. Since our formalism is not bound to Markov models, we
cann use any algorithm for inducing probabilistic automata. In Chapter 5, we
exploree this idea. We define a type of grammar that uses probabilistic automata
forr building the set of rules. We compare two different classes of grammars
dependingg on the algorithm used for learning the probabilistic automata. One of
themm is based on n-grams, and the other one is based on the minimum divergence
algorithmm (MDI). We show that the MDI algorithm produces both smaller and
betterr performing grammars.

Splittingg the training material: The fact that probabilistic automata replace Markov
chainss in the definition of our model allows us to think of a regular language as
thee union of smaller, more specific sublanguages. Our intuition is that the sub-
languagess are easier to induce and that the combination of them fully determines
thee whole language. In Chapter 6, we explore this idea by splitting the training
materiall before inducing the probabilistic automata, then inducing one automa-
tonn for each component, and, finally, combining them into one grammar. We
showw that in this way, a measure that correlates well with parsing performance
cann be defined over grammars.

Sequencess as features: Our formalism allows us to isolate particular aspects of pars-
ing.. For example, the linear order in which arguments appear in a parse tree is
aa fundamental feature used by language models. In Chapter 7, we investigate
whichh sequences of information better predict sequences of dependents. We
comparee sequences of part-of-speech tags to sequences of non-terminal labels.
Wee show that part-of-speech tags are better predictors of dependents.

8 8 ChapterChapter I. Introduction

1.55 What Can You Find in this Thesis?

Inn my opinion there are two different types of research. The first one pushes the frontier
off knowledge forward, jumping from one point to a more advanced, better performing
one.. This pushing forward is sometimes carried out in a disorderly way. leaving many
gapss along the way. The second line of research tries to fill in these gaps. Both types are
veryy important, and neither of them can exist without the other. The second provides a
solidd foundation to the first one in order to make new jumps possible. After a jump, a
hugee a amount of work is waiting to be done by the second type of research.

Thiss thesis belongs solidly to the second type of research. Here, the reader will
findfind a formal analysis of existing models. The reader will also find a general model
thatt encompasses many of the models studied, as well as some properties these models
enjoyy — properties that we want the models to have and properties that were not known
beforee and that the general model lets us prove. Finally, the reader will find a few
explorationss along new research directions also suggested by our model.

Wee hope that after having read the thesis, the reader will understand the language
modelingg task better. We also hope to have provided the area of natural language
modelingg with a more solid background. This background comprises consistency and
expressivee properties generally believed but not formally proven. In the thesis we also
providee initial steps in promising new research directions.

Inn contrast, the reader will not find a state-of-the-art language model here. The
readerr will not find any claims regarding the universal structure natural language pos-
sessess either. It is very clear to me that the structure of natural language is, at this
point,, as unknown as it was when I first started. I can only see, so far, that formal
languagess with complexity up to context freeness can help us quite a lot in handling
mostt syntactic structures.

1.66 Thesis Outline

Chapterr 2 (Background and Landscape): This chapter introduces the machinery of
formall languages. It covers formal language theory from regular languages to
machinee learning-based parsing algorithms, touching on context free grammars,
W-grammars,, and other formalisms.

Chapterr 3 (The Role of Probabilities): This chapter investigates the role of probabil-
itiess in probabilistic context free grammars. Among others it answers questions
like:: "can probabilities be mimicked with rules?", "can a grammar fully disam-
biguatee a language?".

1.6.1.6. Thesis Outline 9 9

Chapterr 4 (CW-Grammars as a General Model): This chapter presents our for-
malism.. It shows that biiexical grammars, Markovian context free grammars
andd stochastic tree substitution grammars are instances of our formalism.

Chapterr 5 (Alternative Approaches for Generating Bodies of Grammar Rules):
Thiss chapter explores the replacement of rc-gram models by a more general algo-
rithmm for inducing probabilistic automata. It shows that the alternative algorithm
producess smaller and better performing grammars.

Chapterr 6 (Splitting training material optimally): This chapter investigates differ-
entt ways to split the training material before it is used for inducing probabilistic
automata.. It defines a measure over grammars that correctly predicts their pars-
ingg performance.

Chapterr 7 (Sequences as Features): This chapter focuses on a very specific as-
pectt of syntax. We compare how two different features, each of them based on
sequencess of information, help to predict dependents of verbs. One of the fea-
turess is based on sequences of part-of-speech tags while the other is based on
sequencess of non-terminals labels.

Chapterr 8 (Conclusions): This chapter summarizes and combines conclusions of all
thee chapters.

Appendixx A (Parser Implementation): This appendix discusses aspects related to
thee implementation of our parsing algorithm for probabilistic CW-grammars. It
discussess the prerequisites a grammar has to fulfill for a parser to return the
mostt probable tree. It also discusses some of the optimization techniques we
implementedd to reduce parsing time.

Appendixx B (STOP symbol): This appendix reviews Collins's (1999) explanation of
thee necessity of the STOP symbol. The appendix uses Markov chains theory to
re-explainn and justify its necessity.

 — — , - . - ' - , , . .

-- . . - -

111 n

'. 'J-^ ^

-".. -ft*'

_ ' '' _ -i .1 A

% % "tfv.- -~-

ï-^' ':.ï ï

>3(g|(|lP-^*3re3*^^ ^ Ü ^ M t t t ^ ^

Chapterr 2

Backgroundd and Language Modeling
Landscape e

Thiss chapter has two main goals. The first is to present the background material re-
quiredd for most of the forthcoming chapters, the second one is to situate this thesis in
thee landscape of natural language parsing. When presenting different approaches for
dealingg with language models, we adopt a formal language perspective. In Section 2.2
wee present regular automata, in Section 2.3 context free grammars, in Section 2.4 W-
grammars,, and Section 2.5 we deal with other formalisms that do not fall in any of
thee previous categories but that are used for natural language parsing. Finally, in Sec-
tionn 2.6 we deal with approaches used for natural language parsing that are mainly
basedd on machine learning techniques.

2.11 The Penn Treebank

Wee start by presenting the material that indirectly defines our task. The Penn treebank
(PTB)) (Marcus et al., 1993, 1994) is the largest collection of syntactically annotated
Englishh sentences, and probably the most widely used corpus in computational linguis-
tics.. It is also the basis for the experiments reported in this thesis, and it defines the
kindd of information we are going to try to associate to naturally occurring sentences.

Thee PTB project started in 1989. Between then and 1992, 4.5 million words of
Americann English were automatically part of speech (POS) tagged and then manually
corrected.. Then, each sentence was associated to a parse tree that reflected its syntactic
structure.. The first release of the PTB uses basically a context free phrase structure
annotationn for parse trees, where node labels are mostly standard syntactic categories
likee NP, PP, VP, S, SBAR, etc. In 1995, a new version was released; this second version
appliedd a much richer annotation scheme, including co-indexed null elements (traces)

II I

122 Chapter 2. Background and Language Modeling Landscape

too indicate non-local dependencies, and function tags attached to the node labels to
indicatee the grammatical function of the constituents.

Thee parsed texts come from the 1989 Wall Street Journal (WSJ) corpus, and from
thee Air Travel Information System (ATIS) corpus (Hemphill et al., 1990). The second
releasee is the basis for the experiments in Chapters 5, 6 and 7. A third release came out
laterr on, using basically the same annotation schema as the second but also including
aa parsed version of the Brown Corpus (Kucera and Francis, 1967).

Thee POS tag set is the same in all three releases. It is based on the Brown Corpus
tagg set, but the PTB project collapses many Brown tags. The reason for this simplifica-
tionn is that the statistical methods, which were used for the first automatic annotation
andd envisaged as potential "end users" of the treebank, are sensitive to the sparse data
problem.problem. This problem comes into play if certain statistical events (e.g., the occurrence
off a certain trigram of POS tags) do not occur in the training data, so that their prob-
abilityy cannot be properly estimated. The sparseness of the data is related to the size
off the corpus and the size of the tag set. Thus, given a fixed corpus size, the sparse
dataa problem can be reduced by decreasing the number of tags. Consequently, the final
PTBB tag set has only 36 POS tags for words and 9 tags for punctuation and currency
symbols.. Most of the reduction was achieved by collapsing tags that are recoverable
fromm lexical or syntactic information. For example, the Brown tag set had separate
tagss for the (potential) auxiliaries be, do and have, as these behave syntactically quite
differentlyy from main verbs. In the tag set of the PTB, these words have the same tags
ass main verbs. However, the distinction is easily recoverable by looking at the lexical
items.. Other tags that are conflated are prepositions and subordinating conjunctions
(conflatedd in IN) and nominative and accusative pronouns (conflated in PRP), as these
distinctionss are recoverable from the parse tree by checking wether IN is under PP or
underr SBAR, and whether PRP is under S or under VP or PP.

Thee syntactic annotation is guided by the same considerations as POS tagging. For
instance,, there is only one syntactic category, labeled SBAR, for that- or w/i-clauses
andd only one S for finite and non-finite (infinitival or participial) clauses, although
thee two types behave syntactically quite differently. Again, the argument is that these
distinctionss are recoverable by inspecting the lexical material in the clause; and parsers
basicallyy use the simple treebank categories.

Inn general, only maximal projections (NP, VP,...) are annotated, i.e., intermediate
X-barr levels (N', V') are left unexpressed, with the exception of SBAR. In the first
releasee of the PTB, the distinction between complements and adjuncts of verbs was
expressedd by attaching complements under a VP as sisters of the verb and by adjoining
adjunctss at the VP level. In the second release, both complements and adjuncts are
attachedd under VP.

Inn our experiments, we used the PTB as training and test material. We train models

2.1.2.1. The Penn Treebank 13 3

onn the data provided by the PTB and we try to obtain, for instances not used in the
trainingg material, the tree that the PTB would have associated to them. In our exper-
iments,, we did not work directly with the PTB, but with a dependency version of the
treess in the PTB. That is, we transformed the PTB into dependency trees to obtain the
trainingg material for our experiments.

2.1.11 Transformation of the Penn Treebank to Dependency Trees

Thee experiments we present in the forthcoming chapters use unlabeled dependency
structures.. We choose to use such structures because they allow us to isolate better
thann phrase structures the aspects of syntax and language modeling that we want to in-
vestigate.. We transformed all trees in the PTB to dependency trees; the transformation
proceduree is based on the ideas of Collins (1999). He defines the transformation from
phrasee structure trees to dependency trees as a function from a tree to its associated
dependencies.. Two steps are involved in defining this transformation. First, the trees
aree lexicalized by adding the word to each non-terminal label; second, dependencies
aree derived by extracting n - 1 dependencies from each rule with n children. Let us
explainn both steps in more detail.

Stepp 1: Lexicalization of parse trees. Black et al. (1993); Jelinek et al. (1994); Ma-
germann (1995a) introduced the concept of lexicalization of non-terminal rules as
aa way of improving parsing accuracy. Each non-terminal node in a tree is mod-
ifiedd by adding the head-word to it. Headwords are assigned through a function
thatt identifies the "head" of each rule in the grammar. More precisely, the func-
tionn head(X —> Y\,..., Yn) returns a value h such that 1 < h < n, where h is
thee index of the head.

Thee function head is used for adding lexical information to all non-terminals in
aa tree. The function headword adds lexical information to all non-terminals in a
treee and headword is defined recursively as follows.

Basee case: If a non-terminal X is on the left-hand side of a rule X —> x,
wheree X is a non-terminal part of speech, and a: is a lexical item; then
headword(Xheadword(X - » I) = I .

Recursivee case Assume X is a non-terminal on the left-hand side of a rule
XX — Yi...Yn, and h = head(X —> Yx... Yn); we put headword(X) =
headword{Yh) headword{Yh)

Stepp 2: Derivation of dependencies from lexicalized trees. With the headword for
eachh non-terminal in the tree defined, the next step is to identify a set of depen-
denciess between words in the sentence. A dependency is a relationship between

144 Chapter 2, Background and Language Modeling Landscape

twoo word-tokens in a sentence, a modifier and its head, which we will write as
modifiermodifier —+ head. The dependencies for a given tree are derived in two ways:

 Every rule A' —> Y"i . . . V'„ such that Y"i Yn are non-terminals and
nn > 2 contributes the following set of dependencies: {headword(Yt) —>
headword{Yheadword{Yhh)) : 1 < i < n. i f h), where h = head{X - Yi . . . Yn).

 If A' is the root non-terminal in the tree, and x is its headword, then x —*
ENDD is a dependency

Clearly,, the key component in the transformation process is the function head. This
functionn has been implemented mainly as a lookup table. For further details on the
definitionn of the function head, see (Collins, 1999, Appendix A).

Thee PTB provides us with the training materia! for inducing our own grammars.
Thee grammars learnt in this thesis are Probabilistic Constrained W-Grammars (PCW
Grammars),, a new formalism which is presented in Chapter 4. Our formalism is re-
latedd to probabilistic regular languages, probabilistic context free grammars and W-
grammars.. In this chapter we present these three different formalisms. The relation of
PCWW Grammars to each of the three formalism will become clear in the remainder of
thee thesis.

2.22 Probabilistic Regular Automata

Lett us start by recalling some preliminary notation and concepts from formal lan-
guages.. Let E be a finite alphabet and E* the (infinite) set of all strings that can be
builtt from E; e denotes the empty string. A language is a subset of E*. By conven-
tion,, symbols from E will be denoted by letters from the beginning of the alphabet
(a,(a,fr,fr, c,...) and strings from E* will be denoted by letters from from the end of the
alphabett (... ,x,y, z). The size of a string x € E* is written |x|. If ~ denotes an
equivalencee relation on a set AT, we write [x] to denote the component of the equiva-
lencee class containing x, that is \x\ = {y e X : y = x).

AA probabilistic language L is a probability distribution over E*. The probability of
aa string x e E* is denoted as PL{X). If the distribution is modeled by some syntactic
machinee A the probability of x according to the probability distribution defined by A
iss denoted as PA{X).

Twoo probabilistic languages L and L' are equal if Ww : PL{W) — pv{w)\ note that
thiss definition implicitly states that the two languages contain the same strings.

Wee now introduce deterministic finite automata (for a more detailed introduction,
seee (Hopcroft and Ullman, 1979)):

2,2.2,2. Probabilistic Regular Automata 15 5

2.2.1.. DEFINITION. A deterministic finite automaton (DFA) .4 is a tuple (Q, E, S, q0,
F),F), where

 Q is a finite set of states;

 QQ is the initial state;

 E is the alphabet;

 6 : Q x E —> Q is a transition function;

 F C Q is the set of final states.

Wee extend 6 in the usual way to a function Ö : Q x E* —> Q by putting 5(g, c) = g and

S(q,aw)S(q,aw) — ö(ö(q,a),w).

Wee now adapt this definition to the probabilistic setting;

2.2.2.. DEFINITION. A probabilistic deterministic finite automaton (PDFA) A is a tuple

{Q,, E, <5, g0,7). where Q, E, J, g0 define a DFA and 7 is a function with two profiles:

 7 : Q x E —* M (transition probabilities) and,

 7 : Q -^ K (final-state probabilities).

Thee function 7 is recursively extended to 7 : Q x E* — K such that 7(9, e) = 1

andd -y(q,ax) - j{q,a) -y(6(q,a),x). The probability of a string x starting from the

statee q is defined as p(q,x) = l{q,x) -y(ö(q,x)). The probability of a string x is

p{x)p{x) = p(qo, x). Let X be a set of strings, p(X) = Y\xGXp(x). W e s ay m a t a prob-

abilityy distribution over L is a probabilistic deterministic regular language (PDRL) if

itt is produced by a PDFA. As probabilistic languages define probability distributions

overr E, it is required that 0 < p(x) < 1 and p(E*) = 1 (consistency condition). In

contrastt to non-probabilistic automata, the deterministic and non-deterministic version

off probabilistic automata are not equivalent (Dupont et al., 2004).

Automataa play a fundamental role in this thesis, both from a theoretical and from

aa practical point of view. In Chapters 5, 6 and 7 we use automata for building PCW-

grammars.. We induce automata from training material and then combine them for

definingg grammars. Inferring automata, then, is a fundamental activity in this thesis.

16 6 ChapterChapter 2. Background and Language Modeling Landscape

2.22.2 A Inferring Probabilistic Deterministic Finite Automata

Thee problem of inferring a PDFA can be seen as a particular instance of the wider task
off inferring formal grammars from a finite set of examples. This task has been exten-
sivelyy studied under the paradigm of identification in the limit (Carrasco and Oncina,
1994,, 1999; Thollard et al., 2000). Under this paradigm, a learner is supplied by an
(infinite)) stream of input data, generated according to a language. The learning prob-
lemm is to identify the language that explains the data stream. In every iteration step,
thee learner reads another piece of data and outputs a grammar of a given family of
grammars.. The main questions addressed by this framework are

 For which family of grammars are there algorithms which identify a correct hy-
pothesiss at some point in time (in the limit) for any instance of the representation
class,, and just output syntactic variants of the result from that point on?

 Does a specific algorithm identify any/one specific instance of a representation
classs in the limit?

Notee that the learner is not asked to realize that he has found a correct hypothesis.
Goldd (1967) introduced this paradigm and he showed that negative examples are re-
quiredd even for learning the class of regular languages, or equivalently for inducing
deterministicc finite automata (DFAs).

Whenn training data includes negative examples, the regular positive and negative
inferencee (RNPI) algorithm can be used for learning PDFAs (Oncina and Garcia,
1992).. This algorithm was proven to identify in the limit the class of regular lan-
guages.. Negative information, however, is not always available in practical domains
suchh as natural language or speech applications. A promising approach to learn DFAs
onlyy from positive examples has been proposed by Denis (2001). There is, however,
onee more complication: real data is generally noisy, because the data itself does not
consistentlyy follow a formal syntax. If we choose to learn PDFAs we can, in principle,
handlee both the lack of negative information and the presence of noise. One possi-
blee approach to learn PDFAs consists in reducing the class of machines of interest
too a special case of Markov chains called n-grams. These models, however, form a
properr subclass of PDFAs in which the maximal order of dependence between several
symbolss in a sequence is bound. We come back to this difference in more detail in
Chapterr 5 by exploring how the two approaches deal with the creation of context free
likee rules used for parsing.

Severall inference algorithms for probabilistic automata have been proposed. For
example,, Carrasco and Onciana's ALERGIA algorithm (Carrasco and Oncina, 1994,
1999),, a stochastic extension of the RPNI algorithm, is not restricted to learning acyclic
automata.. Most of the algorithms for inducing PDFAs follow the same approach; they

2.2.2.2. Probabilistic Regular Automata 17 7

startt by building an acyclic automaton, called the initial automaton, that accepts only
thee strings in the training material. Next, the algorithms generalize over the training
materiall by merging states in the initial automaton. In other words, they usually build
aa sequence of automata .40, ...,Ak, where A0 is the initial automaton and A3 results
fromm merging some states in Aj-i into a single state in Ar For example, the ALER-
GIAA algorithm merges states locally, which means that pairs of states will be merged
iff the probabilistic languages associated to their suffixes are close enough. This local
mergingg implies that there is no explicit way to bind the divergence between the distri-
butionn defined by the initial automaton and the distribution defined by any automaton
inn the sequence of automata built by the algorithm.

Too avoid this problem, the minimal divergence algorithm (MDI) (Thollard et al.,
2000)) trades off minimal size and minimal divergence from the training sample. We
usee the MDI algorithm in our experiments, and, since it is a key component in the
forthcomingg chapters, we will now provide a more detailed presentation of its working
principle. .

2.2.22 The MDI Algorithm

Beforee discussing the MDI algorithm, let us introduce some useful concepts and nota-
tions. .

2.2.3.. DEFINITION. The relative entropy or Kullback-Leibler divergence between two
probabilityy distributions P{x) and Q(x), defined over the same alphabet Ax, is

^ i w)) = !>(*> **(£§).
wheree log denotes the logarithm base 2.

Thee Kullback-Leibler divergence is a quantity which measures the difference between
twoo probability distributions. One might be tempted to call it a "distance," but this
wouldd be misleading, as the Kullback-Leibler divergence is not symmetric.

Lett I+ denote the positive sample, i.e., a set of strings belonging to the probabilistic
languagee we are trying to model. Let PTA(I+) denote the prefix tree acceptor built
fromm the positive sample I+. The prefix tree acceptor is an automaton that only accepts
thee strings in the sample and in which common prefixes are merged, resulting in a tree-
shapedd automaton. Let PPTA(I+) denote the probabilistic prefix tree acceptor. This is
thee probabilistic extension of the PTA(I+), in which each transition has a probability
proportionall to the number of times it is used while generating, orequivalently parsing,
thee sample of positive examples. Let C(q) denote the count of state q, that is, the
numberr of times the state q was used while generating ƒ+ from PPTA(I+).

18 8 ChapterChapter 2. Background and Language Modeling Landscape

Lett C(q.EtitD) denote the number of times a string I+ ended on q. Let C{q, a)
denotee the count of the transition (q,a) in PPTA(I+). The is the maxi-
mall likelihood estimate built from I+. In particular, for PPTA{I+), the probability
estimatess are:

// A g(q-") , . , > c(q.m>)

Figuree 2.1 .(a) shows a prefix tree acceptor built from the sample

II++ — {a,bb,bba,baab,baaaba}.

Lett A be an automaton with set of states Q, and let n be a partition of Q. The prob-
abilisticc automaton .4/11 denotes the automaton derived from A with respect to the
partitionn II. A/U is called the quotient automaton and it is obtained by merging states
off A belonging to the same component ix in n. When a state q in A/W results from the
mergingg of states q' and q" in Q, the following equalities must hold:

C(q\a)C(q\a) + C(q",a) C(q\ END) + C(q\ END)
7l<7,, a) = „i A , „ , „x <Va€ E, and j{q) C(q')C(q') + C(q") '^' C(q') + C(q")

Quotientt Automata and Inference Search Space

Wee define Lat(PPTA(I+)) to be the lattice of automata which can be derived from
PPTA(IPPTA(I++))tt that is, the set of all probabilistic automata that can be derived from
PPTA(I+PPTA(I+),), by merging some states. This lattice defines the search space of all possible
PDFAss that generalize the training sample (Dupont et al., 1994).

Figuree 2.1.(b) shows the quotient automaton PPTA(J+)/Tl corresponding to the
partition n

nn = {{0,l,3,5,7,10},{2,8,9},{4},{6}}.

forr the prefix tree acceptor in Figure 2.1 .(a). Each component of the partition represents
aa set of merged states. Recall that each state is named with a natural number. Each
componentt is denoted with the number of the minimal state inside it.

Byy construction, each of the states in PPTA(I+) corresponds to a unique prefix.
Thee prefixes may be sorted according to the standard order < on strings. The standard
orderr is the lexical order found in dictionaries. For instance, according to the standard
order,, the first strings in the alphabet H — {a, b] are e < a < b < aa < ab < ba <
bbbb < aaa < This order also applies to the prefix tree states. A partition of the set
off states of PPTA(I+) consists of an ordered set of subsets, each subset receiving the
rankk of its state of minimal rank in the standard order. The MDI algorithm proceeds in
NN - 1 steps, where ./V = 0(I+) is the number of states of PPTA(I+). The partition
U(i)U(i) at step i, that is, the quotient automaton obtained at step i, is obtained by merging
thee two first subsets, according to the standard order defined above, of the partition

2.2.. Probabilistic Regular Automata 19 9

Figuree 2.1: A prefix acceptor (a) and a quotient automaton (b).

n(ii — 1) at step i — 1, so that PPTA(I+)/U(i) is a compatible automaton. Two au-
tomataa are said to be compatible if the following holds. Assume Ai is a temporary
solutionn and A2 is a tentative new solution derived from Ai by merging some states,
andd let A ^ ^ a) = DKL{PPTA{I+)\\A2)-DKL{PPTA{1+)\\A{) be the divergence
incrementt while going from A\ to A2. The new solution ^2 is considered to be com-
patiblepatible with the training data if the divergence increment relative to the size reduction,
thatt is, the reduction of the number of states, is small enough. Formally, let alpha
denotee a compatibility threshold. The compatibility is satisfied if:

&{A&{A UUAA22)) ^
11 , 1 . 1 < < a lpha.

Summingg up, the MDI algorithm takes a set of strings as input and outputs a PDFA.
Theoretically,, the set of strings fed to the MDI algorithm are produced by the unknown
PDFA,, the MDI algorithm tries to recover.

Clearly,, the MDI algorithm might output different automata for different values of
a lpha.. Then, a valid question is how to choose the right value of a lpha. In order to
determinee the best value of a lpha, we will now discuss how to evaluate automata.

2.2.33 Evaluating Automata

Wee use two measures to evaluate the quality of a probabilistic automaton. The first,
calledd test sample perplexity (PP), is based on the test sample perplexity of strings x
belongingg to a test sample, according to the distribution defined by the automaton.
Lett A be an automaton, and let p be the probability distribution defined by A. The
perplexityy PP associated to A is defined as

200 Chapter 2. Background and Language Modeling Landscape

where e
LLLL = ~]è\\^]0gP{jr)-

P(.r)P(.r) is the probability assigned to the string x by the automata .4, 5 is a sample
sett of strings that follow the right distribution, and | |5 | | is the number of symbols
inn S. The minimal perplexity PP = 1 is reached when the next symbol is always
predictedd with probability 1 from the current state, while PP = |E| corresponds to
uniformlyy guessing from an alphabet of size |E|. Intuitively, perplexity (PP) measures
thee uncertainty faced by an automaton when it is fed a new string.

Itt is hard to track down the origin of LL, the most appealing explanation we found
inn (Jurafsky and Martin, 2000) is related to cross entropy. Let us see how. The cross
entropyy is useful when we do not know the actual probability distribution p that gener-
atedd sequences of words iv\,..., w.n. It allows us to estimate some p which is a model
off p, i.e., an approximation to p. The cross entropy of p on p is defined by

H(p,p)H(p,p) = lim - ^ p{wi wn)\ogp(wi,...,wn).
W€L W€L

Thatt is, we draw sequences of words wx according to the probability distribution p, but
summ the log of their probability according to p.

Iff the automaton is a stationary ergodic process, then using the Shannon-McMillan-
Breimann theorem we rewrite

H(p,p)=H(p,p)= lim — \ ogp(wu . . . ,wn) .

Forr sufficiently large n, we can rewrite:

H(p,p)H(p,p) = \ogp(wi,...,wn),
n n

whichh corresponds to our definition of LL.
Thee second measure we use to evaluate the quality of an automaton is the number of

missedmissed samples (MS). A missed sample is a string in the test sample that the automaton
failedd to accept. One such instance is enough to have PP undefined (LL infinite).
Sincee an undefined value of PP only witnesses the presence of at least one MS, we
decidedd to count the number of MS separately, and compute PP without taking MS into
account.. This choice leads to a more accurate value of PP, and, moreover, the value
off MS provides us with information about the generalization capacity of automata: the
lowerr the value of MS, the larger the generalization capacities of the automaton. The
usuall way to circumvent undefined perplexity is to smooth the resulting automaton
withh unigrams, thus increasing the generalization capacity of the automaton, which is
usuallyy paid for with an increase in perplexity. We decided not to use any smoothing
techniques,, as we want to compare bigram-based automata with MDI-based automata
inn the cleanest possible way.

2.3.2.3. Probabilistic Context Free Grammars 21 1

2.33 Probabilistic Context Free Grammars

Contextt free grammars are a key component in our formalism, PCW-grammars. We
usee them for proving the consistency properties of our own formalism and as the back-
bonee of our parsing algorithm. We present them here following the standard conven-
tionss (e.g., (Aho and Ullman, 1972; Hopcroft and Ullman, 1979)).

AA context free grammar (CFG) is defined as quadruple (T, N, S, R), consisting of
aa terminal vocabulary T, a non-terminal vocabulary TV, a distinguished symbol S e N,
usuallyy called the start symbol or axiom and a set of productions or rewriting rules P.
Thee sets T, TV, and R are finite; T and TV are disjoint (T D N ^ 0), and their union
cann be denoted V (V = T U TV). In the case of a CFG, the rules of the grammar will
bee written as A -> a, where A e TV and a e V*. Rules of the form A -> w, where
ww € T are referred to as lexical rules.

Givenn a CFG G, a parse tree based on G is a rooted, ordered tree whose non-
terminall nodes are labeled with elements of TV and whose terminal nodes are labeled
withh elements of T. Those nodes immediately dominating terminal nodes will be re-
ferredd to as preterminal; the other non-terminal nodes will be referred to as non-lexical.
AA syntactic tree based on G is said to be well-formed with respect to G if for every non-
terminall node with label A and daughter nodes labeled Au ..., Ak, there is a rule in
PP of the form A —> A1... Ak. We shall distinguish between a tree that is compatible
withh the rules of the grammar, and a tree that also spans a sentence. A syntax tree is
saidd to be generated by a grammar G if

1.. The root node is labeled with 5 (the distinguished symbol).

2.. The tree is well-formed with respect to G.

Thee conventional rewrite interpretation of CFGs (see, for instance, (Hopcroft and Ull-
man,, 1979)) will also be used in the definition of our stochastic models. Given two
stringss Wx and w2 G V*, we say that wi directly derives w2, if w^ = SA-y, w2 = 6ay,
andd A — a is a rule in P. Similarly, Wi derives w2 (in one or more steps) if the
reflexivee transitive closure of A directly derives a (written A —>* a to indicate the
applicationn of zero or more rules in order to derive string a from non-terminal ̂ 4).

AA probabilistic context free grammar (PCFG) is a context free grammar G with
sett of rules R in which a probability has been attached to every rule in R. That is,
forr every rule of grammar G, A - a e R, it must be possible to define a probability
P(AP(A -+ a). Moreover, the probabilities associated to all the rules that expand the same
non-terminall must sum up to 1.

A-+a£R A-+a£R

22 2 ChapterChapter 2. Background and Language Modeling Landscape

Usingg an auxiliary notation ,4(J to denote a non-terminal node .4 of the parse tree span-
ningg positions of the sentence from i through j , we can define the three assumptions of
thee model:

1.. Place invariance: Vi, P(A, A+\Q —+ () is the same.

2.. Context freedom: P{AJ} — ^anything outside i through j) = P{Ai3 —> C).

3.. Ancestor freedom: P(A,j —> (| any ancestor nodes above A{j) = P(A{j —» ().

Thee probabilities attached to the rules can be used either to heuristically guide the
parsingg process or to select the most probable parse tree(s). The probability of a certain
derivation,, i.e., a parse tree, can be computed by multiplying the probabilities of all the
productionss applied in the derivation process. Let i/.' be a finite parse tree, well-formed
withh respect to G, and let ƒ be the counting function, such that f (A —> a; ip) indicates
thee number of times rule A —+ a has been used to build tree J/\ Then we can write:

Inn contrast to PDFAs, where the consistency property is defined over the set £*, the
consistencyy property for PCFGs is defined over the set ipo of trees accepted by G. P
iss said to be consistent if

Thee consistency property for PCFGs is not always satisfied, (see, for instance (Booth
andd Thompson, 1973)), because it depends on the probability distribution over the
rules,, P(A — a). However, if, as usual, the estimation of the probabilities is carried
outt by means of the maximum likelihood estimator (MLE) algorithm, it can be proved
thatt this property holds. Chi and Geman (1998) generalizes this approach by means of
thee relative weighted frequency method.

2.44 W-Grammars

Inn the mid-1960s, Aad van Wijngaarden developed a grammar formalism specially for
thee formal definition of programming languages, based on a combination of generality
andd simplicity. The formalism was first presented by Van Wijngaarden (1965) and
wass adopted for a new programming language design project that eventually produced
ALGOLL 68. Grammars within this formalism are called van Wijngaarden grammars
oftenn shortened to vW-grammars or W-grammars. Some authors used the name two-
levellevel grammars, but this could lead to confusion, since affix-grammarians also use it

2.4.2.4. W-Grammars 23 3

too name the general class that includes W-grammars, affix grammars and the rest of
variantss of AGs as well. Therefore, the name W-grammars is preferred here.

Wee use the concept of two-level grammars to develop our own formalism, which is
aa constrained version of W-grammars. W-grammars are too expressive and the compu-
tationall complexity of dealing with such big expressivity is very high. Our formalism
iss very close to the PCFG formalism in expressivity but it uses many ideas found in
W-grammars.. We give here a brief introduction to W-grammars for comparisons with
ourr own formalism.

Thee basic idea of W-grammars is that, rather than enumerating a finite set of rules
overr a finite symbol alphabet, a W-grammar constructs a finite meta-grammar that gen-
eratess the symbols and rules of the grammar. In this way, one can define a Chomsky-
typee grammar with infinitely many non-terminals and rules.

Thee definition given here follows (Chastellier and Colmerauer, 1969):

2.4.1.. DEFINITION. A W-grammar is defined by the 6th-tuple (V, NT, T, S, -^->, -^->)
suchh that:

 V is a set of symbols called variables. Elements in V are noted with calligraphic
characters,, e.g., A, B, C.

 NT is a set of symbols called non-terminals. Elements in NT are noted with
upper-casee letters, e.g., X, Y, Z.

 T is a set of symbols called terminals, noted with lower-case letters,e.g., a, 6, c,
suchh that V, T and NT are pairwise disjoint.

 S is an element of V called start symbol.

 —> is a finite binary relation defined on (V U NT U T)* such that if x —> y
thenn x € V. The elements of -^-* are called meta-rules.

 -̂—> is a finite binary relation on (V U NT U T)* such that if r -^-» s then s ^ e.
Thee elements of -̂— are called pseudo-rules.

W-grammarss are rewriting devices. As rewriting devices, they consist of rewriting
rules,, but, in contrast to standard rewriting systems, the rewriting rules of W-grammars
doo not exist a-priori. Pseudo-rules and meta-rules provide mechanisms for building the
ruless that will actually be used in the rewriting process. The rewriting rules are denoted
byy =^> and are defined below. In general, a rule a ^=> (3 indicates that a should be
rewrittenn as (3. For W-grammars, these rules are built by first selecting a pseudo-rule,
andd second, using meta-rules for instantiating all the variables that the pseudo-rule
mightt contain. Once all variables have been instantiated, the resulting relation can
bee viewed as a derivation rule, like in context free grammars. The different values a
variablee in a pseudo-rule can take are given by the meta-rules. In other words, the

244 Chapter 2. Background and Language Modeling Landscape

relationn generated by metarules defines the set of values a variable can have. Once all

variabless in a pseudo-rule have been instantiated, we obtain a "real" rule.

Thee idea of rule instantiation is explained in the following example.

2.4.2.. EXAMPLE. Let \Y = (V, NT,T, S, -^U, -^->) be a W-grammar such that V =

{S.A~},NT{S.A~},NT = {S,A}.

meta-rules s

A^AA A^AA
A^A A^A

pseudo-rules s

ss ^ A ~
AA —> a

Forr building a rewriting rule, we first take a pseudo-rule, say 5 — A, with all its

variabless instantiated. For this particular pseudo-rule, the variable A is the only one

thatt needs to be instantiated. Possible instantiations are defined through meta-rules.

Forr this example, the variable A can be rewritten as A — AA ^—> AAA -^-» AAAA.

Replacingg the instantiation AAAA for the variable A in S -̂—> A yields the rewriting

rulee S => AAAA. Note that pseudo-rules are used only one time to construct =^>

rules. .

Inn order to formalize the derivation process and to define the language accepted by

aa W-grammar, we first extend ^~* to a relation between a sequence of strings in the

usuall way: If x ^-* y then vxw —* vyw for any x, y,v,w G (NT U T U V)*. With

—>> we denote the reflexive and transitive closure of -^-+. The relation ^=> is formally

definedd as follows.

2.4.3.. DEFINITION. Let r and s be in (NT U T)*. We say that r = > s if there exist

r',r', s' in (V U NT U T)* such that r' —> s' and such that r and s can be obtained

fromm r' and s' respectively by substituting each occurrence of a variable U by a string

tt G (TuNT)* such that U — t. If U occurs more that once in r' or s', the same string

tt has to be substituted in all occurrences. The elements of ^ ^ are called w-rules.

AA w-rule a =£> (5 defines only one step in the rewriting process. The entire rewriting

proceduree is defined by extending ^> to elements in (TuNT)* as follows. If r ^=> s

thenn p, r, q =̂ => p, s, q for any r, s,p and q in (T U NT)*. Also, =^> is the reflexive

andd transitive closure of =^=>. When a string is rewritten using w-rules, we call that

derivationn a w-derivation.

2.4.4.. EXAMPLE. Let W = (V,NT,T, N, -^->,) be a W-grammar with V =

{JV,, L} , A T = {£/}, T = {a, 6, c] and the set of meta-rules and pseudo-rules as

follows: :

2.4.2.4. W-Grammars 25 5

metarules s

~N~N ^JfU

LL —> a

LL —> b

LL —> c

pseudo-rules s
Ï V - ^^ A^A^ ÏVc
~NUL~NUL -^ ~NL,I

Ul^~>L Ul^~>L

Thiss grammar generates the language L = {(a,)"(&,)n(c,)" : n > 0}, which is known

too be context-sensitive (Hopcroft and Ullman, 1979). Note that meta-rules will produce

sequencess of non-terminals U, while a variable TV can be instantiated with any string

'm{U*'m{U* : n > 0}.

Thee pseudo-rule N -̂—» Na, Nb, Nc indicates how many a's, fe's and c's the body

off the w-rule resulting from using this w-rule will have. The pseudo-rule NUL -̂ —

NL,NL, L is used to build w-rules that rewrite the sequence of (7's to its corresponding

non-terminals.. Table 2.1 shows the w-rules used for w-deriving a, a, b, b, c, c.

w-rule e

UUUU ^4> UUa, UUb, UUc
UUaUUa =ï Ua,a
UUb^>UUb^> Ub,b
UUcUUc ^=> Uc, c
UaUa => a
Ub^b Ub^b
Uc^c Uc^c

howw to derive it

Fromm TV - ̂ ~Na, ~Nb, We with TV := UU.

Fromm 'NUL -^ 7 7 1 , 1 with ÏV := U and X := a.
Fromm ~NUZ -^-+ ÏVX, X with TV := C7 and I := 6.

Fromm ~NUZ -?-> ÏVX, X with F := [/ and X := c.
Fromm f/L -̂—» L with L := a.

Fromm f/L —> L with L := 6.
Fromm UL -̂— Z, with L := c.

Tablee 2.1: W-rules used to w-derive string a, a, ft, 6.

Finally,, using the w-rules built in Table 2.1, the w-derivation of string a, a, 6, 6, c, c is:

f/a,, a, C/t/6, UUc

a,a,UUb,UUc a,a,UUb,UUc

a,a, a, Ub,b, UUc

a,a,b,b,a,a,b,b, UUc

a,a,b,b,Uc,ca,a,b,b,Uc,c => a,a,b,b,c,c

W-derivationss are represented as a tree. The tree corresponding to the derivation shown

inn Example 2.4.4 is given in Figure 2.2. Commas separate the units for replacing or

rewritingg symbols and are a key point in the definition of W-grammars.

Finally,, we define the string language generated by a W-grammar as follows:

UU UU UUa,UUa, UUb, UUc

26 6 ChapterChapter 2. Background and Language Modeling Landscape

UU U

UUaa UUb UUc

Uaa a Ub b Uc c

a b c c

Figuree 2.2: A derivation tree for the string a, a, b, 6, c, c.

2.4.5.. DEFINITION. Let W be a W-grammar. The string language L(\V) generated by
U'' is the set defined by:

L{W)=L{W)= {/? e T+ : there exists o e (T U iVT)* such that 5 ^ a ^ ' / 3 }

Intuitively,, a string (3 belongs to the language L{W) if and only if there is an a that
iss an instance of the start variable 5, and if there are rules =̂=> can be build from a to
derivee p.

Ass with CFGs, W-grammars define a tree-language:

2.4.6.. DEFINITION. Let W = (Vr, NT,T, N, - ^ , -?->) be a W-grammar and L(ir)
itss language. Let x be an element in L(W). A tree yielding x is defined as the w-
derivationn used for w-deriving x.

AA w-tree pictures the w-rules that have been used for deriving a string. The way in
whichh the w-rule has been obtained from the pseudo-rules and meta-rules remains hid-
den,, i.e., there is no way to deduce the way in which variables have been instantiated.
Thiss property is very important, and it also holds for our formalism. We come back to
thiss point in Chapter 4.

2.55 Further Probabilistic Formalisms

Inn the literature, many different approaches have been proposed for dealing with natural
languagee parsing. In this section we present a brief review of existing formalisms to
placee our approaches into a bigger context of probabilistic formalism. Since many
formalismss have been proposed, we can only provide a short overview of only some of
them.. There are many relations between the formalisms discussed in this section and
thee work presented in this thesis, but we only sketch the most fundamental relations
here.. More specific relations are described in Chapter 4, where we relate our formalism
too three specific formalisms: bilexical grammars, Markovian CFGs, and data-oriented
parsing. .

2.5.2.5. Further Probabilistic Formalisms 27 7

2.5.11 Dependency Based Approaches

Thee probabilistic link grammar model of Lafferty et al. (1992), grammatical trigrams,
mightt be considered the earliest work on probabilistic dependency grammars. It is a
generativee model that specifies a probability distribution over the space of parse/sen-
tencee pairs, and it is trained in an unsupervised way, by means of an approach similar to
thee Inside-Outside algorithm (Manning and Schütze, 1999). Another related proposal
iss Lynx (Venable, 2001). Like grammatical trigrams, Lynx are probabilistic models
basedd on link grammars (Sleator and Temperley, 1993, 1991). Eisner (1996), in his
modell C, uses a dependency grammar, with unlabeled links (as opposed to the labeled
linkss or connectors representing grammatical relationships between words of the link
grammars).. Carroll and Charniak (1992) focus on dependency grammars as well. They
definee an inductive algorithm to create the grammar, which performs incrementally: a
neww rule is introduced only if one of the sentences in the learning corpus is not correctly
analyzedd by means of the current rule set.

Headd Automaton Grammars. Alshawi (1996) describes lexicalized head automata,
aa formalism representing parse trees by means of head-modifier relations. For each
head,, a sequence of left and right modifier words is defined together with their corre-
spondingg relations. A head automaton grammar (HAG), is defined as a function that
definess a head automaton for each element of its (finite) domain. A head automaton is
ann acceptor for a language of string pairs (x, y) (the left and right modifiers), so that
thee language generated by the entire grammar is defined by expanding the special start
symboll $ into x%y for some {x, y), and then recursively expanding the words in strings
xx and y. A generative probability model is provided (Alshawi describes five parameter
types),, as well as a parsing algorithm which is analogous to the CKY algorithm (with
aa cost of 0(n5)). Eisner and Satta (1999) provide a translation from head automaton
grammarss to bilexical CFGs, obtaining a parsing algorithm for HAGs performing in
timee 0(n4). Moreover, if the HAGs belong to the particular subclass of split head
automatonn grammars, aO(n3) parsing algorithm is provided.

Eisnerr (2000) introduces weighted bilexical grammars, a formalism derived from
dependencyy grammars which can be considered a particular case of head automaton
grammars.. Weighted bilexical grammars extend the idea of bilexical grammars so
that,, instead of capturing black-and-white selection restrictions (say, either a certain
verbb subcategorizes a certain noun or not), gradient selection restrictions are captured:
eachh specific word is equipped with a probability distribution over possible dependents.
Then,, the task of the parser will be to find the highest-weighted grammatical depen-
dencyy tree given an input sentence. A new parsing algorithm for bilexical grammars (a
variantt of the one described in (Eisner, 1996)) is introduced, improving performance

288 Chapter 2. Background and Language Modeling Landscape

withh respect to the previous and usually used version. This work also shows how the
formalismm can be used to model other bilexical approaches. Bilexical grammars are
veryy important in this thesis; many of the grammars we build can be seen as bilex-
icall grammars. In Section 4.2.1, we show that bilexical grammars are a subclass of
PCW-grammars. .

(Lexicalized)) Tree Adjoining Grammars. Lexicalized tree adjoining grammars (or
LTAGs,, for short) present an example of a lexicalized probabilistic formalism. They
aree an extension of tree adjoining grammars (TAG) (Joshi, 1987)), for which a prob-
abilisticc model was devised in (Resnik, 1992). In LTAGs, each elementary structure
hass a lexical item on its frontier, the anchor. Schabes (1992) describes a very similar
probabilisticc model, and derives an unsupervised version of the inside-outside algo-
rithmm to deal with stochastic TAGs. The main difficulty lies in defining the initial
grammarr rules. Joshi and Srinivas (1994) use «-gram statistics in order to find an el-
ementall structure for each lexical item. Then, richer structures can be attached to lex-
icall items, creating supertags, so that each elementary tree corresponds to a supertag,
whichh combines both phrase structure information and dependency information in a
singlee representation.

Thee disambiguation performed by supertags can be regarded as a preliminary syn-
tacticc parse (almost-parsing), which filters an important number of elementary trees
beforee the conventional steps of combining of trees by means of adjunction and sub-
stitutionn operations. Srinivas (1997) gives additional models and results. It is not our
intentionn to provide full details about the extensive literature on this formalism, but
wee will add some pointers about some aspects of TAGs that are specially interesting
inn relation to our own work. Nederhof et al. (1998) propose an algorithm for effi-
cientlyy computing prefix probabilities for a stochastic TAG. Satta (1998) provides an
excellentt review of techniques for recognition and parsing for TAGs. Eisner and Satta
(1999)) describe a proposal of a more efficient algorithm for parsing LTAGs. Xia et al.
(2001)) describe a methodology to extract LTAG grammars from annotated corpora,
andd Sarkar (2001) explores state-of-the-art machine learning techniques to enable sta-
tisticall parsers to take advantage of unlabeled data, by exploiting the representation
off stochastic TAGs to view parsing as a classification task. Emphasis is given to the
usee of lexicalized elementary trees and the recovery of the best derivation for a given
sentencee rather than the best parse tree.

Lexicalizedd Context Free Grammars. Eisner and Satta (1999) define a bilexical
contextt free grammar as a CFG in which every non-terminal is lexicalized at some ter-
minall symbol (its lexical head), which is percolated from the constituent's head child
inn the parse tree. Such grammars have the obvious advantages of encoding lexically

2.5.2.5. Further Probabilistic Formalisms 29 9

specificc preferences and controlling word selection, at the cost of a significant incre-
mentt in size; the number of rules grows at a rate of the square of the size of the terminal
vocabulary.. As a consequence, the increment in the grammar size makes standard con-
textt free grammar parsers quite inefficient. For example, CKY-based variants perform
att 0(n5). Eisner and Satta (1999) present a 0(n4) recognition algorithm for bilexical
CFGss (in CNF), plus an improved version which, while having the same asymptotic
complexity,, is often faster in practice. By recursively reconstructing the highest proba-
bilityy derivation for every item at the end of the parse, this algorithm can be straightfor-
wardlyy converted into an algorithm capable of recognizing stochastic bilexical CFGs,
wheree each lexicalized non-terminal has attached a probability distribution over all
productionss with the same non-terminal as a left-hand side.

Sattaa (2000) defines lexicalized context free grammars (LCFG) as CFGs in which
everyy non-terminal is lexicalized at one or more terminal symbols, which are perco-
latedd from the non-terminals in the production right-hand side. Then, the degree of
lexicalizationn of a LCFG can be defined, so that bilexical CFGs have a degree of lexi-
calizationn of 2. Their major limitation is that they cannot capture relationships involv-
ingg lexical items outside the actual constituent, in contrast with history-based models.

2.5.22 Other Formalisms

Stochasticc Unification Formalisms. Brew (1995) presents a stochastic version of
thee head-driven phrase structure grammar (HPSG) formalism which allows one to as-
signn probabilities to type-hierarchies. Re-entrancy poses a problem: in some cases,
evenn if two features have been constrained to the same value by unification, the prob-
abilitiess of their productions are assumed to be independent. The resulting probability
distributionn is then normalized so that probabilities sum to one, which leads to prob-
lemss with grammar induction, as pointed out by Abney (1997). This latter work de-
finess stochastic attribute-value grammars, shows why one cannot directly transfer con-
textt free grammar methods to the attribute-value grammar case (which is essentially
whatt was done in (Brew, 1995)) and gives an adequate algorithm for computing the
maximum-likelihoodd estimate of their parameters using Monte Carlo sampling tech-
niques,, although it is yet unclear whether this algorithm is actually practicable, due
too its computational costs. Johnson et al. (1999) argue that this algorithm cannot be
usedd for realistic-size grammars, and instead propose two methods based on a different
typee of log-linear model, Markov random fields. They apply these algorithms to the
estimationn of the parameters of a stochastic version of a lexical-functional grammar.

Dataa Oriented Parsing. Bod (1995)'s approach is different from other stochastic
approachess in that it skips the step of inducting a stochastic grammar from a corpus.

300 Chapter 2. Background and Language Modeling Landscape

Insteadd of a grammar, the parser uses a corpus annotated with syntactic information,

soo that all fragments (i.e., subtrees) in this manually annotated corpus, regardless of

sizee and lexicalization, are considered as rules of a probabilistic grammar. The un-

derlyingg formalism in DOP is called stochastic tree substitution grammars (STSG). In

Sectionn 4.2.3, we show that STSGs are a subclass of PCW-grammars.

Forr the time being, we will describe an STSG as a device that constructs the entire

treee for an input sentence as a combination of tree fragments, in such a way that the

productt of the probabilities is maxima!. During the training procedure, a parameter

iss explicitly estimated for each sub-tree. Calculating the score for a parse in principle

requiress summing over an exponential number of derivations underlying a tree, which

inn practice is approximated by sampling a sufficiently large number of random parsing

derivationss from a forest, using Monte Carlo techniques.

Markoviann Rules. Markovian rules have been successfully used for natural lan-

guagee parsing. The methodology followed by a Markovian rule consists in attaching

headwordss to each syntactic category in the parse tree, to incorporate lexical probabil-

itiess into a stochastic model. Markovian rules are studied in detail in Section 4.2.2.

AA remarkable and highly popular parser that uses Markovian rules as a component

iss Collins's parser. Initially described in (Collins, 1996), it was improved in (Collins,

1997),, and fully described in (Collins, 1999; Bikel, 2004). Collins uses a supervised

learningg approach, with the PTB as a knowledge source, for estimating the parame-

terss of his model. The key of his proposal is a well motivated trade-off between the

expressivenesss of the statistical model and the independence assumptions that must

bee made for assuring a sound estimation of the parameters given the corpus. In the

model,, a parse tree is represented as a sequence of decisions corresponding to a head-

centeredd top-down derivation of the tree. Independence assumptions are linguistically

motivatedd and encoded in the X-bar schema, subcategorization preferences, ordering

off the complements, placement of adjuncts, and lexical dependencies, among others.

Alll these preferences are expressed by means of probabilities conditioned on lexical

heads.. The generative model involves the estimation of the probability of each rule

fromm the PTB, i.e., the probability of generating the right part conditioned on the left

part.. Collins decomposes this probability into three factors: (1) accounting for the

probabilityy of generating the head H, (2) given the parent, the probability of generat-

ingg the components to the left, and (3) the probability of generating the components

too the right. Independence assumption is introduced in order to make the model feasi-

ble.. This basic model is further extended by introducing distances (taking into account

somee idiosyncratic features). The parser was trained with the PTB. (Charniak, 1997)

presentss a similar proposal which combines head word bigram statistics with a PCFG.

Thee system adds a new useful statistic to guide the parser decisions: the type of the par-

2.6.2.6. Approaches Based on Machine Learning 31 1

entt will also condition the probability of a rule. When parsing a sentence, the system
makess no attempt to find all possible parses, but it uses techniques presented in (Cara-
balloo and Charniak, 1998) to select constituents that promise to contribute to the most
probablee parses (according to the simple probabilistic CFG distribution). However, as
thee probability distribution is different, these techniques allow us to ignore improbable
parses.. Moreover, the resulting chart contains the constituents along with information
onn how they combine to form parses. The constituents are assigned the probability
givenn the lexicalized model, and the parser returns the parse with the overall highest
probabilityy according to this full distribution.

Alll these formalisms give a clear picture of all the grammatical formalism that were
definedd and used for language modeling. In Chapter 4 we present another formalism.
Thee relations between our formalism and the most representative formalism presented
abovee are presented in Chapter 4.

2.66 Approaches Based on Machine Learning

Thee approaches to language modeling presented in the previous section are mainly
basedd on a formal grammatical device, i.e., most of them have some kind of grammars
thatt generates and accepts sentences; the syntactical analysis of a sentence is the re-
sultt of such a derivation. Clearly, there exists a wide variety of approaches based on
whatt is commonly know as machine learning techniques. Under this perspective lan-
guagee modeling is treated as a pattern recognition problem, and hence, not necessarily
relatedd to the theory of formal languages. In this section, we present the most repre-
sentativee approaches. It is also difficult to draw hard conclusions on separation line
betweenn the "formal" approaches and the "machine learning" approaches because usu-
allyy approaches combine the two. In this section we group models whose underlying
formalismm is very simple, e.g., context free grammar, and that heavily rely on machine
learningg (ML) techniques for achieving good performance in parsing.

Increasee Context Sensitivity. The systems Pearl (Magerman and Marcus, 1991) and
Pickyy (Magerman and Weir, 1992) use context-sensitive derivation probabilities. The
basicc idea is to try and maximize the probability of a correct derivation for each of the
sentencess in the corpus (as opposed to the inside-outside idea of maximizing the addi-
tionn of the probabilities of the sentences in the corpus given a grammar). In Pearl, for
instance,, the application probability of a rule is modeled as a conditional probability,
conditionedd on the context in which the mother category appears. A chart parser (PUN-
DIT)) is employed, and probabilities are estimated by simply counting the applications
off the rules in the ATIS portion of the PTB.

32 2 ChapterChapter 2. Background and Language Modeling Landscape

Historyy Based Grammars. Black et al. (1993) present a more general framework
calledd history based grammars. In this system, the term history is equivalent to con-
text:: the application of a rule is conditioned on arbitrary aspects of the context of
thee parse tree (the context information being both the dominating production and the
syntacticc and semantic categories of the words in the prior derivations. In his model,
decisionn trees (see (Jelinek et al., 1994)), are trained from a treebank (computer manu-
alss domain) and they are used to score the different derivations of sentences produced
byy a hand-written broad-coverage feature-based unification grammar (672 rules, 21
features). .

Hermjakobb and Mooney (1997) present a knowledge and context-based system
(CONTEX)) which, applying machine learning techniques, uses examples to generate
aa deterministic shift-reduce parser. The learning algorithm uses an extended version of
thee standard ID3 model (Mitchell, 1997) for more general hybrid decision structures,
inn combination with decision lists; it starts by assigning to each parse tree from the
trainingg corpus a sequence of shift-reduce parsing operations needed to produce the
tree.. In order to learn the specific action to be performed at any point of the derivation,
thee system relies heavily on an enriched context (to the left and right of each word),
encodedd in features which include morphological, syntactic, and semantic information
(thee previously built structure, a subcategorization table, and a knowledge base with
semanticc information about the words in the lexicon. The methodology is evaluated
onn a subset of sentences from the WSJ (only the ones fully covered by the 3000 most
frequentt words in the corpus).

Probabilisticc LR Parsing. The standard LR parsing methodology performs a left-to-
rightt scan of the input and constructs a rightmost derivation in reverse. Ng and Tomita
(1991)) extend the well-known generalized LR parsing algorithm from (Tomita, 1996)
byy attaching probabilities to the nodes of the graph structured stack which constitutes
thee kernel of the algorithm. Part of their proposal deals with how to consistently main-
tainn these probabilities (initially derived from the probabilities attached to the rules of
thee PCFG) considering the three operations of the graph-structured stack (merging, lo-
call ambiguity packing, and splitting). However, it is not possible to use an algorithm
likee Viterbi in order to compute the most probable parse.

Otherr LR parsing approaches use PCFGs as a source including (Wright, 1990;
Wrightt and Wrigley, 1989; Wright et al., 1991). In all of them, an LR parse table
iss derived from the context free grammar but, in addition, the rule probabilities are
distributedd among sets of actions in the LR table. The distribution is carried out so that
itt can be assured that the product of the probabilities associated to those LR actions
performedd in the derivation of any analysis will be exactly the same as the probability
whichh would have been assigned to this analysis by the PCFG.

2.6.2.6. Approaches Based on Machine Learning 33 3

Carroll (1993) discusses the latter as wel! as other methodologies, and presents,
togetherr with Ted Briscoe, a more ambitious proposal. They start from a unification
grammarr (the ANLT grammar), from which a context free backbone grammar is au-
tomaticallyy derived, together with an associated residue containing the dependencies
betweenn features and values not contained in the context free grammar. The parser
mustt associate the reduce operations of the LR table with a filter based on the unifica-
tionn of the features contained in the residue. The backbone grammar generated from
thee ANLT grammar had 575 categories and more than 2,000 productions, and an LR
parsee table was automatically generated for this grammar. Unlike (Ng and Tomita,
1991),, the probabilistic model consists in attaching probabilities not to the context free
rules,, but to the actions in the LR table. The model is then more context sensitive. In
thee experiments described, the learning is supervised, the training corpus consisting of
aa set of LR parse histories (with human intervention to correct the transition in the LR
parsee table). Inui et al. (1998) build on Bricoe and Carrol's work, and improve it by
formalizingg their model in such a way that it provides probabilistically well-founded
distributions.. Although they focus on the formal and qualitative aspects of the model,
theyy show how their refinement is expected to improve parsing performance. It is
worthh noting that recent work by Nederhof and Satta (2002), which investigates the
problemm of extending parsing strategies to probabilistic parsing strategies. They con-
cludee that LR parsing cannot be extended to become a probabilistic parsing strategy,
becausee it lacks the property denoted as strong predictiveness property (SPP). In other
words,, probabilistic LR parsing algorithms might not preserve all the properties of the
PCFGG probability distributions, which means that LR parsers may sometimes lead to
lesss accurate models than the grammars from which they are constructed.

Transformationn Based (Error-Driven) Learning (TBL). Brill (1993) has applied
TBLL to grammar induction and parsing. The approach consists in learning a ranked
listt of transformational rules so that, starting from an initial imperfect binary right-
branchingg tree for a sentence, the sequential application of each rule may transform
aa piece of the original tree, and in the end obtain a parse tree with fewer errors. The
firingfiring of each rule is conditioned on a context of one or two tags, so that the learning
processs (performed through a greedy search according to the largest error decrease
criterion)) needs quite a few number of sentences (150 /250 sentences for the ATIS and
WSJJ corpora) for obtaining the same accuracy of contemporary systems.

Instance-Based,, Memory Based or Case-Based Learning. Instance-based algo-
rithmsrithms (IBL) are a supervised way of inductively learning from examples, that are taken
intoo account in order to classify new examples by analogy (the most similar instances
aree retrieved from memory, and used for extrapolation). Memory-based learning is a

34 4 ChapterChapter 2. Background and Language Modeling Landscape

directt descendant of the classical k-NN {k nearest neighbor) approach to classification.

Simmonss and Yu (1992) apply the idea to a context sensitive shift reduce (SR) parser.

SRR parsing is suitable for this classification proposal, since it breaks the parsing pro-

cesss into simple parse actions (shift, reduce, and fin), allowing the construction of an

examplee base of parse states with their correct parse actions. A parse action is assigned

too each parse state on the basis of the on information of the parse stack and the input

buffer.. The parser works on the level of POS tags and windows over the text with a

contextt of five words to the left and to the right.

Thee ILK Group at Tilburg University has developed the TiMBL (Tilburg memory-

basedd learning) environment, a general instance-based algorithm which compresses of

thee base of examples into a tree-based structure, the IGTree (see (Daelemans et al.,

1997)),, which in turn is used to classify new examples. The memory-based algorithms

implementedd in the TiMBL package have been successfully applied to a large range

off NLP tasks, including shallow parsing (see (Daelemans et al., 1999)) and more re-

cently,, full parsing: Veenstra and Daelemans (2000). They construct a memory-based

shiftt reduce parser, inspired by (Simmons and Yu, 1992). Cardie (1993a) addresses the

lexical,, semantic, and structural disambiguation of full sentences, within an informa-

tionn extraction environment. In a supervised training phase, the parser creates a case

basee of domain-specific context-sensitive word definitions. Then, given an unknown

wordd and the context in which it occurs, an eventual robust parser could retrieve the

definitionss from the case base in order to infer the necessary syntactic and semantic

featuress for the unknown word and then continue processing the text. The case re-

trievall algorithm is basically a k-NN algorithm, but it assumes all features are equally

importantt for learning each type of knowledge, which, intuitively does not seem to be

true.. Therefore, the system takes advantage of decision trees for identifying the rele-

vantt features to be included in the k-NN case retrieval; the approach is fully described

inn (Cardie, 1993b).

Decisionn Tree Models. Magerman (1995b) has been a pioneer in the use of decision

treess for syntactic parsing: he explores a wide variety of possible conditioning infor-

mationn and uses a decision-tree learning scheme to pick those analyses that seem to

givee the most purchase. Three different decision-tree models are used for (1) the POS

tagging,, (2) the node expansion, and (3) the node labeling. The decisions are based on

lexicall and contextual information of the parent and the child of the node.

Probabilisticc Feature Grammars. Goodman (1997, 1998) presents probabilistic

featuree grammars in which each non-terminal is represented as a vector of feature-

valuee pairs. Then, assuming binary-branching rules, the probability of the application

off a rule can be decomposed as the incremental prediction of the feature values of each

2.6.2.6. Approaches Based on Machine Learning 35 5

off the two members of its right-hand side. As all conditioning variables are encoded
throughh features, different factors such as lexical dependencies or distance features
cann be dealt with in a unified way. Probabilistic feature grammars put the emphasis
onn parameter estimation: having chosen the features, the parameters of the model are
specifiedd by choosing an order for the features being predicted and then applying the
independencee assumptions and choosing a back-off order for smoothing. The model
iss tested on the WSJ portion of the PTB, where the following features are considered:
thee non-terminal label, the headword, the head POS, distance features, and additional
contextt (modifier non-terminals generated at earlier stages of the derivation).

Maximumm Entropy Models. The use of maximum entropy (ME) models, has be-
comee very popular lately in various areas of NLP. Rosenfeld (1994) applied it to
speechh recognition tasks and Berger et al. (1996) to automatic translation, Ratnaparkhi
(1998)) applies it to several tasks: segmentation, morpho-syntactic disambiguation, PP-
attachment,, and syntactic parsing. Ratnaparkhi (1999) describes the latter application,
whichh is also an example of lexicalized parser. Maximum entropy (ME) models over-
comee the limitations of independence among the variables. Without the need for an
explicitt grammar, they can learn, from a labeled set of examples, the model which has
maximumm entropy out of all the models compatible with this set of examples. In other
words,, given a collection of facts, ME models choose a model which is consistent with
alll the facts, but otherwise as uniform as possible. The basic element of any ME model
aree the features, binary-valued functions with two parameters, a context and an output.

Ratnaparkhii trains his system on a set of templates that are attached to each of the
parsingg procedures. These templates incorporate the type of factors the author consid-
erss relevant for the analysis: constituent headwords, headword combinations, gener-
alizationss (morpho-syntactic categories, constituent syntactic categories), and limited
formss of look-ahead. The learning process is very simple, it is just counting, so that
thee features that appear less than 5 times in the corpus are rejected. Using 40,000 sen-
tencess from the PTB corpus, 1,060,000 features are incorporated in the model (most of
themm lexicalized), and each one is attached to one of the procedures.

Charniakk (2000) presents a parser based upon a probabilistic generative model, an
extensionn of the ones described above (Charniak, 1997; Collins, 1997). The prob-
abilisticc model is maximum-entropy-inspired, since it reformulates the basic maxi-
mumm entropy probability function such that it considers the conditioning information
off Markov grammar statistics as features. Moreover it is ultimately smoothed by means
off deleted interpolation (instead of the standard feature selection of pure ME models).
Charniakk (1997) uses his bottom-up best-first chart parser to generate the candidate
parses,, and his top-down generative model to evaluate them (in a process which, for
eachh constituent, first guesses its preterminal, then its lexical head, and last its expan-

366 Chapter 2. Background and Language Modeling Landscape

sionn into further constituents).

Otherr ML-based Models. The idea in explanation-based learning (EBL; (Rayner
andd Cater, 1996)) is that some of the grammar rules (specially in specific domains)
tendd to combine much more frequently in a certain way than others. Given a suffi-
cientlyy large corpus parsed by the original (general) grammar, it is possible to learn the
commonn combinations of rules and chunk them into macrorufes; Samuelsson (1994),
forr example, defines an entropy threshold for automatically deriving these macrorules.
Thee result is a specialized grammar, with a larger number of rules but with a simpler
structure.. In practice, parsing is shown to be faster — 3 to 4 times speed up for an
LRR parser — at a price of only 5% coverage loss, using a training corpus of a few
thousandd utterances. Zelle and Mooney (1996) describe a methodology to automate
thee construction of parsers based on another ML-based learning methodology, induc-
tivee logic programming (ILP). They have developed a system, CHILL, which begins
withh a well-defined parsing framework, shift-reduce parsing, and uses ILP to learn con-
troll strategies within this framework, inductively learning a deterministic shift-reduce
Prologg parser that maps sentences into parses. CHILL represents a highly flexible ap-
plicationn of ILP, allowing the induction over unbounded lists, stacks, and trees. They
describee the application of the system to the automatic induction of parses that map
naturall language database queries into an executable logical form. In addition, there
hass been research using both neural networks and symbolic induction to iearn parsers
thatt produce case-role analyses (Miikkulainen, 1996). In NLP, neural networks have
mostlyy been used basically to address low-level problems, although there are examples
off applications to more complex problems such as parsing (sometimes in combination
withh symbolic approaches such as the above mentioned example).

Parserr Combination and Reranking. A methodology for combining three input
parserss in order to improve parsing results is described by Henderson and Brill (1999).
Thee three parsers combined are the systems described in (Collins, 1997; Charniak,
1997;; Ratnaparkhi, 1997). The two techniques used for combining parsers are parser
hybridizationn and parser switching. The first one is based on combining the substruc-
turess of the three input parsers in order to produce a better parse.

Twoo hybridization strategies are used, namely constituent voting (a non-parametric
versionn where the parsers vote on the membership of a certain constituent to the final
parse)) and naive Bayes classifiers. The second technique, parser switching, chooses
amongg entire candidate parsers. Again, two strategies are tested, a non-parametric ver-
sionn and a parametric version (naive Bayes again). Experiments on the WSJ portion of
thee Penn Treebank show that all the combining techniques accomplish better accuracy
thann any of the single three parsers, and that the method is robust, as incorporating of

2.6.2.6. Approaches Based on Machine Learning 37 7

aa poorly performing parser (a nonlexicalized PCFG parser) hardly affects the results.
Collinss (2000) proposes two machine-learning methodologies for reranking the

outputt of a given probabilistic parser. The idea is that in a first step the base parser re-
turnss a set of candidate parses (initially ranked according to the probabilities the parser
hass attached to them), and then a second step tries to improve this ranking, considering
additionall features of the trees. Both approaches are discriminative, since they aim at
optimizingg a criterion which is directly related to error rate. The first reranking tech-
niquee in based on a generalization of PCFGs, Markov random fields (Abney, 1997),
whilee the second technique is based on boosting of ranking techniques (Schapire and
Singer,, 1999) (here the ranking is a simple binary distinction between the highest scor-
ingg parse and the other ones). The methodology was evaluated on the PTB, including
featuress ranging from rules or bigrams (pairs of non-terminals to the left and right of
thee rules head), to features involving the distance between head words. The first ap-
proachh was too inefficient to run on the full data set, so only the boosting approach
couldd be evaluated.

Collinss (2001) gets more deeply into the differences between parametric maximum
likelihoodd estimation methods (explicitly modeling the distributions) and distribution-
freee methods (models assuming that the training and test examples are generated from
thee same distribution, although it is unknown, the results hold across all distributions).
Twoo methods are proposed: the first one, as in (Collins, 2000), is an application of
thee Adaboost algorithm to re-rank the output of an existing parser, while the second
onee uses the perceptron or support vector machines (SVM) algorithms. This second
methodd is based on the representation of parse trees through tree kernels (a mecha-
nismm allowing one to convert them into efficiently treatable high-dimensional feature
spaces).. It is described in more detail in (Collins and Duffy, 2001), and the voted
perceptronn is applied on the ATIS portion of the PTB, for reranking the results of a
PCFG.. Collins and Duffy (2002) extend the results to the WSJ portion of the PTB,
startingg from the parses produced by model 2 of (Collins, 1999). The tree kernel al-
lowss the representation of all subtrees in the training data (the same representation used
byy DOP), so that the perceptron algorithm uses both the result from the base model as
welll as the subtrees information to rank the trees. The method accomplishes improve-
mentss of 0.5% and 0.6% respectively in labeled precision and recall with respect to the
basee model.

Carrerass et al. (2002) present an approach to partial parsing (though potentially ap-
plicablee to full parsing) which is based on (1) using local classifiers to recognize partial
parsingg patterns, and (2) using global inference methods to combine the results of these
classifierss in a way that provides a coherent inference that satisfies some global con-
straints.. Although such ensembles of classifier techniques had already been explored
(seee for instance (Punyakanok and Roth, 2000)), this work applies it to a deeper and

388 Chapter 2. Background and Language Modeling Landscape

moree difficult level of partial parsing, embedded clause identification. This way, the
bestt decomposition of a sentence into clauses is selected by means of a dynamic pro-
grammingg scheme which considers previously identified partial solutions, and applies
learningg at several levels (for detecting beginnings and ends of potential clauses and for
scoringg partial solutions, including three different scoring functions). The Adaboost al-
gorithmm with confidence rated predictions (see (Schapire and Singer, 1999) is used as
learningg method. The approach is evaluated using the CoNLL-2001 competition cor-
puss (Tjong Kim Sang and Déjean, 2001), outperforming the best system presented in
thiss competition.

Summingg up, this chapter shows that there exists a wide variety of approaches and
formalismss that focus on natural language syntax. The classification we presented tries
too separate the "formal" approaches from the "machine learning" approaches. Clearly,
itt is hard to classify parsing approaches into these two categoriess because they usually
combinee the two approaches. In the rest of the thesis we advocate an approach to
naturall language parsing that is based on the machinery provided by formal languages.
Machinee learning techniques are not used for the language modeling task, but they are
usedd for the inference of the formal devices. The distinction is small but important. It
iss like using a PCFG as a language model and using machine learning for learning the
PCFGG itself.

Chapterr 3

Thee Role of Probabilities in Probabilistic Con-
textt Free Grammars

3.11 Introduction

Probabilitiess have been used in many aspects of natural language processing. In the
contextt of CFGs, probabilities have been used to define a probability distribution over
thee set of trees defined by a CFG. The resulting formalism, probabilistic context free
grammarss (PCFGs), extends context free grammars by assigning probabilities to the
productionn rules of the grammar. PCFGs have been successfully used as the formal-
ismm underlying many approaches to natural language parsing, see e.g., (Eisner, 1996;
Charniak,, 1995; Collins, 1999; Eisner, 2000; Klein and Manning, 2003), to name just
aa few. In such approaches, probabilities have a very specific role: they are used as a
filteringfiltering mechanism. In order to clarify this, we can think of the parsing procedure for
aa PCFG as a two-fold procedure. Suppose a sentence is given. First, a set of candidate
treess is proposed, and, second, a tree is non-deterministically chosen from the set of
candidatee trees. The selected tree is returned as output.

CFGss define the set of candidate trees as the set containing all trees that yield the
givenn sentence. In contrast, PCFGs are used in the parsing context to define the set of
candidatee trees as the set of trees that yield the given sentence with maximum probabil-
ity.. In other words, probabilities are used in the parsing framework to reduce the set of
candidatee trees suggested by the bare CFG. The size of the set of candidate trees gives
ann impression of how ambiguous a sentence is for a given input. It is well-known that
ambiguityy is a serious problem for parsers; in some cases, the number of parse trees
assignedd to a sentence may grow exponentially in the length of the sentence (Wich,
2000,, 2001), and, consequently, probabilities play a very important role in parsing:
theyy are used to decrease the size of the set of candidate trees, and consequently, they

39 9

400 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

decreasee the amount of ambiguity.
Thee role probabilities play in the context of formal languages has been widely stud-

iedd in the literature, but the focus of such studies was not on the ability to reduce am-
biguity.. Properties of formal languages regarding consistency (Booth and Thompson,
1973;; Wetherell, 1980; Chaudhuri and Rao, 1986), learnability conditions (Horning,
1969),, parameter estimation (Manning and Schiitze, 1999), etc, are very well-known.
However,, very little is known about the power of probabilities as a mechanism for
ambiguityy reduction.

Wee are interested in the following research issues: how important and how power-
full are probabilities as a filtering mechanism? Clearly, different filtering mechanisms
exist;; as an example, suppose that a PCFG G is given and its probabilities are used
too select a subset T' of trees in the tree language generated by G. It may be the case
thatt there exists a non-probabilistic CFG G' such that its tree language is equal to T.
Clearly,, if such a grammar G' exists for all PCFG G"s, then probabilities are not really
needed.. In contrast, if that is not the case, the role probabilities play in parsing be-
comess relevant, and different questions than those answered in (Booth and Thompson,
1973;; Wetherell, 1980; Chaudhuri and Rao, 1986) need to be addressed.

Inn this chapter we focus on answers to basic questions regarding the use of proba-
bilitiess as a filtering mechanism. We pay special attention to the following questions:

1.. Is it possible to select the same set of candidate trees as with a PCFG using a
vanillaa context free grammar? The question is relevant because, if the answer
iss affirmative, this means that for a given PCFG there is a CFG that specifies
thee same set of candidate trees as the PCFG for all sentences; as a consequence
probabilitiess would not really be essential.

2.. Can we decide whether a given PCFG filters out all but one tree for all sentences
inn the language? Answering this question is equivalent to saying that the given
PCFGG has solved all ambiguities in the language accepted by the grammar.

3.. What is the meaning of the probabilities associated with the set of candidate
trees?? Can this meaning be used in a useful manner?

Inn this chapter, we answer all these questions. We show

1.. that probabilities cannot be mimicked by rules, i.e., their use is fundamental
fromm a formal language perspective: whenever used as a filtering mechanism,
probabilitiess can define a set of trees not capturable by CFGs,

2.. that it is not possible to decide whether a PCFG filters all trees but one for all sen-
tences,, i.e., it is not possible to decide whether the filtering mechanism resolves
alll ambiguities,

3.2.3.2. Maximum Probability Tree Grammars 41 1

3.. that the probability measure assigned to the selected set of candidate trees can be
interpretedd as the probability of having captured in the set of candidate trees the
correctt tree. Moreover, this semantics can be used to asses the quality of PCFGs.
Wee also show that under certain circumstances, which we describe in detail, it
iss advisable to add to the set of candidate trees, trees that do not have maximum
probabilityy in order to augment the probability of capturing the correct tree.

Thee chapter is organized as follows. Section 3.2 presents some background notation,
Sectionn 3.3, 3.4, and 3.5 address questions 1, 2, and 3 listed above respectively. Finally,
Sectionn 3.6 concludes the chapter.

3.22 Maximum Probability Tree Grammars

Inn this section we define the basic concepts we need in our discussion. Let G —
(J",, NT, S, R) be a context free grammar. For our purposes, CFGs play two very im-
portantt roles. The first one is to provide sentences with a syntactic explanation. As
iss well-known, this syntactic explanation is given by the way in which a sentence is
rewrittenn from the start symbol. Formally, let G be a CFG and x a sentence in T*. A
left-derivationleft-derivation t(x) is a sequence of rules (n , . . . , rm) such that

SS Q en Q a2 ^ ^ am,

wheree a, e {T U NT)*, am = x, and r* is a rule in R that rewrites the left-most
non-terminall of a^\. The set of all left-most derivations, called the tree language, is
denotedd by T(G), and x is called the yield of t(x).

Thee second main role of CFGs is to define the set of sentences that are considered
too be grammatical by the grammar. More precisely, let G be a CFG. The language
acceptedaccepted by G (notation: L(G)) is L(G) = {x : T(x) <E T(G)}.

Inn order to use CFGs to help us understand natural language, a procedure for finding
derivationss has to be defined. Let G be a CFG and x a sentence. A complete parser is
aa procedure that computes the following set:

T(x)T(x) = {t(x) e T{G)},

whilee a parser is a procedure that, besides computing T(x), chooses one tree non-
deterministicallyy from it. Formally,

Parser(x)Parser(x) = random(T(x))

wheree random(X) is a function that selects an element from the set X assigning to

422 Chapter J. The Role of Probabilities in Probabilistic Context Free Grammars

eachh element the same probability of being chosen.' For a given grammar G and a
sentencee x in L{G) there may be multiple trees yielding the same sentence x.

Inn some cases the size of the set T(x) grows exponentially in the length of x (see
(Wich,, 2000) for an example), and many of the trees in T(x) are trees that we do not
wantt as an answer. These undesired trees need to be filtered out from the set T(x).
Onee way to achieve this is to use probabilistic context free grammars. A probabilistic
contextcontext free grammar (PCFG) is a pair (G,p), where G is a CFG and p a positive
functionn defined over the set of rules such that for all A in NT:

ae(A'UAT)* *

Evenn though probabilities in a PCFG are defined over the set of rules, they are used to
definee a probability distribution p over the set of derivations T(G). The probability of
aa tree in T(G) is defined as follows. Let (G,p) be a PCFG, and let t(x) — (r},..., rm)
bee a tree in T(G). The probability assigned to t(x) is p(t(x)) = p{r\) ... p(rm). In
words,, the probability assigned to a tree is the product of the probabilities assigned to
thee rules building up the tree.

Thee distribution generated by the probabilities is used to select a subset of trees
fromm the set of all possible trees yielding a sentence. A procedure that computes this
subsett is called a probabilistic parser. More formally, let G be a PCFG and let x be
aa sentence in L(G). A probabilistic complete parser for a grammar G is a procedure
thatt takes as input a sentence in the language and computes the following function:

PParser(x)PParser(x) = (r(x) 6 T{G) : argmax{p(i(:r))}}.
t(x) t(x)

Finally,, a probabilistic parser is defined as the non-deterministic choice of a tree re-
turnedd by a probabilistic complete parser. We can see a probabilistic parser as a two
componentt algorithm, one implementing a probabilistic complete parser and a second
implementingg a non-deterministic choice.

3.2.11 Filtering Trees Using Probabilities

Inn this subsection, we consider the class of languages induced by probabilities when
wee consider them as a filtering mechanism. Let G be a PCFG. The set of most probable
treestrees produced by G (noted M(G)) is a subset of T(G) defined as follows:

M{G)M{G) = (J PParser{x).
xeL{G) xeL{G)

'Notee that non-deterministic choice and uniformly distributed choice are not the same concept, non-
determinismm implies that there is no information about the underlying distribution, which clearly is
nott the case when using a uniform distribution. In the context of this thesis we use the two terms
indistinguishably. .

3,3.3,3. Expressive Power 43 3

Notee that there may be more than one tree bearing maximum probability for a given
sentence.. We allow for this: /17(G) contains them all. Note also that M(G) is a subset
off T[G). Furthermore, the sets M{G) and T(G) are the same set if, and only if, for all
sentencess all trees in L(G) share the same probability mass.

Basedd on the set of most probable trees M{G), we define a new class of tree lan-
guages.. The idea behind this class of languages is that they are like PCFGs but instead
off taking the whole set of trees they only take the most probable ones. More formally,
aa maximum probability tree grammar (MPTG) is a PCFG where its tree language is
definedd as the set of most probable trees, while the set of strings accepted by the MTPG
remainss the same.

Notee that all state-of-the-art parsers based on PCFG filter trees out in the way we
havee just defined. They return the trees yielding a given sentence that bear maximum
probability,, and thus, they, implicitly define an MPTG.

3.33 Expressive Power

Wee are interested in understanding what kind of expressiveness MPTGs have. In par-
ticular,, can they be captured by CFGs? More concretely, does the mechanism of re-
tainingg only trees with maximum probability defined in MPTGs define tree languages
thatt cannot be captured by CFGs? In this section we show that the set of trees iden-
tifiedd by a probabilistic CFG plus a maximization procedure cannot be generated or
specifiedd directly by any CFG. In other words, we prove that probabilistic CFGs plus
aa maximization step define tree languages that are beyond the expressive power of the
CFGs.. To put it more formally: MPTGs are not strongly equivalent to CFGs. That is,
thee tree language generated by probabilistic context free grammars plus a maximiza-
tionn algorithm is beyond context free grammars. This section is devoted to prove this
statement,, which is formally expressed in the following theorem.

3.3.1.. THEOREM. MPTGS are not strongly equivalent to CFGs.

Ourr strategy for proving the above theorem is based on a context free inherently am-
biguouss language. Recall that a context free inherently ambiguous language L is a lan-
guagee such that all CFGs generating it have at least one string in L that has two trees
yieldingg it. What we present below is an inherently ambiguous language generated by a
PCFGG that assigns a unique tree bearing maximum probability to each string in the lan-
guage.. As a consequence, the MPTG induced by the grammar is unambiguous, but the
treee language cannot be captured by a CFG because the language is inherently ambigu-
ous,, i.e., for all CFGs generating it, there is at least one sentence being yielded by two
differentt trees. Let us make matters concrete now, the grammar G = (T, NT, S, R) we

444 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

SS —>2/3 AB S —>i/3 52

.44 -»1 / 2 a,46 S2 -»i/2 a52rf

.44 -»1 / 2 aft 52 -> i / 2 aCYZ

B^B 1̂/21/2cBdcBd C-*l/2bCc
BB -»1 / 2 erf C -*i/2 6c

Figuree 3.1: An MPTG for an inherently ambiguous language.

suggestt is defined as follows. Put T — {a, 6, c, d}, JVT = {S\ 52, .4, B, C}, and let the

sett of rules R be as described in Figure 3.1.

Inn order to better understand the complexity of G we split it into two different

grammarss Gi = (Ti, NTU S, i?0 and G2 - (T2, NT2, S,R2), where

1.. 7j = {a,6,c,d} ,

2.. TVTi = {5. . 4 , 0 } ,

3.. T2 = {a, 6, c, rf}, and

4.. WT2 = {S,S2,C};

5.. /?i and i?2 as defined by Figure 3.2.

Observee that G generates the following string language:

LL = {anbndndn : n,m e N} U { a ^ c ^ t f 1 : n , m € N}.

LL can be described as the union of the two context free languages generated by G\

andd G2, respectively, namely Lx = {anbncmdm : n, m € N} and L2 = {an6mcmd" :

n,mn,m e N}.

Wee will now describe the tree language generated by G. Remember that G is

aa MPTG, and not just a PCFG. The set of its derivations is the set of trees bearing

maximumm probability. Define L3 = {a^cT-d71 : n € N}, and let T(L^) denote the set

Ri Ri

SS —»2/3 AB

AA —»i/2 a^4b

AA —»i/2 aft

SS -»1 / 2 cBd
SS —>i/2 cd

i?2 2

££ ~~*I/3 ^ 2

$2$2 ~~*l/2 05*2^

22 —*i/2 a G d

CC —+i/2 6Cc

CC -+1/2 6c

Figuree 3.2: A decomposition of G.

3.3.3.3. Expressive Power 45 5

off trees in T(G) that yield a sentence in Z3. Our first observation is that all trees in

(T(Gi)(T(Gi) U T{G2)) \ T(L3) have a unique derivation. Hence, they obviously belong to

M(G).M(G). For the trees in L3 there are two possible derivations: one generated by G\ and

thee other generated by G2. In order to fully characterize M(G), we need to determine

whichh of the two derivations (if not both) belongs to M(G).

Below,, we show that only the derivations produced by Gi belong to M(G). In other

words,, all derivations produced by G2 are filtered out. To obtain this characterization,

wee first characterize all trees in T(L$).

3.3.2.. LEMMA. Let x be a string in L3, and let ti(x) be a tree in T{G{) and £2(2) a

treetree in T(G2). Then, the number of rules appearing in t\{x) is the same as the number

ofof rules appearing in t2{x). Moreover, the rule S —>2/3 AB appears once in t\{x),

whilewhile the rule S —>i/3 S2 appears once in t2(x).

PROOF.. Let z be a string in L3 = {cP^cf-d71 : n G N}. We prove the lemma by

inductionn on n, the superscript in the definition of L3. For the base case, let n be

1;; then the lemma follows from the fact that the two possible trees, both pictured in

Figuree 3.3, have the same number of rules, and it is clear that the rule S —>2/3 AB

appearss once in t\(x), while the rule S — 1̂/3 S2 appears exactly once in t2(x).

SS S

AA B S2

a b e dd a C d

bb c

t\{abcd)t\{abcd) t2{abcd)

Figuree 3.3: Two derivations for abed.

Lett the statement be true for k < n, and let us show it for x — dP-^cP-dP. Note, first of

all,, that for a word in L3, the two possible trees follow the schema of Figure 3.4. Now,

usingg this observation for the first part of the lemma, the string an~lbn~1cn~1dn~1 can

bee derived by collapsing the A, B, S2 and C non-terminals, respectively. According

too the inductive hypothesis, the resulting trees have the same number of rules, and in

thee process of collapsing we have eliminated the same number of rules from the two

trees,, proving the first part of the lemma. For the second part of the lemma, consult

Figuree 3.4 again, where it can be seen that the rules S —>2/3 AB and S —+1/3 S2 appear

oncee in t\(x) and t2(x)t respectively. H

466 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

a a

a" "

A A

AA b

- i b „ - i i

S S

B B

cc B d

c n - l d n - l l a" "

a a

- l l

b b

S S
1 1 l l

s2 2

s2 2

c c

c c

d d

d"_1 1

c c

b n - l c n ^ l l

Figuree 3.4: Derivations for an6nc"ef\

Lemmaa 3.3.2 says that the probabilities of two derivations in L% yielding the same
sentencee are determined by the first rule in each grammar. That is, we can distinguish
betweenn the two possible probabilities assigned to the two derivations for a sentence in
L33 by simply observing the probability of the first rule in each of the derivations.

3.3.3.. LEMMA. Let x be a string in L3, ti(x) in T{G\) and t2(x) in T(G2). Then
p{U{x))p{U{x)) >p(t2(x)).

PROOF.. The proof is immediate from Lemma 3.3.2. All derivations for a given string
xx in L3 have the same number of rule applications, and except for the first rule applied
(eitherr S —>2/3 AB or S —>i/3 S2), all rules have equal probabilities associated with
them.. Hence the tree using the Gi-rule S —>2/3 AB has the higher probability, as
desired.. H

3.3.4.. LEMMA. M{G) is equal to T{GX) U {t{x) e T{G2) : x e L2 - L3}.

PROOF.. The lemma is a direct consequence of Lemma 3.3.3. H

Finally,, with this characterization we can prove Theorem 3.3.1.

PROOF.. Note first that for every string in L(G) there is a unique tree in M(G): if the
stringg belongs to L\ \ L3 or to L2 \ L3 this is because the grammars G\ and G2 assign a
uniquee derivation tree to each string. If, however, x e L3, then, by maximizing proba-
bilities,, we discard the tree belonging to T{G2), thus only leaving the tree in T{G\), as
shownn in Lemma 3.3.4. Summarizing, using probabilities we have obtained a unique
treee for every sentence in an inherently ambiguous language. It is a well-known fact
thatt CFGs cannot disambiguate an inherently ambiguous language (Hopcroft and Ull-
man,, 1979). Hence, since L is inherently ambiguous (Parikh, 1966), there cannot be a
CFGG that generates all and only the trees in MPTG(G). H

3.4.3.4. Undec'uiabUitx 47 7

Inn this section we have answered question (1) from the introduction, showing that there
iss no way to mimic probabilities using rules. In the next section we focus on question
(2). .

Ourss is not the first study of the expressive power of weighted formal devices.
Cortess and Mohri (2000) show that the expressive power of weighted automata is be-
yondd regular languages. This result has in common with the result we present in Sec-
tionn 3.3 that they both show that weighted systems accept a wider set of languages
thann bare systems. The two results also use the same strategy; they present a language
thatt does not belong to the bare grammatical formalism but that is capturable by the
weightedd version.

Thee two approaches differ in that in ours probabilities are used to select subtrees
ass a side product of filtering. Cortes and Mohri (2000) show that they found a well-
knownn context free language to be accepted by a weighted automata under a general
definitionn of acceptance. The approaches also differ in that ours is concerned with the
tree-languagee and theirs with the string language. Finally, the two results differ in that
ourr proof is technically trivial, while the other is rather involved.

Thee result presented in this section is not directly linked to statistics. As already
discussedd in (Abney, 1996), probabilities can help in many aspects of syntax (e.g., dis-
ambiguation,, degrees of grammaticality, error tolerance, naturalness, structural prefer-
ences,, learning, lexical acquisition). In that sense, weights are enough for capturing
thesee phenomena. In this section we deal with probabilities (weights) as they are cur-
rentlyy used for disambiguation in the literature. We respond to the question "What can
wee do with probabilities (weights)?" more than "How can we compute the probabili-
tiess (weights)?". Abney argues that, intuitively, probabilities can help disambiguating,
butt this section shows that they provide a mechanism that simply cannot be mimicked
withh rules. To put it very bluntly, we present a technical fact, not an intuition.

Wee have shown that probabilities add not only a statical perspective but also ex-
pressivee power to CFGs. We think that this increment in the expressive power is due
too a probabilistic parser's implicit but global requirement that it sees all rules building
upp a tree for choosing the one with maximum probability.

3.44 Undecidability

Whilee probabilities buy us additional expressive power on top of CFGs, they do not
buyy us everything. Specifically, given that probabilities help to disambiguate their own
language,, would it not be nice if we could predict, that is, determine before parsing,
whetherr a PCFG is capable of fully disambiguating its language?

Wee show that this is not possible. We establish the result by transforming an ar-

488 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

bitraryy CFG into a PCFG such that the given CFG is unambiguous if, and only if, the

correspondingg PCFG has only one tree in the candidate list of each sentence. Our result

thenn follows from the well-known fact that determining whether a CFG is unambigu-

ouss is undecidable.

Probabilitiess single out, for each sentence x, a set PParser(x) of trees bearing

maximumm probability. An ideal grammar is one that filters out all trees but one for each

sentencee in the language. In other words, an ideal PCFG defines for each sentence x,

itss set PParser(x) with cardinality equal to 1.

Wee want to prove that it is undecidable to determine whether a PCFG is ideal. To

thiss end, we first prove that for every context free grammar G there is a way to extend

itt with probabilities such that the resulting set M(G) contains the same set of trees as

G.G. In other words, for any CFG we build a probabilistic version that does not filter out

anyy tree. Our undecidability result follows from the fact that our question is equivalent

too determining whether a CFG is unambiguous.

Wee have to build the probabilistic correlate of a CFG, in such a way that all trees

associatedd to a given sentence bear the same probability. In this case, the set of trees

withh maximal probability is exactly the set of trees. We show the result for grammars

inn Chomsky Normal Form whose definition we now recall.

AA context free grammar G — (T, NT, R, S) is said to be in Chomsky Normal Form

(CNF)) if, and only if, every rule in R is of one of the following forms:

 A —> a for some A e NT and some a e T.

 A^ BC, for some A e NT and B,C e NT - {S}.

Ourr strategy is to show that any grammar in CNF assigns the same probability to all

treess yielding the same string. To this end we show that all trees yielding the same

stringg in a CNF use the same number of rules; we then build a grammar assigning the

samee probability to all rules and we obtain what we are looking for.

Wee now present the lemmas needed.

3.4.1.. LEMMA. Let G = (T, NT, S, R) be a grammar in CNF. All trees yielding a

k-lengthk-length sub-string of NT* use the same number of rules.

PROOF.. Let us define a sequence A0,..., An,... of subsets of NT* as follows: A0 =

{S},{S}, Ai consists of elements a in NT* such that a is derived from S in one step, and,

inn general, a is in Ai if there is an element a' in A^\ such that a' => a. The lemma

iss immediate from the fact that that all sets are pairwise disjoint, i.e., Ai n Aj = 0 for

everyy i / j . H

3.4.2.. COROLLARY. Let G be a CFG. Every derivation producing a string x of length

kk in L(G) has the same number of rules.

3.4.3.4. UndecidabiUtx 49 9

3.4.3.. LEMMA. Let G be a context free grammar. G can be transformed into a prob-

abilisticabilistic context free grammar G' with the special property that all rules have exactly

thethe same probability value.

PROOF.. Let G be a grammar in CNF, and let R be its set of rules. Let X be the most

frequentt non-terminal in the left-hand sides of rules. Let n be the number of times X

iss the left hand-side of a rule. Let Zu ..., Zn be brand new non-terminal symbols. For

everyy non-terminal Y we add as many rules Y —> Zx as needed to have the number of

ruless having Y in the left-hand side equal to n. We add probability 1/n to each of these

neww rules. The resulting grammar is a well-defined, though not necessarily consistent,

probabilisticc context free grammar, and all rules have exactly the same probability

valuess as required. ^

Thee PCF grammar G', obtained from a grammar G as described in Lemma 3.4.3, is

calledd the uniform version of G.

Notee that the resulting grammar need not be consistent, given that some probability

masss is going to non-terminating derivations — derivations that end up in the dummy

non-terminal.. Still, what is important to us is that the set of trees accepted by the

PCFGG remains the same, and, even more importantly, that every derivation producing

thee same sentence has the same probability value.

3.4.4.. LEMMA. Let G be a context free grammar, and let G' be its uniform version.

LetLet x be a string in L(G). Then all left-most derivations producing x have the same

probability. probability.

PROOF.. Since every string in the language has the same set of trees as G, the dummy

rulee is not used in any derivation of final strings. According to Lemma 3.4.1, every tree

hass the same number of rules. And since every rule has the same probability, every tree

forr the sentence I has the same probability. Finally, the set of trees bearing maximum

probabilityy is exactly the set of trees in the original grammar G. H

Ass this lemma proves, trees defined through MPT include the class of trees defined

viaa CFG. As a direct consequence, we have the following lemma:

3.4.5.. LEMMA. Deciding whether a PCFG disambiguates a tree language is undecid-

able. able.

PROOF.. We have built a grammar that assigns the same probability mass to all possible

treess for a given string. As a consequence, the PCFG is unambiguous if, and only

if,, the non-probabilistic grammar is. Deciding whether the PCFG is unambiguous is

equivalentt to decided whether a CFG in CNF is unambiguous, which is known to be

undecidablee (Hopcroft and Ullman, 1979). H

500 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

Thee above lemma answers question (2) from the introduction, saying that it is not
possiblee to decide whether a PCFG has completely managed to solve all ambiguities.
Notee that the results in the present section combined with the results in the previous
onee imply that the class of tree languages described by PCFGs is a strict subclass of the
treee languages described by MPTGs. The inclusion is implied by the present section
whilee the proper inclusion is implied by the previous one.

3.55 The Meaning of Probabilities

Wheneverr only a single tree is required as output, all CF parsers face the question of
howw to select that single tree from a set of trees yielding the same sentence. They
usuallyy choose a tree non-deterministically, by randomly selecting a tree among all
possiblee trees. The selection is made under the assumption that all trees in the candidate
listt (suggested by the grammar) have the same probability of being selected.

Thee use of probabilities is meant to reduce the size of the set of candidate trees.
Onn the one hand, the probability value assigned to a tree captures that tree's chance
off being generated by the grammar and, consequently, of being found in a tree-bank
generatedd by the grammar. On the other hand, the idea of correctness is usually un-
derstoodd in terms of a comparison to a manually annotated tree-bank. The two things
combinedd suggest that the probability assigned to a tree can be thought of as its chance
off being the correct one. On this view, parsers try to find the tree that has the highest
probabilityy of being the correct one. Clearly, some non-determinism remains: there
mightt be more than one tree bearing maximum probability and, consequently, parsers
havee to non-deterministically choose among all trees bearing maximum probability.

Inn the following two subsections we use the just defined semantics for two different
purposes.. First, we use it as a way to compare grammars. The general idea is to
comparee grammars according to the amount of non-determinism they have left for the
non-deterministicc choice. Second, we want to use it for boosting the probability of
pickingg the right tree from the set of candidate trees by adding trees to it that do not
bearr maximum probability but that increase the probability mass of the candidate list
inn substantial way.

3.5.11 Using Probabilities for Comparing PCFG

Recalll that a grammar is ambiguous if there is a sentence in the language that has a
candidatee list containing more than one analysis. Following (Wich, 2000, 2001), we
cann think of the degree of ambiguity of a PCFG as a quantity proportional to the size
off the candidate lists, one per sentence in the language. That degree is related to both

3.5.3.5. The Meaning of Probabilities 51 1

thee set of rules in the grammar and to the probabilities associated to the rules. Clearly,
aa grammar with a lower degree of ambiguity is preferred over one with a higher degree
off ambiguities given that the first reduces the level of non-determinism by choosing
non-deterministicallyy from smaller sets, in the second phase.

Wee propose a measure that compares grammars with respect to the way they re-
ducee nondeterminism in the second phase of the parsing process. The measure is
basedd on the probabilistic distribution they generate over the set of trees. Our approach
iss sample-based, i.e., the measure is computed over a finite sample set of sentences,
becausee is not possible to compute it for the whole language, as we will also show.
Thee measure we propose computes the probability of a tree of being chosen under the
two-stagee parsing schema defined previously. This proposal has the advantage of tak-
ingg into account two things: first, the confidence the probability measure has over the
proposedd list of candidates, and, second, the non-deterministic choice in the final step.

Onee important desideratum that we have for our measure for determining a gram-
mar'ss ability to reduce ambiguity is that it should capture the remaining non-determi-
nismm after trees have been filtered out using probabilities. Clearly, the reduction on
non-determinismm is related to the size of the set of candidate trees. However, it is not
aa good idea to simply use the fraction of trees that were filtered out as a quality mea-
sure,, or the size of the candidate list. The first idea is unsuitable because, in case the
grammarr generates only a single tree per sentence, the probabilities do not filter out
anyy tree, and we would be assigning a very low score to the filtering mechanism. The
secondd idea fails because there is no information on the size of the list of trees before
usingg probabilities.

Theree has been quite a lot of research in the area of parsing evaluation (Lin, 1995;
Marcuss et al., 1994; Carroll et al., 1998; Musillo and Sima'an, 2002), but it does not
seemm appropriate to use any of these parser evaluation measures for quantifying ambi-
guityy reduction. Parser evaluation measures are aimed at determining how well parsers
performm on parsing standard sentences. Under these approaches, only grammars that
outputt trees that follow the structure found in the tree-bank can be compared (or those
forr whom a transformation between formats exists (Watkinson and Manandhar, 2001)).
Moreover,, these approaches do not produce any information about the way in which
thee grammar has dealt with ambiguity.

Theree have been some attempts, both to show that PCFGs do indeed reduce am-
biguityy and to determine the extent to which they do this. For instance, Atsumi and
Masuyamaa (1998) compare the size of the list of candidate analyses before and after
havingg filtered out syntactic analysis with lower probability. Even though their moti-
vationss are very similar to ours, they do not offer an explicit measure for comparing
differentt PCFGs with respect to their ambiguity reduction abilities.

Beforee giving the formal definition, let us give some more intuitions. The amount

522 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

off determinism for a given sentence x in the two-stage parsing procedure is given by

twoo main ingredients: the (size of the) set of trees T(.r) yielding the sentence x, and

thee (size of the) set of trees bearing maximum probability PParser(x). Both sets con-

tributee to ambiguity reduction. The sizes ofT(x) and PParser(x) capture the amount

off ambiguity produced by the grammar before and after having used probabilities for

filteringfiltering out trees, respectively.

PCFGss reduce the set of trees in the candidate list using a probability distribu-

tionn over the set of possible analysis. The distribution specifies the probability each

treee has of being the correct tree given the sentence.2 Under our two-stage procedure

thee probability of selecting a particular tree is given by the product of the probability

masss accumulated in the set PParser(x) (that is, the probability of having the correct

treee in PParser(x)) and the probability of uniformly selecting a particular tree from

PParser(x).PParser(x). More specifically, suppose the grammar defines a probability distribu-

tionn p over the set of trees, specifying the probability each tree has of being the correct

one.. Suppose, moreover, that for a given sentence x from the sample set, we select the

sett of trees bearing maximum probability PParser(x). The probability of selecting

anyy particular instance of the trees in PParser(x) using a uniform distribution is

QQ{x){x)(G)=p(PParser(x))(G)=p(PParser(x)) l

\PParser(x)y \PParser(x)y

wheree p(PParser(x)) is the probability that the correct tree is in PParser(x), while

\pparser(x)\\pparser(x)\ 's m e probability of selecting it. The probability takes into account the

probabilityy mass concentrated in PParser(x) and its size: the bigger the probability

thee better the output.

Sincee all trees in PParser(x) have the same probability value px, Q{X}(G) can be

simplifiedd as follows

QQ{l]{l] (G)=p(G)=pxx\PParser{x)\\PParser{x)\ l

\PParser(x)\ \PParser(x)\

Finally,, assuming that parsing sentences are independent experiments, our measure is

definedd as follows:

Qs(G)Qs(G) = l[p x,
X£S X£S

wheree S is a sample set of sentences from the grammar's accepted language, and px

iss the probability assigned to the tree returned by the parser. Qs{G) is equal to 1 if,

andd only if, there is a unique tree with maximum probability for each sentence in S.

Thee measure is easily computable if we work with probabilistic parsers that return both

treess and the probability value associated to the trees returned.

2"Correctt tree" in the sense that it is the tree that appears in a sample tree-bank.

-f.5.. The Meaning of Probabilities 53 3

Finally,, we say that a grammar G\ is better than a grammar G2 (based on a sample
sett S) if, and only if,

Qs(GQs(Gxx)) < Qs(G2).

Thee measure does not capture the ambiguity reduction over the set of all possible sen-
tence.. Why? In the following section we show that it is simply not possible to compute
itt for the whole language.

Inn what follows we show that it is necessary to relativize our measure to a sample
set:: it is not possible to compute Qs{G) if S is equal to the language accepted by the
grammarr L(G). Suppose that it were possible to compute QL(G){G). Then, we would
alsoo know whether QL{G){G) is equal to one. Since QL(G){G) = 1 if, and only if,
GG has singled out exactly one element in the candidate list of each sentence, being
ablee to compute QL(G){G) would imply that it is possible to determine whether G has
completelyy disambiguated the language.

Wee have presented a measure for assessing grammars with respect to their ability
too reduce ambiguity. The measure we presented can also be applied to state-of-art-
parserss that return the selected analysis tree for a given input sentence together with its
probabilityprobability (Collins, 1997; Eisner, 1996; Klein and Manning, 2003).

Ourr measure has at least three kinds of advantages in comparison to standard parser
evaluationn methods:

1.. It can be applied to unsupervised learned grammars for which the learned syn-
tacticc structure is not as clearly defined as the ones induced from tree-banks.

2.. Our measure is not domain dependent. Since a grammar induced from a tree-
bankk is usually evaluated on the same type of sentences that were used for in-
ducingg it, its evaluated performance does not tell us much about the grammars'
performancee on sentences belonging to different domains from those covered in
thee tree-bank.

3.. Our measure yields information about the parser that is complementary to the
kindd of information usually obtained by evaluating parsers (Lin, 1995; Marcus
ett al., 1994; Carroll et al., 1998), given that it does not provide any kind of infor-
mationn about the correctness of the resulting trees, and, moreover, the measure
doess need to have access to the 'right' tree. The precise relation between per-
formancee measured using existing parser evaluation measures and performance
measuredd with our new measure (applied to parsers) remains to be explored.

Thiss subsection showed a possible use of probabilities other than probabilities as fil-
teringg mechanism. The new semantics provides an answer to question (3) of the intro-
duction;; in the next section we show yet another application.

544 Chapter;?. The Role of Probabilities in Probabilistic Context Free Grammars

3.5.22 Using Probabilities for Boosting Performance

Inn this section we use the new semantics associated to probabilities for increasing the

probabilityy of guessing the right tree. We provide evidence that under certain circum-

stancess the probability of getting the correct tree can be increased by adding trees with

lesss than maximal probability to the set of candidates.

Notee that the probability of PParser(x) is the probability of having the correct

treee in it. We can forget for a moment that PParser(x) only contains trees bearing

maximumm probability and add trees to it in an attempt to increment its probability.

Incrementingg its probability has the advantage of incrementing the probability of cap-

turingg the correct tree, but has the disadvantage of decrementing the probability of

randomlyy choosing the correct one. Clearly, there is a trade-off between the number of

non-maximumm probability trees we can add to PParser(x) and the probability gained

att the end of the random selection procedure. Let us take a closer look, and give condi-

tionss under which the probability of selecting the correct trees increases when picking

fromm a set of trees properly extends the set of trees bearing maximum probability.

Lett R be a set of trees disjoint with PParser(x). We show that the probability of

choosingg the correct tree increases when R is added to the candidate list PParser (x)

if,, and only if,

^ -- > \R\ + \PParser{x)\ - 1. (3.1)
Px Px

wheree px is the probability values shared by all trees in PParser(x). The proof is

simple.. The condition in (3.1) above is fulfilled if, and only if,

p{R)+pp{R)+pxx >px\R\+px\PParser(x)\,

whichh is equivalent to
p{R)p{R) + Px

>> Px, \R\\R\ + \PParser{x)\

which,, in turn, holds if, and only if,

p(RuPParser(x)) p(RuPParser(x))

\RuPParser(x)\ \RuPParser(x)\
>Px->Px-

Thee final result follows from the fact that p
|
(^pp°r

r™r(x)\ i s t h e probability of selecting

thee correct tree from the expanded list.

Extendingg the set of candidates is not new in the literature. Collins and Duffy

(2001,, 2002); Bod (2003) propose approaches other than uniformly selecting a tree.

Ourr result gives an estimate of the number of trees one needs to consider in the selec-

tionn phase to gain a significant amount of probability mass.

3.6.3.6. Conclusions and Future Work 55 5

Thee present section focused on new uses of probabilities associated to trees. We an-
sweredd question (3) by giving two new applications. We show that probabilities can be
usedd for evaluation purposes and that they can be used to boost parsing performance.

Ass trivial as the results might look, it is very hard to find a parser implementation
thatt reports on the probability values associated to its trees. In order to be able to
comparee parsers using the probability values they assign to their most probable trees,
thee probabilistic models used by the parsers should be consistent. If this is not the case,
thee probability values are meaningless. Clearly, this requirement is not trivial to fulfill.
Forr most of the probabilistic parsers it is unknown whether their underlying models
aree consistent. Given the importance of the consistency conditions, we establish in
Chapterr 4, consistency properties for bilexical grammars, and Markovian context free
grammars. .

3.66 Conclusions and Future Work

Thiss chapter has focused on questions related to the importance of probabilities in the
contextt of parsing and on investigating uses of probabilities others than filtering. We
havee shown that probabilities, when used as a filtering mechanism, can add expres-
sivee power to grammars defining a class of tree languages beyond the expressivity of
contextt free grammars. We also showed that it is not possible to decide whether prob-
abilitiess solve all ambiguities in the language.

Wee also gave examples that probabilities can be used in other ways others than as
filteringfiltering mechanism. We proposed to use them for evaluating the quality of PCFGs
andd for boosting the performance of parsers. Experiments to back up this theoretical
findingfinding would be of great value. We leave them out of the thesis and consider them as
futuree work.

Wee argued that in order to use these ideas, it is essential that the underlying proba-
bilityy models be consistent. We show in Chapter 4 that PCW-grammars provide us with
thee machinery necessary to prove the consistency of bilexical grammars and Marko-
viann rules whenever they are induced from tree-banks using rc-grams. Despite this,
provingg consistency properties for the grammars we induce in Chapters 5, 6 and 7 are
desirablee results on the todo list.

mmmimmmm*** mmmimmmm*** mmmmmmmmmmmfm^m^mi^^^^^^Tvr?-.vmmmmmmmfm^m^mi^^^^^^Tvr?-.vrr>''->''- -

'̂ >0"--- '

sè&i'vBjr-- i-i^
c^-fSf^s^S'i c^-fSf^s^S'i rm&Gtsmt'im&et*-rm&Gtsmt'im&et*-i f tTr i i i i t i ^ ^

Chapterr 4

Constrainedd W-Grammars

Thiss chapter consists of two sections. First, the grammatical formalism we propose is
introduced.. Our framework is based on so-called W-grammars, due originally to Van
Wijngaardenn (Van Wijngaarden, 1965; Mateescu and Salomaa, 1997). We constrain
W-grammarss to obtain constrained W-grammars (CWG) which are more suitable for
statisticall natural language parsing than W-grammars. As we have seen in the previous
chapter,, probabilities are a fundamental part of state-of-the-art natural language pars-
ingg technology. We extend CW-grammars with probabilities, defining probabilistic
constrainedconstrained W-grammars (PCWGs).

Inn the second part of this chapter we show that the formalism we introduce is gen-
erall enough to capture grammatical frameworks used in three state-of-the-art parsers:
bilexicall grammars, Markovian context free grammars, and stochastic tree substitution
grammarss (STSGs). For each we provide an embedding into PCW-grammars, which
allowss us to discover properties about their expressive power and consistency, and re-
lationss between the formalisms studied.

4.11 Grammatical Framework

Inn this section we describe the grammatical framework we will be working with. We
introducee constrained W-grammars, then present a probabilistic version, and also in-
troducee technical notions needed in later sections.

4.1.11 Constrained W-Grammars

AA constrained W-grammar (CW-grammar) is a 6-tupIe (V, NT, T, S, —>, —+) such
that: :

57 7

58 8 ChapterChapter 4. Constrained W-Grammars

 \' is a set of symbols called variables. Elements in \' are denoted with overlined
capitall letters, e.g., A, B, C.

 NT is a set of symbols called non-terminals; elements in AT are denoted with
upper-casee letters, e.g., X, Y, Z.

 T ha. set of symbols called terminals, denoted with lower-case letters, e.g., a, />,
c. .

 V, T and NT are pairwise disjoint.

 S is an element of AT called the start symbol.

 — is a finite binary relation defined on (V U AT U 7")* such that if x — y,
thenn x € V. The elements of -̂ -> are called metarules.

 —* is a finite binary relation on (V U NT U T)* such that if u -̂—> v then
uu £ NT, v is not empty and no variable in v appears more than once. The
elementss of — are called pseudo-rules.

CW-grammarss differ from Van Wijngaarden's original W-grammars in that pseudo-
ruless have been constrained. Comparing the above definition with the one presented in
Sectionn 2.4, we see that the original W-grammars allow pseudo-rules to have variables
onn the left-hand side as well as repeated variables on both the right- and left-hand
side.. The constrained version defined above yields a dramatic reduction in the ex-
pressivee power of W-grammars. CW-grammars are weakly equivalent to context free
grammars.. Despite the reduction of expressivity, CW grammars are capable of fully
capturingg grammar formalism used in state-of-the-art parsers, something that context
freee grammars can not do by themselves.

CW-grammarss are rewriting devices, and as such they consist of rewriting rules.
Theyy differ from the usual rewriting systems in that the rewriting rules do not exist a
priori.priori. Using pseudo-rules and meta-rules one builds 'real' rules that can be used in the
rewritingg process. The rewriting rules produced are denoted by =̂=> and are called w-
rules.rules. These rules are built by first selecting a pseudo-rule, and then using meta-rules
forr instantiating all the variables the pseudo-rule might contain.

Forr example, let W = {V, NT, T, S, - ^ , -?->) be a CW-grammar where V =
{ADJ},{ADJ}, NT = {S, Adj, Noun}, T = {ball, big, fat, red, green, ...}, and -̂ -> and
-̂— are given by the following table:

4.1.4.1. Grammatical Framework 59 9

meta-rules s
ADJADJ -̂ -> ADJAdj
ADJADJ ^ Adj

pseudo-rules s
55 -̂ -> ADJNoun
AdjAdj — big
NounNoun —> ball

Supposee now that we want to build the w-rule 5 = ^ Adj Adj Noun. We take the
pseudo-rulee S -̂—> ADJ Noun and instantiate the variable ADJ with Adj Adj to
gett the desired w-rule. The w-rules defined by W have the following shape: ~S =̂=>
Adj*Adj* Noun. Trees for this grammar are flat, with a root node S and series of adjectives
andd nouns as daughters; see Figure 4.1.

S S

AdjAdj Adj Noun
II I I

bigbig green ball

Figuree 4.1: A flat w-tree.

Thee string language L{W) generated by a CW-grammar W is the set {/? € T+ :
SS =^> P}. In words, a string (3 belongs to the language L(W) if there is a way to
instantiatee w-rules =̂=> in such a way that they can derive (3 from S. A w-tree yielding
aa string I is defined as the = > derivation producing I. A w-tree 'pictures' the w-rules
(i.e.,, pseudo-rules + variable instantiations) that have been used for deriving a string;
Figuree 4.1 has an example. The way in which a w-rule has been obtained from pseudo-
ruless or the way in which its variables have been instantiated remains hidden. The
treetree language generated by a CW-grammar W is the set T(W) consists of all w-trees
generatedd by W yielding a string in L(W).

4.1.1.. THEOREM. CW-Grammars are weakly equivalent to context free grammars.

PROOF.. Let W =(V, NT, T, S, ^-+, -?->) be a CW-grammar. Let Gw = (NT, T',
S',S', R') be a context free grammar defined as follows (to avoid confusion we denote the
ruless in R by : NT' - (V U NT); V = T; S' is identical to 5; and X -> a € R
iffX^aorX^a. iffX^aorX^a.

Obviously,, one has to prove that G is well-defined. The most problematic part is
thee definition of the rules. We need to check whether all rules are well-formed. It is
enoughh to check that every left-hand side has one and only one non-terminal. If a rule
XX —» Q is in R because X -̂ -> a, then it is clear that X is a non-terminal in V. If it is
inn because of X -?—* a, then it is a non-terminal given that X has to be in NT.

60 0 ChapterChapter 4. Constrained W-Grammars

Nextt we show that the two grammars generate the same language. To prove this
wee just prove that if r ^> s then r —>* s. The proof is divided in three parts: (i) if
rr — s then r —>* s: (ii) if r -?—> s then r —> ,s; (iti) if r ^ - s then r -+* s. (i) If
rr —> s then r ^ * ,s follows immediately from the definition of G\V\ ^—> is a subset
off . (ii) If r —> .s then r — s also follows from the definition of G\y. (iii) Let r and
ss be such that r = > .s. This implies that there exist r' and 5' such that

r'r' -̂ -» s'

ITIT IT
rr s

Sincee r' € NT, the only possibility for r'
thee following situation:

$ $ rr —

But,, under the assumption that every variable appears once and only once in the body
off s', both -̂—> and ^-4 can be emulated by —>, implying that r —>* s as required.

Inn the other direction, any CFG G can define a CW-grammar W\ The only nec-
essaryy step for transforming G into a CW-grammar consists of partitioning the set of
ruless in G into two different subsets, one functioning as the set of meta-rules, and the
otherr functioning as the the set of pseudo-rules. H

Notee that the previous result does not follow directly from any of the results given in
Chapterr 2. In the literature there are examples of different constraints applied to W-
grammarss (Mateescu, 1989a,b). These constraints were meant to make subclasses of
enumerablee languages. In contrast, our constraints are meant to reduce the expressive
powerr of W-grammars to a level that allows us to capture the grammatical formalisms
underlyingg state-of-the-art-parsers. The previous lemma shows that our constraints
reducee the expressive power of W-grammars from Turing computable to context free.

Givenn a CW-grammar W, the context free grammar underlying W, which we de-
notee by CFG(W), is the grammar Gw defined in the proof of Theorem 4.1.1. In order
too facilitate our forthcoming discussion we suppose that rules in G have been marked
somehoww to allow us to decide whether a rule in G corresponds to a meta-rule or to a
pseudo-rulee in the original CW-grammar. We refer to the set of rules in G marked as
meta-ruless as meta-rules and to the set of rules marked as pseudo-rules as pseudo-rules.

Lett W be a W-Grammar and let G = CFG{W) be its underlying context free
grammar.. Theorem 4.1.1 shows that both W and G accept the same string language.
Inn what follows we turn to study the relation between VV"s tree language and G's tree

rr is for r to be equal to r', leading to

s' s'

v: v:
s s

4.1.4.1. Grammatical Framework 61 1

language.. We show that there is a surjective mapping T from T{G) to T(\\') which

cann be used for effectively parsing \\ -grammars, as we will soon discuss.

Wee define our tree transformation function T using a tree rewriting schema. The

rewritingg schema is applicable only to trees containing at least one meta-rule. Our

intentionn is to rewrite those trees in T(G) into trees in T(\V). After each application of

thee rewriting schema, the number of rules marked as meta-rules is reduced by one. The

functionn T is defined as the recursive application of the schema until applications are no

longerr possible, i.e., until all meta-rules have been eliminated. The intermediate trees

inn the rewriting procedure do not necessarily belong to either of the two tree languages

T(G)T(G) or T(W). The rewriting schema is pictured in Figure 4.2. Left-hand symbols of

meta-ruless and pseudo-rules have been marked with superscripts m and s respectively.

Thee rewriting schema eliminates the rule V -^-> XiX2 Xk by transforming the tree

inn part (a) into the tree in part (b).

(a)) (b)

Figuree 4.2: A tree rewriting schema.

Thee function T for transforming trees in T(W) into trees in T(G) is defined as follows:

.. . ƒ t, if t does not contain any meta-variable

^^ ~ \ r (i ') , for t' such that t -> t',

wheree —> is the reflexive and transitive closure of the rewriting schema defined above.

AA simple inductive proof on the number of meta-rules shows that T is well defined for

alll elements in T(G), i.e., T takes exactly one value for each t in T(G).

Inn Figure 4.3 we picture the rewriting procedure for the tree in Figure 4.1. The

variablee AD J that is eliminated in each step is marked with * symbols. Since the tree

inn part (c) does not have any more variables, it corresponds to the result of applying

functionn r to the tree in part (a).

Thee function T is very important for parsing. With it, we can implement a parser for

W-grammarss by using a parser for CFGs plus a procedure implementing the function

62 2 ChapterChapter 4. Constrained W-Grammars

*. *.

ADJ ADJ

Adj Adj

1 1
big big

S S

ADJ*ADJ* Noun

AdjAdj bail

green green

(a))

ADJ *ADJ*

1 1
Adj Adj

big big

S S

AdjAdj Noun

11 1
greengreen ball

(b))

Figuree 4.3: Two steps in the rewriting procedure. T applied to the tree in part (a) is
resultss in the tree in Figure 4.1.

T.. The CFG parser is first used to obtain the tree t in T(G), and then the procedure
implementingg T is used for transforming t into a tree in T(W).

Bothh the weak equivalence and the existence of the transformation function T sug-
gestt that CW-grammars are close to CF-grammars. Do they offer anything more than
justt context freeness? Since parsing technology is more interesting in the tree lan-
guagee than the string language, the strong equivalence between CW-grammars and
CF-grammarss becomes relevant. We give an example to show that CW-grammars are
notnot strongly equivalent to context free grammars. In other words, the set of trees gener-
atedd by CW-grammars differs from the set of trees generated by context free grammars.

4.1.2.. EXAMPLE. Let W = {V, NT, T, S, ^-4, ̂ -A) be a CW-grammar with V = (A,
2?,, S}, NT = {A,B}, T = {a, b}, ^ = {A ^ AA,A ^ A,B -^ BB,
BB ^-» B], and -?-> - {A -^ a, B - ̂ b, S -?-> ~AB}.

S S

AA A A B B
II I I I I
aa a a b b

Figuree 4.4: A w-tree for the string "aaabb".

Thee grammar W generates the language {a*b*} through instantiations of the variables
AA and B to strings in ,4* and B*, respectively. The derivation ^> for a string aaabb is
ass follows: S ̂ AAABB ^> aAABB ̂ aaABB ̂ aaaBB ̂ aaabB ^>
aaabb.aaabb. The tree representing this derivation (Figure 4.4) has only one internal level
(labeledd AAABB), and its leaves form the accepted string. No context free grammar
cann generate the kind of flat structures displayed in Figure 4.4 since any context free

4.1.4.1. Grammatical Framework 63 3

grammarr producing the same language as \Y has more than one intermediate level in
itss derivation trees.

4.1.22 Probabilistic CW-Grammars

Inn Chapter 3, probabilities were shown to be a fundamental part of PCFGs because they
addd expressive power to vanilla CFGs. In order to capture state-of-the-art-parsers, we
needd to be able to mimic the expressive power of PCFGs. Even though CW-grammars
aree more powerful than CFGs, we do not know for certain if their probabilistic version,
too be defined below, adds expressive power to the vanilla version. Still, probabilities
addd to CW-grammars a statistical perspective which we show to be very useful in the
followingg chapters, and which is necessary to easily capture grammar formalisms used
inn state-of-the-art parsers.

ProbabilisticProbabilistic CW-grammars (PCW-grammars) are CW-grammars where the meta-
ruless and pseudo-rules are augmented with probability values, such that the probabili-
tiess belonging to meta-rules and pseudo-rules sharing the same left-hand side sum up
too one. More formally, in a probabilistic CW-grammar (V, NT, S, -^-», —>) we have
that t

 X^nv, yP = 1 for all meta-rules x - p̂ y having x as the left-hand side.

 J2x pyP = 1 for all pseudo-rules x -?-*p y having x as the left-hand side.

Next,, we need to define how we assign probabilities to derivations, w-rules, and w-
trees.. To start with derivations, if a' ^-4 a then there are au ..., a* such that ax -̂ ->
c*I+i,, c*i = a' and ak = a. We define the probability P(a' ^-4 Q) of a derivation
a'a' —* a to be ni = 1 f (<** —* <*i+i)

Now,, let X = > a be a rule; its probability P(X =^> a) is defined as

P(XP(X ^ a) = £ P(X -?-> a')P{a' ^-4 a),
a'£A a'£A

wheree A = {a' € {V u NT U T)+ : X -i-» a', a' ^-4 a}. In other words, the
probabilityy of a w-rule is the sum of the probabilities of all meta derivations producing
it. .

Thee probability of a tree is defined as the product of the probabilities of the w-rules
makingg up the tree, while the probability of a string a e T+ is defined as the sum of
thee probabilities assigned to all trees yielding a.

4.1.3.. THEOREM. Let W be a CW-grammar, let G be CFG{W), and let W' be a
PCW-grammarPCW-grammar that extends W by assigning probability values to all meta-rules and

64 4 ChapterChapter 4. Constrained W-Grammars

pseudo-rulespseudo-rules in It". There is a way to extend G into a PCFG G' such that \Y' and G'
assignassign the same probability mass to all strings in the language accepted by G (which
coincidescoincides with the language accepted by \\').

PROOF.. Let G = (AT'. T , 5'. R') be a PCFG with NT', T', S' as defined in the proof
off Theorem 4.1.1 and R' such that X -> a e R iff X - ^ a or X -̂ -> a. Note that a
—>—> derivation r might be the product of many different derivations using rules in R'
(G-derivationss for short); let us notate this set of G-derivations with D(T). From the
definitionss it is clear that p(r) — Y1V^D{T) P(V)- T° Pr o v e t n e theorem we need to show

1.. that for two different ^=> derivations of the string a r and r', it holds that D(T) n
D(T')D(T') = 0, and

2.. that for every G-derivation v there is a =̂=> derivation r such that v e D{T).

Itemm (1) follows from the facts that F(v) = r for all v in D(r) and that Y{v') = r' for
alll v' in D(T')\ consequently, if there is an element in D(r) D D(T'), then r is equal to
r'.r'. Item (2) follows from the fact that V is defined for all G-derivations. H

Thee above result does not follow from Theorem 4.1.1 because that result does not take
probabilitiess into account.

Forr a given PCW-grammar W, the PCFG defined in the proof of Theorem 4.1.3 is
calledd the PCFG underlying W.

Ass in the case of non-probabilistic CW-grammars, the tree language of T{G) is
relatedd to the tree language T(W) through the tree transformation function T defined
above.. The function T can also be used for computing the probability of a tree t in
T(W);T(W); its probability is equal to the sum of the probabilities of all trees t' in T(G)
suchh that V(t') = t. Moreover, since every tree in T(G) is mapped to a tree in T(W),
wee obtain that the W grammar is consistent if, and only if, its underlying PCFG is
consistent. .

4.1.33 Learning C W-Grammars from Tree banks

Supposee we have a collection of w-trees, from which we would like to induce a CW-
grammar.. We distinguish two different strategies for solving this problem. One strat-
egyy is aimed at using supervised techniques for learning PCFGs while the second is
aimedd at using unsupervised techniques for learning PCFGs.

Thee first approach consists of three steps.

1.. Handcraft a set of meta-rules that might be used for meta-derivation.

4.1.4.1. Grammatical Framework 65 5

2.. Expand each tree with all meta-derivations. Such a procedure has the effect of
transformingg the CW-treebank into a CF-treebank.

3.. Use any PCFG inducing mechanisms, like those discussed in Section 2.3 for
inducingg a PCFG from the transformed treebank.

Insteadd of returning a CW-grammar, the procedure returns the underlying PCFG G of
aa W-grammar. Since all meta-rules are known, a unique W-grammar can be defined
fromm G.

Stepp (2) is straightforward only if meta-derivations produce unambiguous deriva-
tions,, i.e., if for each string produced by meta-derivations produce there is only one
wayy to derive it. In the case of ambiguous meta-derivations, a way to distribute the
probabilityy mass among all possible derivations has to be designed. In the literature
theree are different proposals for re-assigning probabilities (Sima'an and Buratto, 2003;
Bod,, 1998; Krotovetal., 1998). Most of these references refer to estimation techniques
forr STSGs that, as we will see, deal these problems from the very beginning.

Thee second approach consists of 2 steps.

1.. Extract all bodies of rules from the w-treebank where each body of a rule is a
stringg of non-terminal and terminal symbols.

2.. Use the extracted strings to induce a PCFG grammar.

Inn contrast with the previous approach, the induced PCFG is not the underlying PCFG
off any CW-grammar; instead, it is the grammar describing the meta-derivation a PCW-
grammarr should have. Pseudo-rules have to be handcrafted in order to make the meta-
ruless interact with pseudo-rules to rebuild the trees that have appeared in the CW-
grammar. .

Bothh approaches are different and require different techniques. Both have in com-
monn that one set of rules, either pseudo-rules or meta-rules have to be handcrafted.
Thee presentation we have given here is rather abstract; the differences between the two
becomee more evident in the rest of the thesis. In Section 4.2 we show that the learn-
ingg methodology used for state-of-the-art parsers is an instance of the first approach,
whilee the grammars used in the experiments of Chapter 5 are instances of the second
approach. .

4.1.44 Some Further Technical Notions

Beloww we will use PCW-grammars to "capture" models underlying a number of state-
of-the-artt parsers. The following will prove useful. Let F and G be two grammars with
treee languages T{G) and T(F) and languages L(F) and L(G), respectively. Then, F is

66 6 ChapterChapter 4. Constrained W-Grammars

j-equivalentj-equivalent to G if 1(F) -= L(G) and there is a bijective function ƒ : T(F) — T(G).
Givenn two grammatical formalisms .4 and B, we say that .4 is f-transformable to B.
iff for every grammar F in .4 there is a grammar 6' in B such that F is /-equivalent
too G. Note that the definition of /-transformable is a generalization of the concepts of
weakk and strong equivalence; both can be seen as /-equivalence for particular choices
off the function ƒ. Namely, two grammars are weakly equivalent if the function ƒ
iss surjective, and they are equivalent if the function ƒ is bijective and t and f(t) are
isomorphicc trees, for all trees in the domain of ƒ.

4.22 Capturing State-of-the-Art Grammars

Inn this section we show that PCW-grammars are a powerful formalism; we show that
theyy are powerful enough to capture the models underlying a number of state-of-the-art
parsers.. Clearly, the grammatical framework underlying a parser is a key component
off the overall definition of the parser which determines important characteristics of the
parser,, either directly or indirectly. Among others things, the grammatical framework
definess the set of languages the parser can deal with, a lower bound on the parser's
complexity,, and the type of items that should be learned by the second component men-
tionedd in Section 4.1.3. Hence, a thorough understanding of the grammatical frame-
workk on which a parser is based, provides a great deal of information about the parser
itself.. We are particularly interested in the following properties:

1.. The expressive power of a grammar formalism.

2.. Conditions under which the probability distribution defined over the set of pos-
siblee syntactic analyses is consistent: if this is the case, the probabilities asso-
ciatedd with an analysis can be used as meaningful probabilistic indicators both
forr further stages of processing (Manning and Schütze, 1999) and for evaluation
(Infante-Lopezz and de Rijke, 2004b).

3.. The relation to other grammatical frameworks; this provides insights about the
assumptionss made by the various frameworks.

Sincee building a parser is a time consuming process, formal properties of the under-
lyingg grammatical framework are not always a priority. Also, comparisons between
parserr models are usually based on experimental evidence. In order to establish formal
propertiess of parsers and to facilitate the comparison of parsers we believe that a uni-
fyingg grammatical framework, from which the grammars of different parsers can be
obtainedd as instances, is instrumental. We show that the PCW framework is capable
off capturing three state-of-the-art grammatical formalisms, namely bilexical grammars

4.2.4.2. Capturing State-of-the-Arl Grammars 67 7

(Eisner,, 2000), Markovian context free grammars (Collins, 1997), and stochastic tree

substitutionn grammars (Bod, 1998). For each of these three formalisms, we provide an

embeddingg in PCW-grammars, and we use this embedding to derive results regarding

expressivee power, consistency, and relations with other grammatical formalisms.

4.2.11 Bilexical Grammars

Bilexicall grammars (Eisner, 1996, 2000) is a formalism in which lexical items, such as

verbss and their arguments, can have idiosyncratic selectional influences on each other.

Suchh grammars can be used for describing bilexical approaches to dependency and

phrase-structuree grammars, and a slight modification yields link grammars.

Background d

AA split unweighted bilexical grammar B is a 3-tuple {W, {rw}w€\y, {lw}w<=w) where:

 W is a set, called the (terminal) vocabulary, which contains a distinguished sym-
boll ROOT.

 For each word w e W, lw and rw are a pair of regular grammars with start
symbolss Siw and Srw respectively. Each grammar accepts some regular subset of
W*. W*.

AA dependency tree is a tree whose nodes (internal and external) are labeled with words

fromm W\ the root is labeled with the symbol ROOT. The children ('dependents') of a

nodee are ordered with respect to each other and the node itself, so that the node has

bothh left children that precede it and right children that follow it. A dependency tree

TT is grammatical if for every word token w that appears in the tree, lw accepts the

(possiblyy empty) sequence of w's left children (from right to left), and rw accepts the

sequencee of w's right children (from left to right).

4.2.1.. EXAMPLE. Let B = (W, {IW}W£L}, {rw}w^) be a split bilexical grammar de-

finedd as follows: W = {a, b,ROOT}, la = b*, ra = e, lh — e, IROOT = a, rROor = £

andd n, — (a|6)*.' This grammar accepts the string "bbabaa" because IROOT accepts a,

ll aa accepts "bbb", la accepts e, lb accepts e, and rb accepts "a". See, for example, the

treee in Figure 4.5.

'Wee use regular expressions instead of automata because the former are more compact. In order to
makee the example follow the definition, regular languages have to be transformed into automata.

ChapterChapter 4. Constrained W-Grammars

Figuree 4.5: An example of a dependency tree.

Bilexicall Grammars as CW-grammars

Withh every bilexical grammar B we can associate a CW-grammar WB according to the
followingg definition.

4.2.2.. DEFINITION. Let B — (W, {IW}W(ZL}, {r w}w£w) be a split bilexical grammar.
Lett WB = {Vt NT, 7\ S, -^->, -?->) be the CW-grammar defined as follows:

 The set of variables V consists of the set of start symbols SiV! and Srw from
regularss grammars lw and rw respectively, for each w in W.

 The set of non-terminals NT is some set in 1-1-correspondence with W, e.g., it
cann be defined as NT — { W : w € W} using a string-priming operation.

 The set of terminals T is the set of words W.

 The set of meta-rules is given by the union of {w' — w : w e W} and the
ruless in all of the right and left regular grammars in B.

 The set of pseudo-rules is given by w' — SjwwSrw where lw denotes the regular
expressionn inverting (reading backwards) all strings in L(lw).

Below,, we establish the (weak) equivalence between a bilexical grammar B and its
CW-grammarr counterpart WB- The idea is that the set of meta-rules, which produce
derivationss that remain hidden in the tree, are used for simulating the regular automata.
Pseudo-ruless are used as a nexus between a hidden derivation and a visible one: for
eachh word w in the alphabet, we define a pseudo-rule having w as a terminal, and
twoo variables S^ and Srw marking the left and right dependents, respectively. These
variabless correspond to the start symbols for the left and right automata /„, and rw,
respectively.. Instantiating the pseudo-rule associated to w would use a left and a right
derivationn using the left and the right automata, respectively, via meta-rules. The whole
derivationn remains hidden in the ==> derivation, as in bilexical grammars.

4.2.4.2. Capturing State-of-the-Art Grammars 69 9

4.2.3.. LEMMA. Bile.xicat grammars are f-transformable to CW-grammars.

PROOF.. We have to give a function ƒ : T{B) —> T{\VB), where B is a bilexical gram-
marr and \\ 'B the grammar defined in Definition 4.2.2, such that ƒ is invertible. A bilex-
icall tree yielding the string s = u'i wn can be described as a sequence «i un

off 3-tuples (Q;. WJ. 0,} such that lWi accepts at and rWi accepts 0. The desired function
ƒƒ transforms a dependency tree in a w-tree by transforming the sequence of tuples into
aa => derivation. We define ƒ as f ((a, wt, (3)) = H'j ^ > awt0. The rule correspond-
ingg to (a.Wi,0) is the one produced by using the pseudo rule li'/ -̂ -> Sl-wxSTw and
instantiatingg 5/u and Sru. with a and /? respectively. Since the sequence of tuples forms
aa dependency tree, the sequence of w-rules builds up a correct w-tree. H

WeightedWeighted bilexical grammars are like unweighted bilexical grammars but all of their
automataa assign weights to the strings they generate. By Lemma 4.2.3, weighted bilex-
icall grammars are a subsett of PCW-grammars.

Expressivee Power and Consistency

Byy Lemma 4.2.3 bilexical grammars are weakly equivalent to context free grammars.
Inn order to prove that they are not strongly equivalent it is enough to note that the
grammarr in Example 4.2.1 can generate trees like the ones pictured in Figure 4.6 for
arbitraryy k. That is, the grammar in Example 4.2.1 can generate flat trees like the
oness pictured in Figure 4.6 where nodes can have arbitrarily many siblings. Any CFG
generatingg the same string language will produce non-flat structures.

(e))

Figuree 4.6: Different dependency trees that can not be generated by CFGs.

Wee now show that the learning mechanism proposed in (Eisner, 1996) produces consis-
tentt probability distributions. We start by presenting the way Eisner induces a bilexical
grammarr B from a bilexical treebank; next, we show how the given treebank can be
transformedd into a CF treebank. Finally, we show that the transformed treebank can be
usedd to learn the underlying PCFG G of a PCW-grammar W such that W is equivalent
too B.

70 0 ChapterChapter 4. Constrained W-Grammars

Inn (Eisner, 1996). bilexical grammars are learned under the assumption that all
wordss share a common automaton A and that this unique automaton is learned using
bigrams,, or equivalently using a degree one Markov chain (see Appendix B for an in-
troductionn to Markov chains in the context of natural language processing). The learn-
ingg procedure proceeds as follows. First, training material for inducing the automaton
iss extracted from the bilexical treebank. The training material is constructed adding
alll right and left dependents strings in all bilexical trees. Extracted strings should be
prefixedd with a special mark "-s-" and postfixed with the special mark "-e-". These
markss should be treated as indivisible units. For example, if a tree like the one pic-
turedd in Figure 4.5 is found in the treebank, strings "-,s - bba - e-", "s - a - e-",
" - ss - a - e - 'Y ' -s - n - e--\"-s - b - e - ' \ *'-s - ba - t - \ "s - a - e-",
" -55 - a - e-", " -5 - b - e-", "-s - ba - e-", " - s - b - e-" ,"-s - b - e - "
aree to be added to the training material. Since all words share the same automaton, the
definitionn of grammar B is direct from automaton A.

Now,, suppose that a bilexical grammar G is learned as described above using an
automatonn A, and suppose that GA is the linear PCFG equivalent to the automaton A
(forr details on the equivalence between linear CFGs and automata see (Hopcroft and
Ullman,, 1979); for details on the probabilistic flavor see (Abney et al., 1999)).

Ourr proof is complete if we manage to transform the bilexical treebank into a CF
treebankk that can be used to learn a consistent CFG G. We also need to show that a
W-grammarr W can be defined such that its underlying PCFG is equal to G and that W
iss equivalent to B. In what follows we show how to accomplish this.

Wee start by transforming the bilexical-treebank into a CF-treebank. The main idea
off the transformation is to rewrite trees using the inverse of the transformation defined
inn Lemma 4.2.3. Trees in the bilexical treebank are transformed into CF trees using
thee assumption that the meta-rules used actually belong to G. Figure 4.7 shows an
examplee of such a transformation.

Alll transformed trees form a new CF-treebank. Using a maximum likelihood es-
timationn technique (see Section 2.3 for details) we can induce a PCFG G. Note that
thee set of rules in G can be seen as the union of two subsets. The first is the set
{X{Xaa —»i -s - a - s-} where a is terminal symbol and Xa is a non-terminal uniquely
associatedd to a. All such rules have probability 1 since each variable Xa is always
expandedd with the same body across the whole treebank. The second subset is given
byy the set of rules in GA-

GG is a consistent grammar given that it has been induced using maximum likelihood
(Chii and Geman, 1998; Joan-Andreu and Benedf, 1997). Our task now is to show that
GG can be used to build a CW-grammar W such that G is its underlying PCFG and W
iss equivalent to B.

Inn order to define \V we have to define its set of rules and its set of meta-rules. The

4.2.4.2. Capturing State-of-the-Art Grammars 71 1

Xa a

(a)) (b)

Figuree 4.7: The dependency tree in (a) is transformed into the context free tree in (b).

sett of pseudo-rules is given by the set {Xa -»! -s - a - s-} while its set of meta-
ruless is given by the set of rules in GA. It is immediate from the tree transformation
functionn pictured in Figure 4.7 that W is strongly equivalent to B, moreover, it is
immediatee that both grammars assign the same probability value to all trees in their
treee languages. Consequently, since G is consistent, W is consistent. Finally, since W
iss consistent, B is consistent as desired.

4.2.22 Markovian Context Free Grammars

Inn this subsection we capture one of the models presented by Collins: his so-called
firstfirst model. The main idea behind (Collins, 1997, 1999) is to extend what he calls a
"simple"" CFG to a lexicalized back-off grammar.

Background d

Collins'ss first model may be viewed as a way to describe the probabilities assigned to
CF-likee rules. A rule has the following shape:2

P{h)P{h) -> Ln{l n)... LMHWRiin)... Rm(rm), (4.1)

2Inn this subsection, we follow Collins's notion and denote the parent with P.

72 2 ChapterChapter 4. Constrained W-Grammars

wheree H is the head-child of the phrase, and thus inherits the head word h from its
parentt P, and where Ln(/„), ..., I i (/ i) and /^(r,) , . . . , Rm(rm) are left and right
modifierss of H, respectively. Either or both of n and m may be zero, so that n = m = 0
forr unary rules. Figure 4.8 shows a tree with its respective rules.

TOP P

S(bought))

NP(week)) NP(IBM) VP(bought)

JJJ NN NNP VBD NP(Lotus)
t l l || |

lastt week IBM b o u g h t N N P

Lotus s

TOPP —• S (bought)
S(bought)) -*NP(week) NP(IBM) VP(bought)
NPP (week) -^JJ (last) NN(week)

NP(IBM)) -> NNP(IBM)
VP(bought)) -* VBD(bought) NP(Lotus)

NP(Lotus)) -*NNP(Lotus)

Figuree 4.8: A lexicalized parse tree and the rules it contains; POS tags omitted.

Collinss defines the probability of a rule such as (4.1) as the probability of its right-hand
side,, conditioned on the probability of its left-hand side, which is then decomposed as
follows: :

V{LV{Lnn{l{l nn)...)... L^HWRfa)... Rm(rm)\P(h)) = Vh(H\P(h))x

xx JJ ViimU^L.ih),..., L ^ ^) , P(h), H) x
i=l,...,n+l l

xx J J Vr{Ri{rj)\Li{li), - , £„+i(i»+i), fli(ri),..., fij-i^-i), P(h), H),
j=l,...,m+l l

wheree Zn+i and rn+1 are defined as STOP. Collins approximates the probabilities using
Markovv independence assumptions for each order. In particular, the generation of the
right-handd side of a rule such as (4.1), given the left-hand side, is decomposed into
threee steps:

1.. The head constituent label of the phrase is generated, with probability equal to
PPHH(H\P,h). (H\P,h).

4.2.4.2. Capturing State-of-the-Art Grammars 73 3

2.. Modifiers to the left of the head are generated, with probability equal to

1111 VL{Li{li)\P,h,H),
1 = 1 71-1-1

wheree Ln+i(l n+1) = STOP. The STOP symbol is a non-terminal, and the model
stopss generating left modifiers as soon as it has been generated.

3.. Modifiers to the right of the head are generated, with probability equal to

YlYl VR(Ri{ri)\P,h,H),
i—i...m+l i—i...m+l

wheree Rm+\{r m+\) is defined as STOP.

Wee can think of the probabilities VR(Ri{ri)\P,htH) and VL{U{k)\P,KH) as the
probabilitiess assigned to arcs labeled Ri{ri) and L^U) respectively in a zero-order
Markovv chain M. M has one state and as many arcs as combinations of symbols
Ri(ri)Ri(ri) and L,(/t). M also determines the probability to be assigned to rules.

Markoviann Context Free Grammars as CW-grammars

Recalll that for capturing bilexical grammars, we first described the formalism using
regularr languages and later added probabilities. To capture Collins's first model we
proceedd in the opposite direction. We use the zero-order Markov models Collins builds
too define regular languages and use these to build a CW grammar corresponding to
Collins'ss model.

Independentt of their order, Markov chains describe a regular language. Let M —
(S,(S, P, F, I) be a Markov chain, where S is a sequence of states, P is the transition
matrix,, F Q Sis the set of absorbing states, and I is the initial distribution of probabil-
ities.. We can directly transform M into an automaton AM by taking S as the states of
thee automaton, F as the set of final states, and the initial state as the state that receives
ann initial probability mass.

Lett NT be the set of possible phrase names, e.g., NP, PP, etc.; let W be the set
off words in the lexicon; we assume that both sets are finite. For each pair {H, w) €
NTNT x W there are two Markov chains r(H,w) and 1(H,W)> such that Collins' rules can be
rewrittenn as (4.1) as follows:

(P,h)~+(L(P,h)~+(Lnn,l,lnn)...(L)...(Luuh)(H,h)(Rh)(H,h)(R11,r,r11)...(R)...(Rrnrn,r,rmm).).

Forr strings (H,h)(Luli)... (Ln,ln) and (H,h)(Ruri)... {Rm,rm) the probability is
givenn by the probabilities assigned to paths

{L{L uuh)...(Lh)...(Lnn,l,lnn)STQP)STQP

74 4 ChapterChapter 4. Constrained W-Grammars

and d

{R{R11.r.r11)...{R)...{Rmm,r,rmm)STQP)STQP

inn the Markov chains 1,HM) and r<H.h) respectively.

4.2.4.. DEFINITION. Let B - (AT, \V, {/(W,„o} wevo6Jvr}, {riH.w)}wtw.heNT) be a

grammarr based on Markov rules. Let \VB = (WNT.T.S, ~™0 be the CW-

grammarr defined as follows:

 The set of variables V' is given by the set of start symbols Sj and Sr from

thee regular grammars Ï(H.W) a r |d T{HM) respectively for each w in W.

 The set of non-terminals A T is some set in 1 -1 -correspondence with 11', e.g., it

cann be defined as NT — {w' : w € IV}, where _' is a string priming operation.

 The set of terminals T is the set of words IV'.

 The set of probabilistic meta-rules is given by the union of the rules in each of the

rightt and left regular grammars (i.e., the set given by A —> a iff A —+ a e 1(H,W)

o r i - > a ee »"(ƒƒ„,) for some H and some w) plus the set {w' -^-> w : w E W}.

 The set of pseudo-rules is given by (P, h) -L->Vii{H\(P,h)) SiilIh) (H, h)Sr{Hh).

4.2.5.. LEMMA. Markov rules as used in Collins's first model are f-transformable to

CW-grammars. CW-grammars.

Thee proof of this lemma is similar to the proof of Lemma 4.2.3 and we omit it here.

Expressivee Power and Consistency

Byy Lemma 4.2.5 Collins's first model is weakly equivalent to context free grammars.

Moreover,, the idea behind Example 4.1.2 can be used to show that Collins's first model

iss not strongly equivalent to CFGs: Collins's first model can produce flat structures

thatt cannot be captured by PCFGs (see Example 4.6 and Example 4.1.2 for examples

off flat structures non-capturable by CFGs); as a consequence, the probabilistic version

off Collins's first model cannot be captured using PCFGs.

Ass a consequence of Lemma 4.2.5, learning Markov rule-based grammars is equiv-

alentt to learning PCW-grammars, which, in turn, is equivalent to learning the PCFGs

underlyingg PCW-grammars. Collins (1997) assumes that all hidden derivations are

producedd by Markov chains. Under the PCW-paradigm, his methodology is equivalent

too transforming all trees in the training material by making all their hidden derivations

visiblee and inducing the underlying PCFG from the transformed trees. Variables in the

equivalentt PCW-grammar are defined according to the degree of the Markov chain.

4.2.4.2. Capturing State-of-the-Art Grammars 15 15

Iff the Markov chain used is of degree zero, there is only one variable (the Markov
chainn contains a unique state), and the induced Markov rule-based grammar is consis-
tent.. This consistency result follows from the fact that inducing a zero-degree Markov
chainn is the same as inducing the underlying PCFG in the equivalent PCW-grammar
usingg maximum likelihood estimation, plus the fact that using maximum likelihood for
inducingg PCFGs produces consistent grammars (Chi and Geman, 1998; Joan-Andreu
andBenedi,, 1997).

Finally,, the embedding of Collins's and Eisner's models into CW-grammars allows
uss to compare them. Both models have quite similar meta-rules and pseudo-rules. The
mainn difference between their rules is that Collins's codify more information as vari-
ables.. The embedding into CW-grammars allows us to see their learning step as a
treebankk rewriting procedure, followed by a CFG induction step. The treebank gener-
atedd in the first step is the one used as training material in the second. According to
thiss perspective, the two approaches differ in the rewriting function they use in the first
step,, while both approaches use maximum likelihood in the second step.

4.2.33 Stochastic Tree Substitution Grammars

Data-orientedd parsing (DOP) is a memory-based approach to syntactic parsing. The
basicc idea is to use the subtrees from a syntactically annotated corpus directly as a
stochasticc grammar. The DOP-1 model (Bod, 1995) was the first version of DOP, and
mostt later versions off DOP are variations on it. The underlying grammatical formalism
iss stochastic tree substitution grammars (STSG), which is the grammatical formalism
wee capture here.

Background d

Thee grammatical formalism is extremely simple and can be described as follows:
forr every sentence in a parsed training corpus, extract every subtree. Now, we use
thesee trees to form a stochastic tree substitution grammar. Formally, a stochastic tree-
substitutionsubstitution grammar (STSG) G is a 5-tuple (VN, V?, S, R, P) where:

 VN is a finite set of nonterminal symbols.

 Vj- is a finite set of terminal symbols.

 S € VN is the distinguished symbol.

 R is a finite set of trees, called elementary trees, whose top nodes and interior
nodess are labeled by nonterminal symbols and whose yield nodes are labeled by
terminall or nonterminal symbols.

76 6 ChapterChapter 4. Constrained W-Grammars

 F is a function which assigns to every elementary tree t e R a probability P(t).
Forr a tree t with a root node symbol root{t) = o, P(t) is interpreted as the
probabilityy of substituting t for a node a. We require, therefore, for a given a
t n a tt Y,{t:roout)=a} ~ * (where t's root node symbol is a).

Iff f i and t2 are elementary trees such that the left-most non-terminal leaves node sym-
boll of tx is equal to the root node symbol of t2, then t\ o t2 is the tree that results
fromm substituting t2 in this left-most non-terminal leaves node symbol in tj. The par-
tiall function o is called leftmost substitution or simply substitution. Trees are derived
usingg leftmost substitution.

STSGss as CW-grammars

AA STSG is not a context free grammar. The main difference, and the hardest to capture
inn a CFG-like setting, is the way in which probabilities are computed for a given tree.
Thee probability of a tree is given by the sum of the probabilities of all derivations
producingg it. CW-grammars offer a similar mechanism: the probability of the body of
aa w-rule is the sum of the probabilities of all meta-derivations producing it. The idea
off the equivalence is to associate to every tree produced by a STSG a w-rule of the
PCW-grammarr in such a way that the body of the w-rule codifies the whole tree.

Too implement this idea, we need to code up trees as strings. The simplest way to
achievee this is to visit the nodes in a depth-first left-to-right order. For each inner node,
wee write the CFG production, while for the leaves, we write the symbol itself if the
symboll is a terminal and a primed version of it if the symbol is a non-terminal. For
example,, the code describing the tree in Figure 4.9(a) is

{A,{A, BAB)B'{A, BAB)B'A'B'{B, a)a.

Thee first step in capturing STSGs is to build meta-rules capturing elementary trees
usingg the notation just introduced. Specifically, let t be an elementary tree belonging
too a STSG. Let S be its root and a its string representation. The CF-like rule 5' — a
iss called the elementary rule of t. Elementary rules store all information about the
elementaryy tree. They have primed non-terminals where a substitution can be carried
out.. For example, if t is the elementary tree pictured in Figure 4.9.(b), its elementary
rulee is S' -* (S,AB)(A,B){A,ab)ab(B,AC)(A,ab)abC'. Note the primed version
off C in the frontier of the derivation.

4.2.6.. DEFINITION. Let H = {VN, VT, S, R, P) be a STSG. Let WH = (V, NT, T,
S',S', —>,) be the following CW-grammar.

 V is the primed version of V?.

4.2.4.2. Capturing State-of-the-Art Grammars 11 11

(a)) (b)

Figuree 4.9: (a) A derivation tree, (b) An elementary tree.

 (A, a) is in NT iff (A, a) —> € appears in some elementary tree.

 T is exactly as VT.

 S' is a new symbol.

 The set of meta-rules is built by transforming each elementary tree into its cor-
respondingg elementary rule.

 The set of pseudo-rules is given by (̂ 4, a) -̂—> e if A — a appears in a elemen-
taryy tree, plus rules S' —* S.

Twoo remarks: first, all generative capacity is encoded in me set of meta-rules. In the
CW-world,, the body of a rule (i.e., an instantiated pseudo-rule) encodes a derivation
off the STSG. Second, the probability of a w-rule is the sum of the probabilities of
meta-derivationss yielding the rule's body.

4.2.7.. LEMMA. Let H = {VN,VT,S,R,P) be a STSG and WH the CW-grammar
forfor H as given in Definition 4.2.6. There is a one-to-one correspondence between
derivationsderivations in H and meta-rule derivations in WH-

PROOF.. Let t be a tree produced by H. We prove the lemma using induction on the
lengthoff the derivation producing t. If t has length 1, there is an elementary tree t\ such
thatt S is the root node and yields a, which implies that there is a meta-rule obtained
fromm the elementary rule corresponding to the elementary tree *i. The relation is one-
to-onee as, by definition, meta-rules are in one-to-one correspondence with elementary
trees. .

78 8 ChapterChapter 4. Constrained W-Grammars

Supposee the lemma is true for derivation lengths less than or equal to n. Suppose t

iss generated by a derivation of length n+1. Assume there are trees rl t t2 with 11 of 2 = t.

Byy definition there is a unique meta-rule rx corresponding with i\ and by the inductive

hypothesiss there is a unique derivation for t2. H

4.2.8.. LEMMA. Let H = {YN.YT. S. ƒ?, P) be a STSG, and \VH the CW-grammar for

HH as given in Definition 4.2.6. Then U"/ƒ accepts the same set of strings as H, i.e.,

STSGsSTSGs and PCW-grammars are weakly equivalent.

PROOF.. Let a be a string in L(H). There is at least one tree derivation ^ . . . o ^

yieldingg a. From Lemma 4.2.7 we know that there is a w-rule S' =^> a such that after

applyingg rules (.4, ft) -̂—» t, a is obtained. H

4.2.9.. COROLLARY. Let H = (VN, VT, S, 7?, P) be a STSG and \YH the CW-grammar

forfor H as given in Definition 4.2.6. There is a one-to-one correspondence between

derivationsderivations in H and U'#.

4.2.10.. COROLLARY. STSGS are f-transformable to CW-grammars.

PROOF.. The result is a direct consequence of Lemma 4.2.8 and Lemma 4.2.9. H

4.2.11.. LEMMA. Let H = (VN,VTtS,R,P) be a STSG, and let WH be the CW-

grammargrammar given in Definition 4.2.6. Both grammars assign the same probability mass

toto trees related through the one-to-one mapping described in Corollary 4.2.9.

PROOF.. A tree has a characteristic w-rule, defined by its shape. In other words, the

probabilityy of a w-rule according to the definition of PCW-grammars is given by the

summ of the probabilities of all derivations producing the rule's body, i.e., all STSG

derivationss producing the same tree. As a consequence, a particular STSG tree, iden-

tifiedd by the body of the corresponding w-rule, has the same probability mass as the

amountt assigned to its corresponding w-rule by the equivalent CW-Grammar. H

Expressivee Power and Consistency

Byy Corollary 4.2.10, STSGs are weakly equivalent to context free grammars. The con-

sistencyy of a STSG depends on the methodology used for computing the probabilities

assignedd to its elementary trees. DOP-1 is one particular approach to computing these

probabilities.. Under the DOP-1 perspective, a tree t contributes all its possible sub-

treess to a new treebank from which the probabilities of elementary trees are computed.

Probabilitiess of an elementary tree are computed using maximum likelihood. Since

4.3.4.3. Discussion and Conclusion 79 9

thee events in the new treebank are not independently distributed, the resulting proba-
bilitiess are inconsistent and biased (Johnson, 2002). Solutions taking into account the
dependencee between trees in the resulting treebanks have been suggested (Sima'an and
Buratto,, 2003).

Consistencyy conditions cannot be derived for the DOP-1 estimation procedure be-
causee it does not attempt to learn the underlying PCFG. In fact, our formalism suggests
thatt probabilities should be computed differently than they are done in DOP-1. By our
embedding,, a tree t in the treebank corresponds to the body of a pseudo-rule instanti-
atedd through meta-derivations; t is the final "string" and does not have any information
aboutt the derivation that took place. But viewing t as a final string changes the prob-
lemm definition! Now, we have as input a set of elementary rules and a set of accepted
trees.. The problem is to compute probabilities for these rules: an unsupervised prob-
lemm that can be solved using any unsupervised technique, e.g., (Carroll and Charniak,
1992;; Chen, 1995). The consistency of the resulting STSG depends on the consistency
propertiess of the unsupervised method.

4.33 Discussion and Conclusion

Inn this chapter we introduced constrained W-grammars and we augmented them with
probabilities.. Probabilities provide a disambiguation mechanism and a statistical per-
spective.. It is still an open question whether probabilities add expressive power to
CW-grammars;; the strategy used in Chapter 3 can not be used for PCW-grammars. To
seee this, one should note that CW-grammars do not have any inherently ambiguous
languages:: any CW-grammar W with start symbol S, meta-rules M and pseudo-rules
PP can be transformed into an unambiguous grammar G' by defining G"s start symbol
too be S', its unique meta-rule to be S' -̂ -+ S and its meta-rules to be M U P. G' is
unambiguouss because it hides inside meta-derivations practically all derivations. All
treess in T(G') are very flat, and there is exactly one tree for each string in the language.

Doo PCW-grammars add anything? We think that the importance and contribution
off our grammatical formalism has to be considered from the perspective of grammat-
icall formalisms underlying state-of-the-art parsers. It is usually the case that gram-
maticall formalisms used in parsers are not clearly stated, they are hard to identify
fromm the definition of the parser (see (Bikel, 2004) for an account of the details of
Collins'ss parser) and their formal properties require ad-hoc proofs (see (Bod, 1998)
forr expressive power properties of STSGs) or are not proven at all. We have shown
thatt PCW-grammars provide a common formalism based on a well-known grammat-
icall framework with computational properties that are very well understood. Clearly,
PCW-grammarss greatly reduce the expressive power of W-grammars, but still, we man-

80 0 ChapterChapter 4. Constrained W-Grammars

agee to capture the grammatical formalisms underlying state-of-the-art parsers with the
remainingg expressive power and to establish new and important facts about them.

Inn particular, we examined the expressive power of three formalisms (bilexical
grammars,, Markovian context free rules, and stochastic tree substitution grammars)
togetherr with some conditions under which the inferred grammars are consistent. Fi-
nally,, we should point out that, despite their similarities, there is a fundamental differ-
encee between PCW-grammars and PCFGs, and this is the two-level mechanism of the
former.. This mechanism allows us to capture three state-of-the-art natural language
parsers,, which cannot be done using standard PCFGs only.

Thee results in this chapter shed light on the relationship between a number of gram-
maticall formalisms, not just between context free grammars and PCW-grammars. In
particular,, we have shown that, from a formal perspective, bilexical grammars and
Markoviann context free grammars do not differ in a principled way: both are based
onn approximating bodies of rules using Markov models. We also found that STSGs
andd Markov rules have certain similarities. Markov rules and STSGs suppose that rule
bodiess are obtained by collapsing hidden derivations. That is, for Markov rules a rule
bodyy is a regular expression (or equivalently a Markov chain). Similarly, STSGs take
thiss idea to the extreme by taking the whole sentence to be the yield of a hidden deriva-
tion.. PCW-grammars naturally suggest intermediate levels of abstraction; in Chapter 5
wee show that these levels can be used to reduce the size of grammars induced from
treebanks,, and, hence, to optimize parsing procedures.

Fromm a theoretical point of view, the concept of /-transformable grammars, which
wee use heavily in our proofs, is a novel and very powerful concept that relaxes the
knownn equivalence notions between grammars. Since arbitrary functions ƒ can be
definedd between arbitrary tree languages and CFG-like trees, they can be used to
mapp other formalisms like tree adjoining grammars (Joshi, 1985) or categorial gram-
marss (Wood, 1993) to context free trees. As part of our future research, we aim to
capturee further grammatical formalisms and to characterize the nature of the functions
ƒƒ used to achieve this.

Chapterr 5

Alternativee Approaches for Generating Bodies
off Grammar Rules

5.11 Introduction

Soo far, we have developed a grammatical formalism capable of capturing different
state-of-the-artt language models, which gave us a novel perspective on state-of-the-art
languagee models. In Chapter 4 we identified that some language models use n-grams
forr building bodies of rules. From the literature, we know that n-grams have had a big
impactt on the state-of-the-art in natural language models. They are central to many lan-
guagee models (Charniak, 1997; Collins, 1997; Eisner, 1996; Collins, 2000), and despite
theirr simplicity, n-gram models have been very successful. Modeling with n-grams is
ann induction task (Gold, 1967): given a sample set of strings, the task is to guess
thee grammar that produced that sample. Usually, the grammar is not chosen from an
arbitraryy set of possible grammars, but from some given restricted class. Grammar in-
ductionn consists of two parts: choosing the class of languages amongst which to search
andd designing the procedure for performing the search. By using n-grams for gram-
marr induction one addresses the two parts in one go, and the use of n-grams implies
thatt the solution will be searched for in the class of probabilistic regular languages,
sincee n-grams induce probabilistic automata and, consequently, probabilistic regular
languages.. But probabilistic regular languages induced using n-grams form a proper
subclasss of the class of all probabilistic regular languages; for instance, n-grams are
incapablee of capturing long-distance relations between words. At the technical level
thee restricted nature of n-grams is witnessed by the special structure of the automata
inducedd from them, as we will see in Section 5.4.2.

/V-gramss are not the only way to induce regular languages, and they are not the
mostt powerful way to do so. There is a variety of general methods capable of inducing

81 1

822 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

allall regular languages (Denis, 2001; Carrasco and Oncina, 1994; Thollard et al., 2000).
Whatt is their relevance for natural language parsing? Recall from Chapter 4 that regu-
larr languages are used for describing the bodies of rules in a grammar. Consequently,
thee quality and expressive power of the resulting grammar is tied to the quality and
expressivee power of the regular languages used to describe them. And these proper-
ties,, in turn, are influenced directly by the method used to induce them. At this point
aa natural question arises: can we gain anything in parsing from using general methods
forr inducing regular languages instead of methods based on n-grams? Specifically, can
wee describe the bodies of grammatical rules more accurately and more concisely by
usingg general methods for inducing regular languages?

Inn the context of natural language parsing we present an empirical comparison
betweenn algorithms for inducing regular languages using n-grams on the one hand,
andd more general algorithms for learning the general class of regular language on the
other.. We proceed as follows. We generate our training data from the Wall Street
Journall section of the Penn Tree Bank (PTB), transforming it to projective dependency
structures,, following (Collins, 1996). Since projective dependency structures can be
seenn as a special type of context free grammars (Gaifman, 1965), word dependents can
bee seen as bodies of context free rules. We extract these rule bodies and use them as
trainingg material for the rule induction algorithms we consider. The automata produced
thiss way are then used to build grammars which, in turn, are used for parsing.

Wee are interested in two aspects of the use of probabilistic regular languages for
naturall language parsing: the quality of the induced automata and the performance of
thee resulting parsers. For evaluation purposes, we use two metrics: perplexity for the
firstt aspect and percentage of correct attachments for the second, both explained in
detaill in Section 2.2.3. The main results of the chapter are that, measured in terms of
perplexity,, automata induced by algorithms other than n-grams describe rule bodies
betterr than automata induced using n-gram-based algorithms. Moreover, the gain in
automataa quality is reflected by an improvement in parsing performance. The pars-
ingg performance of both methods (n-grams vs. general automata) can be substantially
improvedd by splitting the training material into POS categories. As a side product,
wee find empirical evidence to explain the effectiveness of rule lexicalization (Collins,
1997;; Sima'an, 2000) and parent annotation techniques (Klein and Manning, 2003) in
termss of a reduction in perplexity in the automata induced from training corpora.

5.22 Overview

Wee want to build grammars using different algorithms for inducing their rules. Our
mainn question is aimed at understanding how different algorithms for inducing regular

5.3.5.3. From Automata to Grammars 83 3

languagess impact the parsing performance with those grammars. A second issue that
wee want to explore is how the grammars perform when the quality of the training
materiall is improved, that is, when the training material is separated into part of speech
(POS)) categories before the regular language learning algorithms are run.

Thee first step is to transform the PTB into projective dependencies structures fol-
lowingg (Collins, 1996). From the resulting tree bank we delete all lexical information
exceptt POS tags. Every POS in a tree belonging to the tree-bank has associated to it
twoo different, possibly empty, sequences of right and left dependents, respectively. We
extractt all these sequences for all trees, producing two different sets containing right
andd left sequences of dependents, respectively.

Thesee two sets form the training material used for building four different gram-
mars.. The four grammars differ along two dimensions: the number of automata used
forr building them and the algorithm used for inducing the automata. As to the latter
dimension,, in Section 5.4 we use two algorithms: the Minimum Discriminative Infor-
mationn (MDI) algorithm, and a bigram-based algorithm. As to the former dimension,
twoo of the grammars are built using only two different automata, each of which is
builtt using the two sample set generated from the PTB. The other two grammars are
builtt using two automata per POS, exploiting a split of the training samples into mul-
tiplee samples, two samples per POS, to be precise, each containing only those samples
wheree the POS appeared as the head.

5.33 From Automata to Grammars

Inn this section we describe how to learn PCW-grammars from the automata that we are
goingg to induce in Section 5.4. Since we will induce two families of automata ("Many-
Automata"" where we use two automata per POS, and "One-Automaton" where we use
onlyy two automata to fit every POS), we need to describe two automata-to-grammar
transformations. .

Lett us start with the case where we build two automata per POS. Let w be a POS
inn the PTB; let Af and A% be the two automata associated to it. Let Gf and G% be
thee PCFGs equivalent to Af and A% respectively, following (Abney et al., 1999), and
lett Sf and S% be the start symbols of G1 and G% respectively. We build our final
grammarr G with start symbol S, by defining its meta-rules as the disjoint union of all
ruless in Gf and G^ (for all POS w), its set of pseudo-rules as the union of the sets

{W{W -=->! S^wS^}

and d
SS -=->! S?wS%},

844 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

wheree \\ is a unique new variable symbol associated to w.
Whenn we use two automata for all parts of speech, the grammar is defined as fol-

lows.. Let AL and .4^ be the two automata learned. Let GL and GR be the PCFGs
equivalentt to AL and AR, and let Si and SR be the start symbols of GL and GR, re-
spectively.. Fix a POS w in the PTB. Since the automata are deterministic, there exist
statess S£ and SR that are reachable from SL and SR, respectively, by following the arc
labeledd with w. Define a grammar as in the previous case. Its start symbol is 5, its set
off meta-rules is the disjoint union of all rules in Gf and GU

R (for all POS it'), its set of
pseudo-ruless is {\V -^-»1 S'[wS^, S - ^ S£wS% : a- is a POS in the PTB and W is
aa unique new variable symbol associated to w}.

5.44 Building Automata

Thee four grammars we intend to induce are completely defined once the underlying
automataa have been built. We now explain how we build those automata from the
trainingg material. The process of building the automata consists of three steps:

1.. Extracting the training material from the transformed PTB.

2.. Applying the algorithm to learn automata to the training material.

3.. Searching for the optimal automata.

Sectionss 5.4.1, 5.4.2 and 5.4.3 deal with steps 1, 2, and 3, respectively.

5.4.11 Building the Sample Sets

Thee training material is obtained as follows. We transform the PTB, sections 2-22, to
dependencyy structures, as suggested by (Collins, 1999). All sentences containing CC
tagss are filtered out, following (Eisner, 1996). We also eliminate all word information,
leavingg only POS tags. For each resulting dependency tree we extract a sample set
off right and left sequences of dependents. Figure 5.1 shows an example of a phase
structure,, Figure 5.2 shows its corresponding dependency tree, and Table 5.1 shows
thee sample sets of right and left dependents we extracted from it. The sample set used
forr automata induction is the union of all individual tree sample sets.

5.4.22 Learning Probabilistic Automata

Probabilisticc deterministic finite state automata (PDFA) inference is the problem of
inducingg a stochastic regular grammar from a sample set of strings belonging to an

5.4.5.4. Building Automata 85 5

for r
NN N

I I
perm.sstonn N p_£B J

thee probes f o r N N N N S

II !
brainn studies

Figuree 5.1: Tree extracted from the PTB, Section 02, file ws j _02 97 . mrg.

OrResearcherss 1 :can 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain ll:studiesl2:.
NNN MD VB IN NN TO VB DT NN IN NN NN DOTSYB

Figuree 5.2: Dependency structure corresponding to the tree in Figure 5.1.

866 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

Wordd Position

0 0

1 1

2 2

3 3
4 4

5 5

6 6

7 7

8 8

9 9

10 0

11 1

12 2

Word'ss POS

NN N

MD D

VB B

IN N

NN N

TO O

VB B

DT T

NN N

IN N

NN N

NN N

DOTSYB B

Left t

NN N

MDNN N

VB B

IN N

NN N

TO O

VB B

DT T

NNDT T

IN N

NN N

NNNN N

DOTSYB B

Right t

NN N

MDD VB DOTSYB

VBIN N

INNN N

NNTO O

TOVB B

VBB NN IN

DT T

NN N

INNN N

NN N

NN N

DOTSYB B

Tablee 5.1: Bags of left and right dependents. Left dependents are to be read from right
too left.

unknownn regular language. The most direct approach for solving the task is by using
n-grams.. The n-gram induction algorithm works as follows. It starts with an empty au-
tomaton,, i.e., an automaton whose set of states and set of arcs are empty. It adds states
andd arcs to the initial automaton as follows. It adds a state to the current automaton for
eachh sequence of symbols fi of length n that appear in the training materia!. It adds an
arcc between states afi and fib labeled b to the current automaton, if the sequence a(3b
appearss in the training set.

Thee probability assigned to the arc (a/?, fib) is defined as the number of times the
sequencee afib appeared in the training set divided by the number of times afi was
followedd by any other character appeared in the training set. Note that a n STOP
symbolss have to be postfixed to each string in the training material before the induction
algorithmm is used. The role and importance of the STOP symbol is discussed in detail
inn Appendix B.

Clearly,, the size and quality of the automata produced by the ri-gram based algo-
rithmm depends on n. For our experiments, we chose n equal to 2 because n equal to
11 and n greater than 2 produce automata of very low quality. For n equal to 1 the
automataa are uncapable of learning dependencies between words For n greater than 2
thee algorithm immediately suffers from data sparseness, because the automata model
bodiess of rules which tend to be very short. Consequently, for the remainder of the
chapter,, we take n-grams to be bigrams. Note also that we do no use any smoothing
techniquee that would make it possible to use other values of n and at the same time

5.4.5.4. Building Automata 87 7

avoidd the problems mentioned. If we want to carry out a fair comparison of both meth-
ods,, smoothing techniques used for optimizing automata based on n-grams should also
bee used for optimizing MDI-based automata. Two or more n-gram based automata
smoothedd into a single automaton would have to be compared against two or more
MDI-basedd automata smoothed into a single automaton. It would be hard to determine
whetherr the differences between the final automata are due to the smoothing procedure
orr to the algorithms used for creating the initial automata. By leaving smoothing out
off the picture, we obtain a clearer understanding of the differences between the two
algorithmss to induce automata.

Theree are other approaches to inducing regular grammars besides ones based on
n-grams.. The first algorithm to learn PDFAs was ALERGIA (Carrasco and Oncina,
1994);; it learns cyclic automata with the so-called state-merging method. The Min-
imumm Discrimination Information (MDI) algorithm (Thollard et al., 2000) improves
overr ALERGIA and uses Kullback-Leibler divergence for deciding when to merge
states.. We opted for the MDI algorithm as an alternative to n-gram based induction
algorithms,, mainly because its working principles are radically different from the n-
gram-basedd algorithm. The MDI algorithm first builds an automaton that only accepts
thee strings in the sample set by merging common prefixes, thus producing a tree-shaped
automatonn in which each transition has a probability proportional to the number of
timess it is used while generating the positive sample; see Section 2.2.2 for details.

Forr comparison purposes, let us repeat here the working principle of the MDI algo-
rithm.. The MDI algorithm traverses the lattice of all possible partitions for this general
automaton,, attempting to merge states that satisfy a trade-off that can be specified by
thee user. Specifically, assume that A\ is a temporary solution of the algorithm and that
AA22 is a tentative new solution derived from Ax. A(v4i;J42) = ^ (^o l l ^) - ^K^H^li)
denotess the divergence increment while going from A\ to A2, where Df^oll^) is the
Kullback-LeiblerKullback-Leibler divergence or relative entropy between the two distributions gener-
atedd by the corresponding automata (Cover and Thomas, 1991). The new solution
AA22 is compatible with the training data if the divergence increment relative to the
sizee reduction, that is, the reduction of the number of states, is small enough. For-
mally,, let a lpha denote a compatibility threshold; then the compatibility is satisfied
iff l ^ - l l 2| < alpha. For this learning algorithm, a lpha is the unique parameter; we
tunedd it to get better quality automata.

Notee that the working principles of the n-gram-based algorithm and the MDI algo-
rithmrithm are completely different. The n-gram based algorithm works locally by adding
arcss and states depending on the local configuration of strings in the sample set. In con-
trast,, the MDI algorithm starts by building an automaton that accepts only the strings
inn the training sample and it over-generalizes over the sample set by merging states that
itt considers that can be merged. In this way, the MDI algorithm is capable of detecting

888 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

longg distance dependencies between symbols.

5.4.33 Optimizing Automata

Wee use three measures to evaluate the quality of a probabilistic automaton (and set the
valuee of a lpha optimally). The first two come from come Section 2.2.2 Let Q be a
testt bag extracted as T. We use perplexity (PP) and missed samples (MS) to evaluate
thee quality of a probabilistic automaton. The PP and MS measures are relative to a
testt sample Q; as described in section 5.4.1, we transformed section 00 of the PTB to
obtainn one. The third measure we use to evaluate the quality of automata concerns the
sizee of the automata. We compute NumEdges and NumStates. that is, the number of
edgess and the number of states of the automaton.

Wee say that one automaton is of a better quality than another if the values of the
44 indicators—PP, MS, NumEdges, and NumStates—are lower for the first than for the
second.. Our aim is to find a value of a lpha that produces an automaton of better
qualityy than the bigram-based counterpart.

Byy exhaustive search, we determined the optimal value of a lpha. We selected the
valuee of a l p h a for which the MDI-based automaton outperforms the bigram-based
one.. An equivalent value of a lpha can be obtained independently of the performance
off the bigram-based automata by defining a measure that combines PP and MS. This
measuree should reach its maximum when PP and MS reach their minimums, see Chap-
terss 6 and 7 for definitions of such functions.

Wee exemplify our optimization procedure by considering automata for the "One-
Automaton"" setting (where we used the same automata for all parts of speech). In
Figuree 5.3 we plot all values of PP and MS computed for different values of a lpha ,
forr each training set (i.e., left and right). That is, we fix a value of a lpha, feed the
MDII algorithm with the training material (sections 2-22 of the PTB), and compute PP
andd MS for the resulting automaton using the test sample (section 0 of the PTB).

Fromm the plots we can identify values of a l p h a that produce automata having
betterr values of PP and MS than the bigram-based ones. All such a lphas are the ones
insidee the marked areas (between 5e - 05 and 0.00012 for the left side and 5e - 05
andd 0.0001 for the right side); all automata induced using those a lphas possess a
lowerr value of PP as well as a smaller number of MS, as required. Based on these

NumEdges s
NumStates s

MDI I
Rightt Left
2688 328
122 15

Bigrams s
Rightt Left

205199 16473
8444 755

Tablee 5.2: Automata sizes for the "One-Automaton" case, with alpha = 0.0001.

5.4.5.4. Building Automata 89 9

Uniquee Automaton - Left Side

^ - ^ ^ ^

y y

~ ~

,, ""'

MDII Misused Samples (MS) «

5e-055 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004

Alpha a

Uniquee Automaton - Right Side

30 0

25 5

20 0

15 5

10 0

5 5

0 0

5e-055 0.0001 0.00015 0.0002 0.00025 0.0003 0.00035 0.0004
Alpha a

Figuree 5.3: Values of PP and MS for automata used in building One-Automaton gram-
mars.. (X-axis): a lpha. (Y-axis): missed samples (MS) and perplexity (PP). The two
constantt lines represent the values of PP and MS for the bigram-based automata.

_ ^ ^ — ' —k ~ " - ' '

--
Bigramm Perplex. (PP) —

MDII Missed Samples (MS) -
Bigramm Missed Samples (MS) "

--

explorationss we selected alpha = 0.0001 for building the automata used for grammar
inductionn in the "One-Automaton" case. Besides having lower values of PP and MS,
thee resulting automata are smaller than the bigram based automata (Table 5.2). MDI
compressess information better; the values in the tables suggest that MDI finds more
regularitiess in the sample set than the bigram-based algorithm.

Too determine optimal values for the "Many-Automata" case (where we learned two
automataa for each POS) we used the same procedure as for the "One-Automaton" case,
butt now for every individual POS. We do not reproduce analogues of Figure 5.3 and
Tablee 5.2 for all parts of speech but in Figure 5.4 we show some representative plots;

Besidess allowing us to find the optimal a lphas, the plots provide us with a great

900 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

0.8 8

0.6 6

0.4 4

0.2 2

DT T -RighiSide e

--
H H

Mpha a

Ml)!! Perplex (PP)
Bigramm Perplex (PP)

MDII Missed Samples (MS) *
Bigggnii Missed Samples iMS> -

Alpha a

MDII Perplex, (PP)
Bigramm Perplex. (PP)

MDII Missed Samples (MS)
Bigramm Missed Samples <MSi

VBPP - RighiSide

Alpha a

MDII Perplex. (PP)
Bigramm Perplex, (PP)

MDII Missed Samples (MS)
 igram Missed Samples t.MS.i

££ £ £ S' £ 3 3 3 3 3 3
MM è ë S S % M % % & è.

All pi i a

MDII Perplex, (PP) :

Bigramm Perplex, (PP)
MDII Missed Samples (MS)

Bigramm Missed Samples t.MSi

Alpha a

MDII Perplex. (PP)
Bigramm Perplex. (PP)

MDII Missed Samples (MS)
Biüramm Missed Samples (MS) -

NN-RighiSide e

Alpha a

MDII Perplex. (PP)
Bieramm Perplex. (PP) -

MDII Missed Samples (MS)
Bigramm Missed Samples iMSt

Figuree 5.4: Values of PP and MS for different automata.

deall of information. The first point to note is that PP values for the one-automaton
casee are around 20 while they are around 7 for VBP and even lower for other POS (cf.,
Figuress 5.3 and 5.4, second row). We think that such a notable difference exists because
thee training sets used for the many-automata case are much more homogeneous than
thee one used for the one-automaton. The one-automaton training set contains instances
off regular expressions for all kind of phenomena. In contrast, the training material for
many-automataa has been split using POS information into more homogeneous classes.
Thiss is an important point and we come back to it in Chapter 6.

5.4.5.4. Building Automata 91 1

Theree are two remarkable things in the plots for VBP (Figure 5.4, second row).
First,, it is one of the few examples where the bigram-based algorithm outperforms the
MDII algorithm. Second, the values of PP in this plot are relatively high and unstable
comparedd to other plots. Lower perplexity usually implies better quality automata, and
ass we will see in the next section, better automata produce better grammars.

Howw can we obtain lower PP values for the automata associated to verbs? The
classs of words tagged with verbs tags, e.g., VBP, harbors many different behaviors,
whichh is not surprising, given that verbs can differ widely in terms of, e.g., their sub-
categorizationn frames. One way to decrease the PP values is to split the class of words
taggedd with VBP into multiple, more homogeneous classes. One attempt to implement
thiss idea is lexical ization: increasing the information in the POS tag by adding the
lemmaa to it (Collins, 1997; Sima'an, 2000). Lexicalization splits the class of verbs
intoo a family of singletons producing more homogeneous classes, as desired. A dif-
ferentt approach (Klein and Manning, 2003) consists in adding head information to
dependents;; words tagged with VBP are then split into classes according to the words
thatt dominate them in the training corpus. Following this strategy, in Chapter 6 we
proposee an algorithm for finding the optimal splitting of the training set, which we
thenn use for splitting the training set corresponding to VB.

Somee POS present very high perplexities, while other tags such as DT present a PP
closee to 1 (and 0 MS) for all values of a lpha . Hence, there is no need to introduce
furtherr distinctions in DT, doing so will not increase the quality of the automata but
willl increase their number; for these particular cases, splitting techniques are bound
too add noise to the resulting grammars. The plots also indicate that the bigram-based
algorithmm captures them as well as the MDI algorithm.

Inn Figure 5.4, third row, we see that the MDI-based automata and the bigram-
basedd automata achieve the same value of PP (close to 5) for NN, but the MDI misses
fewerr examples for a lphas bigger than 1.4e — 04. As pointed out, we built the

POS S

DTT NumEdges
NumStates s

VBPP NumEdges
NumStates s

NNN NumEdges
NumStates s

MDI I
Rightt Left

211 14
44 3

3000 204
500 45
1044 111
66 4

Bigrams s
Rightt Left

355 39
255 17

25966 1311
2500 149
38277 4709
2844 326

Tablee 5.3: Automata sizes for three parts of speech in the "Many-Automata" case, with
alphaa = 0.0002 for all parts of speech.

922 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

One-Automaton-MDII using alpha - 0.0001 and even though the method allows
uss to fine-tune each a lpha in the Many-Automata-MDI grammar, we used a fixed
alphaa = 0.0002 for all parts of speech, which, for most parts of speech, produces
betterr automata than bigrams. Table 5.3 lists the sizes of the automata. The differences
betweenn MDI-based and bigram-based automata are not as dramatic as in the "One-
Automaton"" case (Table 5.2). but the former again have consistently lower NumEdges
andd NumStates values, for all parts of speech, even where bigram-based automata have
aa lower perplexity.

5.55 Parsing the PTB

Wee have just observed remarkable differences in quality between MDI-based and bi-
gram-basedd automata. Next, we present the parsing scores, and discuss the meaning
off the measures observed for automata in the context of the grammars they produce.
Thee measure that translates directly from automata to grammars is automaton size.
Sincee each automaton is transformed into a PCFG, the number of rules in the resulting
grammarr is proportional to the number of arcs in the automaton, and the number of
non-terminalss is proportional to the number of states. From Table 5.4 we see that MDI
compressess information better: the sizes of the grammars produced by the MDI-based
automataa are an order of magnitude smaller that those produced using bigram-based
automata.. Moreover, the "One-Automaton" versions substantially reduce the size of
thee resulting grammars; this is obviously due to the fact that all POS share the same
underlyingg automaton so that information does not need to be duplicated across parts
off speech. We report the size of grammars before they are transformed to Chomskian
normall form, i.e., the grammars contain rules with empty bodies and relabeling rules.
Sincee our parser requires CNF grammars, we need to transform these grammars to
CNFF before parsing. For details about our parsing algorithms implementation see Ap-
pendixx A.

Onee Automaton
MDII Bigram
7022 38670

Manyy Automata
MDII Bigram
53166 68394

Tablee 5.4: Numbers of rules in the grammars built.

Too understand the meaning of PP and MS in the context of grammars it helps to think
off PCW-parsing as a two-phase procedure. The first phase consists of creating the rules
thatt will be used in the second phase. And the second phase consists of using the rules
createdd in the first phase as a PCFG and parsing the sentence using a PCF parser.

5.6.5.6. Related Work and Discussion 93 3

PCW-grammarss make this distinction clear, and the abstraction is also useful at
thiss point. Since regular expressions are used to build rules, the values of PP and MS
quantifyy the quality of the set of rules built for the second phase: MS gives us a measure
off the number of rule bodies that should be created but that will not be created, and,
hence,, it gives us a measure of the number of "correct" trees that will not be produced.
PPP tells us how uncertain the first phase is about producing rules.

Finally,, we report on the parsing accuracy. We use two measures, the first one
(%Words)) was proposed by Lin (1995) and was the one reported in (Eisner, 1996).
Lin'ss measure computes the fraction of words that have been attached to the right
word.. The second one (%POS) marks as correct a word attachment if, and only if, the
POSS tag of the head is the same as that of the right head, i.e., the word was attached
too the correct word-class, even though the word is not the correct one in the sentence.
Clearly,, the second measure is always higher than the first one. The two measures
tryy to capture the performance of the PCW-parser in the two phases described above:
(%POS)) tries to capture the performance in the first phase, and (%Words) in the sec-
ondd phase. The measures reported in Table 5.5 are the mean values of (%POS) and
(%Words)) computed over all sentences in section 23 having length at most 20. We
parsedd only those sentences because the resulting grammars for bigrams are too big:
parsingg all sentences without any serious pruning techniques was simply not feasible.

One-Automaton n
Many-Automata a

MDI I
%Wordss %POS

0.699 0.73
0.855 0.88

Bigrams s
%% Words %POS

0.599 0.63
0.733 0.76

Tablee 5.5: Parsing results for the PTB.

Fromm Table 5.5 we see that the grammars induced with the MDI algorithm outperform
thee grammars created with bigrams-based algorithm. Moreover, the grammars using
differentt automata per POS outperforms the ones built using only a single automaton
perr side (left or right). The results suggest that an increase in quality of the automata
hass a direct impact on the parsing performance.

5.66 Related Work and Discussion

Modelingg rule bodies is a key component of parsers. TV-grams have been used ex-
tensivelyy for this purpose (Collins, 1996, 1997; Eisner, 1996). In n-gram-based for-
malismss the generative process is not considered in terms of probabilistic regular lan-
guages.. Considering them as such (like we do) has two advantages. First, a vast area
off research for inducing regular languages (Carrasco and Oncina, 1994; Thollard et al.,

944 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

2000;; Dupont and Chase, 1998) comes in sight. Second, the parsing device itself can
bee viewed under a unifying grammatical paradigm like PCW-grammars.

Inn our comparison we optimized the value of a lpha , but we did not optimize the
n-grams,, as doing so would mean two different things. First, smoothing techniques
wouldd have to be used to combine different order n-grams. As pointed out, we would
alsoo have to smooth different MDI-based automata, which would leave us in the same
point.. Second, the degree of the n-gram. We opted for n — 2 as it seems the right
balancee of informativeness and generalization. In this chapter n-grams are used to
modell sequences of arguments, and these hardly ever have length > 3, making higher
degreess useless. To make a fair comparison for the Many-Automata grammars we did
nott tune the MDI-based automata individually, but we picked a uniform a lpha.

MDII presents a way to compress rule information on the PTB; of course, other
approachess exists. In particular, Krotov et al. (1998) try to induce a CW-grammar from
thee PTB with the underlying assumption that some derivations that were supposed to
bee hidden were left visible. The attempt to use algorithms other than n-grams-based
forr inducing of regular languages in the context of grammar induction is not new; for
example,, Kruijff (2003) uses profile hidden models in an attempt to quantify free order
variationss across languages; we are not aware of evaluations of his grammars as parsing
devices. .

5.77 Conclusions

Ourr experiments in this chapter support two kinds of conclusions. First, modeling rules
withh algorithms other than n-grams not only produces smaller grammars but also better
performingg ones. Second, the procedure used for optimizing a l p h a reveals that some
POSS behave almost deterministically for selecting their arguments, while others do
not.. These conclusions suggest that splitting classes that behave non-deterministically
intoo homogeneous ones could improve the quality of the inferred automata. We saw
thatt lexicalization and head-annotation seem to attack this problem. Obvious follow-
upp questions arise: Are these two techniques the best way to split non-homogeneous
classess into homogeneous ones? Is there an optimal splitting? Answers to these ques-
tionn will be given in Chapter 6.

Chapterr 6

Splittingg Training Material Optimally

6.11 Introduction

Ourr approach to parsing can be viewed as a simple CF parser with the special feature
thatt our context free rules do not exist a priori. Instead, there is a device for generating
themm on demand. The device produces strings and these strings are used as CF bodies
off rules. In the previous chapter, we used probabilistic automata for generating bodies
off rules. These automata were not built manually, but we induced them from sample
instancess obtained from tree-banks. The general idea used for building the probabilistic
automataa model bodies of rules, consists of copying all bodies of rules inside the Penn
Tree-bankk (PTB) to a bodies of rules sample bag. This sample bag is treated as the
samplee set of a regular language and probabilistic automata are induced from it. Once
thee probabilistic automata have been built, they are used for defining a grammar that
usess them for building rules on the fly.

Thee sample bag of rule bodies to be used as training material contains many differ-
entt types of strings. For example, some strings may describe arguments of transitive
verbs,, while others may describe arguments of intransitive verbs. Chapter 5, together
withh previous work from the literature (Galen et al., 2004), suggests that models which
aree induced from the sample bag can be substantially improved as follows. First, split
thee training material into sets containing only homogeneous material; second, induce a
modell for each class, and third, combine the different models into one general model.

Thee assumption underlying this three step procedure is that the regular language
wee want to model is in fact the union of several languages. We split the material
guidedd by the aim of keeping apart strings that belong to different languages. In this
way,, the models induced from each of the bags created after splitting the material are
cleaner,, because the algorithm that induces a regular language from one of the resulting
trainingg bags simply does not see any string belonging to other bags. By splitting the

95 5

96 6 ChapterChapter 6. Splitting Training Material Optimally

dataa splitting we try to minimize the noise to which the learning algorithm is exposed.
Too help shape our intuitions, let us consider two examples. First, suppose that the

languagee we try to learn is the set {a.aa.aaa,aaaa,aaaaa}. Suppose that we have
aa bag of instances of this language and that we want to infer the original language
fromm it. The learning algorithm might consider the bag of samples as instances of the
languagee a\ while if we split the sample bag into five different bags, each containing
stringss of the same length, it is more clear for the learning algorithm that each of the
bagss is produced by a language containing only one element.

Second,, suppose that we want to model verb arguments. Simplifying, verb argu-
mentss can be thought of as the union of transitive verb arguments and intransitive verb
arguments.. Our working hypothesis is that a better model can be induced for verb
argumentss if we first split the training material into two different samples, one contain-
ingg all the instances of transitive verbs and the other containing all the instances for
intransitivee verbs. Once the training material has been split, two models are induced,
onee modeling transitive verbs and the other modeling intransitive ones. The original
materiall is divided into two bags to avoid the data instances from these two different
phenomenaa from interfering with each other. Conceptually, if the data is not split,
thee algorithm for inducing a regular language for intransitive verbs sees the sample
instancess of transitive verbs as noise and vice-versa.

Howw do we split the training material? One possible way consists in defining a split
byy hand. Chapter 5 provides an example of this approach. There, the training material
wass split according to the head word of the dependency rules. As a consequence, two
differentt automata for each part-of-speech (POS) were induced, one modeling right
dependentss and one modeling left dependents. In contrast, the approach we pursue in
thiss chapter aims at finding an optimal splitting in an unsupervised manner. For this
purposee we define a quality measure that quantifies the quality of a partition, and we
searchh among a subset of all possible partitions for the one maximizing the proposed
qualityy measure. Thus, one of our main challenges will be to find such a measure.
Oncee the partition that optimizes our quality measure has been found, we use it for
buildingg as many automata as there are components in the partition. Finally, we use
thee induced automata for building PCW grammars, which we then use for parsing the
PTB. .

Inn this chapter we present a measure that quantifies the quality of a partition, we
alsoo show that the measure we found correlates with parsing performance. As a conse-
quence,, the procedure we use for splitting the material is a procedure that can be used
forr finding optimal grammars, optimal in the sense of parsing performance, without
havingg to parse the PTB.

Thiss chapter is organized as follows. Section 6.2 presents an overview of the chap-
ter;; Section 6.3 explains how to build grammars once the optimal partition has been

6.2.6.2. Overview 97 7

found;; Section 6.4 explains how we search for the optimal partition, and Section 6.5
reportss on the results on parsing the PTB. Section 6.6 discusses related work, and Sec-
tionn 6.7 states conclusions and describes future work.

6.22 Overview

Wee want to build grammars using training material that has been split into homoge-
neouss classes of strings. Our main research goal is to understand how the elements in
thee training material interfere with each other, thus diminishing the quality of the re-
sultingg grammars. We also want to quantify the gain in terms of parsing performance
thatt can be obtained by splitting the training material. Furthermore, we are interested
inn finding a quality measure for grammars that only takes the grammar's structure into
considerationn and helps us to predict the grammars performance in parsing without
actuallyy parsing.

Wee proceed as follows. As in Chapter 5, we first transform the PTB into projective
dependencyy structures following (Collins, 1996); see Section 2.1.1 for details. From
thee resulting tree-bank we delete all lexical information except POS tags. Every occur-
rencee of a POS in a tree belonging to the tree-bank has associated to it two different,
possiblyy empty, sequences of right and left dependents, respectively. We extract these
sequencess for all trees, producing two different bags containing right and left sequences
off dependents, respectively.

Wee then proceed with a first splitting of the training material. For this purpose we
usee the POS tag of the head word as described in Chapter 5. This first splitting produces
twoo different sample bags for each POS, one containing instances of left dependents,
andd the other containing instances of right dependents.

Too keep our experiments focused we decided to split the training material of a sin-
glee POS tag only: VB. VB is one of the POS with the highest value of perplexity (PP);
experimentss in Chapter 5 suggest that higher values of PP are due to the use of a sin-
glee automaton for modeling different regular languages. Recall that, for instance, the
valuess of PP drop considerably when the training material is split using the POS tag
off the head word. Since the PP value associated to VB is one of the highest, VB seems
too include words with substantially different behaviors, an intuition that is clearly con-
firmedfirmed by the literature (Levin, 1993; Merlo and Stevenson, 2001). We isolate the
sentencess containing the VB tag and see how dealing only with VB affects other tags.

Thee initial partition of the training set corresponding to the VB tag is split using
syntacticc information such as father tag, number of dependents, depth in the tree, etc.
So,, all instances in the training material that share the same feature are placed in the
samee bag. The initial partition aims at using external knowledge to split the material;

98 8 ChapterChapter 6. Splitting Training Material Optimallx

wee try to characterize each of the resulting bags according to the output of the syntactic
informationn used for building the split.

Recalll that each component in the partition is a set of strings. We use such sets
too build as many automata as there are components in the partition. For each of the
automataa built, we compute its quality, and the quality of the partition is defined as
aa combination of the qualities of those individual automata. Once the initial partition
hass been defined, genetic algorithms are used for finding a merging of components
inn the partition that optimizes the quality measure. Next, we use the optimal merging
foundd by the genetic algorithm for building a PCW-grammar (see Section 6.3). Finally,
wee use the resulting grammar for parsing the PTB, and we report on the results in
Sectionn 6.5.

6.33 Building Grammars

Inn order to build a grammar we need to complete five steps: (1) obtain the training
materiall from the PTB, (2) build an initial partition, (3) find an optimal partition con-
tainingg the initial partition, (4) induce an automaton for each component in the optimal
partition,, and (5) put all automata together in a grammar. In this section we focus on
stepss (1), (4), and (5), while Section 6.4 focusses on steps (2) and (3).

6.3.11 Extracting Training Material

Wee extracted the training and testing material from the PTB. As we did in Chapter 5, all
sentencess containing CC tags are filtered out. We also eliminate all lexical information,
leavingg POS tags only. Dependents are extracted from dependency trees. For each
dependencyy tree, we extract sample bags of right and left sequences of dependents. As
ann example, the tree in Figure 6.1 is transformed into the dependency tree shown in
Figuree 6.2. Its bags of left and right dependents are shown in Table 6.1.

Fromm trees in sections 2-22 of the PTB we build two bags TL and TR containing left
andd right dependents respectively. From trees in sections 0-1 we build two different
bagss QL and QR, also containing left and right dependents respectively. The bags TL

andd TR are used as training material for automata induction algorithms, while bags QL

andd QR are used for evaluating the resulting automata.

6.3.22 From Automata to Grammars

Lett T be a bag of training material extracted from the transformed tree-bank. Recall
fromm Section 2.2.2 that we use two different measures for evaluating the quality of
automata.. Let Q be a test bag extracted as T. We use perplexity (PP) and missed

6.3.6.3. Building Grammars 99 9

thee probes for NN NNS
II I

brainn studies

Figuree 6.1: Tree extracted from the PTB, Section 02, file wsj .0297 .tnrg.

0:Researcherss l:can 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain ll:studiesl2:.
NNN MD VB IN NN TO VB DT NN IN NN NN DOTSYB

Figuree 6.2: Dependency structure corresponding to the tree in Figure 6.1.

100 0 ChapterChapter 6. Splitting Training Material Optimally

Wordd Position
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 0
11 1
12 2

Word'ss POS
NN N
MD D
VB B
IN N
NN N
TO O
VB B
DT T
NN N
IN N
NN N
NN N

DOTSYB B

Left t
NN N

MDNN N
VB B
IN N
NN N
TO O
VB B
DT T

NNDT T
IN N
NN N

NNNN N
DOTSYB B

Right t
NN N

MDD VB DOTSYB
VBIN N
INNN N
NNTO O
TOVB B

VBB NN IN
DT T
NN N

INNN N
NN N
NN N

DOTSYB B

Tablee 6.1: Bags of left and right dependents. Left dependents are to be read from right
too left.

sampless (MS) to evaluate the quality of a probabilistic automaton. A PP close to 1
indicatess that the automaton is almost certain about the next step while reading the
string.. MS counts the number of strings in the test sample Q that the automaton failed
too accept.

Now,, we describe how we build grammars once partitions over the bags of training
materiall have been defined. Suppose that a partition IT^ = (TTI, - ,7rn) has been
foundd over the training material TVB. Suppose also that, for each component 7Tj in the
partitionn UTvB, two automata AW

L* and A%, modeling left and right dependents respec-
tively,, have been induced. Finally, suppose that there are two automata Af and A% for
alll POS w in the PTB other than VB. Let Gf , G%, G"j and G£ be their equivalent
PCFGss obtained following (Abney et al., 1999). Let S£, Sg, S£' and S£ be the start
symbolss of G%, GW

R, G£ and G£ respectively.

Ourr final grammar G is defined as follows. Its start symbol is 5, its set of pseudo-
ruless is defined as the union of

{W{W -?->! S%wS%, S - ^ ! S%wS% : w 6 POS}

and d

{VB**{VB** ^ spvBSJi, s -=->, SpvBS*}: TT, e nTvB},

andd its set of meta-rules is the union of rules in G™, G% G]} and G£* for all w in POS
and7Tii in nTvB.

6.4.6.4. Splitting the Training Material 101 1

6.44 Splitting the Training Material

Lett T^ and 7 ^ be the training materia! corresponding to the right and left dependents
off words tagged with VB. Let QyB and Q^ be the left and right dependents from the
tuningg set whose head symbol is VB.

Lett n = (7Ti -Kn) be a partition of the set T = T^ÜT^ÜQ^ÜQ^ (we denote
thee disjoint union of bags X and Y as XÜY). Since n is a partition of T, it induces a
partitionn of each of the bags T&, TV

L
B, <?VB and Q^ when each of the sets is intersected

withh 7T,. For example, the partition induced by n over TR is defined as T1T^ — {ir\ n
TTRR it C\TR)
11 VB 7 - - - i " n ' ' VB/ -

Oncee a partition of TR and TL is defined, constructing a grammar is straightforward.
Now,, we focus on how to construct partitions II. Partitions II are defined in a twofold
procedure.. The first step defines an initial partition II — (7Ti,..., 7rn) using syntactic
features.. Syntactic features help to group VB arguments according to the position in
whichh they appear in the sentences extracted from the tree-bank. In the second step,
aa quality measure for partitions is defined and an optimization of the global quality of
thee partition is performed. The optimization phase searches for the optimal partition
amongg all partitions containing the initial partition. Consequently, the initial partition
determiness the space search for the optimization phase in the second step.

6.4.11 Initial Partitions

Inn order to define initial partitions we use features. A feature is a function ƒ that
takess two arguments; a dependency tree t and a number i. The number i is used as
aa reference to the i-th position in the sentence x to which ƒ is applied. Since words
inn x are in direct correspondence with the nodes of the tree t yielding x, the index i
alsoo corresponds to a node in the tree t. A feature returns any piece of information
regardingg the position of the index i in the tree. Table 6.2 contains the features we use
togetherr with a brief description for each of them. For each feature ƒ in Table 6.2, the
table'ss third column shows the result of applying ƒ to the tree in Figure 6.2 at position
2. .

Fromm a linguistic point of view, our features are used to characterize the dependents
aa verb might take. The underlying assumption is that features are capable of captur-
ingg the different behaviors that words tagged with VB might display. The idea is to
groupp training instances according to their behavior. We divided the training material
dependingg on the value a particular feature takes for a particular word in the particu-
larr tree where the word appears. We put all words' dependents tagged with VB with
similarr feature values into the same sample set. Consequently, the initial sample set is
dividedd into smaller sample sets, each containing all dependents of words tagged VB

102 2 ChapterChapter 6. Splitting Training Material Optimally

Name e

WordStem m
gFather r
Father r
Depth h
rSibling g

FstLeftDep p

NumLeftDep p

Description n

stemm of the word at i

thee grand-father of i
thee father of i
thee depth of the tree below i

firstt left sibling of i

thee first left dependent of i
thee numbers of left dependents of i

Example e

WordStem(2)WordStem(2) -- a p p l y

gFather(2)gFather(2) = NN

Father(2)Father(2) - IN

Depth(2)Depth(2) --= 1

rSibling{2)rSibling{2) = NONE

FstRightDep(2)FstRightDep(2) - I N

NumRightDep(2)NumRightDep(2) = 1

Tablee 6.2: All features we use; they all take two arguments: a dependency tree t, and a
nodee index i.

thatt share the same feature value. For example, suppose we use the feature father() to
partitionn the training material. All components in the partition share the same value of
fatherfather and there are as many components as there are possible outcomes for the feature
father().father(). The underlying assumption becomes then, that all instances in a component
aree sampled from a regular language different from the regular language from which
otherss components are sampled.

Formally,, the initial partition is defined as follows. Let T be the bag containing all
trainingg material; let x be an element in T; let tx be the tree in the tree-bank from which
xx was extracted. Let ix be the position in tx from which x was extracted. Finally, let
/ i , . . . ,, fk be the sequence of features we want to use for defining an initial partition.
Thee initial partition IT = (TTI, ..., 7rn) is given as the equivalence classes defined by
thee following equivalence relation R:

XXRyRy <=*> fj{tx,ix) = fj{ty,iy)j = l,...,fc.

Oncee a feature has been defined, we have to assign new tags to all the material we used
forr building and testing the automata. For example, suppose that we use the father
featuree to produce the initial splitting. In this case, the tree in Figure 6.2 is transformed
intoo the tree in Figure 6.3. The training material related to the retagged VB tags is
shownn in Table 6.3.

0:Researcherss lxan 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain 1 hstudies 12:.
NNN MD VB-MD EN NN TO VB-TO DT NN IN NN NN DOTSYB

Figuree 6.3: Dependency tree retagged according to the newly defined splitting.

6.4.6.4. Splitting the Training Material 103 3

Wordd Position
1 1
2 2
5 5
6 6

Word'ss POS
MD D

VB-MD D
TO O

VB-TO O

Left t
MDNN N
VB-MD D

TO O
VB-TO O

Right t
MDD VB-MD DOTSYB

VB-MDD NN IN
TOO VB-TO

VB-TOO NN IN

Tablee 6.3: Bags of left and right dependents.

Wee use features to induce a partition of the training material and of the testing ma-
terial.. Since the testing material is much smaller than the training material this might
yieldd empty components. Since the values for our quality measures obtained from
emptyy components are meaningless, we merge those empty components with those
wheree the resulting automaton has the lowest perplexity. The resulting partition has no
emptyy component. Such a partition is the starting partition for the algorithm searching
forr the optimal merging. We present 8 different grammars built using different fea-
tures,, the features used are described in Table 6.4. This table also shows the number
off components each feature produces together with the number of components in after
havingg searched for the best partition.

Grammarr name
Baseline e
rSibling g
NumRightDep p
Father r
gFather r
Depth h
FstRightDep p
WordStem m

components in
initiall partition

1 1
6 6
4 4
13 3
30 0
17 7
27 7
373 3

components in
optimall partition

1 1
1 1
1 1
6 6
9 9
10 0
17 7
57 7

Tablee 6.4: Features used and the number of components in the partitions they induce.

6.4.22 Merging Partitions

Inn this section we discuss the algorithm that searches for partitions over the training
materiall containing the initial partition. We say that a new partition IT contains a
partitionn n if for any two elements p and q that belong to the same component nk,
theree is a component TT' in IT such that both elements are again in n'. Our intention is
too search among the partitions that contain the initial partition for an optimal one. In

104 4 ChapterChapter 6. Splitting Training Material Optimally

orderr to decide which partition is the optimal one, we first need to define a measure for
evaluatingg its quality.

Recalll that a component in a partition is used to define an automaton. For each
componentt in the partition, we can define a value of PP and MS; in what follows we
usee each of these individual values to define a quality measure for the whole partition.

Forr every candidate merging, and for computing the partition's quality, we have to
assignn new tags to all the material. We assign new tags according to the redefinition of
thee features function we used for building the initial partition. For example, suppose
thatt the fatherQ feature was used for building the initial partition, suppose also that
aa candidate merge states that the component where father is equal to MD should be
mergedd to the component where father is equal to TO. All tags VB in the training
materiall with fathers tagged MD and TO have to be retagged with the same tag. For
example,, the tree in Figure 6.2 becomes the tree in Figure 6.4, where tags VB are
renamedd as VB-1.

OrResearcherss l:can 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain ll:studies 12:.
NNN MD VB-1 IN NN TO VB-1 DT NN IN NN NN DOTSYB

Figuree 6.4: Assigning new tags for computing the merging of [TO] and [MD].

Ourr measure has two main parts, each of which considers the automata related to the
leftt and to the right side. In order to simplify the exposition, we describe in detail our
measuree for the component referring to the right side. The component referring to the
leftt side is obtained by replacing R in the superscripts with L.

Lett Ft = (TC\ ,..., 7rn) be a partition of the training material T. Let Af, i = 1, . . . , k
bee the automata induced, as described in Section 6.3.2, using training sets iti D TR,
respectively.. Let PP^ and MSf* be the values of PP and MS respectively for the
automatonn Af, computed using test sets ^ n QR, for i = 1, . . . , k.

Ourr measure combines the values of PPi and MS{ for all i. That is, we combine
alll values of PP and MS to obtain a quality value of the whole partition. PP and MS
valuess can not be summed up directly given that the importance of an automaton is
proportionall to the number of times it is used in parsing. The importance of PP and
MSS values should be proportional to the number of times the corresponding automaton
iss to be used in generating bodies of rules. We have estimates of such frequencies using
thee training material. For that purpose, let

RR hnr H | .
Pi=Pi= , ,2 = l , . . . , 7 l .

6.4.6.4. Splitting the Training Material 105 5

Onee can view pf as the probability of using the automata Af. We use these proba-
bilitiess to measure the expected value for MS and PP as follows. Let E[MS^] be the
expectedd value of MS for a right automata defined as

E{MS>>\E{MS>>\ = Y.p>,MS«.

Lett E\PP$\ be the expected value of PP, defined as:

T! !

Lett E[MS^} and E\PP^} be the corresponding expected values for the left sides. Note
thatt the expected values depend on a particular partition, hence the subscript II. We
aree now in a position to compare the quality of two partitions according to the values
theyy assigned to E[PPg], E[MSg], E[PP^\ and E[MS&]. We say that partition Ux

iss better than partition ü2 if all of the following holds:

E[PPl\E[PPl\ < E\PP*t], (6.1)

E[MS^]E[MS^] < E[MS$2], (6.2)

E[PPl\E[PPl\ < E[PP£2], (6.3)

E[MS^}E[MS^} < E[MSk2}. (6.4)

Ideally,, we would like to find a quality function q defined over the class of possible
partitionss such that g(Ili) < q(U2) if and only if Equations 6.1 through 6.4 are satis-
fied.. If such a function exists, we can use many optimization methods for finding the
partitionn for which q is minimal. But, it is easy to see that such a function does not
exist.. In what follows, we show that even a function q satisfying

g(n00 < g(n2) <= {E[PPl\ < E[PP* 2]) A (ElMS^} < E[MS*2}) (6.5)

doess not exist. Suppose that such a function does exist; suppose that the partitions
1111 and n2 are two possible partitions with values E[PPpiA, E\MSpi^\, E[PPpi2],
E[MSE[MSPnPn]] for PP and MS. In order to compare the pair (E[PPPil}, E[MSPil]) with the
pairr (E[PPpi2], E[MSpi2\) we can plot each pair as a vector, as shown in Figure 6.5.
Sincee q is defined for all partitions, it takes values q\ — <?(IIi) and q2 — g(IIi). Both qx

andd q2 are real numbers, so q\ < q2 or q2 < qi, both possibilities imply that q{ïïi) <
q{U.q{U.22)) or q{U2) < g(Ili), which contradicts Equation 6.5 if q\ ^ q2. The constraints
imposedd by Equation 6.5 are impossible to fulfill because they required function q to
mapp a partial order, defined over pairs of reals in the right-hand side to a total order
definedd over reals in the left-hand side. We can not apply a function minimization

106 6 ChapterChapter 6. Splitting Training Material Optimally

(E\MS(E\MSlhlh}.E[PP}.E[PPnini}) })

iE[MSiE[MSuu}.E[PP}.E[PPU: U:

E[MS] E[MS]

Figuree 6.5: Values of E\PP) and E[MS] for two different partitions.

algorithmm to minimize both E\PP] and E[MS] at the same time because they can

nott be combined in one function that minimizes both whenever the one function is

minimized.. Still, we want to minimize both values at the same time. We propose to

circumventt this problem by fixing a reference point and biasing a function optimization

algorithmm to improve over the reference point. We try to optimize a given starting

configurationn of E[PP£], E[MS§], E[PP^\ and E[MS^\. We explain our algorithm

forr E[PP§\ and E[MS§\, extending it to the four components is straightforward.

Supposee that our given reference point II0 is the one described by Figure 6.6. All

vectorss that satisfy Equation 6.5 are vectors inside the shaded area. In order to improve

overr the values of PP and MS defined by vector n0 we have to search for those vectors

thatt lay in the shaded area. Observe that every vector in the shaded area codifies the

E[MS] E[MS]

Figuree 6.6: Values of E[PP] and E[MS] for two different partitions.

qualityy of a partition. Since not all the vectors in the shaded area define the same

quality,, we need to define a measure to pick the optimal one from the shaded area. We

usee the norm of the vector as a quality measure because it tries to minimize all the

6.4.6.4. Splitting the Training Material 107 7

componentss at the same time. Formally, the function qUo that we minimize is defined
ass follows:

<?n0{n)) - <

\\x\\\\x\\ + c
\\x\\\\x\\ + c
\\x\\\\x\\ + c
\\x\\\\x\\ + c
11*11 1

ifif E[PP* l]>E[PP£0]
i f£'[A/5g 1]>£[M5g0]]
ifif E[PP^]>E[PPl]
ifif E[MSh1]>E[MS{ io]
otherwise, ,

wheree X = (£[PP£], E[MS^},E[PP^}, E{MS^}), C is a constant number and
\\(xi,X2,-\\(xi,X2,- -,xn)\\ — y/x\ + x\ + . . . + x%. We use the constant C to penalize the
vectorss outside the shaded area of Figure 6.6. We drop the reference partition subscript
fromm q whenever the reference vector is clear from the context.

Thee measure defined this way, is a measure that depends on a starting configuration.
Inn Figure 6.7 we show an example in which gn0(n2) < qn0{Y[\), whilee Wx and U2 are
incomparablee using measures qUl and qn2. It is also interesting to note that whenever
partitionss n0, I^ and U2 are such that qn0(Hi) < 9n0(n0) and grn1(n2) < qnA^i)
thengn0(n2)) < qn0(^i)-

Inn our experiments we use the trivial partition, i.e., the partition containing one and
onlyy one component containing all the training material, as reference point. Note that
thee reference point coincides with the partition we use in Chapter 5, consequently the
resultss presented in this chapter are comparable to the experiments we performed in
thatt chapter.

E\MS\ E\MS\

Figuree 6.7: Two incomparable solutions.

Wee now apply this optimization technique to our specific problem, i.e., to find a
mergingg of components that minimizes values of E[MS] and E[PP]. We apply the
proceduree to different initial partitions: Table 6.5 shows the values of E[PP], E[MS],
E[PP],E[PP], E{MS], and q for all the grammars we build. Since all the experiments we
carriedd out share the same reference partition, their values of q are comparable.

108 8 ChapterChapter 6. Splitting Training Material Optimally

grammar r

Baseline e
rSibling g

NumRightDep p
Father r

gFather r
Depth h

FstRightDep p
WordStem m

left t

E[PP] E[PP]
1.189 9
1.189 9
1.189 9
1.188 8
1.189 9
1.180 0
1.188 8
1.195 5

E\MS] E\MS]

0 0

0 0
0 0
0 0
0 0
1 1
0 0
0 0

rij rij
E\PP\ E\PP\

9.633 3
9.633 3
9.633 3
9.743 3
9.652 2
9.783 3
2.950 0
9.647 7

2ht t
E[MS\ E[MS\

6 6
6 6
6 6
5 5
6 6
5 5

1.431 1
5 5

<\ <\
10.911 1
10.911 1
10.911 1
9.432 2
9.413 3

9.065 5
3.337 7
4.705 5

a l p h a a

0.00020 0
0.00020 0
0.00020 0
0.00036 6
0.00034 4

0.00039 9
0.00035 5
0.00039 9

Tablee 6.5: Results on q for all the grammars we built.

Fromm Table 6.5 we can see that the rSibling and NumRightDep do not suggest any
partitionn that outperforms the value of q of the baseline; for this particular case genetic
algorithmss exhaustively searched the whole space of possibilities. This was possible
becausee the space itself is not very big. The number of components in Table 6.4 gives
aa hint about the size of the space of possible merges.

Too understand the meaning of the measure q in the context of two-level parsing, it
iss important to recall from Chapter 5 the meaning of PP and MS in this context. Recall
thatt we are building PCW-grammars, and parsing with such grammars can be viewed
ass a two-phase procedure. The first phase consists in creating the rules that will be
usedd in the second phase. The second phase consists in using the rules created in the
firstfirst phase as a PCFG and in parsing the sentence using a PCF parser. Since automata
aree used to build rules, the values of PP and MS quantify the quality of the set of rules
builtt for the second phase: MS gives us a measure of the number of rule bodies that
shouldd be created but that will not be created, and, hence, it gives us an indicator of the
numberr of "correct" trees that will not be produced. PP tells us how uncertain the first
phasee is about producing rules. Now, q tries to minimize these two aspects: a partition
thatt outperforms the baseline means that the automata we induced missed, on average,
aa smaller number of bodies of rules and that the bodies of rules that are created, on
average,, are created with lower perplexity.

Searchingg for the Optimal Partition

Lett n be an initial partition of T built as described in Section 6.4.1. Let ü0 be the ref-
erencee partition, i.e., the partition containing one component in which the whole of the
trainingg material is found. For each of the initial partitions we defined in Section 6.4.1,
wee search for the merging that optimizes the quality function q.

Formally,, the search space is defined as the set of possible partitions containing the

6.4.6.4. Splitting the Training Material 109 9

initiall one. Let n and IT be two partitions over T, and let a and b be two elements in
T.T. Recall that a partition n contains another partition II' if all components in Fl result
fromm merging components in IT. Consequently, a partition containing IT can be easily
generatedd by merging some of its components.

Inn order to search for the partition giving the minimum value of q we use Genetic
Algorithmss (GAs). We use GAs because our problem can naturally be re-phrased as a
GAA optimization problem.

Inn GAs, a population of individuals competes for survival. Each individual is des-
ignatedd by a bag of genes that define its behavior. Individuals that perform better (as
definedd by the fitness function) have a higher chance of mating with other individuals.
AA GA implementation runs for a discrete number of steps, called generations. What
happenss during each generation can vary greatly depending on the strategy being used.
Typically,, a variation of the following happens at each generation:

1.. Selection. The performance of all the individuals is evaluated based on the fit-
nesss function, and each is given a specific fitness value. The higher the value,
thee bigger the chance of an individual passing its genes on to future generations
throughh mating (crossover).

2.. Crossover. Selected individuals are randomly paired up for crossover (also
knownn as sexual reproduction). This is further controlled by the crossover rate
specifiedd and may result in a new offspring individual that contains genes from
eachh of its parents. New individuals are injected into the current population.

3.. Mutation. Each individual is given the chance to mutate based on the mutation
probabilityy specified. Each gene of an individual is looked at separately to decide
whetherr it will be mutated or not. Mutation is decided based upon the mutation
ratee (or probability). If a mutation is to happen, the value of the gene is switched
too some other possible value.

Inn order to use GAs for our purposes we have to provide the following:

I.. A definition of individuals: We design our individuals to codify two things.
First,, a value of a l pha to be used for building the automata and second a par-
titionn of the training material, a l p h a is simply codified as the first gene in the
vector;; the partition containing the initial partition is codified as follows. Note
thatt in order to describe a partition for the training material it is enough to de-
scribee a way to merge components in the initial partition. Individuals in the
populationn specify a way to merge components belonging to the initial partition
intoo new components. A number k in the i-th position in the vector V indicates
thatt component i in the original partition should be added to the new component

110 110 ChapterChapter 6. Splitting Training Material Optimally

k.k. Formally, let \ ' - (<n a„) be a vector with /' < a, < n. The vector
I'' defines the partition II' - {TT[ir'n,) such that -,' - [J{nk : Y\k\ = i}.
Intuitively,, the number of components in the resulting partition is equal to the
numberr of different values stored in vector \'. E.g.. if all entries in V are the
same,, the new partition defined by \' contains only one component.

2.. A fitness function defined on individuals: The fitness function for an individual
iss defined as the quality measure q we defined in Section 6.4.2.

3.. A strategy for evolution: The strategy we follow is defined as follows. We
applyy two different operations to genes, namely crossover and mutation. We
decidee which operation to apply by flipping a biased coin. Crossover get 0.95
probabilityy of being applied while mutation gets 0.05. Once the operation is
chosen,, genes to which the operations apply are selected from the population.
Wee select individuals using the roulette wheel strategy (Gen and Cheng, 1997),
inn which the probability for an individual to be selected is proportional to its
fitnesss score. Crossover is implemented as follows, two points are selected along
thee chromosomes of both parents. The chromosomes are then cut at those points,
andd the middle parts are swapped, creating two child chromosomes. If mating
occurs,, two new genes are added to the population. If no mating occurs, no new
genee is add to the population. Mutation is implemented as follows. Each gene of
ann individual is looked at separately to decide whether it will be mutated or not.
Mutationn is decided based upon the mutation rate (or probability). If a mutation
iss to happen, then the value of the gene is switched to some other possible value.
Forr further details on the implementation of GAs we used see (Qumsieh, 2003)

Finally,, the population of each of our generation consists of 50 individuals; we let the
populationn evolve for 100 generations. We decided to use 100 generations because the
computationn of the quality of partition q is time consuming and, moreover the quality
measuree and the number of partition are stable around generation 65 as pictured in
Figuree 6.8.

6.55 Parsing the Penn Treebank

Finally,, we report on the accuracy in parsing. As in Chapter 5 we use two measures,
%% Words and %Pos. The former computes the fraction of the words that have been
attachedd to their correct father, the latter computes the fraction of words that were
attachedd to the correct word-class. As explained in Chapter 5 the two measures try to
capturee the performance of the PCW-parser in the two phases procedure described in

6.5.6.5. Parsing the Penn Treebank II I 1

Evolutionn of the

Fatherr —
FstRightDepp —"—

FatherFsiRightDepp "
11 cuc.tli/td —

gFather r
NumRightDep p

Depth h
—— — --=-- — --

Fatherr —v—-
FstRightDepp — « —

FatherFstRightDepp - - — -
Lexicalizedd — —

gFather r
NumRightDep p

IX-pih h
— —
« « --"— —

(a)) (b))

Figuree 6.8: (a) The value of the quality measure q across generations for 7 different

grammars,, (b) The number of components across generations. In both plots, plotted

valuess at population i correspond to the value of q and the number of components of

thee individual with the highest q among all individuals in i.

Chapterr 5: (%POS) tries to capture the performance in the first phase, and (%Words)

inn the second phase.

Thee measures reported in Tables 6.6 and 6.7 are the mean values of (%POS) and

(%Words)) computed over all sentences in section 23 having length at most 20. We

parsedd only those sentences because our baseline, coming from Chapter 5, was com-

putedd on these sentences. The grammar names in Tables 6.6 and 6.7 refer to the features

usedd for splitting the training material and building the grammars; see Table 6.2 for an

explanationn of each feature.

Sincee in our approach we split only the training material for VB we start by com-

mentingg the scores on parsing sentences containing the VB tag. Table 6.6 columns 4

andd 5 shows the results. We have identified two sets of grammars. For those in the up-

Grammar r

Baseline e

rSibling g

NumRightDep p

Father r

gFather r

Depth h

FstRightDep p

WordStem m

<7 7
10.911 1

10.911 1

10.911 1

9.432 2

9.413 3

9.065 5

3.337 7

4.705 5

components

1 1

1 1

1 1

6 6

9 9

10 0

17 7

57 7

withh VB tag

%% Words

0.8484 4

0.8484 4

0.8484 4

0.8601 1

0.8502 2

0.8608 8

0.8623 3

0.8498 8

%POS S

0.8738 8

0.8738 8

0.8738 8

0.8846 6

0.8758 8

0.8855 5

0.8876 6

0.8758 8

withoutt VB tag

%Words s

0.8493 3

0.8493 3

0.8493 3

0.8494 4

0.8477 7

0.8520 0

0.8521 1

0.8493 3

%POS S

0.8806 6

0.8806 6

0.8806 6

0.8818 8

0.8798 8

0.8829 9

0.8834 4

0.8818 8

Tablee 6.6: Results on parsing sentences containing and not containing the VB tag.

112 2 ChapterChapter 6. Splitting Training Material Optimally

perr part of the table there is a correlation between the quality measure and the parsing
scoree given that for lower values of q we obtain greater values of parsing scores. This
doess not seem to be the case for the grammar in the lower part of the table. For the
latter,, even though the quality measure q is quite a bit smaller than the baseline (-4.705
vs.. 10.911), its parsing score is only marginally different from the baseline score. As
qq gives us the expected values of PP and MS, intuitively this states the grammar in
thee lower part should have less ambiguity when choosing dependents of words tagged
VB,, but it produces virtually identical parsing scores even though its q values are lower
thann for nearly all grammars in the upper part. We think that is due to the number of
componentss in the partitions. Note that the grammars in the upper part are induced
fromm partitions containing less than 20 components, while the grammar in the lower
partt is induced from a partition containing no less than 57 components. As a con-
sequencee of having a large number of components each component contains a small
amountt of training and testing material and the values of PP and MS become unreli-
able.. A better version of q should take into consideration the number of components
inn each partition and it should punish those components containing a small number of
instances.. Obviously, another way to overcome this problem is to use more training
andd testing material. Alternatively, a possible solution is to adopt a similar approach
too the use in many clustering techniques where the number of components is required
too be fixed and to search for the partition that optimizes q among all partitions having
aa fixed number of components.

Withh the experiments we carried out, it is possible to draw some conclusions for
thee grammars in the upper part of Table 6.6. Note that for those grammars, the ranking
correlatess (more correctly: inversely correlates) with the parsing score. This suggests
thatt q is an indicator of the parsing score and that q can be used to quantify the quality
off grammars without having to parse the whole gold standard. For the grammars in
thee upper part of Table 6.6, columns 4 and 5, we computed Pearson's product-moment
correlationn (NIST, 2004; Wright, 1997). We computed the correlation between q and
%% Words and between q and %POS for the case of sentences containing the VB tag.
Pearson'ss correlation coefficient is usually signified by p, and can take on the values
fromm —1.0 to 1.0. Here, —1.0 is a perfect negative (inverse) correlation, 0.0 is no
correlation,, and 1.0 is a perfect positive correlation. The statistical significance of p is
testedd using a t-test. The t-test returns a p-value, where a low p-value (less than 0.05
forr example) means that there is a statistically significant relationship between the two
variables. .

Now,, Pearson's product-moment correlation test shows a correlation value of p —
-0.821,, p = 0.04484 and p = -0.835, p = 0.03832, for q vs % Words and q vs %POS,
respectively.. The correlation values suggest that q is a measure that only takes into
considerationn the way a grammar was built in order to predict its parsing performance.

6.5.6.5. Parsing the Penn Treebank 113

Grammar r

Baseline e
rSibling g
NumRightDep p
Father r
gFather r
Depth h
FstRightDep p
WordStem m

Q Q

10.911 1
10.911 1
10.911 1
9.432 2
9.413 3
9.065 5
3.337 7
4.705 5

#components s
1 1
1 1
1 1
6 6
9 9
10 0
17 7
57 7

%Words s
0.8491 1
0.8491 1
0.8491 1
0.8525 5
0.8484 4
0.8545 5
0.8550 0
0.8494 4

%POS S
0.8787 7
0.8787 7
0.8787 7
0.8826 6
0.8787 7
0.8836 6
0.8846 6
0.8801 1

%% POS -% Words
0.0296 6
0.0296 6
0.0296 6
0.0301 1
0.0303 3
0.0291 1
0.0296 6

0.0307 7

Tablee 6.7: Results on parsing the PTB (all sentences).

Notee that the values of p are small, they are below 0.05 which is usually the weakest
evidencee that is normally accepted in experimental sciences. However, the correlation
wass computed only on a few sample points; in order to get more reliable values of
correlationn it is necessary to use bigger collections as training material and to define
andd compute q for a larger number of grammars. Nevertheless, the correlation values
foundd suggest that the observed differences are significant and that they are not the
productt of a random improvement.

Sincee all the training material is retagged according to the components induced for
VB,, automata induced for POS other than VB might alter their quality. In order to get
aa quantitative picture of the impact of the splitting in POS other than VB we separately
parsee sentences that do not contain the VB. Columns 6 and 7 in Table 6.6 show the
results.. Parsing scores are close to the baseline, whenever the sentences do not contain
thee VB tag. Phrased more positively, while optimizing for sentences containing words
taggedd VB, parser performance on sentences not containing words tagged VB did not
decrease.. Indeed, the Pearson's product-moment correlation tests for these columns
showw a correlation value of p = -0.2860, p = 0.5816 and p = -0.5369, p = 0.271,
forr q vs %Words and q vs %POS, respectively. These correlation values suggest that
qq does not (inversely) correlate with parsing performance for sentences not containing
thee VB tag.

Wee can speculate that splitting material for one particular POS tag does not hurt
thee parser performance on other POS tags. This suggests that we could proceed by
splittingg differentt POS separately and then combine them in one grammar. The parsing
performancee for the final grammar should gain from all the gains in performance for
eachh of the non-trivial splitting.

Finally,, for the sake of completeness Table 6.7 presents the parsing scores for all
thee sentences in the test set. Observe that, indeed, the scores over all sentences do
improve,, even if we only optimized for a single POS.

114 4 ChapterChapter 6. Splitting Training Material Optimally

6.66 Related Work

Theree are several perspectives from which we can analyze the approach and the exper-
imentss in this chapter. A first analysis sees our procedure to find optimal grammars
ass a way to induce preterminal symbols from the PTB. They are optimized for pars-
ingg and they provide information about the behavior of words tagged with VB. These
preterminall symbols define a classification of verbs based on their syntactic behav-
ior.. There is a large collection of work on classification of verbs; most of them try
too induce a classification of verbs using syntactic features, in some cases the resulting
classificationn is evaluated (Merlo and Stevenson, 2001; Stevenson and Merlo, 2000),
whilee in others the resulting classification (Decadt and Daelemans, 2004) is compared
too the hand-crafted classification made by Levin (1993). We ran some experiments on
tryingg to classify verbs according to the components they belong to. We checked the
matchh between our classification and Levin's manual classification of verbs. Unfortu-
nately,, we did not see any clear match between the two. We also explored manually
thee classification induced by our procedure, but we could not detect any linguistic ex-
planationn of the classification. We think that in order to get a linguistically meaningful
classification,, more training material and material tagged with other verb tags should
bee used.

AA second analysis sees our procedure as a method for finding labels for estimating
betterr probabilities. We can replace words by more general categories, like POS tags,
inn order to induce better parameters. The clusters we found can be viewed as new
labelss because these labels group words having comparable syntactic behavior. To
usee our labels in order to obtain better probabilities we need to retag not only the
trainingg material but also the gold standard. When the gold standard is retagged new
tagss codify some structural information. The whole approach is a simplified version of
supertaggingg (Joshi and Srinivas, 1994; Srinivas, 1997) for PCW-grammars.

AA third analysis considers the procedure as a way to induce sub-categorization
framess (Manning, 1993; Carroll and Fang, 2004) for words tagged with VB. Our sub-
categorizationn frames have the peculiarity that there is an infinite number of them given
thatt each string accepted by our automata is a possible sub-categorization frame. Our
inducedd sub-categorization frames are used for improving the parsing performance
andd are induced specially for this purpose. Only recently (Carroll and Fang, 2004;
Yoshinaga,, 2004; Hara et al., 2002) some work appeared where the induced sub-
categorizationn frames are used for improving the parsing task.

Outsidee the context of parsing, the methodology we presented in this chapter can
alsoo be used for inducing regular languages. The idea of using clustering before induc-
ingg automata is not new. Dupont and Chase (1998) clustered symbols using standard
clusteringg techniques (Brown et al„ 1992; Ney and Kneser, 1993) before inferring the

6.7.6.7. Conclusions and Future Work 115 5

automata.. The main difference between our approach and theirs is that our algorithm
presupposess that the target language is the union of different languages and the method
triess to automatically detect the different components. Our algorithm also tries to de-
tectt the number of components automatically, while in (Dupont and Chase, 1998) the
numberr of components is a parameter of the algorithm. From a more technical point of
view,, and still within the setting of inducing probabilistic regular languages, the pro-
ceduree of, first, splitting the training material and, second, inducing as many regular
languagess as there are components, is a technique that guides the merging of states
inn the MDI algorithm and that disallows some of the possible merging. Recall from
Sectionn 2.2.2 that the MDI algorithm builds an automata, first, by building an initial
automatonn and, second, by merging some of the states in the initial automaton. When
thee material is split, not one but many initial automata are built. For this case, the MDI
algorithmm searches for candidate merges within each of the initial automaton. As a
consequence,, some candidate merges that were possible when inducing one automa-
tonn are not available any more in the case of many automata. Clearly, there are two
questionss that the splitting approach has to address, the first one is how to recombine
thee different automata in one single regular language, and the second, what criteria
shouldd we follow for splitting the training material? For our particular case, we use
PCW-grammarss for recombining the automata and syntactic information for splitting
thee training material.

Fromm the point of view of optimization, we present a solution for optimizing two
functionss at the same time. The problem of optimizing more than one function at the
samee time is known as multiobjective optimization (Coello Coello, 1999). Briefly, mul-
tiobjectivee optimization techniques try to optimize a combination of many functions,
calledd objectives, by finding a trade-off between the objectives. Under the multiobjec-
tivee optimization perspective, it is possible to optimize the combination of objectives
byy optimizing one of them while others are not optimized.

6.77 Conclusions and Future Work

Wee presented an approach that aims at finding an optimal splitting of the training ma-
terial,, which in turn, is meant for improving parsing performance. For this purpose
wee defined a quality measure that quantifies the quality of partitions. Using this mea-
sure,, we search among a subset of all possible partitions for the one maximizing the
proposedd quality measure. Our measure combines a quality measure defined for each
componentt in a partition. To measure each component's quality, we compute an au-
tomatonn for each of component and we computed the automaton's MS and PP. The
measuree we presented combines values of PP and MS for all resulting automata, one

116 6 ChapterChapter 6. Splitting Training Material Optimally

perr component, and it uses the resulting components to build grammars that are subse-
quentlyy used for parsing the PTB.

Forr our particular case, it is not clear how to combine the functions E\PP] and
E[MS]E[MS] in such a way that the optimization of the combined values produces better
parsingg scores. What we know, is that if we optimize the four values {E[PP\ and
E[MS]E[MS] for the left and right side) at the same time, we gain in parsing performance.
Whilee searching for the definition of the optimal function q, we noticed that there
mightt be a measure that uses only a subset of these four values. It seems that the
fourr functions are not fully independent but the underlying relation remains an open
problem. .

Wee have shown that the quality measure we defined can be used for comparing
parsingg scores of two grammars whenever the grammars are built from partitions hav-
ingg a similar number of components. It would be interesting to define a measure that
correlatess with parsing performance independent of the number of components in the
partition.. The natural next step is, then, to define a measure that takes into account
thee number of components and the number of elements in each component. It is also
importantt to investigate the impact a bigger corpus has in the measure we defined.

Inn this chapter we used PCW-grammars as the backbone for our experiments. They
providee us with the appropriate level of abstraction for carrying out the experiments,
andd an easy way to combine all automata we induced for the different components into
onee single grammar. In contrast to the grammars in Chapter 5, the grammars we built
inn this chapter are not bilexical grammars. But, since the parser we implemented (see
Appendixx A for details) is a parser for PCW-grammars, it can handle both types of
grammars.. Grammars in Chapter 5 and the grammars in this chapter have in common
thatt they search for unlabeled links.

Finally,, this chapter changes the way the parsing task is usually addressed. Parsing
iss usually treated more as a modeling task than as an optimization task. A modeling
taskk is a task where a model is designed and its parameters estimated from training
material.. Once these parameters are estimated, the model is tested on the parsing task
andd its results reported. In contrast, an optimization task is a task where a model is
designedd and its parameters are optimized according to the performance of the model
andd parameters in the final task. The difficulty of treating parsing as an optimization
taskk resides in the time it takes to test a set of candidate values for the parameters. Since
ourr measure q is a good indicator of the parsing performance we can treat parsing as an
optimizationn task without having to parse. As a consequence, the procedure we defined
iss a procedure for building optimal grammars.

Chapterr 7

Sequencess as Features

7.11 Introduction

Inn the parsing activities and methods discussed so far in this thesis, we set out to dis-
coverr syntactic structure, and in particular word dependents, using only sequences of
POSS tags. In contrast, nearly all other parsing approaches discussed in the literature use
bothh sequences of POS tags and sequences of grammatical relations (GRs). Grammati-
call relations are labels describing the relation between the main verb and its dependents
andd they can be viewed as a kind of non-terminal labels. This observation suggests an
obviouss research question: which of the two types of information helps more for the
discoveryy of word dependents, sequences of POS tags or sequences of GRs? This is
ourr main research question in this chapter. Let us make more precise what it means.

Inn order to obtain phrase structures like the ones retrieved in (Collins, 1999), the
dependentss of a POS tag should consist of pairs of POS tags and non-terminal labels
insteadd of sequences of POS tags alone (Markovian rules capture such pairs; see Chap-
terr 4 for details on how PCW-grammars capture them). Like sequences of POS tags,
sequencess of pairs of POS tags and non-terminal labels can be viewed as instances
off a regular language: a regular language whose alphabet is the product of the set of
possiblee POS tags and the set of possible non-terminal labels. Moreover, they can be
viewedd as instances of the combination of two different regular languages: one regular
languagee modeling sequences of POS tags, and another regular language modeling se-
quencess of non-terminal labels. Under this perspective, it is clear that Chapters 5 and 6
onlyy use the first regular language, while non-lexicalized approaches use the second
regularr language, and Markovian rules use a combination of the two.

Fromm the literature, it is clear that combining the regular language of POS tags and
thee regular language of non-terminal labels boosts parsing performance, but it is not
clearr why this is the case. Chapter 5 suggests that lexicalization improves the quality

117 7

118 8 ChapterChapter 7. Sequences as Features

off the automata modeling sequences of POS tags, but it does not provide any insight
aboutt the differences or the interplay between these two regular languages.

Inn this chapter we design and implement experiments for exploring the differences
betweenn the regular language of POS tags and the regular language of non-terminal
labelss in a parsing setup. Our research aims at quantifying the difference between the
twoo and at understanding their contribution to parsing performance. In order to clearly
assesss the contribution of these two features, we need to carry out an evaluation in terms
off a task that clearly isolates the two regular languages. We decided to use the task of
detectingg and labeling dependents of the main verb of a sentence. Labels describing
thee relation between the main verb and its dependents are what we call grammatical
relationsrelations (GRs), and they can be viewed as a kind of non-terminal labels.

Wee present two different approaches for dealing with the task of finding grammat-
icall relations. In the first approach, we develop two grammars: one for detecting de-
pendentss and another for labeling them. The first grammar uses sequences of POS tags
ass the main feature for detecting dependents, and the second grammar uses sequences
off GRs as the main feature for labeling the dependents found by the first grammar. The
taskk of detecting and labeling dependents as a whole is done by cascading these two
grammars.. In the second approach, we build a single grammar that uses sequences of
GRss as the main feature for detecting dependents and for labeling them. The task of
detectingg and labeling dependents as a whole is done in one go by this grammar. The
twoo approaches differ in that the first one uses sequences of GRs and sequences of POS
tags,, while the second only uses sequences of GRs.

Wee show that English GRs follow a very strict sequential order, but not as strict as
POSS tags of verbal dependents. We show that the latter is more effective for detecting
andd labeling dependents, and, hence, it provides a more reliable instrument for detect-
ingg them. We argue that this feature is responsible for boosting parsing performance.

Thee rest of the chapter is organized as follows. Section 7.2 details the task we use
forr testing the two features. Section 7.3 explains how to encode this task as parsing.
Sectionn 7.4 discusses how the training material used in our experiments is obtained.
Sectionn 7.5 explains how the grammars we use are built. Section 7.6 discusses the
optimizationn phase for those grammars. Section 7.7 shows the experimental results;
Sectionn 7.8 discusses related work and, Section 7.9 concludes the chapter.

7.22 Detecting and Labeling Main Verb Dependents

Thee task we use for our experiments is to find main verbs dependents and to determine
theirr GR. In this section we describe the selected task as a black-box procedure. We
specifyy its input and its output. The input of the task consists of the following items:

7.3.7.3. PCW-Grammars for Detecting and Labeling Arguments 119 9

1.. the main verb of the sentence,

2.. the head word for each of the chunks into which the sentence has been split, and

3.. the POS tags for the heads of the chunks.

Thee definition of chunks becomes clearer in the next section. For now it is enough

too know that the sentences is chunked and that not all the words are used. Figure 7.1

showss an example of the input data.

[Pierree Vinken], [61 years] [old], [joined] [the board] [as] [a nonexecutive director] [Nov. 29].
NNPP NNS JJ VBD* NN PP NN CD~

Figuree 7.1: Example of the information to be parsed by the grammars we build.

Thee output consists of a y e s / n o tag for each element in the input string. A POS tag

markedd y e s implies that the tag depends on the main verb. If a POS tag is marked

y e s ,, the outputs has to specify the GR between the POS tags and the main verb.

Thee desired output for the input in Figure 7.1 is shown in Figure 7.2. Tags labeled

y e ss have been replaced by links between the POS tags and the main verb.

[[Pierre Vinken], [61 years] [old], [joined][the board][as] [a nonexecutive director][Nov. 29].
NNPP NNS JJ VBD NN PP NN CD

Figuree 7.2: Information we use from each tree in the PTB.

Notee that not all POS tags in our example sentence bare a relation to the main verb.

Moree generally, there might be POS tags that depend on the main verb but whose

relationn cannot be labeled by any of the labels we define later in this chapter. These

linkss receive the NO- FUNC label. It is important to distinguish between the POS tags

thatt do not have a relation to the main verb and those that depend syntactically on

thee main verb but whose relation cannot be labeled. The former are marked with the

noo tag, while the latter are marked with the y e s tag and the GR is NO-FUNC. See

Figuree 7.2 for an example.

7.33 PCW-Grammars for Detecting and Labeling Argu-
ments s

Inn order to determine the contribution of the two kinds of information (sequences of

POSS tags and sequences of GRs), we set up the task of detecting and labeling as a

120 0 ChapterChapter 7. Sequences as Features

combinationn of two independent tasks. The first one is to find the dependents of the
mainn verb, and the second to label them.

Inn order to try to use sequences of POS tags and sequences of GRs as features, we
codifyy GRs in pre-terminal symbols. Figure 7.3 shows an example. It shows the verb
dependentss from Figure 7.1: nnp nn pp, and cd, with labels as pictured, while nns
jj j , and nn do not hold any relation to the main verb and, consequently, they are not
linkedd or labeled and not shown in Figure 7.3.

nnss j j

Figuree 7.3: The tree we want to retrieve.

Inn Figure 7.3, we can clearly distinguish the two regular languages that can be used
forr detecting dependents of verbs: the sequences NP-SBJ and NP-OBJ PP-CLR
NP-TMPP are instances of the regular languages whose alphabet is the set of possible
GRs,, while the sequences nnp and nn pp cd are instances of the regular language
whosee alphabet is the set of possible POS tags.

Wee build 3 different grammars:

1.. A grammar Go that aims at detecting main verb dependents. This grammar uses
automataa that model sequences of POS tags. The parser that uses this grammar
iss fed as with all the POS tags.

2.. A grammar Gi that aims at labeling dependents. This grammar uses automata
thatt model sequences of GRs. The parser that uses this grammar is fed with the
POSS tags that are believed to depend on the main verb. The result is a GR name
forr each POS tag in the input sentence.

3.. A grammar G that aims at detecting and labeling main dependents. This gram-
marr uses automata that model sequences of GRs together with automata that
modelss sequences of POS tags. The input and output of parsing with this gram-
marr is as described in Section 7.2.

7.4.7.4. Transforming the Penn Treebank to Labeled Dependency Structures 121

Withh these three grammars we can achieve the task described in Section 7.2 in two
differentt ways:

1.. We use GD for detecting dependents, and GL for labeling the dependents that
Gr>Gr> outputs.

2.. We use G for detecting and labeling the main dependents.

Eachh of these three grammars are PCW-grammars (see Section 6.3), and they all are
builtt using automata, just like the grammars we built in Chapters 5 and 6. In order to
buildd them we have to carry out the following three steps:

1.. generate the training material for training the automata,

2.. optimize the automata, and

3.. build the grammar.

Sectionss 7.5.1, 7.5.3 and 7.5.2 describe steps 1 and 3 for grammars for detecting de-
pendents,, labeling dependents and detecting and labeling dependents respectively. Sec-
tionn 7.6 explains which automata are optimized, and in which way.

Forr all grammars, Step I uses training material extracted from a labeled depen-
dencyy grammar version of the PTB. The following section gives an overview of how
wee transform the PTB into labeled dependency trees.

7.44 Transforming the Penn Treebank to Labeled De-
pendencyy Structures

Thee set of GRs we aim to capture is a fixed set that is defined by the annotation schema
followedd in the Penn Tree-bank (PTB). We transformed the PTB into labeled depen-
dencyy structures from which we induced our grammars.

Alll the training material we used comes from the PTB, hence the grammatical
relationss we are able to retrieve are those that are marked in the training material. We
usedd chunkl i nk . p i for transforming the PTB to labeled dependency structures and
forr marking all the information we need in the PTB (Buchholz, 2002). For detailed
informationn on c h u n k l i n k . p l , the reader is referred to the latter publication. In
orderr to better understand the nature of the GRs to be found, we briefly describe how
GRss are marked by chunkl i n k . p i in the PTB.

Thee procedure for identifying links, chunks, and labels consists of four steps:

1.. detecting words that may be heads of chunks,

http://chunklink.pl

122 2 ChapterChapter 7. Sequences as Features

2.2. drawing dependency relations (links) between these words,

3.. assigning labels to these relations and

4.. detecting chunks.

Ass to step (1) c h u n k l i n k . p i detects heads using a head table, pretty much as ex-
plainedd in Section 2.1.1. Still, the application of tables described in Section 2.1.1 is
differentt from the strategy used by c h u n k l i n k . p l . In the latter, the head is either
thee right-most pre-terminal child that matches the (regular expression) POS tags list in
thee table, or all non-terminal children that match the (regular expression) constituent
fist.. Consequently, there is a preference for lexical over non-lexical head children, but
noo preference within these groups. In the approach presented in Section 2.1.1, the list
iss ordered by preference and it also has an associated direction (starting left or right
dependingg on the index of the table). The head detection algorithm first tries to find
aa child of the kind indicated by the first element of the list in the indicated direction,
andd stops as soon as it finds one. If no child of this kind can be found, the algorithm
nextt looks for a child of the kind of the second element of the list, and so on, down
too the last. If even the last kind of child cannot be found, the algorithm takes the
left/rightmostt child (of any kind) to be the head. The two different approaches, accord-
ingg to (Buchholz, 2002), differ mainly with respect to coordinated structures. For us,
thiss difference is irrelevant, because we compare our approaches in each of the cases
usingg the corresponding training material. Buchholz (2002) has an extensive descrip-
tionn of the strategy followed by chunk l ink . p i for handling special cases that can
nott be described in the table. Clearly, the result of both heuristics may be "unknown."
Forr these cases c h u n k l i n k . p l returns an unknown head. In our experiments we
discardedd all sentences that contain at least one "unknown" head.

Oncee heads have been marked, the algorithm proceeds with step (2). Links (de-
pendencyy relations) are drawn in a bottom-up fashion. In the process of drawing links,
thee tree ends up in an intermediate structure, which is then used in the third step. We
describee here how the tree is transformed into a directed graph; the resulting graphs
containn a partial dependency structure like the one used in previous chapters, plus links
betweenn non-terminals in the original tree and words in their yield. Step (3) uses the
latterr links for labeling relations in the dependency tree and completing the dependency
tree;; it finally eliminates them from the the graph producing a labeled dependency tree.

Stepp (2) starts by adding a link for each word in the yield of the tree that links
thee word to itself. Recall that, for each non-terminal, the algorithm knows which of
itss child nodes contains the head word. Step (2) traverses the tree in a bottom-up
fashion:: it adds a link between the current non-terminal and whatever the head child is
pointingg at. The result is a link between the non-terminal and a word in the yield. Step

http://chunklink.pl
http://chunklink.pl

7.4.7.4. Transforming the Penn Treebank to Labeled Dependency Structures 123

(2)) also redirects all links outgoing from the current non-terminal child to the same

wordd the current non-terminal is pointing to. Note that step (2) outputs an incomplete

dependencyy structure at word level, together with a graph where all non-terminals point

too a word in the yield.

Stepp (3) uses the structure that step (2) outputs to add labeled links to words that

remainn to be linked in the dependency structure output by (3). A link between a non-

terminall T and a word w in the yield encodes a dependency between w and the word

thatt is found by descending in the tree from T to the yield, always following head

children.. These dependencies are the ones that step (3) draws. Recall that each non-

terminall points to a word w in the yield. Step (3) adds a link for each non-terminal

NTNT in the tree. The link goes from the word in the yield resulting from going down

thee non-terminal, always following the head children and the word w in the yield.

Thee pointer introduced by step (3) indicates dependency relations between syntac-

ticc constituents and head words. We are interested in relations between constituents

andd words, but to establish relations between pairs of words, step (3) traverses again

thee tree in a top-down fashion, and pushes the labeled pointer of the parent to the head

child.. If the syntactical part of the pointer label and of the non-terminal head children

aree identical, the pointer label stays the same. However, if the syntactic part is differ-

ent,, the head child label is prefixed to the pointer label, separated by the "/" symbol.

Whenn "pushing down" the function pointers, we lose the information about the level

att which they were originally attached. In most cases this information is not relevant,

ass the function is defined by the combination of syntactic category and function tag.

However,, in the case of NPs without function tag, the level of attachment makes the

differencee between a complement (object) and an adjunct. In order to preserve this

distinction,, Buchholz (2002) adds the new function tag -OBJ to the following con-

stituentss if they occur without function tags and as siblings of lexical heads: NP, VP,

ADJP,, S, SBAR, SINV, SQ, SBARQ. These is done during phase (2).

Stepp (4) uses the links between words that were already present at step (2) for

findingg chunks. Buchholz (2002) defines a chunk to consist of a head, i.e., any word

thatt has a labeled pointer, plus the continuous sequence of all words around it that have

ann unlabeled pointer to this head. Since labeled links between words were introduced

byy step (3), chunkss are defined by all links between words that appear up to step (2) in

thee algorithm. This chunk correspond to the projection of the pre-terminal level in the

originall tree.

Sincee our experiments use the transformed version of the PTB and try to com-

paree two different aspects of syntax, there are two issues we should discuss. The first

iss related to the nature of the transformation defined by c h u n k l i n k . p l . Clearly,

c h u n k l i n k . p ll takes a phrase structure as input and returns a dependency tree: it

mightt be that this transformation discards some information from the PTB and that this

http://chunklink.pl
http://chunklink.pl

124 4 ChapterChapter 7. Sequences as Features

losss of information produces misleading results in our experiments. It seems to us that
c h u n k l i n k . p ll does not define an invertibie procedure, i.e.. the dependency trees
returnedd by it can ,10/ be transformed back to the original phase structure tree, because
labelss of some of the intermediate constituents are deleted during pruning (Buchholz,
2002,, page 60). Buchholz (2002, page 59) also mentions loss of information regarding
thee original attachment position of grammatical functions. Despite all this, we think
thatt chunkl i n k . p i does not discard too much information and that the structures it
producess are still meaningful.

Thee second issue to discuss is that, in theory, the transformation might be more
beneficiall for one of our experiments than for the other. It is not clear to us that this is
indeedd the case. All of ourr experiments are close to each other in that they use the same
typee of information and that the transformation does not favor a particular experiment.

7.55 Building the Grammars

Forr each of the tree grammars we build, we have to follow the same 3 steps:

1.. extract the training material,

2.. find the best automata, and

3.. use the automata to build the grammar.

Thee optimization procedure we use for selecting the best automata, step (2), is the same
forr all grammars, while steps (1) and (3) are different for each particular grammar.
Sectionss 7.5.1, 7.5.2, and 7.5.3 describe steps (1) and (3) for each of the grammars,
whilee Section 7.6 describes step (2).

7.5.11 Grammars for Detecting Main Dependents

Thee grammar for detecting dependents is very similar to the grammars we built in
Chapterss 5 and 6. For each sentence parsed with this grammar, the parser outputs a de-
pendencyy structure; the main verb dependents are found in this dependency structure.

Extractingg Training Material

Inn order to obtain training material we transformed the PTB, sections 11-19, as ex-
plainedd in Section 7.4. For each dependency tree in the transformed TB, we extracted
aa sample set of right and left sequences of dependents. Figure 7.4 shows an example
off a dependency tree, and Table 7.1 shows the sample sets of right and left dependents
wee extracted from it. We built two different sample bags per POS tag, one containing

http://chunklink.pl

7.5.7.5. Building the Grammars 125 5

[[Pierre Vinken]. [61 years] [old]. [joined][the board][as] [a nonexecutive director][Nov. 29].
NNPP NNS JJ VBD NN PP NN CD

Figuree 7.4: A dependency tree from which we extracted training material.

alll instances of left dependents and one containing all instances of right dependents.
Forr each of the bags we built an automaton. The description of how to build an au-
tomatonn from a bag of samples and the steps we follow for optimizing all automata are
discussedd in Section 7.6.

POS S
NNP P

COMMA A
NNS S

JJ J
COMMA A

VBD D
NN N
PP P
NN N
CD D

DOT T

Left t
NNPP COMMA COMMA

NNP P
NNS S

JJNNS S
COMMA A
VBDD NNP

NN N
PP P
NN N
CD D

DOT T

Right t
NNP P
NNP P
NNS S

JJ J
COMMA A

VBDD NN PP CD DOT
NN N

PPNN N
NN N
CD D

DOT T

Tablee 7.1: Instances of left and right dependents extracted from the tree in Figure 7.4.

Buildingg the Grammar

Oncee the training material has been extracted, we build two different automata per POS
tag,, one modeling left dependents and one modeling right dependents. Let POS be the
sett of possible POS tags, and let w be an element in POS; let Af and A% be the two au-
tomataa associated to it. Let G\ and G\ be the PCFGs equivalent to A\ and A%, respec-
tively,, following (Abney et al., 1999), and let Sf and S% be the start symbols of G£ and
G%,G%, respectively. We build a grammar Go with start symbol S, by defining its meta-
ruless as the disjoint union of all rules in G^ and G^ (for all POS w), its set of pseudo-
ruless as the union of the sets {S - ^ , Sv

Lv*Sv
R : v e {VB, VBD, VBG, VBN, VBP, VBZ}}.

Thee grammar is designed in such a way that the grammar's start symbol S only yields
thee head words of the sentences which are marked with the * symbol. The main dif-
ferencee between the grammar we built in this section and the grammars we built in

126 6 ChapterChapter 7. Sequences as Features

Chapterss 5 and 6 is that the sentences that are parsed with this grammar have the main
headd verb marked. We design the grammar to take advantage of this information.

Too understand our experiments, we need to take a closer at the probabilities, and
speciallyy assigned by the grammars to the tree languages involved. Here is an exam-
ple.. Figure 7.5 shows a tree generated by G'j, together with its probability. Here,
p(whW\U.'2)p{whU-'-AWi)p(whW\U.'2)p{whU-'-AWi) is the probability assigned by the automata to WhWiic2 and
WhU'311'4.WhU'311'4. In fact, this is a simplification of the probability; it does not affect the analysis
wee carry out later but it makes the analysis clearer.

S S

Po(t)Po(t) = piWhWiW^piWhW-sWi) x

P(U).-.P(U) P(U).-.P(U)

(a)) (b)

Figuree 7.5: (a) An example of a structure retrieved by the grammar GD, and (b) the
probabilityy value GD assigns to it.

7.5.22 Grammars for Labeling Main Dependents

Thee second grammar we build is for labeling dependents. The sentences this grammar
processs are supposed to be only the dependents of a verb. In other words, the gram-
marr assumes that somehow the right dependents have been identified, the task of this
grammarr is to assign the correct label to the dependents. It assigns a label to all ele-
mentss in the the input string. The grammar built in the previous sections selects a set
off candidate dependents, and the selected dependents are fed to grammars described in
thee present section.

Sequencess of GRs are modeled as instances of regular languages. Every verb tag
hass two automata associated to it: one modeling the sequence of left GRs and one
modelingg sequences of right GRs. A sequence of left (right) GRs is then an instance
off the left (right) automata.

Thee grammar we build in this chapter is similar to the grammars built in Chap-
terss 5 and 6 in that automata are used for building meta-rules. In contrast, automata
aree used to model sequences of GRs instead of sequences of POS tags. Figure 7.6
showss an example of a possible tree. From the figure, it is clear that GRs are encoded
inn preterminal symbols. All trees in the tree language defined by this grammar are flat
treess of depth two. GRs are at depth one and they are modeled with automata and meta-
rules.. The yield of the tree is at depth two and it is modeled using pseudo-rules. These

Wjj W2 Wfr W3 W4

tll t 2 ti ti

7.5.7.5. Building the Grammars 127 7

pseudo-ruless rewrite GR names into a POS tag and they are read from the tree-bank;
theirr probabilities are computed using the maximum likelihood estimator (Manning
andSchiitze,, 1999).

Observee that these are w-trees, and not CFG trees; all meta-derivations that took
placee to produce nodes at depth I remain hidden. Hence, the sequence of GRs to the
rightt and to the left of the main verb are instances of the regular languages modeling
rightt or left GRs, respectively.

Summingg up, we build a grammar for labeling GRs by combining two techniques
forr estimating probabilities for rules: the techniques presented in Chapters 5 and 6
forr estimating probabilities for meta-rules, and maximum likelihood estimators for
estimatingg probabilities for pseudo-rules.

Extractingg Training Material

Forr this grammar we build two automata per verb POS tag, one modeling left GRs
andd one modeling right GRs. In order to extract the training material required for this
grammar,, we discarded ail information not related to GRs from the transformed PTB.
Figuree 7.6 shows an example of the information we kept from the tree in Figure 7.2.

NP-SBJJ VBD NP-OBJ PP-CLR NP-TMP NO-FUNC

NNPP NN PP CD

Figuree 7.6: The tree representation we use, extracted from tree in Figure 7.2.

Fromm the tree in Figure 7.6 we extract two kinds of information. The first kind is used
too model meta-rules yielding GRs, i.e., the first level of the output trees, while the
secondd kind of information is used to model pseudo-rules that rewrite names of GRs
intoo POS tags, i.e., the third level of the output tree.

Wee first discuss the extraction of the material to build the automata. For this pur-
posee we build two training bags, one containing right GRs and the other containing left
GRs.. Table 7.2 shows all instances to be added to the training material extracted from
thee tree in Figure 7.2.

Wee build two sample bags per verb POS tag, one containing all instances of left
sequencess of GRs and one containing all instances of right sequences of GRs. For
eachh of the resulting bags we build one automaton. The description of how to build an
automatonn from a bag of samples, and the steps we follow for optimizing all automata,
aree discussed in Section 7.6.

128 8 ChapterChapter 7. Sequences as Features

VBD D

Leftt I Right
NP-SBJJ VBD VBD NP-OBJ PP-CLR NP-TMP NO-FUNC

Tablee 7.2: Data extracted from the tree in Figure 7.2. Left dependents should be read
fromm right to left.

Inn contrast to Chapters 5 and 6, where probabilities for pseudo-rules were hand-
coded,, for this grammar probabilities for pseudo-rules have to be estimated from the
trainingg material. This is the case because pseudo-rules in Chapters 5 and 6 could be
rewrittenn in only one way. For the present grammar, this is no longer the case. Left
handd symbols of pseudo-rules are GRs, and these names can yield different POS tags.
Inn order to estimate probabilities, we extracted all pairs of (GR, POS) from the training
materiall and put them aside in only one bag. Table 7.3 shows the instances of pairs
extractedd from the tree in Figure 7.2.

GR R
NP-SBJ J
NPOBJ J
PP-CLR R
NP-TMP P

NO-FUNC C

POSS tag
nnp p
nn n

PP P
cd d
dot t

Tablee 7.3: Pairs of GRs and POS tags extracted from tree in Figure 7.2.

Buildingg a Grammar for Labeling

Forr building a grammar for labeling, we have to estimate two sets of probabilities and
rules.. On the one hand, we have to estimate meta-rules and their probabilities, and on
thee other hand we have to estimate the probabilities for pseudo-rules. The estimation
off meta-rules and their probabilities is done by inducing an automaton for each of the
samplee sets of sequences of GRs.

Oncee the training material for meta-rules has been extracted, we build two automata
perr POS tag, one modeling left sequences of GRs and one modeling right sequences
off GRs. Let VS be the set of possible verb tags, let v an element in VS\ and A\ and
A\A\ the two automata associated with it. Let G\ and G\ be the PCFGs equivalent
too A\ and AVR, respectively, and let SV

L and SV
R be the start symbols of G\ and GV

R,
respectively.. We build a grammar GL with start symbol 5, by defining its meta-rules
ass the disjoint union of all rules in G\ and G\ (for all verb POS tags v), and its set of

7.5.7.5. Building the Grammars 129 9

pseudo-ruless as the union of the two sets. One set, given by

{S{S - ^ ! S°Lv*S% : v E VS},

iss in charge of connecting the automata modeling left sequences of GRs with the au-

tomataa modeling right sequences of GRs. The second set, given by

{GR-^pW{GR-^pW :we POS},

wheree GR is the name of a GR, w is a POS tag, and p the probability associated to the

rule,, is computed using the pairs of (GR, POS) extracted from the training material,

usingg the maximum likelihood estimator.

S S

ppLL(t)(t) = piGRL.-GRjx.

p{GRp{GRxx -̂ —• wi) x

p(GR4p(GR4 — • Wi)

(a)) (b)

Figuree 7.7: (a) An example of a structure retrieved by the grammar GL, and (b) its

probabilityy value.

Again,, the key to understanding our experiments lies in the way GL, assigns probability

masss to its grammatical trees. Figure 7.7 shows a tree generated by GL together with

thee probability assigned to it. In the figure, p(GRi ~ > Wi) refers to the probability

assignedd to the rule GRt -?—> wr and p{GR\... Gi?4) is a simplification of the prob

abilityy associated to the string GR\... GR4 by the automata modeling sequences of

GRs. .

Iff the grammar for labeling dependents is fed with the dependents found by the

grammarr for detecting dependents, the probability associated to a tree like the one

picturedd in Figure 7.8 is

Pcascadingit)Pcascadingit) = Po(t) X pL(t) (7.1)

-- p(GRi... GR4) x

p{GRip{GRi ^—* wi). .,p(GRA -i—> w4) x

p(wp(whhwiwwiw22)p{w)p{whhww33W4)W4) x

p{h)...p{U) p{h)...p{U)

GR!! GR2 Wh GR3 GR4

I II I I
Wjj W2 W3 W4

130 0 ChapterChapter 7. Sequences as Features

Thatt is, pmisca,dmg is the product of the probability assigned by GL and GD, the main

differencee between this probability and pot!e.g0 (the one assigned by the grammar G

definedd in Section 7.5.3 below), is that p c a s c a d m g uses the probability of the sequences

wwhhwwllW2W2 and tuhivtiW4 for detecting and labeling dependents.

Summingg up, we have two probability distributions for the very same task, one

off the distributions uses one more feature. An empirical comparison of these two

distributionss would provide us with information about the value of the extra feature;

thiss is what we turn to in Section 7.7.

S S

GRii GRj wk GR3 GRi
II I I I

Wii W2 W3 W4

tll t 2 ti ti

Figuree 7.8: The result of cascading the grammars for detecting and labeling depen
dents. .

7.5.33 Grammars for Detecting and Labeling Main Dependents

Thiss grammar to be defined in this section does in one go what the two grammars in
Sectionn 7.5.1 and 7.5.2 do in two steps.

Extractingg Training Material

Thee training material we used for building this grammar is the union of the training

materialss we used for building the two previous grammars.

Buildingg the Grammar

Thee automata we used for building this grammar are the same as the automata used

inn the previous two grammars, but the set of rules is different. Let POS be the set of

possiblee POS tags, let w be a an element in POS; let A\ and .4^ be the two automata

builtt for each POS tag in Section 7.5.1. Let VS be the set of possible verb tags, v an

elementt in VS; let A\ and AV
R the two automata built for verb tags in Section 7.5.2. Let

GGhh GV
R, GW

L, and GW
R be the PCFGs equivalent to AV

L, AR, Af and A% respectively,

andd let SV
L, S

V
R, S% and S% be the start symbols of G\ and G% respectively. We build

aa grammar G with start symbol S, by defining its meta-rules as the disjoint union of

7.6.7.6. Optimizing Automata 131

alll rules in Gl
L, G% GV

L and GV
R, for all POS tags and all verbs tags, while its set of

pseudo-ruless is the union of the following sets:

{S{S - ? - ! Sl
Lv*Sv

R : v e VS}, {W -^i S^wS^ : w e POS}, and

{GR{GR - ^p S%wS% : w € POS},

wheree p is the probability assigned to the rule {GR —>v w : w € POS} in Sec
tionn 7.5.2.

Thee difference between this grammar and the grammar for detecting dependents is
thatt this grammar uses sequences of GRs for detecting the main dependents, while the
grammarr for detecting dependents uses sequences of POS tags.

Figuree 7.9 shows an example of a tree accepted by G together with the probability
GG assigns to it.

Pone.Pone.ggo{t)o{t) = p{GR,...GR2) X

p{GRip{GRi —> wi) x

p(GRp(GR44 —» wi) x

p(ti)...p(tp(ti)...p(t44))

(a)) (b)

Figuree 7.9: (a) An example of a structure retrieved by the grammar G, and (b) its
probabilityy value.

Noww that we have the tree probability distributions we can establish the relation be
tweenn the two. Let pcasCadmg be the probability distribution generated over trees by
cascadingg the two first grammars, and let ponego be exactly the probability distribution
generatedd by G. The probability distributions pone,go and pcascading assign probabilities
too the same set of trees, and the two are related as follows

Pcascading(t)Pcascading(t) = Pone-go(t) X p{whWiW2)p{whW3,WA) (7.2)

Ass is clear from Equation 7.2, the difference between the two distributions is the prob
abilityy of the sequence of POS tags wi... tt>4.

7.66 Optimizing Automata

Lett T be a bag of training material extracted from the transformed tree-bank. The
naturee of T depends on the grammar we are trying to induce. But since we use the

132 2 ChapterChapter 7. Sequences as Features

samee technique for optimizing all automata, we describe the procedure for a general
bag. .

Recalll from Section 2.2.2 that we use two different measures for evaluating the
qualityy of automata. Let Q be a test bag extracted as T. As before, we use perplexity
(PP)) and missed samples (MS) to evaluate the quality of a probabilistic automaton. A
PPP value close to 1 indicates that the automaton is almost certain about the next step
whilee reading the string. MS counts the number of strings in the test sample Q that the
automatonn failed to accept.

Wee search for the value of a l pha that minimizes q — \JPP2 f MS2 (see Chap
terr 6.4.2, page 103, for the motivation of this function). In Figures 7.10 and 7.11 we
havee plotted a l pha vs. PP, MS and q for all verb POS tags used in the grammar for
detectingg the main dependents of verbs. Table 7.4 shows the values of a l ph a that
producee the minimum value of q.

POSS tag
VB B

VBD D
VBG G
VBN N
VBP P
VBZ Z

Alpha a
Left t

0.0004 4
0.0004 4
0.0002 2
0.0005 5
0.0004 4
0.0004 4

Right t
0.0004 4
0.0002 2
0.0004 4
0.0004 4
0.0004 4
0.0004 4

Tablee 7.4: Optimal values of PP and MS for automata used for labeling dependents.

Inn Figures 7.12 and 7.13 we have plotted a l p h a vs. PP, MS and q for all verb POS tags
usedd in the grammar for labeling dependents, an instance of the regular languages these
automataa model are GRs sequences. Table 7.5 shows the values of a l ph a that produce
thee minimum value of q. Recall from Section 7.5.2 that we build one automaton per
verbb POS tag.

Notee that, even though the PP values for automata modeling sequences of GRs and
thee PP values for automata modeling POS tags are close to each other, the difference
betweenn their MSs is remarkable. We think that data sparseness affects the modeling
off GRs much more than the modeling of POS tags. This sparseness prevents the MDI
algorithmm from inducing a proper language for GRs.

7.77 Experiments

Forr our experiments we shuffle the PTB sections 10 to 19 into 10 different sets. We run
thee experiments using set 1 as the test set and sets 2 to 10 as training sets. The tuning

7.7.7.7. Experiments 133 3

VBB -RightSide

MDIMDI Perplex. (PP) •
MO!! Missed Samples (MS) •

Nonm.l'l'.MS)) -

Alpha a

MDII Perplex. (PP) •
MDIMDI Missed Samples (MSl •

Norm(FP.MS))

VBD-- LeftSide VBDD - Right Side

Alpha a

MDIMDI Perplex. (PP) -
MDIMDI Missed Samples (MS) -

NomKPP.MS))

VBGG - Left Side VBGG - Right Side

2 2

0 0

6 6

4 4

:J J
i i
i i
ii J

i i

•• | 1 l

Alpha a

MDII Perplex (PP) •
MDIMDI Missed Samples (MS) •

Norm(PP.MS)) -

MDIMDI Perplex (PP) •
MDIMDI Missed Samples (MS) •

Norm(PP,MS))

Figuree 7.10: Values of PP and MS for automata used for labeling.

134 4 ChapterChapter 7. Sequences as Features

VBNN - Left Side VBNN - Right Side

12 2
II I
10 0
9 9
S S
7 7
6 6
5 5
4 4

r^ ^

i i

_,, ~-| .

MDll Perplex (PP)
MD11 Missed Samples (MS) —

NpmKPP.MS))

MDll Perplex. (PP) •
MDll Missed Samples (MS) •

Normtl'P.MS))

VBPP - Left Side VBPP - Right Side-

Alpha a

0 0
9 9
8 8
7 7
6 6
5 5
4 4

fi fi

, ,
55 o
$$ ë

;; "̂

. .
3 3

a a
~ ~

, ,
3 3

—' '

3 3
s s f S S

3 3
<-j j

3 3
g g
m m

• •

3 3
£ £
c-. .

__ _

3 3
* * -r -r

--

. .
--
. .
" "
3 3
£ £
TT T

MDll Perplex. (PP) •
MDll Missed Samples (MS) •

NormtPP.MS))

Alpha a

MDll Perplex. (PP)
MDll Missed Samples (MS)

Norm(PP.MS))

VBZZ - Lefi Side VBZZ - Righi Side

Alpha a

MDll Perplex. (PP)
MDll Missed Samples (MS) •

NormtPP.MS))

Alpha a

MDll Perplex. (PP)
MDll Missed Samples (MS)

Norm(PP.MS))

Figuree 7.11: Values of PP and MS for automata used for labeling.

7.7.7.7. Experiments 135 5

VBB - RiEhl SiJo

70 0
60 0
50 0
40 0

20 0
10 0

Ŷ ^
% . . .

\ . .

• •

• •

_̂__ _

èè è
Alpha a

MDIMDI Perplex. (PP) -
MDIMDI Missed Samples (MS) •

Qualiiyy Measure Icji

MD11 Perplex (PPl
MOIMOI Missed Samples (MS) •

NnniKPP-MS))

VBDD - Lefl Side

\ \
^ ^

ss s I I 3 3
k k

? ? s s
k k

3 3 3 3
s s

a a
• — > >

? ?
i i

MDII Perplex. (IT) -
MDIMDI Missed Samples (MS) -

Nonr)(l'P,MSjj -

VBDD - Right Side

Alpha a

MDII Perplex. (PP) -
MDIMDI Missed Samples (MS) -

Norni(PP,MS))

VBGG - Left Side VBGG - Right Side

J J

•• \

55 Q

II 1
3 3

k k

V J J

3 3

\ \

33 3 3
££ * S

Alpha a

3 3 3 3
k k

MDIMDI Perplex. (PP)
MDIMDI Missed Samples (MS)

NorailPP.MSl l

•x •x

-T -T

3 3

k k

— —

50 0

40 0

30 0

10 0

0 0

; ;

Alpha a

MDII Peiplex. (PP) •
MDIMDI Missed Samples (MS) •

Nonn(PP,MS))

Figuree 7.12: Values of PP and MS for automata used for detecting dependents.

136 6 ChapterChapter 7. Sequences as Features

VBN-Leftt Side VBNN - Richi Side

:: \

2 2
55 8

\A|" "

5 5 5 5

\ \
3 3 3 3

5 5
3 3 aa 3

MDll Peiplex. (PP)
MDIMDI Missed Samples (MS) •

NtminI'P.MSl l

MDII Peiplex. (PP)
MDIMDI Missed Samples (MS)

NomKt'i'.MS))

VBP-Leftt Side

Alpha a

MDII Peiplex. (PP)
MDII Missed Samples (MS) •

NomKPP.MS))

VRP'' - Kighl Side

11 1

""V^v v

3 3

~~~-'X-~~~-'X-

1 1 3 3 
i' ' 

"\l l 

| | a a 
a a 

" ^^ : 
ss 3 ? 
** s -

Alpha a 

MDIMDI Peiplex. (PP) 
MDIMDI Missed Samples (MS) 

Nomi(l'l'.MS) ) 

VBZ-Leftt Side VBZZ - Right Side 

•_3 3 

2 ^ 3 3 

ll 1 1 

X -"v^ ^ 

33 3 3 3 3 3 3 3 33 3 

Alpha a 

MDIMDI Peiplex. (PP) 
MDIMDI Missed Samples (MS) • 

NornKl'l'.MS) ) 

Figuree 7.13: Values of PP and MS for automata used for detecting dependents. 



7.7.. Experiments 137 7 

POSS tag 

VB B 

VBD D 

VBG G 

VBN N 

VBP P 

VBZ Z 

A l p h a a 

Left Left 

0.00015 5 

0.00020 0 

0.00030 0 

0.00020 0 

0.00050 0 

0.00030 0 

Right t 

0.00015 5 

0.00010 0 

0.00020 0 

0.00020 0 

0.00050 0 

0.00015 5 

Tablee 7.5: Optimal values of a l ph a for automata used for detecting dependents. 

sampless were extracted from Section 00. All the sentences we fed to the parser have 
thee main head marked; all sentences whose main head was not tagged as a verb were 
filteredd out. 

Wee start by performing the whole task (detecting dependents and labeling their 
relationn with the main verb) by the two different approaches; results are shown in 
Tablee 7.7. These results, together with Equation 7.2, answer one of our main research 
questions,, namely what is the importance of the sequences of POS tags for parsing. 

Recalll from Equation 7.2 that the only difference between the two probability dis
tributionss pone-go and Pcascadmg is the probability that pcascading associates to sequences 
off POS tags. Note also that the grammar that does not take it into account, namely 
G,G, performs significantly worse than the one that does take this sequence into account. 
Fromm this we can conclude that the 10% jump in performance is due to the use of this 
specificc information. The grammar G^ for labeling dependents allows us to quantify 

Approach h 
Cascading g 
Onee Go 

Precision n 
0.73 3 
0.65 5 

Recall l 
0.73 3 
0.67 7 

h=i h=i 
0.73 3 
0.66 6 

Tablee 7.6: The results on detecting and labeling dependents of main verbs. 

howw effective are the sequences of GRs together with pseudo-rules GR —• w for la
belingg GRs. To isolate these features, we used grammar G^ for labeling dependents 
thatt are known to be the right dependents. We extracted the correct sequences of de
pendentss from the gold standard and used grammar GL for labeling them. Table 7.7 
showss the results of this experiment. 

Precision n 
Ö76 6 

Recall l 
0.76 6 

f0=1 f0=1 
0.76 6 

Tablee 7.7: Results of the experiment on labeling gold standard dependents. 



138 8 ChapterChapter 7. Sequences as Features 

Thee experimental results show that labeling is not a trivial task. The score obtained 
iss low. even more so if we take into account that the sentences we fed to the parser con
sistedd only of correct dependents. We think that the poor performance of this grammar 
iss due to the data sparseness problem mentioned above, because there is a high amount 
off MS in the automata that model GRs. 

Thee two grammars in the first approach allow us to quantify how the errors per
colatedd from detecting dependents to labeling them. Now, the only aspect of the task 
thatt is left is to study is the detection of dependents. Table 7.8 shows the results of the 
experimentt to assess the goodness of GD for detecting dependents. 

Precision n 
0.85 5 

Recall l 
0.88 8 

f0=1 f0=1 

0.86 6 

Tablee 7.8: Results of the experiment on detecting dependents. 

Wee can see how sensitive the task of labeling dependents is to errors in its input. Ta
blee 7.7 states that the labeling precision drops from 0.76 to 0.73 when only the 85% of 
thee arguments fed to the labeling grammar are correct. 

7.88 Related Work 

Thee task of finding GRs has usually been considered as a classification task (Buchholz, 
2002).. A classifier is trained to find relations and to decide the label of the relations that 
aree found. The training material consists of sequences of 3-tuples (main verb, label, 
andd context). In order to have a better impression of the difficulty of the task, Table 7.9 
showss some baselines extracted from (Buchholz, 2002). To understand the table, it is 
importantt to note that "no relations" refers to the absence of the predicted relation and 
thatt 0 dividedd by 0 is defined as 1. In contrast to approaches based on classifiers, we 

Description n 
alwayss predict "no relation" 
alwayss predict NP-SBJ 
mostt probable class for focus chunk type/POS 
mostt probable class for focus word 
mostt probable class for distance 

Precision n 
100 0 

6.85 5 
100 0 
31.21 1 
49.43 3 

Recall l 
0 0 

30.73 3 
0 0 
1.07 7 

37.30 0 

FFa a 

0 0 
11.20 0 
0 0 
2.07 7 

42.51 1 

Tablee 7.9: Some possible baselines. Results extracted from Table 3.2 in (Buchholz, 
2002). . 

considerr the task of finding GRs as a parsing task. We build grammars that specifically 



7.9.7.9. Conclusions and Future Work 139 9 

tryy to find GRs. It is possible to find GRs as a side product of full parsing because full 
treess output by a parser can be transformed as we transformed PTB. In order to give an 
impressionn of state-of-the-art methods for finding and labeling main dependents, we 
comparee experiments to the approach presented in (Buchholz, 2002). 

Approach h 

Cascading g 

One-go o 

Memoryy Based Approach 

Precision n 

0.73 3 

0.65 5 

0.86 6 

Recall l 

0.73 3 

0.67 7 

0.80 0 

Fa Fa 
0.73 3 

0.66 6 

0.83 3 

Tablee 7.10: Comparison to state-of-the-art techniques for detecting and labeling main 
verbb dependents. 

Thee main difference in the scores obtained by Buchholz (2002) and our own approach 
iss probably due to the little information we used for performing the task. In contrast 
too our approach, Buchholz (2002) uses all kinds of features for detecting and labeling 
dependents. . 

7.99 Conclusions and Future Work 

Inn this chapter we designed and implemented experiments for exploring the differences 
betweenn the regular language of POS tags and the regular language of non-terminal 
labelss in a parsing setup. Our research aimed at quantifying the difference between the 
twoo and at understanding their contribution to parsing performance. In order to clearly 
assesss the contribution of these two features, we needed to carry out an evaluation in 
termss of a task that clearly isolates the two regular languages. We used the task of 
detectingg and labeling dependents of the main verb of a sentence. 

Wee presented two different approaches for dealing with the task of finding gram
maticall relations. In the first approach, we developed two grammars: one for detecting 
dependentss and another for labeling them. The first grammar used sequences of POS 
tagss as the main feature for detecting dependents, and the second grammar used se
quencess of GRs as the main feature for labeling the dependents found by the first 
grammar.. The task of detecting and labeling dependents as a whole was done by cas
cadingg these two grammars. In the second approach, we built a single grammar that 
usess sequences of GRs as the main feature for detecting dependents and for labeling 
them.. The task of detecting and labeling dependents as a whole was done in one go by 
thiss grammar. The two approaches differ in that the first one used sequences of GRs 
andd sequences of POS tags, while the second only used sequences of GRs. 

Wee showed that English GRs follow a very strict sequential order, but not as strict 
ass POS tags of verbal dependents. We showed that the latter is more effective for de-



140 0 ChapterChapter 7. Sequences as Features 

tectingg and labeling dependents, and, hence, it provides a more reliable instrument for 
detectingg them. Moreover, we have shown that sequences of POS tags are fundamen
tall for parsing performance: they provide a reliable source for predicting and detecting 
dependents.. Our experiments also show that sequences of GRs are not as reliable as 
sequencess of POS tags. 

Thee usual perspective on parsing is that all features that improve parsing perfor
mancee are used without clearly stating why these features improve. Our approach aims 
att changing this perspective; we designed grammars and experiments for isolating, 
testingg and explaining two particular features: sequences of POS tags and sequences 
off GRs, both for detecting and labeling and labeling dependents. PCW-grammars al
loww us to doo these. Note that trees returned by our parser are flat trees and they can not 
bee modeled either by PCFGs nor by bilexical grammars. This is the case because some 
off the dependencies we model using automata in this chapter do not yield terminals but 
preterminall symbols. 



Chapterr 8 

Conclusions s 

Inn this thesis we have applied an abstract model to learn more about natural language 
parsing.. We have surveyed three state-of-the-art probabilistic parsers and we have iden
tifiedd their characteristic features. We have abstracted from these particular features 
andd models to produce and formalize a general, and abstract, language model. This 
abstractt language model provides us with a suitable framework to carry out principled 
investigationss of new directions into parsing based on different parameterizations of 
thee general model. 

Whilee reviewing state-of-the-art parsers, we focused on crucial issues like the role 
off probabilities in the context of parsing, their importance and their possible uses. We 
havee shown that, when used as a filtering mechanism, probabilities can add expres
sivee power to context free grammars, defining a class of tree languages beyond the 
expressivityy of context free grammars. We have shown that it is not possible to decide 
whetherr probabilities solve all ambiguities in a language. In addition, we have shown 
thatt probabilities can be used for purposes other than the mere filtering of unwanted 
trees.. We have illustrated this claim with some examples, like using probabilities to 
evaluatee the quality of PCFGs and to boost the performance of parsers. 

Thee general language model we have presented is based on W-grammars. We have 
introducedd constrained W-grammars and have augmented them with probabilities. The 
resultingg formalism, probabilistic constrained W-grammars, is the backbone formalism 
forr all our experiments. Like every general model, the suitability of PCW-grammars is 
mainlyy given by two aspects: that they can capture multiple existing formalisms in a 
singlee formalism, and that they provide a structured framework where new directions 
off research can be identified and pursued in a principled way. 

141 1 



142 2 ChapterChapter 8. Conclusions 

8.11 PCW-Grammars as a General Model 

Wee have shown that PCW-grammars provide an encompassing formalism for explain
ingg three state-of-the-art language models. PCW-grammars are based on a well-known 
grammaticall framework, and their computational properties are well-understood. It 
iss true that the expressive power of PCW-grammars is significantly lower than that 
off W-grammars, but their expressiveness is perfectly adequate to capture grammatical 
formalismss underlying state-of-the-art parsers. 

Forr example, probabilistic constrained W-grammars are capable of capturing bilex-
icall grammars, Markovian context free rules, and stochastic tree substitution gram
mars.. We have described the expressive power of these three formalisms, together 
withh some conditions under which grammars inferred from treebanks are consistent. 
Despitee the similarities between PCW-grammars and PCFGs, there is a fundamen
tall difference between the two: the two-level mechanism of PCW-grammars. This 
mechanismm allowed us to capture these three state-of-the-art natural language models 
mentionedd above, which cannot be done using standard PCFGs only. 

Thee suitability of the general language model provided by PCW-grammars is that 
itt allowed us to compare three apparently different formalisms within the same formal 
perspective.. We have shown that the essence of bilexical grammars and Markovian 
contextt free grammars is quite comparable: both are based on approximating bodies of 
ruless using Markov models. We also found similarities between STSGs and Markov 
rules:: both suppose that rule bodies are obtained by collapsing hidden derivations. 
Moree concretely, for Markovian rules, a rule body is a regular expression (or a Markov 
chain,, which is equivalent) and STSGs take this idea to the extreme by considering the 
wholee sentence as the yield of a hidden derivation. 

8.22 PCW-Grammars as a New Parsing Paradigm 

PCW-grammarss are not only useful for capturing the formalisms underlying state-of-
the-artt parsers, but also for suggesting new research directions. These come as a con
sequencee of different instantiations of the parameters of the general model, or by re
thinkingg the set of assumptions the particular instances have made. A brief description 
off the directions explored in this thesis follows. 

Explicitt Use of Probabilistic Automata: PCW-grammars allowed us to use general 
methodss for inducing regular languages instead of the usual n-based algorithms. 
Ourr experiments along this line lead to two types of conclusions. First, that mod
elingg rules with algorithms other than n-grams does not only produce smaller 
grammars,, but also better performing ones. Second, that the procedure used for 



8.2.8.2. PCW-Grammars as a New Parsing Paradigm 143 3 

optimizingg the parameters of the parser reveals that some POS behave almost 
deterministicallyy for selecting their dependents, while others do not. This con
clusionn suggests that splitting classes that behave non-deterministicatly into ho
mogeneouss ones could improve the quality of the inferred automata. We argued 
thatt lexicalization and head-annotation seem to take advantage of the properties 
off splitting. 

Splittingg the Training Material: We have presented an approach that aims at finding 
ann optimal splitting of the material before inducing a PCW-grammar. The split
tingg was aimed at improving parsing performance. For this purpose, we defined 
aa quality measure to quantify the quality of different partitions of the material. 
Usingg this measure, we searched among a subset of all possible partitions for the 
onee maximizing the proposed quality measure. This measure is a combination 
off a quality measure defined for each component in a partition. For each com
ponent,, we built an automaton and computed the automaton's missed samples 
andd perplexity. The measure we presented combines the values of perplexity 
andd missed samples for all resulting automata. We used the resulting automata 
too build grammars that were subsequently used for parsing the Penn Treebank. 
Wee have shown that the quality measure we defined can be used for comparing 
twoo grammars' parsing scores if the grammars are built from partitions having 
aa similar number of components. Since our measure q is a good indicator of 
thee parsing performance, the process of inferring grammars can be treated as an 
optimizationn task. This implies that this procedure spares us the need to assess 
thee performance of a particular grammar by parsing. 

Sequencess as Features: The usual perspective on parsing is that all features that im
provee parsing performance are used for parsing, without a clear study of how 
thesee features improve parsing. Our approach is aimed at changing this per
spective;; we have designed grammars and experiments for isolating, testing and 
explainingg the value of two particular features that are known to improve parsing 
performance:: sequences of POS tags and sequences of GRs. We have shown that 
sequencess of POS tags are fundamental for parsing performance, because they 
providee a reliable source for predicting and detecting dependents. Our experi
mentss have also shown that sequences of GRs are not as reliable as sequences 
off POS tags. We think this is the case because the training material for GRs is 
smalll compared to the training material for sequences of POS. 

PCW-grammarss are versatile enough to allow us to address the variety of experimental 
questionss and aspects we tried out in this thesis. For all of them we used only one 
parsingg algorithm and a unified mathematical theory. PCW-grammars have reduced 



144 4 ChapterChapter 8. Conclusions 

thee design cycle for all of our experiments; we only need to focus on very specific 
aspectss of parsing, and we could leave aside all conditions on expressive power, com
plexityy of parsing, and parsing algorithms. We think that PCW-grammars have proven 
theirr suitability: the formalism is abstract enough to capture the formalisms underlying 
state-of-the-artt parsers and to suggest new research directions in parsing. 

8.33 Two Roads Ahead 

Thiss thesis presents a rather unusual perspective on parsing. The usual perspective 
aimss at designing and building parsers that produce better scores on parsing the Penn 
treebank.. In contrast, we presented measures, grammars, tasks and experiments that 
weree designed for testing particular aspects of syntax, language modeling and parsing. 

Inn my opinion, these two approaches are exponents of two different research direc
tions.. The first one focuses on understanding why particular features improve parsing 
performance,, while the second focuses on finding new features that can improve pars
ingg performance. The second direction has reached a plateau; different approaches do 
nott differ substantially in terms of their parsing scores and it is hard to identify the key 
featuress that may produce a future jump in performance scores. It is also difficult to 
determinee which differences in performance are statistically significant. I think that in 
thee forthcoming years the research focus will shift from the second line of research to 
thee first one. I think that this shift will result in deeper, more detailed knowledge of the 
structuree of human language, and its impact on parsing performance. 

Thee ultimate aim of parsing is twofold: understanding human language and pro
ducingg parsers that process naturally ocurring sentences with an acceptable error rate. 
Dependingg on the scientific discipline, one of these interests might be more impor
tantt than the other: linguistics aims at understanding human language, while statistical 
parsingg aims at producing computational models that process natural language with 
ann acceptable level of performance. If there is any flow of ideas here, it seems to go 
mostlyy from the linguistic side to the statistical one. The reverse direction is blocked to 
thee point that some linguists claim that the knowledge that can be inferred by statistical 
methodss cannot be considered as a reliable model of language (Andor, 2004). I hope 
thiss situation will change in the years to come. I think that the parsing community 
hass to focus on two main research areas. One area will focus on identifying, under
standingg and testing particular aspects of features used for parsing which will provide 
linguistss with interesting data about language as they understand it. The second stream 
willl try to incorporate insights suggested by the first line of research in parsers. I hope 
thatt this thesis has suggested new directions; translating them into improvements in 
state-of-the-artt parsing performance is the next step. 



Appendixx A 

Parsingg PCW-Grammars 

A.ll Introduction 

Inn this appendix we focus on two aspects of ourPCW-grammar parsing algorithm. One 
aspect,, the most theoretical one, is related to the study of the capacity and computa
tionall complexity of our implementation for handling PCW-grammars. Since various 
meta-derivationss can produce the same w-rule, it is important to distinguish between 
thee most probable derivation tree and the most probable w-tree. As described in Chap
terr 4, different meta-derivations can yield the same w-rule and consequently the same 
w-tree.. A parser returning the most probable derivation tree considers the probability 
off a w-rule as the probability value of the most probable meta-derivation. In contrast, 
aa parsing algorithm searching for the most probable tree considers the probability of a 
w-rulee as the sum of all probabilities assigned to the meta-derivations producing it. In 
thiss appendix we investigate the differences between these two approaches, focusing 
onn necessary and sufficient conditions for both approaches to return the same tree. 

Thee second aspect we focus on, is related to technical issues of our PCW-grammar 
parsingg algorithm implementation. In some of the experiments we performed, the 
parserr had to handle grammars containing a number of rules close to one million. The 
parsingg algorithm is an optimization algorithm, it searches for the best solution among 
aa set of possible solutions. At each step in the optimization process, the algorithm 
buildss possible solutions retrieving new rules from the grammar. When working with 
largee grammars, as we did, the complexity of the parsing algorithm becomes unman
ageablee if the retrieval step takes more than constant time. In this appendix, we briefly 
describee the approach we followed to minimize the computational costs of this step. 

Thee rest of the appendix is organized as follows. Section A.2 discusses the theoret
icall issues related to the parsing algorithm, Section A.3 discusses the Java implemen
tation,, and Section A.4 concludes the appendix. 

145 5 



146 6 AppendixAppendix A. Parsing PCW-Grammars 

A.22 Theoretical Issues 

Recalll from Chapter 4 that a PCW-grammar is a 6-tuple (I ' , AT', 7\ S, -^->. -^->J such 
that: : 

•• V' is a set of symbols called variables. Elements in \' are denoted with over-lined 

capitall letters, e.g., A,B,C. 

•• A T is a set of symbols called non-terminals: elements in A T are denoted with 
upper-casee letters, e.g., X, Y, Z. 

•• T is a set of symbols called terminals, denoted with lower-case letters, e.g.: o, b, 

c,c, such that V, T and A T are pairwise disjoint. 

•• S is an element of NT called start symbol. 

•• ^~+ is a finite binary relation defined on (V U A T U T)* such that if J: -^-» y, 

thenn x € V\ The elements of -^-> are called meta-rules. 

•• -^-> is a finite binary relation on (V U A T U T)* such that if u -^-> t? then 

uu G AT, t; T̂  e and v does not have any variable appearing more than once. The 

elementss of —*• are called pseudo-rules. 

Meta-ruless and pseudo-rules have probabilities associated to them, see Example A.2.1 
forr an example of a w-grammar. 

AJLLL EXAMPLE. Let W = (V,NT,T,S, -^U, -^->) be a W-grammar, where V = 

{A,C},{A,C}, NT = {£ , 5 } , T = {a ,c}, ^ U and - ^ as described in Table A.l . 

pseudo-ruless (— 

55 -^o.s 4̂ 
SS —*o.5 B 

BB >o.75 a a 

BB " ^ 0 . 2 5 CC 

+) ) meta-ruless (-^->) 

^44 —+0.5 a C 

4̂4 -^o.5 Ca 
C^a C^a 

Tablee A. 1: A W-grammar that has a best derivation tree that does not correspond to the 
mostt probable tree. 

Ass described in Chapter 4, there are two types of derivations depending on the type of 

thee rules used to produce them. Meta-derivations are derivations in which only meta

ruless are used, while w-derivations are derivations in which only w-rules are used. 

Sincee w-rules are built by meta-deriving all variables in a pseudo-rule, there might be 



A.2.A.2. Theoretical Issues 147 7 

w-ruless that are the product of" different meta-derivations. We can think of a w-rule as a 
wayy to pack all meta-derivations that yield the w-rule, because the probability assigned 
too the w-rule is the sum of all the possible meta-derivations it covers. 

Sincee a w-rule covers many meta-derivations, the underlying PCFG can not be 
usedd for parsing PCW grammars. A parser for PCFGs can be used for parsing PCW-
grammarss if and only if all possible w-rules cover one and only one meta-derivation. 
Iff this is not the case, the w-tree resulting from parsing with the underlying PCFG plus 
hidingg its meta-derivations might not be the w-tree with the highest probability. 

Inn order to better understand this phenomenon, we use the grammar in Exam
plee A.2.1. This grammar produces the two w-trees pictured in Figure A.l.a and Fig
uree A.l.b, both of them yielding "aa". Clearly, the most probable w-tree is the tree in 
Figuree A. 1 .a, given that it is the one with the highest probability. 

Whilee trees in (a) and (b) are trees belonging to the forest of the PCW-grammar, 
treess in (c), (d) and (e) are trees that belong to the forest of the underlying PCFG. The 
proceduree for hiding meta-rules maps trees (c) and (d) to tree (a), and (e) to (b). 

w-trees s 

SS s 

aa a B 

aa a 

pp = 0.5 p = 0.375 

underlyingg PCFG trees 

SS S S 
11 1 i 
AA A B 

aa C C a a a 
ii 1 
aa a 

pp = 0.25 p = 0.25 p = 0.375 

(a)) (b) (c) (d) (e) 

Figuree A. 1: Trees (a) and (b) belong to the forest of the W-grammar in Example A.2.1, 
whilee trees in (c), (d) and (e) are trees in the forest of the PCFG underlying the same 
W-grammar. . 

Thee PCFG parser using the PCFG underlying searches for the best parser among 
thee trees that belong to the forest generated by the PCFG underlying, i.e., the parser 
searchess for the best among the trees in the right-hand side of Figure A.l. Once the 
bestt tree is found, it is mapped to a w-tree by hiding all meta-derivations. In this ex
ample,, the most probable tree in the forest generated by the PCFG underlying is the 
treee in part (e), which is mapped to the w-tree in part (b). Clearly, the w-tree with the 
highestt probability is the tree in part (a) and not the one in part (b). The algorithm 
failedd in returning the most probable tree. In other words, the PCW parser defined as 



148 8 AppendixAppendix A. Parsing PCW-Grammars 

thee procedure of, first, searching for the most probable tree in the forest generated by 
thee PCFG underlying and, second, hiding all of its meta-derivations, might not return 
thee most probable w-tree. 

Clearly,, if the hiding procedure maps one tree in the forest generated by the PCFG 
underlyingg to one tree in the forest generated by the W-grammar, then a parser for W-
grammarr is equivalent to the process of using a PCFG parser plus post tree-processing. 

Theree are two configurations for which the mapping between the two forests is not 
aa one-to-one map. The first one occurs when there is at least one meta-variable that 
cann be instantiated with a value that can be meta-derived in two different ways. The 
secondd one occurs when there is a pseudo-rule that has only one terminal in its body, 
andd that body can be generated with another w-rule. For the grammar in Example A. 1, 
thee mapping between two forests is not a one-to-one mapping because the variable ~A 
inn pseudo-rule S —>0.5 A can be instantiated with two different meta-derivations. 

Notee that in all our experiments, meta-rules come from probabilistic determinis
ticc automata. Since they are deterministic, all possible variable instantiations have a 
uniquee way to derive them. Also, not all the pseudo-rules we used in our grammars 
havee a variable in their body. Consequently, since, for all the grammars we developed 
inn this thesis, there is a one-to-one mapping between the forest generated by the w-
grammarr and the forest generated by the PCFG underlying, we decided to implement 
ourr parser as a Cocke-Younger-Kasami (CYK) parsing algorithm plus a procedure that 
hidess all meta-derivations from the tree returned by the CYK algorithm. 

Thee parser we implemented can be used as a parser that returns the most probable 
tree,, because we know that the most probable tree corresponds to the most probable 
derivationn tree. The problem of knowing when these two trees are the same is not 
aa trivial one. As we discussed before, the two trees are the same tree if there are 
noo variables that can be instantiated in the same way with two different derivations. 
Sincee variables are instantiated through a context free like system, the problem of 
knowingg whether there are two ways to derive the same string becomes equivalent to 
thee problem of knowing whether a context free grammar is unambiguous. It is well-
knownn that the latter is an undecidable problem, which implies that it is is undecidable 
whetherr the most probable tree is the same as the most probable derivation tree for a 
givenn grammar. 

A.33 Practical Issues 

Conceptually,, our parsing algorithm consists of two different modules. One module, 
aa CYK parser, searches for the most probable derivation in the underlying PCFG (see 
Chapterr 4 for the definition of the underlying PCFG). The second module, the function 



A.3.A.3. Practical Issues 149 9 

devotedd to hiding meta-derivations, is in charge of transforming the most probable 
derivationn tree into a w-tree. 

Thee rules handled by the version of the CYK algorithm we implemented have an 
numberr associated to them. This integer, called level of visibility, is a generalization of 
thee concept of meta-rules and pseudo-rules. The tree returned by the CYK algorithm 
iss transformed to many different trees, depending on the visibility level of the rules to 
bee hidden. 

A.3.11 Levels of Visibility 

Treess to be transformed can be thought of as trees in which, for each node, there is an 
integerr marking the node's level of visibility. In order to transform a tree by hiding a 
levell of visibility, we implemented a function that takes two arguments, one argument 
iss the tree to be transformed and the second argument is the level of visibility to be 
hidden.. The algorithm traverses the tree in a bottom up fashion and, for each node 
havingg the visibility level to be replaced, it replaces the node itself with the sub-trees 
hangingg from that node in the original tree. Figure A.2 shows an example of hiding 
operationss for different levels of visibility. Since the hide operation can be applied to 
aa tree which was already transformed, a tree has many possible sets of visibility levels 
too hide. For example, the tree in Figure A.2.d is the result of hiding level of visibility 1 
fromm the tree in Figure A.2.C, which is in turn the result of hiding visibility level 2 from 
thee tree in Figure A.2.a. Note that the order in which the visibility levels are applied 
doess not matter. 

Thee PCW parser is a particular case of the parser we implemented. In order to 
obtainn a PCW-parser, we marked meta-rules with visibility level 1 and pseudo-rules 
withh visibility level 0. In order to obtain a w-tree from the tree output by the CYK 
component,, we hide nodes whose level of visibility equals 1. 

A.3.22 Optimization Aspects 

Thee core of our algorithm is a Probabilistic CYK parsing algorithm capable only of 
parsingg grammars in Chomsky Normal Form (CNF). Probabilistic CYK parsing was 
firstfirst described by Ney (1991), but the version we discuss here is adapted from Collins 
(1999)) and Aho and Ullman (1972). 

Thee CYK algorithm assumes the following input, output and data structures. 

•• Input 

-- A CNF PCFG. Assume that the \N\ non-terminals have indices 1,2,... , 
\N\,\N\, and that the start symbol S has index 1. 



150 0 AppendixAppendix A. Parsing PCW-Grammars 

(d) ) 

Figuree A.2: (a) A tree with its nodes augmented with visibility levels, (b) Level of 
visibilityy i hidden, (c) Level of visibility 2 hidden, (d) Levels of visibility 1 and 2 
hidden. . 

-- n words wi,... ,wn. 

•• Data structures. A dynamic programming array ir[i,j,a] holds the maximum 
probabilityy for a constituent with non-terminal index a spanning words i.. .j. 

•• Output. The maximum probability parse will be n[l, n, 1]: the parse tree whose 
roott is S and which spans the entire string of words Wi,..., wn. 

Thee CYK algorithm fills out the probability array by induction. Figure A.3 gives the 
pseudo-codee for this probabilistic CYK algorithms as it appears in (Jurafsky and Mar
tin,, 2000). 

Notee that steps 10, 11 and 12 are actually building all possible rules that can be 
builtt using the non-terminals of the grammar. In order to minimize the number of 
iterations,, we iterate only on those rules that actually belong to the grammar and that 
cann help building the solution. In order to achieve this, we implement our grammars 
ass dictionaries indexed on bodies of rules. This approach is easy to implement because 
bodiess of rules are of length one or two. Unfortunately, this modification does not 
reducee the worst case complexity, because in that case the grammar contains all the 
possiblee rules that can be built with its set of non-terminals. 

Inn order to parse with a grammar that is not in CNF, our parsing algorithm first 
transformss the given grammar into an equivalent grammar in CNF. Clearly, since the 



A.3.A.3. Practical Issues 151 1 

functionn CYK(words,grammar) returns The most probable parse 

andd its probability. 

I:: Create and clear 7T[num.words, num.words, num.-nonterminals] {Base case} 

2:: for i <— 1 to num,words do 

3:: for A *— w, to 7iumnonTerminals do 

4:: if A —• a', is in the grammar then 

5:: 7r[i,i,] «- P (A -> iüi) 

{recursivee case} 

6:: for span <— 2 to numjwords do 

7:: for begin <— 1 to numjwords — spam + 1 do 
8:: end <— begin + span — 1 

9:: for m — begin to end — 1 do 
10:: for A — 1 to num.nonterminals do 

11:: for 5 = 1 to num-nonterminals do 

12:: for C = 1 to num.nonterminals do 

13:: pro6 = 7r[6e#in, m, 5 ] x 7r[m + 1, end, C] x P(^4 —> i?C) 

14:: if prob > ir[begin, end, A] then 
15:: ir[begin, end, A] — prob 

16:: 6acfc[&epm, end, vl] = {m, B, C} 

17:: return buildtree(back[l, num.words, l],7r[l, numjwords, 1]) 

Figuree A.3: The probabilistic CYK algorithm for finding the maximum probability 

parsee of a string of numjwords words given a PCFG grammar with num.rules rules 

inn Chomsky Normal Form, back is an array of back-pointers used to recover the best 

parse. . 

algorithmm parses with a CNF, it will return a tree generated by the CNF grammar and 

nott by the original grammar. Since we are interested in the tree generated by the 

grammarr before it was transformed to CNF, we use a new level of visibility j in all the 

ruless that were added during the transformation into CNF process. In order to obtain 

thee tree in the original grammar, we hide the level of visibility j . 

Summingg up, our parsing algorithm consists of the following items: 

1.. A translation module: An algorithm that transforms any grammar into CNF. 

2.. A parsing module: A CYK parsing algorithm for CNF grammars. 

3.. A post processing module: An algorithm that hides levels of visibility in a tree. 

Wee compute now the computational complexity of our parsing algorithm. For this 

purposee we only take into consideration items (2) and (3). Since item (1) is done one 



152 2 AppendixAppendix A. Parsing PCW-Grammars 

timee for each grammar, we only consider it indirectly: we take into consideration how 
thee transformation to CNF affects the size of the grammar. 

Wee want to compute the computational complexity of the three items whenever a 
grammarr G is used to parse a sentence s. 

Byy (Ney, 1991), the computational complexity of the CYK algorithm for parsing a 
sentencee s using grammar G is 2nQ + (n3/6)R, where n is the length of the sentence, 
QQ the number of preterminal rules in the grammar, and R the number of rules in the 
grammar.. Note that the number of rules and preterminal rules refer to the transformed 
grammar. . 

Accordingg to (Hopcroft and Ullman, 1979), if a grammar G with R rules is trans
formedd to CNF, the resulting grammar contains 0(R2) rules. The complexity of the 
postt processing time depends on the number of rules in the CNF tree. Since a CNF tree 
yieldingg a sentence of length n has YH=i i rules, the post processing step takes time 
X!"Jii *• Finally, the complexity for the whole algorithm becomes 2nQ + (n3/6)7?2. 

A.44 Conclusions 

Inn this appendix we have dealt with two particular aspects of our implementation. First, 
wee showed that it may happen that our implementation does not always return the most 
probablee tree. We also showed that there are some grammars for which our grammar 
doess return the most probable tree. For all grammars used in this thesis, however, 
thee parser does return the most probable tree. We also showed that the problem of 
determiningg whether the parser returns the most probable tree or the most probable 
derivationn tree is undecidable. 

Thee second aspect we focused on was related to the actual implementation of the 
parser.. We decomposed our implementation into three different modules, we gave 
thee computational complexity of each of them, and showed that the computational 
complexityy of the whole algorithm is 0(n3R2), where n is the length of the sentence 
andd R the size of the grammar. 



Appendixx B 

Revisingg the STOP Symbol for Markov Rules 

B.ll The Importance of the STOP Symbol 

Inn this section we discuss Section 2.4.1 of Collins PhD thesis, where he discusses the 
importancee of the STOP symbol for generating Markovian sequences. The idea is that 
anyy sequence of strings that is generated by a Markovian process should end in a STOP 
symbol.. He argues that without the STOP symbol the probability distribution generated 
byy a Markovian process over finite strings is not really a probability distribution. 

Wee argue that the even though the STOP symbol is indeed important, the justifica
tionn Collins provides is not fully correct. We show that the mere existence of the STOP 
symboll is not enough to guarantee consistency. We argue that probability distributions 
generatedd by Markovian process over finite sequences of symbols should be thought 
off as probability distributions defined over infinite sequences of symbols instead of 
probabilityy distributions defined over finite sequences. 

Inn Section B.2 we present Collins's explanation on STOP symbols; in Section B.3 
wee provide background definitions on Markov chains; in Section B.4 we use Markov 
chainss for rethinking the importance of STOP symbols, and in Section B.5 we conclude 
thee appendix. 

B.22 Collins's Explanation 

Supposee we want to assign a probability p to sequences of symbols w\, W2, w%,..., wn, 
wheree each symbol W{ belongs to a finite alphabet E. 

Wee first rewrite the probability of the given sequence using the chain rule of prob-

153 3 



154 4 AppendixAppendix B. Revising the STOP Symbol for Markov Rules 

abilitiess as: 
11 11 

P(wi,wP(wi,w22,, w 3 , . . . . wn) = Yl P{wi\wi «;,-_!). (B.l) 
1=1 1 

Second,, we use m-order Markovian independence assumptions and the equation above 
becomes: : 

n n 

P(u' i ,, w2, w3 wn) = Yl P{wi\wu . . . , Wi-m). (B.2) 
!! = 1 

Collinss (1999, page 46) argues that such a definition of probabilities is not correct: the 

problemss arises because n, the sentence length, is variable. In his argumentation, he 

statess that Equation B. 1 would be correct if the event space under consideration would 

havee been the space of n-dimensional vectors E" instead of the set of all strings in the 

languagee E*. Writing the probability under consideration as P{wuw2, w3,..., wn) 

impliess that E" is the event space. To avoid this confusion he writes the probability 

off a sequence (u>i, w2, • • •, wn) as P{{wi,w2, wn}): the angled braces imply that 

(wi,w(wi,w22,,...,..., wn) is a sequence of variable length rather than an n-dimensional vector. 

Hee states that in the case of speech recognition, the length n of strings is often large 

andd that STOP probabilities in that case may not be too significant. In Collins's use of 

Markovv processes, the sequences under consideration are typically of length 0, 1 or 2, 

andd for this case the STOP probabilities certainly become important. 

Hee presents the following example to support his point on the failing of Equa

tionn B.l 

B.2.1.. EXAMPLE. Consider the following. 

•• Assume E = {a, b}, and therefore that E* is {e, a, 6, aa, bb, ab, bb,...}. 

•• Assume that we will model the probability over E* with a 0'th order Markov 

process,, with parameters P(a) — P(b) = 0.5 

Wee can now calculate the probability of several strings using the formula in Equa

tionn B.2: P{(a)) = 0.5, P{(b}) = 0.5, P((aa)) = 0.52, P{(bb)) - 0.25 and soon. We 

alreadyy see from these 4 probabilities that the sum, over the event space will be greater 

thann 1: P((a)) + P((b)) + P((aa)) + P((bb)) = 1.5!. An additional problem is that 

thee probability of the empty string, P( ( ) ) , where n = 0, is undefined. 

Collinss argues that adding STOP symbols fixes this inconsistency. He adds STOP 

symbolss with the parameters of the Markov process modified to include. For example, 

lett P{a) = P(b) = 0.25, P(ST0P) = 0.5). In this case we have P((ST0P» = 0.5, 

P«aST0P))) - 0.25*0.5 - 0.125, P«6ST0P)) = 0.25*0.5 = 0.125, P«aaST0P}) = 

0.2522 * 0.5 - 0.03125, P((bbSTQP)) = 0.03125 and so on. Thus far the sum of 



B.3.B.3. Background on Markov Chains 155 5 

probabilitiess does not exceed 1, and the distribution looks much better behaved. We 
cann prove that the sum over all sequences is 1 by noting that the probability of any 
sequencee of length n is 0.257' * 0.5, and that there are 2" sequences of length n, giving: 

^2^222"" *()-25" * °-5 

5^0.5"" *0.5 

; i=0 0 

1. . 

Inn a 0'th order Markov process the distribution over length of strings is related di
rectlyy to P(STQP) — the probability of a string having length n is the probability of 
generatingg n non-STOP symbols followed by the STOP symbol: 

P(lengthP(length = n) = (1 - P(STOP))" *p(ST0P). 
Withh higher order Markov processes, where the probability is conditioned on pre
viouslyy generated symbols, the conditional probability P(ST0P|w,-_m,.. .,u>:_i) en
codess the preference for certain symbols or sequences of symbols to end or nor to end 
aa sentence. For example, if we were building a bigram (1st order Markov) model of 
Englishh we would expect the word the to end a sentence very rarely, and the corre
spondingg parameter P(S10P\the) to be very low. The STOP symbol not only ensures 
thee probability distributions to be well defined, but also to have useful interpretation. 

B.33 Background on Markov Chains 

Markoviann processes like the one described in Example B.2.1 are better described 
throughh Markov chains (Taylor and Karlin, 1998). 

B.3.1.. DEFINITION. A Markov chain is 3-tuple M = (W, P, I) where W is a set of 
states,, F is a real | W| x \W\ matrix with entries in M, such that Yl\=[ Pij = 1» Py ' s t n e 

probabilityy of jumping from state i to state j , and I is | W [-dimensional vector defining 
thee initial probability distribution. 



•• 56 Appendix B. Revising (he STOP Symbol for Markov Rules 

B.3.2.. EXAMPLE. Let M - (IV. P. I) be a Markov chain where \Y --• {a, b}. 

a a 
b b 

aa b 
0.55 0.5 
0.55 0.5 

andd ƒ = (0.5,0.5)'. The graphical representation for this Markov chain is in Figure B.l 

0.55 C.5 

0.55 0.5 

Figuree B.l: A graphical representation of the model in Example B.2.1 

Markovv chains may be viewed as discrete stochastic processes. A discrete stochastic 
processs is a distribution over an infinite sequence of the random variables, each taking 
aa value out of a finite set. We say that the process is Markovian if the outcome of a 
particularr random variable in the sequence depends only on its two neighbors (the one 
beforee it and the one after it in the sequence). 

Thee following definition formalizes this idea. 

B.3.3.. DEFINITION. A stochastic process {W0, Wu..., Wn,...} at consecutive points 
off observations 0,1 n,... is a discrete Markov process if, for all n e N, wn € W 

PP (W;+i - tL>n+i|Wn - wn, Wn-y = wn_u . . . , Wb = w0) = (B.3) 

P(WP(Wn+1n+1 = wn+1\Wn = wn) (B.4) 

Lett W = {uii,... , wn}. The quantities 

PaPa = P(Wn+l = Wj\Wn) = P{Wl= Wj\W0 = w{) 

aree known as the transition probabilities of the Markov process. 

B.3.4.. DEFINITION. A state W in a Markov chain is called absorbing if it does not 
havee any outgoing arc, or, equivalently, every outgoing arc points to the state itself. 



B.4.B.4. The STOP Symbol Revisited 157 7 

Markovv chains have been widely used in software modeling for describing probability 
distributionss over infinite sequences of states (Infante-Lopez et al., 2001). Under these 
approach,, every string accepted by a Markov chain is in fact an infinite string, and it 
describess an infinite path in the Markov chain. To define the probability distribution, 
setss of infinite strings are used as a building block. Each block is characterized by a 
finitefinite string a, and it contains all infinite strings starting with prefix a that are accepted 
byy the Markov chain. The probability assigned to an a block, by a Markov chain M is 
definedd as the probability of traversing the path described by a in M. The probability 
associatedd to a path X\ Xk is defined as I{X{) x ]l!=i_ P{Xi, Xi+i)-

Thee probability of a finite sequence a of length n is defined as the probability of the 
infinitee sequence a.0 where (5 is an infinite sequence consisting of the STOP symbol, 
i.e.,, 0 — STOP1 .̂ The intuition underlying this definition is that the Markov chains 
reachh a state from which it can not leave, and consequently, the 0 cycles for ever in the 
samee state. 

Underr this perspective, the Markov chain in Example B.2.1 does not generate any 
distributionn over finite sequences. But it does generate a distribution over infinite se
quences.. It is interesting to note that every single infinite path receives probability 
zero,, but sets of infinite paths do receive probability values greater than zero. This sit
uationn is comparable to probability distributions over real numbers, where each single 
numberr receives a probability zero but where subsets of real numbers receive non-zero 
probabilityy values. 

B.44 The STOP Symbol Revisited 

Collinss Example B.2.1 has a direct translation into a Markov chains. We can define a 
Markovv chain with states W = {a, b}, and transition matrix 

PP {Wn+i = wn+i\Wn = wn, W„_i = «;n_i, ...,WQ = WQ)= (B.5) 

P{WP{Wn+ln+l=w=wn+ln+l\W\Wnn=w=wnn)) (B.6) 

andd initial distributions I — (0.5,0.5). Figure B.l presents this Markov chain in a 
graphicall way. This Markov chain generates a well defined probability distribution 
overr infinite sequences of states, and since there is no absorbing state, it can not be 
usedd for deriving probability distributions over finite sequences. 

Thee solution suggested by Collins adds a new state named STOP. Again, the so
lutionn can be described using a zero order Markov chain; the corresponding chain is 
picturedd in Figure B.2. 

Ass Collins suggests, the probability of the STOP state is 0.5, since it is a zero order 
Markovv model it has two fundamental properties: first, all incoming edges have the 



158 8 AppendixAppendix B. Revising the STOP Symbol for Markov Rules 

Figuree B.2: A zero order Markov chain using the STOP symbol 

samee probability and second there is a directed arc connecting every pair of states. The 
resultingg Markov chain has a serious problem. It assigns probability mass to strings 
likee "aaSTOPabbSTOP", i.e., strings containing the STOP symbol more than once. 

Thee situation we have so far is that, even though Collins's solution ruled out prob
abilityy distributions over "correct strings" to sum up above one, the solution proposed 
producess distributions that sum up below one. We would like to disallow this kind 
off distributions, a way to solve this particular problem is to modify Figure B.2 into 
Figuree B.3. This Markov chain is a first order Markov model, even more it can not be 
definee using 0 order Markov chains. 

0.25 5 0.25 5 

0.25 5 0,25 5 

Figuree B.3: A Markov chain with the STOP state absorbing. 

Actually,, it seems that Collins assumes that the STOP state is an absorbing state. His 
modell is a zero order Markov chain plus the condition that generation stops once the 
STOPP symbol has been generated. His solution can be restated as "there has to be a 



B.5.B.5. Conclusions 159 9 

STOPP symbol and it has to be absorbing." 
Butt again, this is not a proper solution, the mere presence an absorbing STOP 

symboll is not enough to rule out inconsistent models. There can be Markov chains 
withh a STOP symbol, that still produce wrong distributions; an example is shown in 
Figuree B.4. 

Figuree B.4: A Markov chain with an absorbing STOP symbol that defines an inconsis
tentt probability distribution over finite strings. 

Thee model assigns probability 0.5 to the infinity sequence W0W1W2W2W2W2W2W2 - • •, 
andd 0.5 to the finite string WQWIW^. The problem is that the model will enter into the 
infinitee cycle producing w4 with probability 0.5. 

Summingg up: In principle the formalism presented by Collins has a potential prob
abilityy inconsistency. But Collins's model is still on the safe side because his Markov 
modelss are learned from data and the following lemma applies: 

B.4.1.. LEMMA. A Markov model learned from strings augmented with the STOP sym
bolbol generate consistent probability distributions over finite strings. 

Thee lemma has already been proven in Section 4.2.2. 

B.55 Conclusions 

Wee presented a different perspective for the presence of the STOP symbols in the gen
erationn of finite sequences of strings. We show that formally a Markov chain of order 
zeroo can not have an absorbing STOP state. We show that Collins explanation of 
STOPP symbols is not fully correct and we show that independently of his explanation, 
thee Markov chains he induces are consistent. 



^^ • 

^ ^ • P W ^ S P P 

^^ ML.VJ- -f-"-

. J L . . . L ' ' 

fcg^ïÉ^fcg^ïÉ^ ^ . ^ ^ ^ ^ K ^ J ^ V ^ U ^ f l ^ 
^ t f e ^^ / ^ " : : 

JimiiimrtitirrMi i 
^ ^ 



Bibliography y 

Abney,, S., 1996. Statistical methods and linguistics. In J. Klavans and P. Resnik (eds.), 
TheThe Balancing Act: Combining Symbolic and Statistical Approaches to Language. 
Cambridge,, MA: The MIT Press. 

Abney,, S., 1997. Stochastic attribute-value grammars. Computational Linguistics, 23 
(4):597-618. . 

Abney,, S., D. McAllester, and F. Pereira, 1999. Relating probabilistic grammars and 
automata.. In Proceedings of the 37th Annual Meeting of the ACL. Maryland. 

Aho,, A. and J. Ullman, 1972. The Theory of Parsing, Translation and Compiling, 
volumee I. Prentice-Hall Series in Automatic Computation. 

Alshawi,, H., 1996. Head automata and bilingual tiling: Translation with minimal 
representations.. In Proceedings of the 34th Annual Meeting of the Association for 
ComputationalComputational Linguistics. Santa Cruz. 

Andor,, J., 2004. The master and his performance: An interview with Noam Chomsky. 
InterculturalIntercultural Pragmatics, 1(1). 

Atsumi,, K. and S. Masuyama, 1998. On the ambiguity reduction ability of a proba
bilisticc context-free grammar. IEICE Transanctions on Fundamentals of Electronics, 
CommunicationsCommunications and Computer Sciences, E81-A(5): 825-831. 

Berger,, A., S. Delia Pietra, and V. Delia Pietra, 1996. A maximum entropy approach 
too natural language processing. Journal of Computational Linguistics, 22(1):39-71. 

Bikel,, D., 2004. Intricacies of Collins' parsing model. Computational Linguistics. To 
appear. . 

161 1 



162 2 Bibliography Bibliography 

Black,, E., F. Jelinek. J. Lafferty, D. Magerman, R. Mercer, and S. Roukos, 1993. To

wardss history-based grammars: Using richer models for probabilistic parsing. In 

ProceedingsProceedings of 3 1 st Annual Meeting of the ACL. Ohio. 

Bod,, R., 1995. Enriching Linguistics with Statistics: Performance models of Natural 

Language.Language. Ph.D. thesis, University of Amsterdam, The Netherlands. 

Bod,, R., 1998. Beyond Grammar: An Experience-Based Theory of Language. Stan
ford:: CSLI Publications. 

Bod,, R., 2003. An efficient implementation of a new DOP model. In Proceedings of 

thethe 10th Conference of the European Chapter of the Association for Computational 

Linguistics.Linguistics. Budapest. 

Booth,, T. and R. Thompson, 1973. Applying probability measures to abstract lan

guages.. IEEE Transaction on Computers, C-33(5):442-450. 

Brew,, C , 1995. Stochastic HPSG. In Proceedings of the 7th Conference of the Euro

peanpean Chapter of the Association for Computational Linguistics. Dublin. 

Brill,, E., 1993. Automatic grammar induction and parsing free text: A transformation-

basedd approach. In Proceedings of the 31st Annual Meeting of the Association for 

ComputationalComputational Linguistics. Ohio. 

Brown,, P., V. Delia Pietra, P. de Souza, J. C. Lai, and R. L. Mercer, 1992. Class-based 

n-gramm models of natural language. Computational Linguistics, 18(4):467-479. 

Buchholz,, S., 2002. Memory-Based Grammatical Relation Finding. Ph.D. thesis, 
Universiteitt van Tilburg. 

Caraballo,, S. and E. Charniak, 1998. New figures of merit for best-first probabilistic 

chartt parsing. Computational Linguistics, 24-2:275-298. 

Cardie,, C , 1993a. A case-based approach to knowledge acquisition for domain-

specificc sentence analysis. In Proceedings of the 11th National Conference on Arti

ficialficial Intelligence. AAAI Press/MIT Press. 

Cardie,, C , 1993b. Using decision trees to improve case-based learning. In Proceedings 

ofof the 10th International Conference on Machine Learning. 

Carrasco,, R. and J. Oncina, 1994. Learning sthocastic regular grammars by means of 

statee merging method. In Grammatical Inference and Applications, Springer Lecture 

Notess in Artificial Intelligence. Berlin: Springer-Verlag. 



Bibliography Bibliography 163 3 

Carrasco.. R. and J. Oncina, 1999. Learning deterministic regular grammars from 

stochasticc samples in polynomial time. Theoretical Informatics and Applications, 

33(1):: 1-20. 

Carreras,, X., L. Marquez, V. Punyakanok, and D. Roth, 2002. Learning and infer

encee for clause identification. In Proceedings of the 14th European Conference on 

MachineMachine Learning. 

Carrol,, J., 1993. Practical Unification-based Parsing of Natural Language. Ph.D. 

thesis,, Computer Lab., University of Cambridge. 

Carroll,, J., T. Briscoe, and A. Sanfilippo, 1998. Parser evaluation: a survey and a 

neww proposal. In Proceedings of the 1st International Conference on Language 

ResourcesResources and Evaluation. Granada, Spain. 

Carroll,, J. and E. Charniak, 1992. Two experiments on learning probabilistic de

pendencyy grammars from corpora. In C. Weir, S. Abney, R. Grishman, and 

R.. Wei schedel (eds.), Working Notes of the Workshop Statistically-Based NLP Tech

niques.niques. Menlo Park. 

Carroll,, J. and A. Fang, 2004. The automatic acquisition of verb subcategorisations 

andd their impact on the performance of an HPSG parser. In Proceedings of the 1st 

InternationalInternational Joint Conference on Natural Language Processing (IJCNLP). 

Charniak,, E., 1995. Parsing with context-free grammars and word statistics. Technical 

Reportt CS-95-28, Department of Computer Science, Brown University, Providence. 

Charniak,, E., 1997. Statistical parsing with a context-free grammar and word statistics. 

Inn Proceedings of the 14th National Conference on Artificial Intelligence. Menlo 

Park:: AAAI Press/MIT Press. 

Charniak,, E., 1999. A maximum-entropy-inspired parser. In Technical Report CS-99-

12.12. Providence, Rhode Island. 

Charniak,, E., 2000. A Maximum-Entropy-Inspired Parser. In Proceedings ANLP-

NAACL'2000,NAACL'2000, Seattle, Washington. 

Chastellier,, G. and A. Colmerauer, 1969. W-Grammars. In Proceedings of the 24th 

NationalNational Conference. 

Chaudhuri,, R. and A. N. V. Rao, 1986. Approximating grammar probabilities: Solution 

off a conjecture. Journal of the ACM., 3 3 (4): 702-705. 



164 4 Bibliography Bibliography 

Chen,, S., 1995. Bayesian grammar induction for language modeling. In Proceedings 

ofof the 33 rd Annual Meeting of the ACL. Morristown. USA. 

Chi,, Z. and S. Geman, 1998. Estimation of probabilistic context-free grammars. Com

putationalputational Linguistics, 24(2):299-305. 

CoelloCoello,, C , 1999. A comprehensive survey of evolutionary -based multiobjective 

optimizationn techniques. Knowledge and Information Systems. 3(l):269-308. 

Collins,, M., 1996. A new statistical parser based on bigram lexical dependencies. In 

ProceedingsProceedings of the 34th Annual Meeting of the ACL. 

Collins,, M., 1997. Three generative, lexicalized models for statistical parsing. In 

ProceedingsProceedings of the 35th Annual Meeting of the ACL and the 8th Conference of the 

EuropeanEuropean Chapter of the ACL. Madrid, Spain. 

Collins,, M., 1999. Head-Driven Statistical Models for Natural Language Parsing. 

Ph.D.. thesis, University of Pennsylvania, PA. 

Collins,, M., 2000. Discriminative reranking for natural language parsing. In Proceed

ingsings of the 7th International Conference on Machine Learning (ICML). Stanford. 

Collins,, M., 2001. Parameter estimation for statistical parsing models: Theory and 

practicee of distribution-free methods. In Proceedings of the 7th International Work

shopshop on Parsing Technologies. Beijing. 

Collins,, M. and N. Duffy, 2001. Convolution kernels for natural language. In Proceed

ingsings of Neural Information Processing Systems (NIPS 14). 

Collins,, M. and N. Duffy, 2002. New ranking algorithms for parsing and tagging: 

Kernelss over discrete structures, and the voted perceptron. In Proceedings of the 

40th40th Annual Meeting of the ACL. 

Cortes,, C. and M. Mohri, 2000. Context-free recognition with weighted automata. 
Grammars,Grammars, 2-3(3). 

Cover,, T. and J. Thomas, 1991. Elements of Information Theory. New York: John 
Wileyy and Sons. 

Daelemans,, W., S. Buchholz, and J. Veenstra, 1999. Memory-based shallow pars

ing.. In Proceedings of the Computational Natural Language Learning Workshop 

(CoNLL99).(CoNLL99). Bergen. 



Bibliography Bibliography 165 5 

Daelemans,, W., A. van den Bosch, and A. Weijters, 1997. Igtree: using trees for 

compressionn and classification in lazy learning algorithms. Artificial Intelligence 

Review,Review, 11:407—423. 

Decadt,, B. and W. Daelemans, 2004. Verb classification — machine learning experi

mentss in classifying verbs into semantic classes. In Proceedings of the LREC 2004 

WorkshopWorkshop Beyond Named Entity Recognition - Semantic Labelling for NLP Tasks. 

Denis,, F , 2001. Learning regular languages from simple positive examples. Machine 

Learning,Learning, 44(1/2): 37-66. 

Dupont,, P. and L. Chase, 1998. Using symbol clustering to improve probabilistic 

automatonn inference. In V. Honavar and G. Slutzki (eds.), Proceedings of the Fourth 

InternationalInternational Colloquium on Grammatical Inference, Lecture Notes in Computer 

Science.. Springer-Verlag. 

Dupont,, P., F. Denis, and Y. Esposito, 2004. Links between probabilistic automata and 

hiddenn markov models: probability distributions, learning models and induction al

gorithms.. Pattern Recognition: Special Issue on Grammatical Inference Techniques 

&& Applications. To appear. 

Dupont,, P., L. Miclet, and E. Vidal, 1994. What is the search space of the regular in

ference?? In R. Carrasco and J. Oncina (eds.), Grammatical Inference and Applica

tions;tions; 2nd International Colloquium, ICGI-94, Lecture Notes in Computer Science. 

Springer-Verlag. . 

Eisner,, J., 1996. Three new probabilistic models for dependency parsing: An explo

ration.. In Proceedings of 16th International Conference on Computational Linguis

ticstics (COLING). Copenhagen, Denmark. 

Eisner,, J., 2000. Bilexical grammars and their cubic-time parsing algorithms. In 

H.. Bunt and A. Nijholt (eds.), Advances in Probabilistic and Other Parsing Tech

nologies.nologies. Kluwer Academic Publishers, pages 29-62. 

Eisner,, J. and G. Satta, 1999. Efficient parsing for bilexical context-free grammars and 

headd automaton grammars. In Proceedings of the 37th Annual Meeting of the ACL. 

Maryland. . 

Gaifman,, G., 1965. Dependency systems and phrase-structure systems. Information 

andand Control, 8(3):304-337. 

Galen,, A., T. Grenager, and C. Manning, 2004. Verb sense and subcategorization: Us

ingg joint inference to inprove performance on complementary tasks. In Proceedings 

ofof Empirical Methods in Natural Language Processing (EMNLP). 



166 6 Bibliography Bibliography 

Gen,, M. and R. Cheng, 1997. Genetic Algorithms and Engineering Design. New York: 
Johnn Wiley and Sons. 

Gold,, E. M., 1967. Language identification in the limit. Information and Control, 
10:447^174. . 

Goodman,, J., 1997. Probabilistic feature grammars. In Proceedings of the 5th Inter
nationalnational Workshop on Parsing Technologies. MIT, Cambridge, MA. 

Goodman,, J., 1998. Parsing Inside-Out. PhD thesis, Departement of Computer Sci
ence,, Harvard University, Cambridge, Massachusetts. 

Hara,, T., Y. Miyao, and J. Tsujii, 2002. Clustering for obtaining syntactic classes of 
wordss from automatically extracted Itag grammars. In Proceedings of the sixth Inter
nationalnational Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+6). 

Hemphill,, C, J. Godfrey, and G. Doddington, 1990. The ATIS Spoken Language 
Systemss pilot corpus. In Proceedings of the DARPA Speech and Natural Language 
Workshop.Workshop. Hidden Valley, Pa. 

Henderson,, J. and E. Brill, 1999. Exploiting diversity in natural language processing: 
Combiningg parsers. In Proceedings of the 1999 Joint SIGDAT Conference on Em
piricalpirical Methods in Natural Language Processing (EMNLP) and Very Large Corpora 
(VLC).(VLC). Maryland. 

Hermjakob,, U. and R. J. Mooney, 1997. Learning parse and translation decisions from 
exampless with rich context. In Proceedings of the 35th Annual Meeting of the ACL 
andand 8th Conference of the European Chapter of the ACL. Madrid. 

Hopcroft,, J. and J. Ullman, 1979. Introduction to Automata Theory, Lanaguges, and 
Computation.Computation. Reading, MA: Addison Wesley. 

Horning,, J. J., 1969. A study of grammatical inference. Unpublished doctoral disser
tation,, Standford University. 

Infante-Lopez,, G. and M. de Rijke, 2003. Natural language parsing with W-grammars. 
Paperr presented at CLIN'03. 

Infante-Lopez,, G. and M. de Rijke, 2004a. Alternative approaches for generating 
bodiess of grammar rules. In Proceedings of the 42nd Annual Meeting of the ACL. 
Barcelona. . 

Infante-Lopez,, G. and M. de Rijke, 2004b. Comparing the ambiguity reduction abili
tiess of probabilistic context-free grammars. In Proceedings ofLREC'04. 



Bibliography Bibliography 167 7 

Infante-Lopez,, G. and M. de Rijke, 2004c. Expressive power and consistency prop

ertiess of state-of-the-art natural language parsers. In J. Vicedo, P. Martinez-Barco, 

andd R. M. et al. (eds.), Proceedings Advances in Natural Language Processing: 4th 

InternationalInternational Conference, EsTAL 2004. 

Infante-Lopez.. G., H. Hermanns, and J.-R Katoen, 2001. Beyond memoryless distri

butions:: Model checking semi-markov chains. In PAPM-ProbMiV 2001, Springer 

LNCS2165.. LNCS2165.. 

Infante-Lopez,, G., K. Sim'aan, and M. de Rijke, 2002. A general mode! for depen

dencyy parsing. In Proceedings ofBNAIC'02. 

Inui,, K., V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga,, 1998. Probabilistic GLR 

parsing:: a new formatisation and its impact on parsing performance. Journal of 

NaturalNatural Language Processing, 5(3). 

Jelinek,, F., J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, and S. Roukos, 1994. 

Decisionn tree parsing using a hidden derivation model. In Proceedings of the 1994 

HumanHuman Language Technology Workshop. DARPA. 

Joan-Andreu,, S. and J.-M. Benedf, 1997. Consistency of stochastic context-free gram

marss from probabilistic estimation based on growth transformations. IEEE Trans

actionsactions on Pattern Analysis and Machine Intelligence, 19(9): 1052-1055. 

Johnson,, M., 2002. The DOP estimation method is biased and inconsistent. Computa

tionaltional Linguistics, 28( 1 ):71—76. 

Johnson,, M., S. Geman, S. Canon, Z. Chi, and S. Riezler, 1999. Estimators for stochas

ticc unification-based grammars. In Proceedings of the 37th Annual Meeting of the 

ACL.ACL. Maryland. 

Joshi,, A., 1985. Tree Adjoining Grammars: How much context sensitivity is required 

too provide a reasonable structural description. In I. K. D. Dowty and A. Zwicky 

(eds.),, Natural Language Parsing. Cambridge, U.K.: Cambridge University Press. 

Joshi,, A., 1987. An introduction to tree adjoining grammars. In A. Manaster Ramer 

(ed.),, Mathematics and Language. Amsterdam: John Benjamins Publishing Co, 

pagess 87-115. 

Joshi,, A. and B. Srinivas, 1994. Disambiguation of super parts of speech (or supertags): 

Almostt parsing. In Proceedings of the 17th International Conference on Computa

tionaltional Linguistics (COLING). Kyoto, Japan. 



168 8 Bibliography Bibliography 

Jurafsky.. D. and J. Martin, 2000. Speech and Language Processing: An Introduction to 

NaturalNatural Language Processing, Computational Linguistics, and Speech Recognition. 

Prenticee Hall PTR. 

Klein.. D. and C. Manning, 2003. Accurate unlexicalized parsing. In Proceedings of 

thethe 41st Annual Meeting of the ACL. 

Krotov,, A., M. Hepple. R, J. Gaizauskas. and Y. Wilks, 1998. Compacting the Penn 

treebankk grammar. In Proceedings of the 36th Annual Meeting of the ACL and 17th 

InternationalInternational Conference on Computational Linguistics COLING. 

Kruijff,, G„ 2003. 3-Phase grammar learning. In Proceedings of the Workshop on Ideas 

andand Strategies for Multilingual Grammar Development. 

Kucera,, H. and W. N. Francis, 1967. Computational analysis of present-day American 

English.English. RI: Brown University Press. 

Lafferty,, J., D. Sleator, and D. Temperley, 1992. Grammatical trigrams: A probabilistic 

modell of link grammar. In Proceedings of the AAAI Conference on Probabilistic 

ApproachesApproaches to Natural Language Processing. 

Levin,, B., 1993. English Verb Classes and Alternations: A preliminary Investigation. 
Chicago:: The University of Chicago Press. 

Lin,, D., 1995. A dependency-based method for evaluating broad-coverage parsers. In 

ProceedingsProceedings ofIJCAI-95. 

Magerman,, D., 1995a. Parsing as Statistical Pattern Recognition. Ph.D. thesis, Stan
fordd University. 

Magerman,, D., 1995b. Statistical decision-tree models for parsing. In Proceedings of 

thethe 33 rd Annual Meeting of the ACL. Cambridge, MA. 

Magerman,, D. and M. Marcus, 1991. Pearl: A Probabilistic Chart Parser. In Proceed

ingsings the European Chapter of the ACL. Berlin. 

Magerman,, D. and C. Weir, 1992. Efficiency, robustness and accuracy in picky Chart 

Parsing.. In Proceedings of the 30th Annual Meeting of the ACL. Newark, Delaware. 

Manning,, C , 1993. Automatic acquisition of a large subcategorization dictionary from 

corpora.. In Proceedings of the 31st Annual Meeting of the ACL. 

Manning,, C. and H. Schiitze, 1999. Foundations of Statistical Natural Language Pro

cessing.cessing. The MIT Press, Cambridge, MA. 



Bibliography Bibliography 169 9 

Marcus,, M., G. Kim, M. Marcinkiewicz, R. Maclntyre, A. Bies, M. Ferguson, K. Katz, 
andd B. Schasberger, 1994. The Penn treebank: Annotating predicate argument struc
ture.. In ARPA Human Language Technology Workshop. 

Marcus,, M., B. Santorini, and M. Marcinkiewicz, 1993. Building a large annotated 
corpuss of English: The Penn treebank. Computational Linguistics, 19:313-330. 

Mateescu,, A., 1989a. Van Wijngaarden grammars and systems. Annals University of 
Bucharest,Bucharest, 2:7'5-81. 

Mateescu,, A., 1989b. van Wijngaarden grammars and the generative complexity of 
recursivelyy enumerable languages. Annals University of Bucharest, 2:49-54. 

Mateescu,, A. and A. Salomaa, 1997. Aspects of classical language theory. In Rozem-
bergg and Salomaa (1997), pages 175-251. 

Merlo,, P. and S. Stevenson, 2001. Automatic verb classification based on statistical 
distributionss of argument structure. Computational Linguistics, 27(3):373-408. 

Miikkulainen,, R., 1996. Subsymbolic case-role analysis of sentences with embedded 
clauses.. Cognitive Science, 1(20). 

Mitchell,, T., 1997. Machine Learning. McGraw-Hill Series in Computer Science. 

Musillo,, G. and K. Sima'an, 2002. Towards comparing parsers from different linguistic 
frameworks:: An information theoretic approach. In Proceedings of Beyond PARSE-
VAL:VAL: Towards Improved Evaluation Measures for Parsing Systems, LREC'02. Las 
Palmas,, Gran Canaria, Spain, 2002. 

Nederhof,, M.-J., A. Sarkar, and G. Satta, 1998. Prefix probabilities from probabilistic 
treee adjoining grammars. In Proceedings of the 36th Annual Meeting of the ACL and 
17th17th International Conference on Computational Linguistics (COLING). Montreal. 

Nederhof,, M.-J. and G. Satta, 2002. Probabilistic parsing strategies. In J. Dassow, 
M.. Hoeberechts, H. Jiirgensen, and D. Wotschke (eds.), Descriptional Complexity 
ofof Formal Systems (DCFS), Pre-Proceedings of a Workshop. London. 

Ney,, H., 1991. Dynamic programming parsing for context-free grammars in continu
ouss speech recognition. IEEE Transactions on Signal Processing, 39(2):336-340. 

Ney,, H. and R. Kneser, 1993. Inproved clustering techniques for class-based statis
ticall language modelling. In European Conference on Speech Communication and 
Technology. Technology. 



170 0 Bibliography Bibliography 

Ng,, S.-K. and M. Tomita, 1991. Probabilistic LR parsing for general contextfree gram

mars.. In Proceedings of the 2nd International Workshop on Parsing Technologies. 

NIST,, 2004. NIST/SEMATECH e-Handbook of Statistical Methods. NIST. URL: 
h t t p : / / w w w . i t l . n i s t . g o v / d i v 88 9 8 / h a n d b o o k / . 

Oncina,, J. and P. Garcia, 1992. Inferring regular languages in polynomial update time. 

Inn Pattern Recognition and Image Analysis, volume I of Series in Machine Percep

tiontion and Artificial Intelligence, pages 49-61. 

Parikh,, R. J., 1966. On context-free languages. Journal of the ACM, 13:570-581. 

Perrault,, R., 1984. On the mathematical properties of linguistic theories. Computa
tionaltional Linguistics - Special issue on mathematical properties of grammatical for
malisms,malisms, 10(3-4): 165-176. 

Punyakanok,, V. and D. Roth, 2000. The use of classifiers in sequential inference. In 

ProceedingsProceedings ofNIPS-I3, The 2000 Conference on Advances in Neural Information 
ProcessingProcessing Systems. 

Qumsieh,, A., 2003. Ai::genetic - a pure perl genetic algorithm implementation. Perl 

Package,, http://search.cpan.org/aqumsieh/AI-Genetic-0.02/Genetic.pm. 

Ratnaparkhi,, A., 1997. A linear observed time statistical parser based on maximum 

entropyy models. In Empirical Methods in Natural Language Processing (EMNLP). 

Ratnaparkhi,, A., 1998. Maximum Entropy Models for Natural Language Ambiguity 

Resolution.Resolution. Ph.D. thesis, University of Pennsylvania. 

Ratnaparkhi,, A., 1999. Learning to parse natural language with maximum entropy 

models.. Machine Learning, 34:151-175. 

Rayner,, M. and D. Cater, 1996. Fast parsing using pruning and grammar specialization. 

Inn Proceedings of the 34th Annual Meeting of the Association for Computational 

Linguistics.Linguistics. Santa Cruz. 

Resnik,, P., 1992. Probabilistic tree-adjoining grammar as a framework for statistical 

naturall language processing. In Proceedings of the 14th International Conference 

onon Computational Linguistics (COLING). Nantes. 

Rosenfeld,, R., 1994. Adaptive Statistical Language Modeling: A Maximum Entropy 

Approach.Approach. Ph.D. thesis, University of Carnegie Mellon. 

Rozemberg,, G. and A. Salomaa (eds.), 1997. Handbook of Formal Languages. 

http://www.itl.nist.gov/div8
http://98/handbook/
http://search.cpan.org/aqumsieh/AI-Genetic-0.02/Genetic.pm


Bibliography Bibliography 171 1 

Samuelsson,, C , 1994. Grammar specialization through entropy thresholds. In Pro-

ceedingsceedings of the 32nd Annual Meeting of the ACL. 

Sarkar,, A., 2001. Applying co-training methods to statistical parsing. In Proceed

ingsings of the 2nd Meeting of the North American Chapter of the ACL (NAACL 2001). 

Pittsburgh. . 

Satta,, G., 1998. Recognition and parsing for tree adjoining grammars. In Tutorial 

presentedpresented at the 4th International Workshop on Tree Adjoining Grammars (TAG+4). 

Pennsylvania. . 

Satta,, G-, 2000. Parsing techniques for lexicalized context-free grammars. In Proceed

ingsings of the 6th International Workshop on Parsing Technologies (1WPT). Trento, 

Italy. . 

Schabes,, Y., 1992. Stochastic lexicalized tree-adjoining grammars. In Proceedings of 

thethe 14th International Conference on Computational Linguistics (COLING). Nantes. 

Schapire,, R. E. and Y. Singer, 1999. Improved boosting algorithms using confidence-

ratedd predictions. Machine Learning, 37(3). 

Sima'an,, K., 2000. Tree-gram parsing: Lexical dependencies and structual relations. 

Inn Proceedings of the 38th Annual Meeting of the ACL. Hong Kong, China. 

Sima'an,, K. and L. Buratto, 2003. Backoff parameter estimation for the dop model. In 

ProceedingsProceedings ofECML. 

Simmons,, R. and Y. Yu, 1992. The acquisition and use of context-dependent grammars 

forr English. Computational Linguistics, 4(18). 

Sleator,, D. and D. Temperley, 1991. Parsing English with a link grammar. Technical 

Reportt CMU-CS-91-196, Carnegie Mellon University, School of Computer Science. 

Sleator,, D. and D. Temperley, 1993. Parsing English with a link grammar. In Proceed

ingsings of the 3rd International Workshop on Parsing Technologies (IWPT). Bergen, 

Norway. . 

Srinivas,, B., 1997. Complexity of Lexical Descriptions and its Relevance to Partial 

Parsing.Parsing. PhD thesis, Computer and Information Science, University of Pennsylva

nia. . 

Stevenson,, S. and P. Merlo, 2000. Automatic lexical acquisition based on statistical 

distributions.. In 17th conference on Computational linguistics. 



172 2 Bibliography Bibliography 

Taylor.. H. and S. Karlin, 1998. An Introduction to Stochastic Modeling. Academic 
Press. . 

Thollard.. F, P. Dupont, and C. de la Higuera, 2000. Probabilistic DFA inference using 
Kullback-Leiblerr divergence and minimality. In Proceedings of the 7th International 
ConferenceConference on Machine Learning (JCML). Stanford. 

Tjongg Kim Sang, E. and H. Déjean, 2001. Introduction to the CoNLL-2001 shared 
task:: clause identification. In Proceedings of the Computational Natural Language 
LearningLearning Workshop (CoNLL-2001). Toulouse. 

Tomita,, M, 1996. Efficient Parsing for Natural Language. Language. The Netherlands: Kluwer 
Academicc Publishers. 

Vann Wijngaarden, A., 1965. Orthogonal design and description of a formal language. 
Technicall Report MR76, Mathematisch Centrum. Amsterdam. 

Vann Wijngaarden, A., 1969. Report on the algorithmic language ALGOL 68. Nu-
merischemerische Mathematik, 14:79-218. 

Veenstra,, J. and W. Daelemans, 2000. A memory-based alternative for connectionist 
shift-reducee parsing. Technical Report ILK Report 00-12. 

Venable,, P., 2001. Lynx: Building a statistical parser from a rule-based parser. In 
ProceedingsProceedings of the Student Research Workshop of the NAACL. Pittsburgh. 

Watkinson,, S. and S. Manandhar, 2001. Translating treebank annotation for evaluation. 
Inn Workshop on Evaluation f or Language and Dialogue Systems, ACL/EACL. 

Wetherell,, C. S., 1980. Probabilistic languages: A review and some questions. ACM 
ComputerComputer Surveys., 4(12):361-379. 

Wich,, K., 2000. Exponential ambiguity of context-free grammars. In Proceedings of 
thethe 4th International Conference on Developments in Language Theory. 

Wich,, K., 2001. Characterization of context-free languages with polynomially 
boundedd ambiguity. In Proceedings of the 26th International Symposium on Math
ematicalematical Foundations of Computer Science (MFCS). 

Wood,, M., 1993. Categorial Grammars. London: Routledge. 

Wright,, D., 1997. Understanding Statistics. An Introduction for the Social Sciences. 
London:: Thousand Oaks, New Delhi: Sage. 



Bibliography Bibliography 173 3 

Wright,, J., 1990. LR parsing of probabilistic grammars with input uncertainty for 

speechh recognition. Computer Speech and Language, 4:297-323. 

Wright,, J. and E. Wrigley, 1989. Probabilistic LR parsing for speech recognition. In 

ProceedingsProceedings of the 1st International Workshop on Parsing Technologies. Pittsburgh. 

Wright,, J., E. Wrigley, and R. Sharman, 1991. Adaptive probabilistic generalized LR 

parsing.. In Proceedings of the 2nd International Workshop on Parsing Technologies. 

Cancun,, Mexico. 

Xia,, F., C. Han, M. Palmer, and A. Joshi, 2001. Automatically extracting and com

paringg lexicalized grammars for different languages. In Proceedings of the 17th 

InternationalInternational Joint Conference on Artificial Intelligence (1JCA12001). Seattle. 

Yoshinaga,, N., 2004. Improving the accuracy of subcategorizations acquired from 

corpora.. In Student Session ACL04. 

Zelle,, J. and R. Mooney, 1996. Learning to parse database queries using inductive 

logicc programming. In Proceedings of the 13th National Conference on Artificial 

Intelligence.Intelligence. Portland, OR. 



IP?" " ^ p ^ ^ ^ • H P P B W B B H B B " ^ ^ ^ ^ ^ 



Abstract t 

Naturall language is a very complex phenomenon. Undoubtedly, the sentences we utter 
aree organized according to a set of rules or constraints. In order to communicate with 
others,, we have to stick to these rules up to a certain degree. This set of rules, which 
iss language dependent, is well-known to all speakers of a given language, and it is 
thiss common knowledge that makes communication possible. Every sentence has a 
clearr organization: words in an utterance glue together to describe complex objects 
andd actions. This hidden structure, called syntactic structure, is to be recovered by a 
parser.. A parser is a program that takes a sentence as input and tries to find its syntactic 
organization.. A parser searches for the right structure among a set of possible analyses, 
whichh are defined by a grammar. The language model decides what the syntactic 
componentss of the sentence are and how they are related to each other, depending on 
thee required level of detail. 

Designingg and building language models is not a trivial task; the design cycle usu
allyy comprises designing a model of syntax, understanding its underlying mathematical 
theory,, defining its probability distribution, and finally, implementing the parsing al
gorithm.. The building of a new language model has to complete at least these steps, 
andd each of them is very complex and a line of research in itself. To help handling the 
intrinsicc complexity of this cycle a good level of abstraction is required. 

Ourr view is that state-of-the-art natural language models lack abstraction; their de
signn is often ad hoc, and they mix many features that, at least conceptually, should 
bee kept separated. In this thesis, we explore new levels of abstraction for natural lan
guagee models. We survey state-of-the-art probabilistic language models looking for 
characteristicc features, and we abstract away from these features to produce a general 
languagee model. We investigate three state-of-the-art language models and discover 
thatt they have one very noticeable feature: the set of rules they use for building trees is 
builtt on the fly, meaning that the set of rules is not defined a prion. The formalisms we 

175 5 



176 6 Bibliography Bibliography 

revieww have two different levels of derivations even though this is not explicitly stated. 
Onee level is for generating the set of rules to be used in the second step, and the second 
stepp is for building the set of trees that characterize a given sentence. Our formalism, 
basedd on Van Wijngaarden grammars (W-grammars), makes these two levels explicit. 
Ourr approach to parsing comes from a formal language perspective: we identify fea
turess that are used by state-of-the-art language models and take a formalism off the 
shelff and modify it to incorporate the necessary features. 

Fromm a theoretical point of view, general models help us to clarify the set of pa
rameterss a particular instance has fixed, and to make explicit assumptions that underlie 
aa particular instance. When analyzing the necessary features from the formal language 
perspective,, the need for probabilities and their role in parsing are the first issue to 
address.. We answer many questions regarding the role of probabilities in probabilistic 
contextt free grammars. We focus on these grammars because they are central to the 
formalismm we present. 

Fromm a computational point of view, general models for which a clear parsing al
gorithmm and a relatively fast implementation can be defined, produce fast and clear 
implementationss for all particular instances. 

Generall models do not add anything per se. Their importance is rather in the set of 
instancess they can capture and the new directions they are able to suggest. We show 
thatt bilexical grammars, Markovian context free grammars and stochastic tree substi
tutionn grammars are instances of our general model. Our model has well-established 
consistencyy properties which we use to derive consistency properties of these three 
formalisms.. The new research directions suggested by a general formalism are a con
sequencee of instantiating the model's parameters in different ways or by re-thinking 
thee set of assumptions the particular instances have made. A brief description of the 
directionss explored in this thesis follows. 

Markovv models are heavily used in parsing models and they can be replaced by 
probabilisticc regular languages. Since our formalism is not bound to Markov models, 
wee can use any algorithm for inducing probabilistic automata. We explore this idea. 
Wee define a type of grammar that uses probabilistic automata for building the set of 
rules.. We compare two classes of grammars that differ in the type of algorithm they 
usee for learning the probabilistic automata. One of them is based on n-grams, and the 
otherr one is based on the minimum divergence algorithm (MDI). We show that the 
MDII algorithm produces both smaller and better performing grammars. 

Thee fact that probabilistic automata replace Markov chains in the definition of our 
modell allows us to think of a regular language as the union of smaller, more specific 
sublanguages.. Our intuition is that the sublanguages are easier to induce and that 
thee combination of them fully determines the whole language. We explore this idea by 
splittingg the training material before inducing the probabilistic automata, then inducing 



Bibliography Bibliography 177 7 

onee automaton for each component, and, finally, combining them into one grammar. 
Wee show that in this way, a measure that correlates well with parsing performance can 
bee defined over grammars. 

Ourr formalism allows us to isolate particular aspects of parsing. For example, the 
linearr order in which arguments appear in a parse tree is a fundamental feature used 
byy language models. We investigate which sequences of information better predict se
quencess of dependents. We compare sequences of part-of-speech tags to sequences of 
non-terminall labels. We show that part-of-speech tags are better predictors of depen
dents. . 



«•MHHHH|^^PPPVm!^!^i!n^Pi^>!«!SK««U'B^*»M^1 ''  •-••^ 

-,ï ï 

** ^1-

^ ^ ^ ^ ^ ^ 



Samenvatting g 

Natuurlijkee taal is een erg complex fenomeen. Het lijdt geen twijfel dat de zinnen 
diee we uiten georganiseerd zijn volgens een verzameling regels of randvoorwaarden. 
Omm met anderen te kunnen communiceren dienen we ons tot op zekere hoogte aan 
dezee regels te houden. Deze verzameling regels, die taal afhankelijk is, is bekend bij 
allee sprekers van een gegeven taal, en het is deze gedeelde kennis die communicatie 
mogelijkk maakt. Iedere zin heeft een duidelijke organisatie: woorden in een uiting 
kunnenn samen gebruikt worden om complexe objecten en acties te beschrijven. Het is 
dezee verborgen structuur, de syntactische structuur, die door een parser ontdekt moet 
worden.. Een parser is een programma dat een zin als invoer neemt en probeert de 
syntactischee organisatie van die zin te vinden. Een parser zoekt naar de juiste structuur 
temiddenn van een verzameling van mogelijke analyses, die gedefinieerd wordt door 
eenn grammatica. Het taalmodel besluit wat de syntactische componenten van de zin 
zijn,, en hoe ze met elkaar verbonden zijn, afhankelijk van de gewenste mate van detail. 

Hett ontwerpen en bouwen van taalmodellen is verre van triviaal; de ontwerpcyclus 
bestaatt doorgaans uit het ontwerpen van een model van de syntax, het begrijpen van de 
onderliggendee wiskundige theorie, het definiëren van een waarschijnlijkheidsverdel-
ing,, en tenslotte, het implementeren van een parseeralgoritme. Het bouwen van een 
nieuww taalmodel dient elk van deze stappen te doorlopen, en elk van deze stappen is 
complex,, en een onderzoeksveld op zich. Om de intrinsieke complexiteit van deze 
cycluss te beheersen is een zeker niveau van abstractie vereist. 

Onss standpunt is dat het moderne natuurlijke taalmodellen aan abstractie ontbreekt. 
Hunn ontwerp is vaak ad hoc, en ze vermengen aspecten die uit elkaarr gehouden zouden 
moetenn worden, in ieder geval op een conceptueel niveau. In dit proefschrift onder
zoekenn we nieuwe niveaus van abstractie voor natuurlijke taalmodellen. Op zoek naar 
karakteristiekee aspecten geven we een overzicht van probabilistische taalmodellen, en 
wee abstraheren van deze karakteristieke aspecten weg om tot een algemeen taalmodel 

179 9 



180 0 Bibliography Bibliography 

tee komen. We onderzoeken drie moderne taalmodellen en ontdekken dat ze één op
merkelijkk aspect delen: de regels die zij gebruiken voor het bouwen van bomen worden 
onon the fly gecreëerd. Met andere woorden, deze regels staan niet a priori vast. De for-
malismenn die wij bestuderen hebben twee niveaus van afleidingen, hoewel dit niet ex
pliciett vermeld wordt. Eén niveau betreft het genereren van de verzameling van regels 
diee in de tweede stap gebruikt zullen worden, en de tweede stap betreft het bouwen 
vann de bomen die een gegeven zin karakteriseren. Ons formalisme, dat gebaseerd is op 
VanVan Wijngaardengrammatica's (W-grammatica's), maakt deze twee niveaus expliciet. 
Onss perspectief op parseren vindt zijn oorsprong in de formele talen: we identificeren 
aspectenn die door moderne taalmodellen gebruikt worden en nemen een bestaand for
malismee dat we zó aanpassen, dat het de vereiste aspecten in zich opneemt. 

Vanuitt een theoretische gezichtspunt helpen algemene taalmodellen ons om duide
lijkk te maken welke parameters een specifieke instantie heeft ingevuld en vastgelegd, 
enn om expliciet te maken welke aannames een specifieke instantie heeft gemaakt. Wan
neerr we de voor parseren vereiste aspecten vanuit een formele talenperspectief willen 
bestuderen,, dan is duidelijk dat we voor alles waarschijnlijkheden en hun rol in het 
parserenn moeten bestuderen. In het proefschrift beantwoorden we een groot aantal vra
genn betreffende de rol van waarschijnlijkheden in probabilistische context-vrije gram
matica's,, die een centrale rol spelen in de formalismen die we bestuderen. 

Vanuitt een computationeel gezichtspunt kunnen algemene modellen waarvoor een 
duidelijkk parseeralgoritme en redelijke snelle implementaties gedefinieerd kunnen wor
den,, leiden tot snelle en doorzichtige implementaties voor alle specifieke instanties. 

OpOp zich voegen algemene modellen niets toe. Hun belang ligt veeleer in de verza
melingg instanties die ze kunnen beschrijven en de nieuwe onderzoeksrichtingen die ze 
kunnenn suggereren. We laten zien dat bilexicale grammatica's, Markoviaanse context
vrijee grammatica's, en stochastische boomstubstitutiegrammatica's instanties zijn van 
onss algemene model. Ons model heeft duidelijke en goed begrepen consistentie
eigenschappenn die we gebruiken om consistentie-eigenschappen af te leiden voor de 
genoemdee drie formalismen. De nieuwe onderzoeksrichtingen die ons algemene for
malismee suggereert zijn een gevolg van het instantiëren van de parameters van het 
modell of van herbezinning op de aannames die een specifieke instantie doet. We geven 
nuu een korte beschrijving van de richtingen die we in het proefschrift onderzoeken. 

Markov-modellenn worden veelvuldig gebruikt in parseermodellen, en ze kunnen 
vervangenn worden door, meer algemene, probabilistische reguliere talen. Omdat ons 
formalismee niet beperkt is tot Markov-modellen, kunnen we om het even welk algo
ritmee gebruiken voor het induceren van probabilistische automaten. We onderzoeken 
ditt idee. We definiëren een soort van grammatica's die probabilistische automaten ge
bruikenn voor het genereren van regels, en vergelijken twee klassen van grammatica's, 
diee verschillen in het soort van algoritme dat ze gebruiken voor het leren van proba-



Bibliography Bibliography 181 1 

bilistischee automaten. De ene klasse is gebaseerd op n-grammen, en de ander op het 

minimalee divergentie algoritme (MDI). We laten zien dat het MDI-algoritme leidt tot 

kleineree grammatica's die zich beter gedragen. 

Hett feit dat probabilistische automaten Markov-ketens vervangen in de definitie 

vann ons model stelt ons in staat een reguliere taal te zien als de vereniging van kleinere, 

meerr specifieke deel-talen. Een belangrijke intuïtie is dat de deel-talen eenvoudiger 

geïnduceerdd kunnen worden dan de gehele taal (in één keer), en dat hun combinatie 

dee gehele taal volledig vastlegt. We onderzoeken dit idee door het trainings materiaal 

tee splitsen voordat we de probabilistische automaten induceren. Vervolgens induceren 

wee één automaat per componenent, en tot slot combineren we deze tot één grammatica. 

Wee laten zien dat we op deze manier een maat op grammatica's kunnen definiëren die 

goedd correleert met het uiteindelijke parseergedrag. 

Onss algemene formalisme stelt ons in staat om specifieke aspecten van het parseren 

tee isoleren en bestuderen. Om een voorbeeld te noemen, de lineaire orde waarin de ar

gumentenn in een parseerboom verschijnen is een wezenlijk aspect dat door taalmodel

lenn gebruikt wordt. We onderzoeken welke reeksen van informatie bettere voorspellin

genn geven over reeksen van afhankelijken in een parseerboom. We vergelijken reeksen 

vann labels van woordklassen met reeksen van niet-terminale labels, en we laten zien 

datt wooordklasse-labels betere voorspellers zijn. 




