Two-Level Probabmsﬁc Grammars

for Natural

mailto:ii@science.uva.nl

Two-Level Probabilistic Grammars

for Natural Language Parsing

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof.mr. PF. van der Heijden
ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar
te verdedigen in de Aula der Universiteit
op woensdag 6 april 2005, te 12.00 uur

door
Gabriel Gaston Infante Lopez

geboren te San Salvador de Jujuy, Argentina.

Promotores: Prof.dr. M. de Rijke
Prof.dr.ir. R. Scha

The investigations were supported by the Netherlands Organization for Scientific Re-
search (NWO) under project number 220-80-001.

Copyright © 2005 by Gabriel G. Infante-Lopez.
Drawings on the cover by Santiago Infante Lopez.
Cover designed by Lucrecia Resnik. -

Printed and bound by Soluciones Gréficas.
http://www.solucionesgraficas.com.ar

ISBN: 90-5776-135-1

http://www.solucionesgraficas.com.ar

a las penas,

a las vaquitas nada

Contents

Acknowledgments

1

Introduction
1.1 Probabilistic Language Models
1.2 Designing Language Models
1.2.1 W-Grammars as the Backbone Formalism
1.3 Formal Advantages of a Backbone Formalism
1.4 Practical Advantages of a Backbone Formalism
1.5 WhatCan YouFind inthis Thesis?
1.6 ThesisOutline

Background and Language Modeling Landscape
2.1 ThePennTreebank
2.1.1 Transformation of the Penn Treebank to Dependency Trees . .
2.2 Probabilistic Regular Automata
2.2.1 Inferring Probabilistic Deterministic Finite Automata
222 TheMDI Algorithm
223 Evaluating Automata
2.3 Probabilistic Context Free Grammars
24 W-Grammars
2.5 Further Probabilistic Formalisms
2.5.1 Dependency Based Approaches
252 OtherFormalisms.
2.6 Approaches Based on Machine Leamning

vii

]
=.

00 0~ N RN e

3 The Role of Probabilities in Probabilistic Context Free Grammars

3.1 Introduction
3.2 Maximum Probability Tree Grammars

3.2.1 Filtering Trees Using Probabilities
3.3 ExpressivePower oo
34 Undecidability
3.5 The Meaning of Probabilities

3.5.1 Using Probabilities for Comparing PCFG

3.5.2 Using Probabilities for Boosting Performance
3.6 Conclusionsand Future Work

4 Constrained W-Grammars
4.1 Grammatical Framework
4.1.1 Constrained W-Grammars
4.1.2 Probabilistic CW-Grammars
4.1.3 Learning CW-Grammars from Treebanks
4.1.4 Some Further Technical Notions
4.2 Capturing State-of-the-Art Grammars
4.2.1 Bilexical Grammars
4.2.2 Markovian Context Free Grammars
4.2.3 Stochastic Tree Substitution Grammars
43 DiscussionandConclusion L.

5 Alternative Approaches for Generating Bodies of Grammar Rules

5.1 Introduction,
52 OVEIVIEW . . . o i et e e e e e e e
5.3 From AutomatatoGrammars
54 Building Automata L 00 e

5.4.1 Buildingthe Sample Sets

5.4.2 Learning Probabilistic Automata

5.4.3 Optimizing Automata
5.5 Parsingthe PTB
5.6 Related Work andDiscussion
5.7 Conclusions e

6 Splitting Training Material Optimally
6.1 Introduction e
6.2 Overview e
6.3 BuildingGrammars

57
57
57
63
64
65
66
67
71

79

81
81
82
83
84
84
84
88
92
93
94

6.3.1 Extracting Training Material 98

6.3.2 From Automata to Grammars 98
6.4 Splitting the Training Material 101

6.4.1 Initial Partitions 101

6.4.2 Merging Partitions 103
6.5 Parsing the Penn Treebank 110
6.6 RelatedWork 114
6.7 Conclusionsand Future Work, 115
Sequences as Features 117
7.1 Introduction 117
7.2 Detecting and Labeling Main Verb Dependents 118
7.3 PCW-Grammars for Detecting and Labeling Arguments 119
7.4 Transforming the Penn Treebank to Labeled Dependency Structures . 121
7.5 Building the Grammars 124

7.5.1 Grammars for Detecting Main Dependents 124

7.5.2 Grammars for Labeling Main Dependents 126

7.5.3 Grammars for Detecting and Labeling Main Dependents . . . 130
7.6 Optimizing Automata 131
7.7 Experiments 132
7.8 RelatedWork 138
7.9 Conclusionsand Future Work 139
Conclusions 141
8.1 PCW-Grammars as a General Model 142
8.2 PCW-Grammars as a New Parsing Paradigm 142
83 TwoRoadsAhead, 144
Parsing PCW-Grammars 145
A.l Introduction 145
A2 TheoreticalIssues 146
A3 PracticalIssues, 148

A3l Levelsof Visibility 149

A3.2 Optimization Aspects 149
A4 Conclusions L. L 152
Revising the STOP Symbol for Markov Rules 153
B.1 The Importance of the STOPSymbol 153
B.2 Collins’s Explanation 153
B.3 Background on MarkovChains 155

B.4 The STOP SymbolRevisited 157
B.5 Conclusions i it it 159
Bibliography 161
Abstract 175
Samenvatting 179

Acknowledgments

Well, I finally reached the point where I can write the acknowledgments of my thesis. 1
imagined this moment countless of times. I do not know how to include all the people
that have participated in one way or another in this thesis. My thesis has transcended
my professional life and has become something I can not describe with words. Hence,
these acknowledgments are a way to say thank you to all the people that has played an
important role in my life during the last five years.

My PhD period started with Eliana and me moving to Enschede, The Netherlands.
Moving from one culture to a completely different one was a tough experience. Fortu-
nately, Eliana and I had each other to cope with the new situation. I would like to thank
Eliana for her help, company and support during the first period of my PhD studies.

During my time in Enschede, I worked at the Formal Methods and Tools Group, at
the University of Twente. From that group, I would like to thank Joost-Pieter Katoen,
Holger Hermanns and Ed Brinksma for their support and understanding of my need to
move to Amsterdam. In Twente I made very good friends. Among others, I would like
to mention Dino Distefano, Pedro D’ Argenio and Wilco Braam.

After one year in Enschede I moved to the University of Amsterdam, where I spent
one year working in Modal Logic. I want to thank Carlos Areces and Maarten de
Rijke for teaching me the little logic I know. Carlos was the bridge that took me from
Enschede to Amsterdam.

I want to thank Maarten de Rijke. I want to thank him for all he taught me. Working
with him was sometimes very tough but, now that I see it with some perspective, always
rewarding. I also want to thank him for backing me up during difficult times. He made
me feel that he believed that I could finish my studies and my thesis, sometimes he
believed it more than I did. I want to thank him for all the opportunities he gave me,
even though I could not take advantage of all of them. I want to thank him for allowing
me, after much discussion, to switch once again the direction of my PhD studies, this
time to Natural Language Processing.

Xi

Remko Scha played an important role in the final development of this thesis when
he became my co-supervisor. I want to thank him for his time. his patience and most
of all, his insightful comments.

Maarten de Rijke, Remko Scha, Pieter Adriaans, Khalil Sima’an, Walter Daele-
mans, Geert-Jan Kruijff and Peter Griinwald acted as members of my thesis commit-
tee, and I am very grateful for their comments. Thanks to Laura Alonso i Alemany,
David Ahn, Valentin Jijkoun, Karin Miiller, and Stefan Schlobach who proof read the
manuscript. I am very grateful to the Netherlands Organization for Scientific Research
(NWO) for supporting the research that led to this thesis.

Many thanks go to my very good friends Gabriele Musillo and Caterina Caracciolo.
For their support, for all the chatting we had, for the difficult times and easy ones.
Gabriele also convinced me that Natural Language Processing is an interesting area.
He was right. To Christof Monz, for all the good times we spent together.

To the FaMAF and the people there: Nicolas, Javier, Pedro, Damian. They pro-
vided me with working facilities during my long stays in Argentina.

To Nicolds Wolovick, Sergio Urinovsky, Lucrecia Resnik, Maximiliano Oron4,
Miguel Valero Espada and Manolo Gragera, Marcos Kurban, Pilar Kurban, and Lorena
Sosa, for becoming my family.

To all the people that hosted me while I was traveling back and forth: Carlos, Juan,
Caterina, Miguel, Manolo, Jorge, Rubén, Bea, Jesis. To Sisay Fissaha Adafre and
Maarten Marx for their logistic help.

I want to thank Miguel Titdn Valero Espada and Manolo Titan Gragera; their com-
pany and help was invaluable.

I like to thank Laura who helped me a great deal during the last period of my thesis.
She provided me with things I had missed for a long time.

To my mother, Marta Silvia, who gave me so many good examples of life. To my
father Juan Carlos for all his encouragement. He saw me start my PhD studies but he
cannot see me finish. I deeply wish he could read this.

Finally, I want to thank my little son Santiago, he provided me with the strength 1
needed. We both had to get used to my long periods of absence. Every time I came
back he received me as if I had never left. He did not understand why I was away, but
1 am sure that in the future, once he is able to understand this, he will agree with my
decision to continue my PhD studies, and that he will be proud of me. I think a person
should pursue his dreams: I have pursued and realized this one. My next one is to be
physically close to him:

Gabriel Infante-Lopez
Coérdoba, Argentina
February, 2005

xii

Chapter 1
Introduction

Natural language is a very complex phenomenon. Undoubtedly, the sentences we utter
are organized according to a set of rules or constraints. In order to communicate with
others, we have to stick to these rules up to a certain degree. This set of rules, which
is language dependent, is well-known to all speakers of a given language, and it is
this common knowledge that makes communication possible. Every sentence has a
clear organization: words in an utterance glue together to describe complex objects
and actions. This hidden structure, called syntactic structure, is to be recovered by a
parser. A parser is a program that takes a sentence as input and tries to find its syntactic
organization. A parser searches for the right structure among a set of possible analyses,
which are defined by a grammar. The language model decides what the syntactic
components of the sentence are and how they are related to each other, depending on
the required level of detail.

Natural language parsers are used as part of many applications that deal with natural
language. Applications like question answering, semantic analysis, speech recognition,
etc. may rely heavily on parsers. The degree of detail in the information output by the
parser may change according to the application, but some amount of parsing plays a
role in many language technology applications, and parser performance may be crucial
for the overall performance of the end-to-end application.

Designing and building language models is not a trivial task; the design cycle usu-
ally comprises designing a model of syntax, understanding its underlying mathematical
theory, defining its probability distribution, and finally, implementing the parsing algo-
rithm. The building of every new language model has to complete at least these steps.
Each is very complex and constitutes a line of research in itself. To help handling the
intrinsic complexity of these steps a sufficient level of abstraction is required. Abstrac-
tion is important as it helps us deal with complex objects by representing them with
a subset of their characteristic features. The selected features characterize the object

1

2 Chapter 1. Introduction

for a given task or context. For example. the way we understand or see cars depends
very much on the task we want to carry out with them: if we want to drive them, we do
not need to know how their engines work, whereas if we are trying to fix a mechanical
problem we better do. Moreover, abstraction has proven to be an important scientific
principle. The way abstraction helps humans in dealing with complex systems can
best be illustrated by the history of computer science. The complexity of systems has
increased hand in hand with the introduction of programming languages that allow for
increasing levels of abstraction, climbing all the way from machine code to assem-
bly language to imperative languages such as Pascal and C, to today’s object-oriented
languages such as Java.

Back to natural language parsing — what does abstraction have to do with pars-
ing? Our view is that state-of-the-art natural language models lack abstraction; their
design is often ad hoc, and they mix many features that, at least conceptually, should
be kept separated. In this thesis, we explore new levels of abstraction for natural lan-
guage models. We survey state-of-the-art probabilistic language models looking for
characteristic features, and we abstract away from these features to produce a gen-
eral language model. We formalize this abstract language model, establish important
properties of the models surveyed, and with our abstract model we investigate new
directions based on different parameterizations.

1.1 Probabilistic Language Models

Roughly speaking, the syntactic analysis of natural language utterances aims at the
extraction of linguistic structures that make explicit how words interrelate within utter-
ances. Syntactic structures for a sentence x are usually conceived as trees ¢1(z), ...,
t,{z) whose leaves form the sentence x under consideration. A grammar is a device
that specifies a set of trees. The trees in this set are said to be grammatical trees. Indi-
rectly, the concept of a grammatical sentence is defined as follows: a sentence x is said
to be grammatical if there is a grammatical tree that yields x.

Most natural language grammars tend to assign many possible syntactic structures
to the same input utterance. In such situations, we say that the sentence is ambigu-
ous. Ambiguity is the most important unsolved problem that natural language parsers
face. This contrasts with human language processing, which in most cases selects a
single analysis as the preferred one for a given utterance. The task of selecting the
single analysis that humans tend to perceive for an input utterance — disambiguation
— is an active area of research in the field of natural language processing. Because
of the roles of world knowledge, cultural preferences and other extra-linguistic fac-
tors, disambiguation can be seen as a decision problem under uncertainty. In recent

1.1. Probabilistic Language Models 3

years, there have been different proposals for a solution, mainly based on probabilistic
models. Probabilistic models assign probabilities to trees and then disambiguate by
selecting the tree with the highest probability.

From a formal language perspective, the notion of a language coincides with the
formal notion of a ser of strings. Probabilistic languages extend this definition so
that a language is a probability distribution over a set of trees. In particular, a prob-
abilistic language model is a probability distribution over a set of utterance-analysis
pairs. Usually, a recursive generative grammar 1s used to describe a set of possible
utterance-analysis pairs, possibly allowing multiple pairs for the same utterance. Cru-
cially, defining a probabilistic language mode! allows us to view disambiguation as an
optimization task, where the most probable analysis T* is selected from among those
that a grammar G generates together with an input utterance UU. If P is a probability
function over utterance-analysis pairs, i.e., a language model, we may describe this
optimization task as follows:

T* = argmax P(T|U)
TeG

= argmax L(T’ v)
fee " P(U)
= argmax P(T,U),

TeG

where argmax . y f(z) stands for the z € X such that f(z) is maximal, and where
P(U) is the same for all trees and, consequently, can be left out.

The step of enriching a given generative grammar with probabilities is a non-trivial
task. Apart from the empirical question of how to do so in a way that allows good
disambiguation, in the sense that the model selects the same preferred analysis as hu-
mans do, there are various formal and practical issues concerning the definition of a
correct model. In order to fully understand a language model, it is necessary to abstract
away from specific peculiarities and to identify its relevant features. The latter can be
summarized as follows.

Set of possible trees: For a given utterance, the language model chooses a tree that
articulates the syntactic structure of the utterance from a fixed set of possible
trees. For example, in a Context Free Grammar (CFG), this set is defined by the
grammar’s tree language.

Probabilities Probabilistic language models assign a probability value to each tree,
and this probability value is then used as a way to filter out unwanted trees. A
significant part of the definition of a language model is used to establish the way
probabilities are assigned to trees. For example, in a probabilistic context free

4 Chapter 1. Introduction

grammar. each rule has a probability value associated to it. and the probability of
a tree is defined as the product of the probabilities assigned to the rules building
up the tree.

Parameter estimation Probabilistic models contain many parameters that define the
grammar’s disambiguation behavior. These parameters have to be estimated.
The probability model specifies the set of values the parameters might take. This,
in turn, defines the set of possible grammars.

Expressive power The expressive power of language models gives us an idea of their
algorithmic complexity, and it allows us to compare different models. For prob-
abilistic models, determining their expressive power is a difficult job because the
parameter estimation algorithm has to be taken into account.

Tweaking State-of-the-art parsing algorithms are not just language models — they
have been optimized considerably in order to improve their performance on real
natural language sentences. Some of the optimized parameters are hard to model
and are usually outside the language model.

Parsing complexity Parsing complexity has become an issue again in recent years,
because of the appearance of theoretically appealing models that seem very hard
to implement efficiently. Parsing complexity should be as low as possible. The
aim is to emulate the apparently linear time humans take to process a sentence.

Addressing all of these items in a single thesis would be overly ambitious. This list is
meant to provide the context — throughout this thesis we study various specific aspects
against this general background.

1.2 Designing Language Models

Designing a parsing algorithm involves a sequence of decisions about:
1. the grammatical formalism,
2. a probabilistic version of the formalism,
3. techniques for estimating probabilities, and

4. a parsing algorithm.

This cycle can be seen almost everywhere in the parsing literature (Collins, 1999; Eis-
ner, 2000; Bod, 1998; Charniak, 1999; Ratnaparkhi, 1999). It seems that every inter-
esting new parser uses a new formalism. The design is time consuming, and usually

1.2. Designing Language Models 5

parsers are only evaluated empirically. It is clear, however, that better empirical re-
sults do not necessarily convey a better understanding of the parsing problem. Usually,
descriptions of state-of-the-art language models do not clearly state how the features
presented in the previous section are defined or implemented, or how they fit in the
design cycle. The grammatical framework is rarely the only decision responsible for
the parsers’s performance; on top of the decision, there is a lot of tweaking involved.
For example, Collins (1997) defines a simple formalism, but in order to achieve his
results, all the tweaking reported in (Bikel, 2004) is needed.

Designers of parsers often conflate their decisions about the different features we
identify in Section 1.1. For example, let us zoom in on one of the characteristics
identified in Section 1.1 and then step back to adopt a more abstract perspective, and
see what this gives us. In the definition of today’s state-of-the-art language models,
Markov chains, and more specifically n-grams, are widely used because they are easy
to specify and their probabilities easy to estimate. N-grams are both a component
in the definition of a model and a technique to assign probabilities. They are cen-
tral to language models, and, consequently, every property of language models must
be evaluated with respect to n-grams. It might be helpful, though, to step back from
n-grams, and think of them as special cases of probabilistic regular languages. Math-
ematical properties of probabilistic regular languages are as well understood as those
of n-grams, but they fit more directly into the overarching theory of formal languages.
This perspective allows us to clearly separate the definition of the model (using regular
languages) and the procedure for estimating probabilities (using probabilistic regular
language induction techniques).

In this thesis, we propose a language modeling formalism that abstracts away from
any particular instance. We investigate three state-of-the-art language models and dis-
cover that they share a very noticeable feature: the set of rules they use for building
trees is built on the fly, meaning that the set of rules is not defined a priori. The
formalisms we review have two different levels of derivations even though this is not
explicitly stated. One level is for generating the set of rules to be used in the second
step, and the second step is for building the set of trees that characterize a given sen-
tence. Our formalism, based on Van Wijngaarden grammars (W-grammars), makes
these two levels explicit.

1.2.1 W-Grammars as the Backbone Formalism

W-grammars were introduced in the 1960s by Van Wijngaarden (1965). They are a
very well-known and well understood formalism that is used for modeling program-
ming languages (Van Wijngaarden, 1969) as well as natural languages (Perrault, 1984).
W-grammars have been shown to be equivalent to Turing machines (Perrault, 1984),

6 Chapter I. Introduction

which are more powerful than we nced: most state-of-the-art language models use
grammatical formalisms that are much closer to context freeness than to Turing ma-
chines. In this thesis, we constrain the set of possible W-grammars in order to come
closer to the expressive power of these grammatical formalisms. We denote this con-
strained version as CW-grammars.

Originally, W-grammars did not use probabilities, but part of the work presented
below extends the formalism with probabilities. In this way, we define probabilistic
CW-grammars (PCW-grammars). We show that probabilities are an essential com-
ponent of the resulting formalism, not only because of the statistical perspective they
bring, but also because of the expressivity they add. With PCW-grammars, we prove
that Markovian context free grammars (Collins, 1999; Charniak, 1997), bilexical gram-
mars (Eisner, 2000) and stochastic tree substitution grammars (Bod, 1998) are par-
ticular instances of probabilistic CW-grammars. The probabilistic version of CW-
grammars helps us to prove properties for these models that were previously unknown.

1.3 Formal Advantages of a Backbone Formalism

From a theoretical point of view, general models help us to clarify the set of param-
eters a particular instance has fixed, and to make explicit assumptions that underlie a
particular instance. It might be the case that these assumptions are not clear, or that,
without taking the abstract model into account, the designer of a particular instance is
completely unaware of them.

The role of probabilities: Our approach to parsing comes from a formal language
perspective: we identify features that are used by state-of-the-art language mod-
els and take a formalism off the shelf and modify it to incorporate the necessary
features. When analyzing the necessary features from the formal language per-
spective, the need for probabilities and their role in parsing are the first issue to
address. In Chapter 3, we answer many questions regarding the role of prob-
abilities in probabilistic context free grammars. We focus on these grammars
because they are central to the formalism we present.

Consistency properties: General models do not add anything per se. Their impor-
tance is rather in the set of instances they can capture and the new directions they
are able to suggest. In Chapter 4, we show that bilexical grammars, Markovian
context free grammars and stochastic tree substitution grammars are instances of
our general model. Our model has well-established consistency properties which
we use to derive consistency properties of these three formalisms.

1.4. Practical Advantages of a Backbone Formalism 7
1.4 Practical Advantages of a Backbone Formalism

From a computational point of view, general models for which a clear parsing algo-
rithm and a relatively fast implementation can be defined, produce fast and clear im-
plementations for all particular instances. New research directions are also suggested
by a general formalism. These directions are a consequence of instantiating the mod-
els’s parameters in a different way or by re-thinking the set of assumptions the partic-
ular instances have made. A brief description of the directions explored in this thesis
follows.

Explicit use of probabilistic automata: Earlier, we mentioned that Markov models
are heavily used in parsing models and that they can be replaced by probabilistic
regular languages. Since our formalism is not bound to Markov models, we
can use any algorithm for inducing probabilistic automata. In Chapter 5, we
explore this idea. We define a type of grammar that uses probabilistic automata
for building the set of rules. We compare two different classes of grammars
depending on the algorithm used for learning the probabilistic automata. One of
them is based on n-grams, and the other one is based on the minimum divergence
algorithm (MDI). We show that the MDI algorithm produces both smaller and
better performing grammars.

Splitting the training material: The fact that probabilistic automata replace Markov
chains in the definition of our model allows us to think of a regular language as
the union of smaller, more specific sublanguages. Our intuition is that the sub-
languages are easier to induce and that the combination of them fully determines
the whole language. In Chapter 6, we explore this idea by splitting the training
material before inducing the probabilistic automata, then inducing one automa-
ton for each component, and, finally, combining them into one grammar. We
show that in this way, a measure that correlates well with parsing performance
can be defined over grammars.

Sequences as features: Our formalism allows us to isolate particular aspects of pars-
ing. For example, the linear order in which arguments appear in a parse tree is
a fundamental feature used by language models. In Chapter 7, we investigate
which sequences of information better predict sequences of dependents. We
compare sequences of part-of-speech tags to sequences of non-terminal labels.
We show that part-of-speech tags are better predictors of dependents.

8 Chapter 1. Introduction

1.5 What Can You Find in this Thesis?

In my opinion there are two different types of research. The first one pushes the frontier
of knowledge forward, jumping from one point to a more advanced, better performing
one. This pushing forward is sometimes carried out in a disorderly way, leaving many
gaps along the way. The second line of research tries to fill in these gaps. Both types are
very important, and neither of them can exist without the other. The second provides a
solid foundation to the first one in order to make new jumps possible. After a jump, a
huge a amount of work is waiting to be done by the second type of research.

This thesis belongs solidly to the second type of research. Here, the reader will
find a formal analysis of existing models. The reader will also find a general model
that encompasses many of the models studied, as well as some properties these models
enjoy — properties that we want the models to have and properties that were not known
before and that the general model lets us prove. Finally, the reader will find a few
explorations along new research directions also suggested by our model.

We hope that after having read the thesis, the reader will understand the language
modeling task better. We also hope to have provided the area of natural language
modeling with a more solid background. This background comprises consistency and
expressive properties generally believed but not formally proven. In the thesis we also
provide initial steps in promising new research directions.

In contrast, the reader will not find a state-of-the-art language model here. The
reader will not find any claims regarding the universal structure natural language pos-
sesses either. It is very clear to me that the structure of natural language is, at this
point, as unknown as it was when I first started. I can only see, so far, that formal
languages with complexity up to context freeness can help us quite a lot in handling
most syatactic structures.

1.6 Thesis Outline

Chapter 2 (Background and Landscape): This chapter introduces the machinery of
formal languages. It covers formal language theory from regular languages to
machine learning-based parsing algorithms, touching on context free grammars,
W-grammars, and other formalisms.

Chapter 3 (The Role of Probabilities): This chapter investigates the role of probabil-
ities in probabilistic context free grammars. Among others it answers questions
like: “can probabilities be mimicked with rules?”, “can a grammar fully disam-
biguate a language?”.

1.6. Thesis Outline 9

Chapter 4 (CW-Grammars as a General Model): This chapter presents our for-
malism. It shows that bilexical grammars, Markovian context free grammars
and stochastic tree substitution grammars are instances of our formalism.

Chapter 5 (Alternative Approaches for Generating Bodies of Grammar Rules):
This chapter explores the replacement of n-gram models by a more general algo-
rithm for inducing probabilistic automata. It shows that the alternative algorithm
produces smaller and better performing grammars.

Chapter 6 (Splitting training material optimally): This chapter investigates differ-
ent ways to split the training material before it is used for inducing probabilistic
automata. It defines a measure over grammars that correctly predicts their pars-
ing performance.

Chapter 7 (Sequences as Features): This chapter focuses on a very specific as-
pect of syntax. We compare how two different features, each of them based on
sequences of information, help to predict dependents of verbs. One of the fea-
tures is based on sequences of part-of-speech tags while the other is based on
sequences of non-terminals labels.

Chapter 8 (Conclusions): This chapter summarizes and combines conclusions of all
the chapters.

Appendix A (Parser Implementation): This appendix discusses aspects related to
the implementation of our parsing algorithm for probabilistic CW-grammars. It
discusses the prerequisites a grammar has to fulfill for a parser to return the
most probable tree. It also discusses some of the optimization techniques we
implemented to reduce parsing time.

Appendix B (STOP symbol): This appendix reviews Collins’s (1999) explanation of
the necessity of the STOP symbol. The appendix uses Markov chains theory to
re-explain and justify its necessity.

e ru”fz‘ﬁ"‘.‘!l
T Ry

-
'

Chapter 2

Background and Language Modeling
Landscape

This chapter has two main goals. The first is to present the background material re-
quired for most of the forthcoming chapters, the second one is to situate this thesis in
the landscape of natural language parsing. When presenting different approaches for
dealing with language models, we adopt a formal language perspective. In Section 2.2
we present regular automata, in Section 2.3 context free grammars, in Section 2.4 W-
grammars, and Section 2.5 we deal with other formalisms that do not fall in any of
the previous categories but that are used for natural language parsing. Finally, in Sec-
tion 2.6 we deal with approaches used for natural language parsing that are mainly
based on machine learning techniques.

2.1 The Penn Treebank

We start by presenting the material that indirectly defines our task. The Penn treebank
(PTB) (Marcus et al., 1993, 1994) is the largest collection of syntactically annotated
English sentences, and probably the most widely used corpus in computational linguis-
tics. It is also the basis for the experiments reported in this thesis, and it defines the
kind of information we are going to try to associate to naturally occurring sentences.
The PTB project started in 1989. Between then and 1992, 4.5 million words of
American English were automatically part of speech (POS) tagged and then manually
corrected. Then, each sentence was associated to a parse tree that reflected its syntactic
structure. The first release of the PTB uses basically a context free phrase structure
annotation for parse trees, where node labels are mostly standard syntactic categories
like NP, PP, VP, S, SBAR, etc. In 1995, a new version was released; this second version
applied a much richer annotation scheme, including co-indexed null elements (traces)

1

12 Chapter 2. Buckground and Language Modeling Landscape

to indicate non-local dependencies. and function tags attached to the node labels to
indicate the grammatical function of the constituents.

The parsed texts come from the 1989 Wall Street Journal (WSJ) corpus. and from
the Air Travel Information System (ATIS) corpus (Hemphill et al.. 1990). The second
release is the basis for the experiments in Chapters 5, 6 and 7. A third release came out
later on, using basically the same annotation schema as the second but also including
a parsed version of the Brown Corpus (Kucera and Francis, 1967).

The POS tag set is the same in all three releases. It is based on the Brown Corpus
tag set, but the PTB project collapses many Brown tags. The reason for this simplifica-
tion is that the statistical methods, which were used for the first automatic annotation
and envisaged as potential “end users™ of the treebank, are sensitive to the sparse data
problem. This problem comes into play if certain statistical events (e.g., the occurrence
of a certain trigram of POS tags) do not occur in the training data, so that their prob-
ability cannot be properly estimated. The sparseness of the data is related to the size
of the corpus and the size of the tag set. Thus, given a fixed corpus size, the sparse
data problem can be reduced by decreasing the number of tags. Consequently, the final
PTB tag set has only 36 POS tags for words and 9 tags for punctuation and currency
symbols. Most of the reduction was achieved by collapsing tags that are recoverable
from lexical or syntactic information. For example, the Brown tag set had separate
tags for the (potential) auxiliaries be, do and have, as these behave syntactically quite
differently from main verbs. In the tag set of the PTB, these words have the same tags
as main verbs. However, the distinction is easily recoverable by looking at the lexical
items. Other tags that are conflated are prepositions and subordinating conjunctions
(conflated in IN) and nominative and accusative pronouns (conflated in PRP), as these
distinctions are recoverable from the parse tree by checking wether IN is under PP or
under SBAR, and whether PRP is under S or under VP or PP.

The syntactic annotation is guided by the same considerations as POS tagging. For
instance, there is only one syntactic category, labeled SBAR, for that- or wh-clauses
and only one S for finite and non-finite (infinitival or participial) clauses, although
the two types behave syntactically quite differently. Again, the argument is that these
distinctions are recoverable by inspecting the lexical material in the clause; and parsers
basically use the simple treebank categories.

In general, only maximal projections (NP, VP, .. .) are annotated, i.e., intermediate
X-bar levels (N, V') are left unexpressed, with the exception of SBAR. In the first
release of the PTB, the distinction between complements and adjuncts of verbs was
expressed by attaching complements under a VP as sisters of the verb and by adjoining
adjuncts at the VP level. In the second release, both complements and adjuncts are
attached under VP.

In our experiments, we used the PTB as training and test material. We train models

2.1. The Penn Treebank 13

on the data provided by the PTB and we try to obtain, for instances not used in the
training material, the tree that the PTB would have associated to them. In our exper-
iments, we did not work directly with the PTB, but with a dependency version of the
trees in the PTB. That is, we transformed the PTB into dependency trees to obtain the
training material for our experiments.

2.1.1 Transformation of the Penn Treebank to Dependency Trees

The experiments we present in the forthcoming chapters use unlabeled dependency
structures. We choose to use such structures because they allow us to isolate better
than phrase structures the aspects of syntax and language modeling that we want to in-
vestigate. We transformed all trees in the PTB to dependency trees; the transformation
procedure is based on the ideas of Collins (1999). He defines the transformation from
phrase structure trees to dependency trees as a function from a tree to its associated
dependencies. Two steps are involved in defining this transformation. First, the trees
are lexicalized by adding the word to each non-terminal label; second, dependencies
are derived by extracting n — 1 dependencies from each rule with n children. Let us
explain both steps in more detail.

Step 1: Lexicalization of parse trees. Black et al. (1993); Jelinek et al. (1994); Ma-
german (1995a) introduced the concept of lexicalization of non-terminal rules as
a way of improving parsing accuracy. Each non-terminal node in a tree is mod-
ified by adding the head-word to it. Headwords are assigned through a function
that identifies the “head” of each rule in the grammar. More precisely, the func-
tion head(X — Y7,...,Y,) returns a value h such that 1 < A < n, where A is
the index of the head.

The function head is used for adding lexical information to all non-terminals in
a tree. The function headword adds lexical information to all non-terminals in a
tree and headword is defined recursively as follows.

Base case: If a non-terminal X is on the left-hand side of a rule X — =,
where X is a non-terminal part of speech, and z is a lexical item; then
headword(X — z) = .

Recursive case Assume X is a non-terminal on the left-hand side of a rule
X =Yy ...Yo,and h = head(X — Yi...Y,); we put headword(X) =
headword(Y},)

Step 2: Derivation of dependencies from lexicalized trees. With the headword for
each non-terminal in the tree defined, the next step is to identify a set of depen-
dencies between words in the sentence. A dependency is a relationship between

14 Chapter 2. Background and Language Modeling Landscape

two word-tokens in a sentence, a modifier and its head. which we will write as
modifier — head. The dependencies for a given tree are derived in two ways:

e Every rule X — Y;...Y, such that ¥;..... Y, are non-terminals and
n > 2 contributes the following set of dependencies: {headword(Y,) —
headword(Yy) : 1 < i < n.i# h}, where h = head(X — Y1 ...Y,,).

e If X is the root non-terminal in the tree, and r is its headword, then r —
END is a dependency

Clearly, the key component in the transformation process is the function head. This
function has been implemented mainly as a lookup table. For further details on the
definition of the function head, see (Collins, 1999, Appendix A).

The PTB provides us with the training material for inducing our own grammars.
The grammars learnt in this thesis are Probabilistic Constrained W-Grammars (PCW
Grammars), a new formalism which is presented in Chapter 4. Our formalism is re-
lated to probabilistic regular languages, probabilistic context free grammars and W-
grammars. In this chapter we present these three different formalisms. The relation of
PCW Grammars to each of the three formalism will become clear in the remainder of
the thesis.

2.2 Probabilistic Regular Automata

Let us start by recalling some preliminary notation and concepts from formal lan-
guages. Let ¥ be a finite alphabet and £* the (infinite) set of all strings that can be
built from T; ¢ denotes the empty string. A language is a subset of 3*. By conven-
tion, symbols from £ will be denoted by letters from the beginning of the alphabet
(a,b,c,...) and strings from £* will be denoted by letters from from the end of the
alphabet (..., 1,y,z). The size of a string 2 € ¥* is written |z]. If = denotes an
equivalence relation on a set X, we write [z] to denote the component of the equiva-
lence class containing z, thatis [z} = {y € X : y = z}.

A probabilistic language L is a probability distribution over £*. The probability of
astring x € X* is denoted as py(x). If the distribution is modeled by some syntactic
machine A, the probability of z according to the probability distribution defined by A
is denoted as pa(z). '

Two probabilistic languages L and L' are equal if Yw : pr{w) = pr/(w); note that
this definition implicitly states that the two languages contain the same strings.

We now introduce deterministic finite automata (for a more detailed introduction,
see (Hopcroft and Ullman, 1979)):

2.2. Probabilistic Regular Automata 15

2.2.1. DEFINITION. A deterministic finite automaton (DFA) A is a tuple (Q, ¥, 4, go,
F’), where

e () is a finite set of states;

® gy is the initial state;

e 1 is the alphabet;

® §:Q x ¥ — Qis atransition function;
o F C @ is the set of final states.

We extend § in the usual way to a function § : Q@ x £* — @ by putting (g, ¢) = g and
d(q,aw) = 6(8(q, a),w).

We now adapt this definition to the probabilistic setting:

2.2.2. DEFINITION. A probabilistic deterministic finite automaton (PDFA) A is a tuple
(@,%,6,q0,7), where Q, I, 4, g define a DFA and - is a function with two profiles:

¢ v:Q x ¥ — R (transition probabilities) and,

e v:Q — R (final-state probabilities).

The function 7 is recursively extended to v : @ x £* — R such that y(gq,¢) = 1
and (g, az) = ¥(q,a) - 7(6(g,a),z). The probability of a string z starting from the
state q is defined as p(q,z) = (g,) - ¥(6{(g,z)). The probability of a string z is
p(z) = p(go,z). Let X be a set of strings, p(X) = [[,.x p(z). We say that a prob-
ability distribution over L is a probabilistic deterministic regular language (PDRL) if
it is produced by a PDFA. As probabilistic languages define probability distributions
over X, it is required that 0 < p(z) < 1 and p(¥*) = 1 (consistency condition). In
contrast to non-probabilistic automata, the deterministic and non-deterministic version
of probabilistic automata are not equivalent (Dupont et al., 2004).

Automata play a fundamental role in this thesis, both from a theoretical and from
a practical point of view. In Chapters 5, 6 and 7 we use automata for building PCW-
grammars. We induce automata from training material and then combine them for
defining grammars. Inferring automata, then, is a fundamental activity in this thesis.

16 Chapter 2. Background and Language Modeling Landscape

2.2.1 Inferring Probabilistic Deterministic Finite Automata

The problem of inferring a PDFA can be seen as a particular instance of the wider task
of inferring formal grammars from a finite set of examples. This task has been exten-
sively studied under the paradigm of identification in the limit (Carrasco and Oncina,
1994, 1999; Thollard et al., 2000). Under this paradigm, a learner is supplied by an
(infinite) stream of input data, generated according to a language. The learning prob-
lem is to identify the language that explains the data stream. In every iteration step,
the learner reads another piece of data and outputs a grammar of a given family of
grammars. The main questions addressed by this framework are

e For which family of grammars are there algorithms which identify a correct hy-
pothesis at some point in time (in the limit) for any instance of the representation
class, and just output syntactic variants of the result from that point on?

e Does a specific algorithm identify any/one specific instance of a representation
class in the limit?

Note that the learner is not asked to realize that he has found a correct hypothesis.
Gold (1967) introduced this paradigm and he showed that negative examples are re-
quired even for learning the class of regular languages, or equivalently for inducing
deterministic finite automata (DFAs).

When training data includes negative examples, the regular positive and negative
inference (RNPI) algorithm can be used for learning PDFAs (Oncina and Garcia,
1992). This algorithm was proven to identify in the limit the class of regular lan-
guages. Negative information, however, is not always available in practical domains
such as natural language or speech applications. A promising approach to leam DFAs
only from positive examples has been proposed by Denis (2001). There is, however,
one more complication: real data is generally noisy, because the data itself does not
consistently follow a formal syntax. If we choose to learn PDFAs we can, in principle,
handle both the lack of negative information and the presence of noise. One possi-
ble approach to learn PDFAs consists in reducing the class of machines of interest
to a special case of Markov chains called n-grams. These models, however, form a
proper subclass of PDFAs in which the maximal order of dependence between several
symbols in a sequence is bound. We come back to this difference in more detail in
Chapter 5 by exploring how the two approaches deal with the creation of context free
like rules used for parsing.

Several inference algorithms for probabilistic automata have been proposed. For
example, Carrasco and Onciana’s ALERGIA algorithm (Carrasco and Oncina, 1994,
1999), a stochastic extension of the RPNI algorithm, is not restricted to learning acyclic
automata. Most of the algorithms for inducing PDFAs follow the same approach; they

2.2. Probabilistic Regular Automata 17

start by building an acyclic automaton, called the initial automaton, that accepts only
the strings in the training material. Next, the algorithms generalize over the training
material by merging states in the initial automaton. In other words. they usually build
a sequence of automata 4y, ..., A, where A, is the initial automaton and A, results
from merging some states in A;_; into a single state in A;. For example, the ALER-
GIA algorithm merges states locally, which means that pairs of states will be merged
if the probabilistic languages associated to their suffixes are close enough. This local
merging implies that there is no explicit way to bind the divergence between the distri-
bution defined by the initial automaton and the distribution defined by any automaton
in the sequence of automata built by the algorithm.

To avoid this problem, the minimal divergence algorithm (MDI) (Thollard et al.,
2000) trades off minimal size and minimal divergence from the training sample. We
use the MDI algorithm in our experiments, and, since it is a key component in the
forthcoming chapters, we will now provide a more detailed presentation of its working
principle.

2.2.2 The MDI Algorithm

Before discussing the MDI algorithm, let us introduce some useful concepts and nota-
tions.

2.2.3. DEFINITION. The relative entropy or Kullback-Leibler di vergence between two
probability distributions P(z) and Q(z), defined over the same alphabet Ay, is

Du(Pl|Q) = ZPz)log((3)

where log denotes the logarithm base 2.

The Kullback-Leibler divergence is a quantity which measures the difference between
two probability distributions. One might be tempted to call it a “distance,” but this
would be misleading, as the Kullback-Leibler divergence is not symmetric.

Let I denote the positive sample, i.e., a set of strings belonging to the probabilistic
language we are trying to model. Let PTA(I,) denote the prefix tree acceptor built
from the positive sample I, . The prefix tree acceptor is an automaton that only accepts
the strings in the sample and in which common prefixes are merged, resulting in a tree-
shaped automaton. Let PPTA(1,) denote the probabilistic prefix tree acceptor. This is
the probabilistic extension of the PTA(I,), in which each transition has a probability
proportional to the number of times it is used while generating, or equivalently parsing,
the sample of positive examples. Let C(gq) denote the count of state g, that is, the
number of times the state g was used while generating 1., from PPTA(L).

18 Chapter 2. Background and Language Modeling Landscape

Let ("(q.END) denote the number of times a string /., ended on ¢. Let ('(4.qa)
denote the count of the transition {(¢q.a) in PPTA(/,). The PPTA(I,) is the maxi-
mal likelihood estimate built from /.. In particular, for PPTA({.), the probability

estimates are: Clg.a) C'(q.END)
_Clg.a cioy . S \gEND)
5(g.a) = W and 4(q) Cl)

Figure 2.1.(a) shows a prefix tree acceptor built from the sample

I, = {a,bb, bba, baab. baaaba}.

Let A be an automaton with set of states ¢}, and let I1 be a partition of . The prob-
abilistic automaton /11 denotes the automaton derived from A with respect to the
partition I1. A/II is called the quotient automaton and it is obtained by merging states
of A belonging to the same component 7 in [1. When a state g in A/II results from the
merging of states ¢’ and ¢” in @, the following equalities must hold:

Clq'.a) + C(q",a)
Clg) +Clq")

C'(¢'.END) + C'(¢".END)
Clg) + Clg")

Vo € X, and y{q) =

’Vv(qv a) =

Quotient Automata and Inference Search Space

We define Lat(PPTA(I,)) to be the lattice of automatra which can be derived from
PPTA(I,), that is, the set of all probabilistic automata that can be derived from
PPTA(I,), by merging some states. This lattice defines the search space of all possible
PDFAs that generalize the training sample (Dupont et al., 1994).
Figure 2.1.(b) shows the quotient automaton PPTA(I, }/TI corresponding to the
partition
1= {{0,1,3,5,7, 10}, {2,8,9}, {4}, {6}}.

for the prefix tree acceptor in Figure 2.1.(a). Each component of the partition represents
a set of merged states. Recall that each state is named with a natural number. Each
component is denoted with the number of the minimal state inside it.

By construction, each of the states in PPTA(I,) corresponds to a unique prefix.
The prefixes may be sorted according to the standard order < on strings. The standard
order is the lexical order found in dictionaries. For instance, according to the standard
order, the first strings in the alphabet & = {a,b} are e < a < b < aa < ab < ba <
bb < aea < This order also applies to the prefix tree states. A partition of the set
of states of PPTA(I,) consists of an ordered set of subsets, each subset receiving the
rank of its state of minimal rank in the standard order. The MDI algorithm proceeds in
N — 1 steps, where N = O(1,.) is the number of states of PPTA(I,). The partition
T1(i) at step 4, that is, the quotient automaton obtained at step ¢, is obtained by merging
the two first subsets, according to the standard order defined above, of the partition

2.2. Probabilistic Regular Automata 19

Figure 2.1: A prefix acceptor (a) and a quotient automaton (b).

II(i — 1) at step ¢ — 1, so that PPTA(I,)/TI() is a compatible automaton. Two au-
tomata are said to be compatible if the following holds. Assume A; is a temporary
solution and Aj is a tentative new solution derived from A; by merging some states,
andlet A(Ay, A) = Dy (PPTA(1,)||A2) — Dk .(PPTA{I,)||A:) be the divergence
increment while going from A; to A;. The new solution A is considered to be com-
patible with the training data if the divergence increment relative to the size reduction,
that is, the reduction of the number of states, is small enough. Formally, let alpha
denote a compatibility threshold. The compatibility is satisfied if:

A(Ay, Ag)

[A1] = A
Summing up, the MDI algorithm takes a set of strings as input and outputs a PDFA.
Theoretically, the set of strings fed to the MDI algorithm are produced by the unknown
PDFA, the MDI algorithm tries to recover.

Clearly, the MDI algorithm might output different automata for different values of

alpha. Then, a valid question is how to choose the right value of alpha. In order to
determine the best value of alpha, we will now discuss how to evaluate automata.

< alpha.

2.2.3 Evaluating Automata

We use two measures to evaluate the quality of a probabilistic automaton. The first,
called test sample perplexity (PP), is based on the rest sample perplexity of strings x
belonging to a test sample, according to the distribution defined by the automaton.
Let A be an automaton, and let p be the probability distribution defined by A. The
perplexity PP associated to A is defined as

PP =24,

20 Chapter 2. Background and Language Modeling Landscape

where 1

LL = ——=) log P(x).
1151 €s

P(r) is the probability assigned to the string r by the automata A, S is a sample
set of strings that follow the right distribution, and {|S|| is the number of symbols
in S. The minimal perplexity PP = 1 is reached when the next symbol is always
predicted with probability 1 from the current state, while PP = |Z| corresponds to
uniformly guessing from an alphabet of size |Z|. Intuitively, perplexity (PP) measures
the uncertainty faced by an automaton when it is fed a new string.

It is hard to track down the origin of LL, the most appealing explanation we found
in (Jurafsky and Martin, 2000) is related to cross entropy. Let us see how. The cross
entropy is useful when we do not know the actual probability distribution p that gener-
ated sequences of words wy, . . ., w,. It allows us to estimate some p which is a model
of p, i.e., an approximation to p. The cross entropy of p on p is defined by

. 1 .
H(p.p) = nll_I‘I;oE z plw. ... wy)logp(wy, ..., wy).

That s, we draw sequences of words w; according to the probability distribution p, but
sum the log of their probability according to j.

If the automaton is a stationary ergodic process, then using the Shannon-McMillan-
Breiman theorem we rewrite

R . 1, .
H(p,p) = lim ——logp(wi,...,w).
n—os n

For sufficiently large n, we can rewrite:

. 1 .
H(P,p) = _E logp(wl, e 7w‘n)7

which corresponds to our definition of LL.

The second measure we use to evaluate the quality of an automaton is the number of
missed samples (MS). A missed sample is a string in the test sample that the automaton
failed to accept. One such instance is enough to have PP undefined (LL infinite).
Since an undefined value of PP only witnesses the presence of at least one MS, we
decided to count the number of MS separately, and compute PP without taking MS into
account. This choice leads to a more accurate value of PP, and, moreover, the value
of MS provides us with information about the generalization capacity of automata: the
lower the value of MS, the larger the generalization capacities of the automaton. The
usual way to circumvent undefined perplexity is to smooth the resulting automaton
with unigrams, thus increasing the generalization capacity of the automaton, which is
usually paid for with an increase in perplexity. We decided not to use any smoothing
techniques, as we want to compare bigram-based automata with MDI-based automata
in the cleanest possible way.

2.3. Probabilistic Context Free Grammars 21

2.3 Probabilistic Context Free Grammars

Context free grammars are a key component in our formalism, PCW-grammars. We
use them for proving the consistency properties of our own formalism and as the back-
bone of our parsing algorithm. We present them here following the standard conven-
tions (e.g., (Aho and Ullman, 1972; Hopcroft and Ullman, 1979)).

A context free grammar (CFG) is defined as quadruple (7', N, S, R), consisting of
a terminal vocabulary T', a non-terminal vocabulary N, a distinguished symbol S € N,
usually called the start symbol or axiom and a set of productions or rewriting rules P.
The sets T', N, and R are finite; 7 and N are disjoint (7N N = (), and their union
can be denoted V' (V = T'U N). In the case of a CFG, the rules of the grammar will
be written as A — «, where A € N and o € V*. Rules of the form 4 — w, where
w € T are referred to as lexical rules.

Given a CFG G, a parse tree based on G is a rooted, ordered tree whose non-
terminal nodes are labeled with elements of N and whose terminal nodes are labeled
with elements of T'. Those nodes immediately dominating terminal nodes will be re-
ferred to as preterminal; the other non-terminal nodes will be referred to as non-lexical.
A syntactic tree based on G is said to be well-formed with respect to G if for every non-
terminal node with label A and daughter nodes labeled A, ..., A, there is a rule in
P of the form A — A, ... A;. We shall distinguish between a tree that is compatible
with the rules of the grammar, and a tree that also spans a sentence. A syntax tree is
said to be generated by a grammar G if

1. The root node is labeled with S (the distinguished symbol).
2. The tree is well-formed with respect to G.

The conventional rewrite interpretation of CFGs (see, for instance, (Hopcroft and Ull-
man, 1979)) will also be used in the definition of our stochastic models. Given two
strings w; and wy € V*, we say that w, directly derives w,, if w; = ¢ Ay, wy = oy,
and A — o is a rule in P. Similarly, w;, derives w, (in one or more steps) if the
reflexive transitive closure of A directly derives a (written A —* & to indicate the
application of zero or more rules in order to derive string o from non-terminal A4).

A probabilistic context free grammar (PCFG) is a context free grammar G with
set of rules R in which a probability has been attached to every rule in R. That is,
for every rule of grammar G, A — o € R, it must be possible to define a probability
P(A — a). Moreover, the probabilities associated to all the rules that expand the same
non-terminal must sum up to 1.

Z P(A—a)=1

A—a€R

22 Chapter 2. Background and Language Modeling Landscape

Using an auxiliary notation .-; ; to denote a non-terminal node .1 of the parse tree span-
ning positions of the sentence from i through j, we can define the three assumptions of
the model:

1. Place invariance: Vi. P(.4, 4] — () is the same.
2. Context freedom: P(.;; — (|anything outside i through j) = P(4;; — ().
3. Ancestor freedom: P(A4;; — (| any ancestor nodes above A;;) = P(A4;; — ().

The probabilities attached to the rules can be used either to heuristically guide the
parsing process or to select the most probable parse tree(s). The probability of a certain
derivation, i.e., a parse tree, can be computed by multiplying the probabilities of all the
productions applied in the derivation process. Let ¢ be a finite parse tree, well-formed
with respect to G, and let f be the counting function, such that f(A — a; v) indicates
the number of times rule .4 — a has been used to build tree . Then we can write:

P)= [[P(A—)iz,

A—a€R

In contrast to PDFAs, where the consistency property is defined over the set 3%, the
consistency property for PCFGs is defined over the set ¢ of trees accepted by G. P
is said to be consistent if

> Py =1

YeV;
The consistency property for PCFGs is not always satisfied, (see, for instance (Booth
and Thompson, 1973)), because it depends on the probability distribution over the
rules, P(A — «). However, if, as usual, the estimation of the probabilities is carried
out by means of the maximum likelihood estimator (MLE) algorithm, it can be proved
that this property holds. Chi and Geman (1998) generalizes this approach by means of
the relative weighted frequency method.

2.4 W-Grammars

In the mid-1960s, Aad van Wijngaarden developed a grammar formalism specially for
the formal definition of programming languages, based on a combination of generality
and simplicity. The formalism was first presented by Van Wijngaarden (1965) and
was adopted for a new programming language design project that eventually produced
ALGOL 68. Grammars within this formalism are called van Wijngaarden grammars
often shortened to vW-grammars or W-grammars. Some authors used the name two-
level grammars, but this could lead to confusion, since affix-grammarians also use it

2.4. W-Grammars 23

to name the general class that includes W-grammars, affix grammars and the rest of
variants of AGs as well. Therefore, the name W-grammars is preferred here.

We use the concept of two-level grammars to develop our own formalism, which is
a constrained version of W-grammars. W-grammars are too expressive and the compu-
tational complexity of dealing with such big expressivity is very high. Our formalism
is very close to the PCFG formalism in expressivity but it uses many ideas found in
W-grammars. We give here a brief introduction to W-grammars for comparisons with
our own formalism.

The basic idea of W-grammars is that, rather than enumerating a finite set of rules
over a finite symbol alphabet, a W-grammar constructs a finite meta-grammar that gen-
erates the symbols and rules of the grammar. In this way, one can define a Chomsky-
type grammar with infinitely many non-terminals and rules.

The definition given here follows (Chastellier and Colmerauer, 1969):

2.4.1. DEFINITION. A W-grammar is defined by the 6th-tuple (V, NT, T, S, =, =)
such that:

e V is aset of symbols called variables. Elements in V' are noted with calligraphic
characters, e.g., A B,C.

e NT is a set of symbols called non-terminals. Elements in NT are noted with
upper-case letters, e.g., X, Y, Z.

e T is aset of symbols called rerminals, noted with lower-case letters,e.g., a, b, c,
such that V, T and NT are pairwise disjoint.

e Sisan element of V called start symbol.

e ™ is a finite binary relation defined on (V U NT U T)* such thatif z = y
then z € V. The elements of = are called meta-rules.

e - isa finite binary relation on (V U NT UT)* such that if r = s then s # €.
The elements of ~— are called pseudo-rules.

W-grammars are rewriting devices. As rewriting devices, they consist of rewriting
rules, but, in contrast to standard rewriting systems, the rewriting rules of W-grammars
do not exist a-priori. Pseudo-rules and meta-rules provide mechanisms for building the
rules that will actually be used in the rewriting process. The rewriting rules are denoted
by == and are defined below. In general, a rule o == 3 indicates that o should be
rewritten as 3. For W-grammars, these rules are built by first selecting a pseudo-rule,
and second, using meta-rules for instantiating all the variables that the pseudo-rule
might contain. Once all variables have been instantiated, the resulting relation can
be viewed as a derivation rule, like in context free grammars. The different values a
variable in a pseudo-rule can take are given by the meta-rules. In other words, the

24 Chapter 2. Background and Language Modeling Landscape

relation generated by meta-rules defines the set of values a variable can have. Once all
variables in a pseudo-rule have been instantiated, we obtain a “real” rule.
The idea of rule instantiation is explained in the following example.

2.4.2. EXAMPLE. Let W = (V, NT.T.S. “ -*-) be a W-grammar such that 1" =
{S.A}NT = {S. 4}

meta-rules | pseudo-rules
SES | 54

AT AA] Al
AT A

For building a rewriting rule, we first take a pseudo-rule, say S —— A, with all its
variables instantiated. For this particular pseudo-rule, the variable A is the only one
that needs to be instantiated. Possible instantiations are defined through meta-rules.
For this example, the variable A can be rewrittenas A = A4 7 AAA 7o AAAA.
Replacing the instantiation AAAA for the variable A in S >~ A yields the rewriting
rule S == AAAA. Note that pseudo-rules are used only one time to construct —
rules.

In order to formalize the derivation process and to define the language accepted by
a W-grammar, we first extend ~— to a relation between a sequence of strings in the
usual way: If 2 = y then vzw =~ vyw for any z,y,v,w € (NTUTUV). With
™3 we denote the reflexive and transitive closure of —. The relation == is formatly
defined as follows.

2.4.3. DEFINITION. Letr and s be in (NT U T)*. We say that 7 == s if there exist
', 8 in (V.U NT U T)* such that ' 2 s’ and such that r and s can be obtained
from 7’ and s’ respectively by substituting each occurrence of a variable U by a string
t € (TUNT)* suchthat U =5 t. If U occurs more that once in 7 or ', the same string
t has to be substituted in all occurrences. The elements of == are called w-rules.

A w-rule @ == 3 defines only one step in the rewriting process. The entire rewriting
procedure is defined by extending == to elements in (T'U NT)* as follows. If r == s
then p,7,q == p, s, q for any 7, s,p and ¢ in (T' U NT)*. Also, 25" is the reflexive
and transitive closure of ==>. When a string is rewritten using w-rules, we call that
derivation a w-derivation.

2.44. EXAMPLE. Let W = (V,NT,T,N, >, 2=) be a W-grammar with V =
{N,L}, NT = {U}, T = {a,b,c} and the set of meta-rules and pseudo-rules as

follows:

2.4. W-Grammars 25

meta-rules pseudo-rules
N2 U | N2 Na,Nb, Ne

N NU| NUL - NL.L
L™ a UL >~ T
L™

T,

This grammar generates the language L = {(a,)"(b,)"(c.)" : n > 0}, which is known
1o be context-sensitive (Hopcroft and Ullman, 1979). Note that meta-rules will produce
sequences of non-terminals U, while a variable N can be instantiated with any string
in{U*:n>0}.

The pseudo-rule N >~ Na, Nb, Nc indicates how many a’s, b’s and ¢'s the body
of the w-rule resulting from using this w-rule will have. The pseudo-rule NUL =
NL, L is used to build w-rules that rewrite the sequence of [/’s to its corresponding
non-terminals. Table 2.1 shows the w-rules used for w-deriving a, a, b, b, c, c.

w-rule how to derive it

UU Z= UUa,UUb,UUc | From N = Na, Nb, Nc with N := UU.

UUa == Ua,a From NUL 25 NL,Lwith N :=U and L := a.
UUb%Ub,b FromNUfiaW,IwithT\T::Uandf::b.
UUc == Uc,c From NUL S NL, T with N:=Uand T :=c.
Ua == a FromUL =5 L with I := a.

Ub==1b From UL - T with L := b.

Uc=¢ From UL = Lwith L :=c.

Table 2.1: W-rules used to w-derive string a, a, b, b.

Finally, using the w-rules built in Table 2.1, the w-derivation of string a, a, b, b, c, c is:

UU = UUa,UUbUUc == Ua,a,UUbUUc

= a,a,UUb,UUc

a,a,Ub,b,UUc

a,a,b,b,UUc

a,a,b,b,Uc,c 2 a.a,bbcc

Flld

W-derivations are represented as a tree. The tree corresponding to the derivation shown
in Example 2.4.4 is given in Figure 2.2. Commas separate the units for replacing or
rewriting symbols and are a key point in the definition of W-grammars.

Finally, we define the string language generated by a W-grammar as follows:

26 Chapter 2. Background and Language Modeling Landscape

|
a b c
Figure 2.2: A derivation tree for the string a, a. b, b. ¢, c.

2.4.5. DEFINITION. Let W be a W-grammar. The string language L(}') generated by
11 is the set defined by:

L(W) = {/3 € Tt : there exists a € (T U NT)* such that § 5 o =" ;3}

Intuitively, a string 3 belongs to the language L(W) if and only if there is an o that
is an instance of the starl variable .S, and if there are rules == can be build from a to
derive 3.

As with CFGs, W-grammars define a tree-language:

2.4.6. DEFINITION. Let W = (V,NT,T,N, ™) be a W-grammar and L(}}")
its language. Let = be an element in L{W). A tree yielding z is defined as the w-
derivation used for w-deriving z.

A w-tree pictures the w-rules that have been used for deriving a string. The way in
which the w-rule has been obtained from the pseudo-rules and meta-rules remains hid-
den, i.e., there is no way to deduce the way in which variables have been instantiated.
This property is very important, and it also holds for our formalism. We come back to
this point in Chapter 4.

2.5 Further Probabilistic Formalisms

In the literature, many different approaches have been proposed for dealing with natural
language parsing. In this section we present a brief review of existing formalisms to
place our approaches into a bigger context of probabilistic formalism. Since many
formalisms have been proposed, we can only provide a short overview of only some of
them. There are many relations between the formalisms discussed in this section and
the work presented in this thesis, but we only sketch the most fundamental relations
here. More specific relations are described in Chapter 4, where we relate our formalism
to three specific formalisms: bilexical grammars, Markovian CFGs, and data-oriented
parsing.

2.5. Further Probabilistic Formalisms 27

2.5.1 Dependency Based Approaches

The probabilistic link grammar model of Lafferty et al. (1992), grammatical trigrams,
might be considered the earliest work on probabilistic dependency grammars. It is a
generative model that specifies a probability distribution over the space of parse/sen-
tence pairs, and it is trained in an unsupervised way, by means of an approach similar to
the Inside-Outside algorithm (Manning and Schiitze, 1999). Another related proposal
is Lynx (Venable, 2001). Like grammatical trigrams, Lynx are probabilistic models
based on link grammars (Sleator and Temperley, 1993, 1991). Eisner (1996), in his
model C, uses a dependency grammar, with unlabeled links (as opposed to the labeled
links or connectors representing grammatical relationships between words of the link
grammars). Carroll and Charniak (1992) focus on dependency grammars as well. They
define an inductive algorithm to create the grammar, which performs incrementally: a
new rule is introduced only if one of the sentences in the learning corpus is not correctly
analyzed by means of the current rule set.

Head Automaton Grammars. Alshawi (1996) describes lexicalized head automata,
a formalism representing parse trees by means of head-modifier relations. For each
head, a sequence of left and right modifier words is defined together with their corre-
sponding relations. A head automaton grammar (HAG), is defined as a function that
defines a head automaton for each element of its (finite) domain. A head automaton is
an acceptor for a language of string pairs (x,y) (the left and right modifiers), so that
the language generated by the entire grammar is defined by expanding the special start
symbol $ into x$y for some {x,y), and then recursively expanding the words in strings
z and y. A generative probability model is provided (Alshawi describes five parameter
types), as well as a parsing algorithm which is analogous to the CKY algorithm (with
a cost of O(n®)). Eisner and Satta (1999) provide a translation from head automaton
grammars to bilexical CFGs, obtaining a parsing algorithm for HAGs performing in
time O(n?*). Moreover, if the HAGs belong to the particular subclass of split head
automaton grammars, a O(n®) parsing algorithm is provided.

Eisner (2000) introduces weighted bilexical grammars, a formalism derived from
dependency grammars which can be considered a particular case of head automaton
grammars. Weighted bilexical grammars extend the idea of bilexical grammars so
that, instead of capturing black-and-white selection restrictions (say, either a certain
verb subcategorizes a certain noun or.not), gradient selection restrictions are captured:
each specific word is equipped with a probability distribution over possible dependents.
Then, the task of the parser will be to find the highest-weighted grammatical depen-
dency tree given an input sentence. A new parsing algorithm for bilexical grammars (a
variant of the one described in (Eisner, 1996)) is introduced, improving performance

28 Chapter 2. Background and Language Modeling Landscape

with respect to the previous and usually used version. This work also shows how the
formalism can be used to model other bilexical approaches. Bilexical grammars are
very important in this thesis; many of the grammars we build can be seen as bilex-
ical grammars. In Section 4.2.1, we show that bilexical grammars are a subclass of
PCW-grammars.

(Lexicalized) Tree Adjoining Grammars. Lexicalized tree adjoining grammars (or
LTAGs, for short) present an example of a lexicalized probabilistic formalism. They
are an extension of tree adjoining grammars (TAG) (Joshi, 1987)), for which a prob-
abilistic model was devised in (Resnik, 1992). In LTAGs, each elementary structure
has a lexical item on its frontier, the anchor. Schabes (1992) describes a very similar
probabilistic model, and derives an unsupervised version of the inside-outside algo-
rithm to deal with stochastic TAGs. The main difficulty lies in defining the initial
grammar rules. Joshi and Srinivas (1994) use n-gram statistics in order to find an el-
emental structure for each lexical item. Then, richer structures can be attached to lex-
ical items, creating supertags, so that each elementary tree corresponds to a supertag,
which combines both phrase structure information and dependency information in a
single representation.

The disambiguation performed by supertags can be regarded as a preliminary syn-
tactic parse (almost-parsing), which filters an important number of elementary trees
before the conventional steps of combining of trees by means of adjunction and sub-
stitution operations. Srinivas (1997) gives additional models and results. It is not our
intention to provide full details about the extensive literature on this formalism, but
we will add some pointers about some aspects of TAGs that are specially interesting
in relation to our own work. Nederhof et al. (1998) propose an algorithm for effi-
ciently computing prefix probabilities for a stochastic TAG. Satta (1998) provides an
excellent review of techniques for recognition and parsing for TAGs. Eisner and Satta
(1999) describe a proposal of a more efficient algorithm for parsing LTAGs. Xia et al.
(2001) describe a methodology to extract LTAG grammars from annotated corpora,
and Sarkar (2001) explores state-of-the-art machine learning techniques to enable sta-
tistical parsers to take advantage of unlabeled data, by exploiting the representation
of stochastic TAGs to view parsing as a classification task. Emphasis is given to the
use of lexicalized elementary trees and the recovery of the best derivation for a given
sentence rather than the best parse tree.

Lexicalized Context Free Grammars. Eisner and Satta (1999) define a bilexical
context free grammar as a CFG in which every non-terminal is lexicalized at some ter-
minal symbol (its lexical head), which is percolated from the constituent’s head child
in the parse tree. Such grammars have the obvious advantages of encoding lexically

2.5. Further Probabilistic Formalisms 29

specific preferences and controlling word selection, at the cost of a significant incre-
ment in size; the number of rules grows at a rate of the square of the size of the terminal
vocabulary. As a consequence, the increment in the grammar size makes standard con-
text free grammar parsers quite inefficient. For example, CKY-based variants perform
at O(n®). Eisner and Satta (1999) present a O(n*) recognition algorithm for bilexical
CFGs (in CNF), plus an improved version which, while having the same asymptotic
complexity, is often faster in practice. By recursively reconstructing the highest proba-
bility derivation for every item at the end of the parse, this algorithm can be straightfor-
wardly converted into an algorithm capable of recognizing stochastic bilexical CFGs,
where each lexicalized non-terminal has attached a probability distribution over all
productions with the same non-terminal as a left-hand side.

Satta (2000) defines lexicalized context free grammars (LCFG) as CFGs in which
every non-terminal is lexicalized at one or more terminal symbols, which are perco-
lated from the non-terminals in the production right-hand side. Then, the degree of
lexicalization of a LCFG can be defined, so that bilexical CFGs have a degree of lexi-
calization of 2. Their major limitation is that they cannot capture relationships involv-
ing lexical items outside the actual constituent, in contrast with history-based models.

2.5.2 Other Formalisms

Stochastic Unification Formalisms. Brew (1995) presents a stochastic version of
the head-driven phrase structure grammar (HPSG) formalism which allows one to as-
sign probabilities to type-hierarchies. Re-entrancy poses a problem: in some cases,
even if two features have been constrained to the same value by unification, the prob-
abilities of their productions are assumed to be independent. The resulting probability
distribution is then normalized so that probabilities sum to one, which leads to prob-
lems with grammar induction, as pointed out by Abney (1997). This latter work de-
fines stochastic attribute-value grammars, shows why one cannot directly transfer con-
text free grammar methods to the attribute-value grammar case (which is essentially
what was done in (Brew, 1995)) and gives an adequate algorithm for computing the
maximum-likelihood estimate of their parameters using Monte Carlo sampling tech-
niques, although it is yet unclear whether this algorithm is actually practicable, due
to its computational costs. Johnson et al. (1999) argue that this algorithm cannot be
used for realistic-size grammars, and instead propose two methods based on a different
type of log-linear model, Markov random fields. They apply these algorithms to the
estimation of the parameters of a stochastic version of a lexical-functional grammar.

Data Oriented Parsing. Bod (1995)’s approach is different from other stochastic
approaches in that it skips the step of inducting a stochastic grammar from a corpus.

30 Chapter 2. Background and Language Modeling Landscape

Instead of a grammar, the parser uses a corpus annotated with syntactic information,
so that all fragments (i.e., subtrees) in this manually annotated corpus, regardless of
size and lexicalization, are considered as rules of a probabilistic grammar. The un-
derlying formalism in DOP is called stochastic tree substitution grammars (STSG). In
Section 4.2.3, we show that STSGs are a subclass of PCW-grammars.

For the time being, we will describe an STSG as a device that constructs the entire
tree for an input sentence as a combination of tree fragments, in such a way that the
product of the probabilities is maximal. During the training procedure, a parameter
is explicitly estimated for each sub-tree. Calculating the score for a parse in principle
requires summing over an exponential number of derivations underlying a tree, which
in practice is approximated by sampling a sufficiently large number of random parsing
derivations from a forest, using Monte Carlo techniques.

Markovian Rules. Markovian rules have been successfully used for natural lan-
guage parsing. The methodology followed by a Markovian rule consists in attaching
headwords to each syntactic category in the parse tree, to incorporate lexical probabil-
ities into a stochastic model. Markovian rules are studied in detail in Section 4.2.2.

A remarkable and highly popular parser that uses Markovian rules as a component
is Collins’s parser. Initially described in (Collins, 1996), it was improved in (Collins,
1997), and fully described in (Collins, 1999; Bikel, 2004). Collins uses a supervised
learning approach, with the PTB as a knowledge source, for estimating the parame-
ters of his model. The key of his proposal is a well motivated trade-off between the
expressiveness of the statistical model and the independence assumptions that must
be made for assuring a sound estimation of the parameters given the corpus. In the
model, a parse tree is represented as a sequence of decisions corresponding to a head-
centered top-down derivation of the tree. Independence assumptions are linguistically
motivated and encoded in the X-bar schema, subcategorization preferences, ordering
of the complements, placement of adjuncts, and lexical dependencies, among others.
All these preferences are expressed by means of probabilities conditioned on lexical
heads. The generative model involves the estimation of the probability of each rule
from the PTB, i.e., the probability of generating the right part conditioned on the left
part. Collins decomposes this probability into three factors: (1) accounting for the
probability of generating the head H, (2) given the parent, the probability of generat-
ing the components to the left, and (3) the probability of generating the components
to the right. Independence assumption is introduced in order to make the model feasi-
ble. This basic model is further extended by introducing distances (taking into account
some idiosyncratic features). The parser was trained with the PTB. (Charniak, 1997)
presents a similar proposal which combines head word bigram statistics with a PCFG.
The system adds a new useful statistic to guide the parser decisions: the type of the par-

2.6. Approaches Based on Machine Learning 31

ent will also condition the probability of a rule. When parsing a sentence. the system
makes no attempt to find all possible parses, but it uses techniques presented in (Cara-
ballo and Charniak, 1998) o select constituents that promise to contribute to the most
probable parses (according to the simple probabilistic CFG distribution). However, as
the probability distribution is different, these techniques allow us to ignore improbable
parses. Moreover, the resulting chart contains the constituents along with information
on how they combine to form parses. The constituents are assigned the probability
given the lexicalized model, and the parser returns the parse with the overall highest
probability according to this full distribution.

All these formalisms give a clear picture of all the grammatical formalism that were
defined and used for language modeling. In Chapter 4 we present another formalism.
The relations between our formalism and the most representative formalism presented
above are presented in Chapter 4.

2.6 Approaches Based on Machine Learning

The approaches to language modeling presented in the previous section are mainly
based on a formal grammatical device, i.e., most of them have some kind of grammars
that generates and accepts sentences; the syntactical analysis of a sentence is the re-
sult of such a derivation. Clearly, there exists a wide variety of approaches based on
what is commonly know as machine learning techniques. Under this perspective lan-
guage modeling is treated as a pattern recognition problem, and hence, not necessarily
related to the theory of formal languages. In this section, we present the most repre-
sentative approaches. It is also difficult to draw hard conclusions on separation line
between the “formal” approaches and the “machine learning” approaches because usu-
ally approaches combine the two. In this section we group models whose underlying
formalism is very simple, e.g., context free grammar, and that heavily rely on machine
learning (ML) techniques for achieving good performance in parsing.

Increase Context Sensitivity. The systems Pearl (Magerman and Marcus, 1991) and
Picky (Magerman and Weir, 1992) use context-sensitive derivation probabilities. The
basic idea is to try and maximize the probability of a correct derivation for each of the
sentences in the corpus (as opposed to the inside-outside idea of maximizing the addi-
tion of the probabilities of the sentences in the corpus given a grammar). In Pearl, for
instance, the application probability of a rule is modeled as a conditional probability,
conditioned on the context in which the mother category appears. A chart parser (PUN-
DIT) is employed, and probabilities are estimated by simply counting the applications
of the rules in the ATIS portion of the PTB.

32 Chapter 2. Background and Language Modeling Landscape

History Based Grammars. Black et al. (1993) present a more general framework
called history based grammars. In this system, the term history is equivalent to con-
text: the application of a rule is conditioned on arbitrary aspects of the context of
the parse tree (the context information being both the dominating production and the
syntactic and semantic categories of the words in the prior derivations. In his model,
decision trees (see (Jelinek et al., 1994)), are trained from a treebank (computer manu-
als domain) and they are used to score the different derivations of sentences produced
by a hand-written broad-coverage feature-based unification grammar {672 rules, 21
features).

Hermjakob and Mooney (1997) present a knowledge and context-based system
(CONTEX) which, applying machine learning techniques, uses examples to generate
a deterministic shift-reduce parser. The learning algorithm uses an extended version of
the standard 1ID3 model (Mitchell, 1997) for more general hybrid decision structures,
in combination with decision lists; it starts by assigning to each parse tree from the
training corpus a sequence of shift-reduce parsing operations needed to produce the
tree. In order to learn the specific action to be performed at any point of the derivation,
the system relies heavily on an enriched context (to the left and right of each word),
encoded in features which include morphological, syntactic, and semantic information
(the previously built structure, a subcategorization table, and a knowledge base with
semantic information about the words in the lexicon. The methodology is evaluated
on a subset of sentences from the WSJ (only the ones fully covered by the 3000 most
frequent words in the corpus).

Probabilistic LR Parsing. The standard LR parsing methodology performs a left-to-
right scan of the input and constructs a rightmost derivation in reverse. Ng and Tomita
(1991) extend the well-known generalized LR parsing algorithm from (Tomita, 1996)
by attaching probabilities to the nodes of the graph structured stack which constitutes
the kernel of the algorithm. Part of their proposal deals with how to consistently main-
tain these probabilities (initially derived from the probabilities attached to the rules of
the PCFG) considering the three operations of the graph-structured stack (merging, lo-
cal ambiguity packing, and splitting). However, it is not possible to use an algorithm
like Viterbi in order to compute the most probable parse.

Other LR parsing approaches use PCFGs as a source including (Wright, 1990;
Wright and Wrigley, 1989; Wright et al., 1991). In all of them, an LR parse table
is derived from the context free grammar but, in addition, the rule probabilities are
distributed among sets of actions in the LR table. The distribution is carried out so that
it can be assured that the product of the probabilities associated to those LR actions
performed in the derivation of any analysis will be exactly the same as the probability
which would have been assigned to this analysis by the PCFG.

2.6. Approaches Based on Machine Learning 33

Carrol (1993) discusses the latter as well as other methodologies, and presents,
together with Ted Briscoe, a more ambitious proposal. They start from a unification
grammar (the ANLT grammar), from which a context free backbone grammar is au-
tomatically derived, together with an associated residue containing the dependencies
between features and values not contained in the context free grammar. The parser
must associate the reduce operations of the LR table with a filter based on the unifica-
tion of the features contained in the residue. The backbone grammar generated from
the ANLT grammar had 575 categories and more than 2,000 productions, and an LR
parse table was automatically generated for this grammar. Unlike (Ng and Tomita,
1991), the probabilistic model consists in attaching probabilities not to the context free
rules, but to the actions in the LR table. The model is then more context sensitive. In
the experiments described, the learning is supervised, the training corpus consisting of
a set of LR parse histories (with human intervention to correct the transition in the LR
parse table). Inui et al. (1998) build on Bricoe and Carrol’s work, and improve it by
formalizing their model in such a way that it provides probabilistically well-founded
distributions. Although they focus on the formal and qualitative aspects of the model,
they show how their refinement is expected to improve parsing performance. It is
worth noting that recent work by Nederhof and Satta (2002), which investigates the
problem of extending parsing strategies to probabilistic parsing strategies. They con-
clude that LR parsing cannot be extended to become a probabilistic parsing strategy,
because it lacks the property denoted as strong predictiveness property (SPP). In other
words, probabilistic LR parsing algorithms might not preserve all the properties of the
PCFG probability distributions, which means that LR parsers may sometimes lead to
less accurate models than the grammars from which they are constructed.

Transformation Based (Error-Driven) Learning (TBL). Brill (1993) has applied
TBL to grammar induction and parsing. The approach consists in learning a ranked
list of transformational rules so that, starting from an initial imperfect binary right-
branching tree for a sentence, the sequential application of each rule may transform
a piece of the original tree, and in the end obtain a parse tree with fewer errors. The
firing of each rule is conditioned on a context of one or two tags, so that the learning
process (performed through a greedy search according to the largest error decrease
criterion) needs quite a few number of sentences (150 /250 sentences for the ATIS and
WSIJ corpora) for obtaining the same accuracy of contemporary systems.

Instance-Based, Memory Based or Case-Based Learning. Instance-based algo-
rithms (IBL) are a supervised way of inductively learning from examples, that are taken
into account in order to classify new examples by analogy (the most similar instances
are retrieved from memory, and used for extrapolation). Memory-based learning is a

34 Chapter 2. Background and Language Modeling Landscape

direct descendant of the classical k-NN (k nearest neighbor) approach to classification.
Simmons and Yu (1992) apply the idea to a context sensitive shift reduce (SR) parser.
SR parsing is suitable for this classification proposal. since it breaks the parsing pro-
cess into simple parse actions (shift, reduce, and fin). allowing the construction of an
example base of parse states with their correct parse actions. A parse action is assigned
to each parse state on the basis of the on information of the parse stack and the input
buffer. The parser works on the level of POS tags and windows over the text with a
context of five words to the left and to the right.

The ILK Group at Tilburg University has developed the TIMBL (Tilburg memory-
based learning) environment, a general instance-based algorithm which compresses of
the base of examples into a tree-based structure, the IGTree (see {Daelemans et al.,
1997)), which in turn is used to classify new examples. The memory-based algorithms
implemented in the TIMBL package have been successfully applied to a farge range
of NLP tasks, including shallow parsing (see (Daelemans et al., 1999)) and more re-
cently, full parsing: Veenstra and Daelemans (2000). They construct a memory-based
shift reduce parser, inspired by (Simmons and Yu, 1992). Cardie (1993a) addresses the
lexical, semantic, and structural disambiguation of full sentences, within an informa-
tion extraction environment. In a supervised training phase, the parser creates a case
base of domain-specific context-sensitive word definitions. Then, given an unknown
word and the context in which it occurs, an eventual robust parser could retrieve the
definitions from the case base in order to infer the necessary syntactic and semantic
features for the unknown word and then continue processing the text. The case re-
trieval algorithm is basically a k-NN algorithm, but it assumes all features are equally
important for learning each type of knowledge, which, intuitively does not seem to be
true. Therefore, the system takes advantage of decision trees for identifying the rele-
vant features to be included in the k-NN case retrieval; the approach is fully described
in (Cardie, 1993b).

Decision Tree Models. Magerman (1995b) has been a pioneer in the use of decision
trees for syntactic parsing: he explores a wide variety of possible conditioning infor-
mation and uses a decision-tree learning scheme to pick those analyses that seem to
give the most purchase. Three different decision-tree models are used for (1) the POS
tagging, (2) the node expansion, and (3) the node labeling. The decisions are based on
lexical and contextual information of the parent and the child of the node.

Probabilistic Feature Grammars. Goodman (1997, 1998) presents probabilistic
feature grammars in which each non-terminal is represented as a vector of feature-
value pairs. Then, assuming binary-branching rules, the probability of the application
of a rule can be decomposed as the incremental prediction of the feature values of each

2.6. Approaches Based on Machine Learning 35

of the two members of its right-hand side. As all conditioning variables are encoded
through features, different factors such as lexical dependencies or distance features
can be dealt with in a unified way. Probabilistic feature grammars put the emphasis
on parameter estimation: having chosen the features, the parameters of the model are
specified by choosing an order for the features being predicted and then applying the
independence assumptions and choosing a back-off order for smoothing. The model
is tested on the WSJ portion of the PTB, where the following features are considered:
the non-terminal label, the headword, the head POS, distance features, and additional
context (modifier non-terminals generated at earlier stages of the derivation).

Maximum Entropy Models. The use of maximum entropy (ME) models, has be-
come very popular lately in various areas of NLP. Rosenfeld (1994) applied it to
speech recognition tasks and Berger et al. (1996) to automatic translation, Ratnaparkhi
(1998) applies it to several tasks: segmentation, morpho-syntactic disambiguation, PP-
attachment, and syntactic parsing. Ratnaparkhi (1999) describes the latter application,
which is also an example of lexicalized parser. Maximum entropy (ME) models over-
come the limitations of independence among the variables. Without the need for an
explicit grammar, they can learn, from a labeled set of examples, the model which has
maximum entropy out of all the models compatible with this set of examples. In other
words, given a collection of facts, ME models choose a model which is consistent with
all the facts, but otherwise as uniform as possible. The basic element of any ME model
are the features, binary-valued functions with two parameters, a context and an output.

Ratnaparkhi trains his system on a set of templates that are atiached to each of the
parsing procedures. These templates incorporate the type of factors the author consid-
ers relevant for the analysis: constituent headwords, headword combinations, gener-
alizations (morpho-syntactic categories, constituent syntactic categories), and limited
forms of look-ahead. The learning process is very simple, it is just counting, so that
the features that appear less than 5 times in the corpus are rejected. Using 40,000 sen-
tences from the PTB corpus, 1,060,000 features are incorporated in the model (most of
them lexicalized), and each one is attached to one of the procedures.

Charniak (2000) presents a parser based upon a probabilistic generative model, an
extension of the ones described above (Charniak, 1997; Collins, 1997). The prob-
abilistic model is maximum-entropy-inspired, since it reformulates the basic maxi-
mum entropy probability function such that it considers the conditioning information
of Markov grammar statistics as features. Moreover it is ultimately smoothed by means
of deleted interpolation (instead of the standard feature selection of pure ME models).
Charniak (1997) uses his bottom-up best-first chart parser to generate the candidate
parses, and his top-down generative model to evaluate them (in a process which, for
each constituent, first guesses its preterminal, then its lexical head, and last its expan-

36 Chapter 2. Background and Language Modeling Landscape
sion into further constituents).

Other ML-based Models. The idea in explanation-based learning (EBL: (Rayner
and Cater, 1996)) is that some of the grammar rules (specially in specific domains)
tend to combine much more frequently in a certain way than others. Given a suffi-
ciently large corpus parsed by the original (general) grammar, it is possible to learn the
common combinations of rules and chunk them into macrorules; Samuelsson (1994),
for example, defines an entropy threshold for automatically deriving these macrorules.
The result is a specialized grammar, with a larger number of rules but with a simpler
structure. In practice, parsing is shown to be faster — 3 to 4 times speed up for an
LR parser — at a price of only 5% coverage loss, using a training corpus of a few
thousand utterances. Zelle and Mooney (1996) describe a methodology to automate
the construction of parsers based on another ML-based learning methodology, induc-
tive logic programming (ILP). They have developed a system, CHILL, which begins
with a well-defined parsing framework, shift-reduce parsing, and uses ILP to learn con-
trol strategies within this framework, inductively learning a deterministic shift-reduce
Prolog parser that maps sentences into parses. CHILL represents a highly flexible ap-
plication of ILP, allowing the induction over unbounded lists, stacks, and trees. They
describe the application of the system to the automatic induction of parses that map
natural language database queries into an executable logical form. In addition, there
has been research using both neural networks and symbolic induction to learn parsers
that produce case-role analyses (Miikkulainen, 1996). In NLP, neural networks have
mostly been used basically to address low-level problems, although there are examples
of applications to more complex problems such as parsing (sometimes in combination
with symbolic approaches such as the above mentioned example).

Parser Combination and Reranking. A methodology for combining three input
parsers in order to improve parsing results is described by Henderson and Brill (1999).
The three parsers combined are the systems described in (Collins, 1997; Charniak,
1997; Ratnaparkhi, 1997). The two techniques used for combining parsers are parser
hybridization and parser switching. The first one is based on combining the substruc-
tures of the three input parsers in order to produce a better parse.

Two hybridization strategies are used, namely constituent voting (a non-parametric
version where the parsers vote on the membership of a certain constituent to the final
parse) and naive Bayes classifiers. The second technique, parser switching, chooses
among entire candidate parsers. Again, two strategies are tested, a non-parametric ver-
sion and a parametric version (naive Bayes again). Experiments on the WSJ portion of
the Penn Treebank show that all the combining techniques accomplish better accuracy
than any of the single three parsers, and that the method is robust, as incorporating of

2.6. Approaches Based on Machine Learning 37

a poorly performing parser (a nonlexicalized PCFG parser) hardly affects the results.

Collins (2000) proposes two machine-learning methodologies for reranking the
output of a given probabilistic parser. The idea is that in a first step the base parser re-
turns a set of candidate parses (initially ranked according to the probabilities the parser
has attached to them), and then a second step tries to improve this ranking, considering
additional features of the trees. Both approaches are discriminative, since they aim at
optimizing a criterion which is directly related to error rate. The first reranking tech-
nique in based on a generalization of PCFGs, Markov random fields (Abney, 1997),
while the second technique is based on boosting of ranking techniques (Schapire and
Singer, 1999) (here the ranking is a simple binary distinction between the highest scor-
ing parse and the other ones). The methodology was evaluated on the PTB, including
features ranging from rules or bigrams (pairs of non-terminals to the left and right of
the rules head), to features involving the distance between head words. The first ap-
proach was too inefficient to run on the full data set, so only the boosting approach
could be evaluated.

Collins (2001) gets more deeply into the differences between parametric maximum
likelihood estimation methods (explicitly modeling the distributions) and distribution-
free methods (models assuming that the training and test examples are generated from
the same distribution, although it is unknown, the results hold across all distributions).
Two methods are proposed: the first one, as in (Collins, 2000), is an application of
the Adaboost algorithm to re-rank the output of an existing parser, while the second
one uses the perceptron or support vector machines (SVM) algorithms. This second
method is based on the representation of parse trees through tree kernels (a mecha-
nism allowing one to convert them into efficiently treatable high-dimensional feature
spaces). It is described in more detail in (Collins and Duffy, 2001), and the voted
perceptron is applied on the ATIS portion of the PTB, for reranking the results of a
PCFG. Collins and Duffy (2002) extend the results to the WSJ portion of the PTB,
starting from the parses produced by model 2 of (Collins, 1999). The tree kernel al-
lows the representation of all subtrees in the training data (the same representation used
by DOP), so that the perceptron algorithm uses both the result from the base model as
well as the subtrees information to rank the trees. The method accomplishes improve-
ments of 0.5% and 0.6% respectively in labeled precision and recall with respect to the
base model.

Carreras et al. (2002) present an approach to partial parsing (though potentially ap-
plicable to full parsing) which is based on (1) using local classifiers to recognize partial
parsing patterns, and (2) using global inference methods to combine the results of these
classifiers in a way that provides a coherent inference that satisfies some global con-
straints. Although such ensembles of classifier techniques had already been explored
(see for instance (Punyakanok and Roth, 2000)), this work applies it to a deeper and

38 Chapter 2. Background and Language Modeling Landscape

more difficult level of partial parsing. embedded clause identification. This way, the
best decomposition of a sentence into clauses is selected by means of a dynamic pro-
gramming scheme which considers previously identified partial solutions, and applies
learning at several levels (for detecting beginnings and ends of potential clauses and for
scoring partial solutions, including three different scoring functions). The Adaboost al-
gorithm with confidence rated predictions (see (Schapire and Singer, 1999) is used as
leaming method. The approach is evaluated using the CoNLL-2001 competition cor-
pus (Tjong Kim Sang and Déjean, 2001), outperforming the best system presented in
this competition.

Summing up, this chapter shows that there exists a wide variety of approaches and
formalisms that focus on natural language syntax. The classification we presented tries
to separate the “formal” approaches from the “machine learning” approaches. Clearly,
it is hard to classify parsing approaches into these two categories because they usually
combine the two approaches. In the rest of the thesis we advocate an approach to
natural language parsing that is based on the machinery provided by formal languages.
Machine learning techniques are not used for the language modeling task, but they are
used for the inference of the formal devices. The distinction is small but important. It
is like using a PCFG as a language model and using machine learning for learning the
PCFG itself.

Chapter 3

The Role of Probabilities in Probabilistic Con-
text Free Grammars

3.1 Introduction

Probabilities have been used in many aspects of natural language processing. In the
context of CFGs, probabilities have been used to define a probability distribution over
the set of trees defined by a CFG. The resulting formalism, probabilistic context free
grammars (PCFGs), extends context free grammars by assigning probabilities to the
production rules of the grammar. PCFGs have been successfully used as the formal-
ism underlying many approaches to natural language parsing, see e.g., (Eisner, 1996;
Charniak, 1995; Collins, 1999; Eisner, 2000; Klein and Manning, 2003), to name just
a few. In such approaches, probabilities have a very specific role: they are used as a
filtering mechanism. In order to clarify this, we can think of the parsing procedure for
a PCFG as a two-fold procedure. Suppose a sentence is given. First, a set of candidate
trees is proposed, and, second, a tree is non-deterministically chosen from the set of
candidate trees. The selected tree is returned as output.

CFGs define the set of candidate trees as the set containing all trees that yield the
given sentence. In contrast, PCFGs are used in the parsing context to define the set of
candidate trees as the set of trees that yield the given sentence with maximum probabil-
ity. In other words, probabilities are used in the parsing framework to reduce the set of
candidate trees suggested by the bare CFG. The size of the set of candidate trees gives
an impression of how ambiguous a sentence is for a given input. It is well-known that
ambiguity is a serious problem for parsers; in some cases, the number of parse trees
assigned to a sentence may grow exponentially in the length of the sentence (Wich,
2000, 2001), and, consequently, probabilities play a very important role in parsing:
they are used to decrease the size of the set of candidate trees, and consequently, they

39

40 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

decrease the amount of ambiguity.

The role probabilities play in the context of formal languages has been widely stud-
ied in the literature, but the focus of such studies was not on the ability to reduce am-
biguity. Properties of formal languages regarding consistency (Booth and Thompson,
1973; Wetherell, 1980; Chaudhuri and Rao, 1986), learnability conditions (Horning,
1969), parameter estimation (Manning and Schiitze, 1999), etc, are very well-known.
However, very little is known about the power of probabilities as a mechanism for
ambiguity reduction.

We are interested in the following research issues: how important and how power-
ful are probabilities as a filtering mechanism? Clearly, different filtering mechanisms
exist; as an example, suppose that a PCFG G is given and its probabilities are used
to select a subset T of trees in the tree language generated by G. It may be the case
that there exists a non-probabilistic CFG G’ such that its tree language is equal to T.
Clearly, if such a grammar G’ exists for all PCFG G’s, then probabilities are not really
needed. In contrast, if that is not the case, the role probabilities play in parsing be-
comes relevant, and different questions than those answered in (Booth and Thompson,
1973; Wetherell, 1980; Chaudhuri and Rao, 1986) need to be addressed.

In this chapter we focus on answers to basic questions regarding the use of proba-
bilities as a filtering mechanism. We pay special attention to the following questions:

1. Is it possible to select the same set of candidate trees as with a PCFG using a
vanilla context free grammar? The question is relevant because, if the answer
is affirmative, this means that for a given PCFG there is a CFG that specifies
the same set of candidate trees as the PCFG for all sentences; as a consequence
probabilities would not really be essential.

2. Can we decide whether a given PCFG filters out all but one tree for all sentences
in the language? Answering this question is equivalent to saying that the given
PCFG has solved all ambiguities in the language accepted by the grammar.

3. What is the meaning of the probabilities associated with the set of candidate
trees? Can this meaning be used in a useful manner?

In this chapter, we answer all these questions. We show

1. that probabilities cannot be mimicked by rules, i.e., their use is fundamental
from a formal language perspective: whenever used as a filtering mechanism,
probabilities can define a set of trees not capturable by CFGs,

2. thatit is not possible to decide whether a PCFG filters all trees but one for all sen-
tences, i.e., it is not possible to decide whether the filtering mechanism resolves
all ambiguities,

3.2. Maximum Probability Tree Grammars 41

3. that the probability measure assigned to the selected set of candidate trees can be
interpreted as the probability of having captured in the set of candidate trees the
correct tree. Moreover, this semantics can be used to asses the quality of PCFGs.
We also show that under certain circumstances, which we describe in detail, it
is advisable to add to the set of candidate trees, trees that do not have maximum
probability in order to augment the probability of capturing the correct tree.

The chapter is organized as follows. Section 3.2 presents some background notation,
Section 3.3, 3.4, and 3.5 address questions |, 2, and 3 listed above respectively. Finally,
Section 3.6 concludes the chapter.

3.2 Maximum Probability Tree Grammars

In this section we define the basic concepts we need in our discussion. Let G =
(T, NT, S, R) be a context free grammar. For our purposes, CFGs play two very im-
portant roles. The first one is to provide sentences with a syntactic explanation. As
is well-known, this syntactic explanation is given by the way in which a sentence is
rewritten from the start symbol. Formally, let G be a CFG and x a sentence in T*. A
left-derivation t() is a sequence of rules {ry,...,r,) such that

Sgalgazg...gsam,

where o; € (T U NT)*, a,, = 7, and r; is a rule in R that rewrites the left-most
non-terminal of o; 1. The set of all left-most derivations, called the tree language, is
denoted by T(G), and z is called the yield of t(z).

The second main role of CFGs is to define the set of sentences that are considered
to be grammatical by the grammar. More precisely, let G be a CFG. The language
accepted by G (notation: L(G)) is L(G) = {z : T(z) € T(G)}.

In order to use CFGs to help us understand natural language, a procedure for finding
derivations has to be defined. Let G be a CFG and z a sentence. A complete parser is
a procedure that computes the following set:

T(z) = {t(z) € T(G)},

while a parser is a procedure that, besides computing T'(z), chooses one tree non-
deterministically from it. Formally, i

Parser(z) = random (T (z))

where random(X) is a function that selects an element from the set X assigning to

42 Chapter 3. The Role of Probabilities in Probubilistic Context Free Grammars

cach element the same probability of being chosen.! For a given grammar G and a
sentence x in L(() there may be multiple trees yielding the same sentence .r.

In some cases the size of the set T'(r) grows exponentially in the length of r (see
(Wich, 2000) for an example), and many of the trees in 7'(.r) are trees that we do not
want as an answer. These undesired trees need to be filtered out from the set T'(x).
One way to achieve this is to use probabilistic context free grammars. A probabilistic
context free grammar (PCFG) is a pair (G, p), where G is a CFG and p a positive
function defined over the set of rules such that for all Ain N7~

Z p(Ad —a) =1
a€(NUNT)*
Even though probabilities in a PCFG are defined over the set of rules, they are used to
define a probability distribution p over the set of derivations T'(G). The probability of
atree in T(G) is defined as follows. Let (G, p) be a PCFG, and let t(z) = (ry,...,7m)
be a tree in T'(G). The probability assigned to t(z) is p(t(x)) = p(r1) - ... - p(rm). In
words, the probability assigned to a tree is the product of the probabilities assigned to
the rules building up the tree.

The distribution generated by the probabilities is used to select a subset of trees
from the set of all possible trees yielding a sentence. A procedure that computes this
subset is called a probabilistic parser. More formally, let G be a PCFG and let x be
a sentence in L((G). A probabilistic complete parser for a grammar G is a procedure
that takes as input a sentence in the language and computes the following function:

PParser(z) = {t(z) € T(G) : arg r}}g)x{p(t(x))}}

Finally, a probabilistic parser is defined as the non-deterministic choice of a tree re-
turned by a probabilistic complete parser. We can see a probabilistic parser as a two
component algorithm, one implementing a probabilistic complete parser and a second
implementing a non-deterministic choice.

3.2.1 Filtering Trees Using Probabilities

In this subsection, we consider the class of languages induced by probabilities when
we consider them as a filtering mechanism. Let G be a PCFG. The set of most probable
trees produced by G (noted M{G)) is a subset of T(G) defined as follows:
M(G) = U PParser(zx).
zeL(G)

'Note that non-deterministic choice and uniformly distributed choice are not the same concept, non-
determinism implies that there s no information about the underlying distribution, which clearly is
not the case when using a uniform distribution. In the context of this thesis we use the two terms
indistinguishably.

3.3. Expressive Power 43

Note that there may be more than one tree bearing maximum probability for a given
sentence. We allow for this: A/((7) contains them all. Note also that 1/(G) is a subset
of T'(G). Furthermore, the sets A/(G) and T(G) are the same set if, and only if, for all
sentences all trees in L(G) share the same probability mass.

Based on the set of most probable trees A/{G), we define a new class of tree lan-
guages. The idea behind this class of languages is that they are like PCFGs but instead
of taking the whole set of trees they only take the most probable ones. More formally,
a maximum probability tree grammar (MPTG) is a PCFG where its tree language is
defined as the set of most probable trees, while the set of strings accepted by the MTPG
remains the same.

Note that all state-of-the-art parsers based on PCFG filter trees out in the way we
have just defined. They return the trees yielding a given sentence that bear maximum
probability, and thus, they, implicitly define an MPTG.

3.3 Expressive Power

We are interested in understanding what kind of expressiveness MPTGs have. In par-
ticular, can they be captured by CFGs? More concretely, does the mechanism of re-
taining only trees with maximum probability defined in MPTGs define tree languages
that cannot be captured by CFGs? In this section we show that the set of trees iden-
tified by a probabilistic CFG plus a maximization procedure cannot be generated or
specified directly by any CFG. In other words, we prove that probabilistic CFGs plus
a maximization step define tree languages that are beyond the expressive power of the
CFGs. To put it more formally: MPTGs are not strongly equivalent to CFGs. That is,
the tree language generated by probabilistic context free grammars plus a maximiza-
tion algorithm is beyond context free grammars. This section is devoted to prove this
statement, which is formally expressed in the following theorem.

3.3.1. THEOREM. MPTGs are not strongly equivalent to CFGs.

Our strategy for proving the above theorem is based on a context free inherently am-
biguous language. Recall that a context free inherently ambiguous language L is a lan-
guage such that all CFGs generating it have at least one string in L that has two trees
yielding it. What we present below is an inherently ambiguous language generated by a
PCFG that assigns a unique tree bearing maximum probability to each string in the lan-
guage. As a consequence, the MPTG induced by the grammar is unambiguous, but the
tree language cannot be captured by a CFG because the language is inherently ambigu-
ous, i.e., for all CFGs generating it, there is at least one sentence being yielded by two
different trees. Let us make matters concrete now, the grammar G = (T, NT, S, R) we

44 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

S —2/3 AB S —1;3 Sy
A—=ypadb Sy —y aSd
A—ypab Sy =10 aCd
B —ypcBd € — 5 bCc
B‘—*l/g cd C’—’l/'z be

Figure 3.1: An MPTG for an inherently ambiguous language.
suggest is defined as follows. Put T' = {a,b,c,d}, NT = {S, Sz, 4, B,C'}, and let the
set of rules R be as described in Figure 3.1.

In order to better understand the complexity of G we split it into two different
grammars Gy = (71, NT\, S, Ry) and G, = (T, NTy, S, R5), where

1. Ty = {a,b,c,d},
2. NT, = {S. A, B},
3. T» = {a,b,c,d}, and
4. NT, = {S,5,,C};
5. R; and R; as defined by Figure 3.2.
Observe that G generates the following string language:
L = {a™"*c¢™d™ : n,m € N} U {a™b"c™d" : n,m € N}.

L can be described as the union of the two context free languages generated by G,
and G, respectively, namely L, = {@"b"c™d™ : n,m € N} and L, = {a"b™c™d" :
n,m € N}.

We will now describe the tree language generated by G. Remember that G is
a MPTG, and not just a PCFG. The set of its derivations is the set of trees bearing
maximum probability. Define Ly = {a™b*c*d" : n € N}, and let T'(L3) denote the set

i Ry
S —93 AB | § —y3 5o

A —1/2 aAb Sz —1/2 aSQd
A —1/2 ab Sz —1/2 aCd
B—>1/2 cBd C—>1/2 bCe
B —1/2 cd

C —1p2 be

Figure 3.2: A decomposition of G.

3.3. Expressive Power 45

of trees in T'(G) that yield a sentence in L. Our first observation is that all trees in
(T(G,) UT(Gy)) \ T(L3) have a unique derivation. Hence, they obviously belong to
M{(G). For the trees in L3 there are two possible derivations: one generated by G and
the other generated by G». In order to fully characterize M (G), we need to determine
which of the two derivations (if not both) betongs to M (G).

Below, we show that only the derivations produced by G belong to M (G). In other
words, all derivations produced by G, are filtered out. To obtain this characterization,
we first characterize all trees in T(Ls).

3.3.2. LEMMA. Let T be a string in L, and let t,(x) be a tree in T(G1) and t3{x) a
tree in T(G,). Then, the number of rules appearing in t1(x) is the same as the number
of rules appearing in ty(x). Moreover, the rule S —o/3 AB appears once in t1{z),
while the rule S — 3 Sy appears once in ty(x).

PROOF. Let z be a string in Ly = {a™V"c*d" : n € N}. We prove the lemma by
induction on n, the superscript in the definition of Lz. For the base case, let n be
1; then the lemma follows from the fact that the two possible trees, both pictured in
Figure 3.3, have the same number of rules, and it is clear that the rule S —y/3 AB
appears once in t;(z), while the rule S —1/3 S, appears exactly once in t2(x).

t, (abed) to(abed)

Figure 3.3: Two derivations for abcd.

Let the statement be true for £ < n, and let us show it for z = a™b"c*d™. Note, first of
all, that for a word in L3, the two possible trees follow the schema of Figure 3.4. Now,
using this observation for the first part of the lemma, the string a™ 6"~ 1c*~1d"~! can
be derived by collapsing the A, B, S; and C non-terminals, respectively. According
to the inductive hypothesis, the resulting trees have the same number of rules, and in
the process of collapsing we have eliminated the same number of rules from the two
trees, proving the first part of the lemma. For the second part of the lemma, consult
Figure 3.4 again, where it can be seen that the rules S —y/3 AB and S —/3 S, appear
once in t;(x) and ty(x), respectively. H

Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

S
l

A B S

T~ T T
a Ab ¢ B d So

anrlbn~1 Cn—ldn——l a"_l C n—1

T
b C ¢

—_—

bn—lanl

Figure 3.4: Derivations for a™b"c"d".

Lemma 3.3.2 says that the probabilities of two derivations in Lj yielding the same
sentence are determined by the first rule in each grammar. That is, we can distinguish
between the two possible probabilities assigned to the two derivations for a sentence in
L3 by simply observing the probability of the first rule in each of the derivations.

3.3.3. LEMMA. Ler x be a string in Ls, t)(x) in T(G,) and ty(x) in T(G3). Then
p(ti(x)) > plta(z)).

PROOF. The proof is immediate from Lemma 3.3.2. All derivations for a given string
z in L3 have the same number of rule applications, and except for the first rule applied
(either S —g/3 AB or S —/3 Sp), all rules have equal probabilities associated with
them. Hence the tree using the G -rule S —,/5 AB has the higher probability, as
desired. -

3.3.4. LEMMA. M(G) isequal to T(G) U {t(x) € T(G3) : z € Ly — L3}.
PROOF. The lemma is a direct consequence of Lemma 3.3.3.
Finally, with this characterization we can prove Theorem 3.3.1.

PROOF. Note first that for every string in L(G) there is a unique tree in M(G): if the
string belongs to L) \ L3 or to Ly \ L; this is because the grammars G; and G assign a
unique derivation tree to each string. If, however, € L;, then, by maximizing proba-
bilities, we discard the tree belonging to T'(G3), thus only leaving the tree in T(G), as
shown in Lemma 3.3.4. Summarizing, using probabilities we have obtained a unique
tree for every sentence in an inherently ambiguous language. It is a well-known fact
that CFGs cannot disambiguate an inherently ambiguous language (Hopcroft and Ull-
man, 1979). Hence, since L is inherently ambiguous (Parikh, 1966), there cannot be a
CFG that generates all and only the trees in MPTG(G). ~

3.4. Undecidability 47

In this section we have answered question (1) from the introduction, showing that there
is no way to mimic probabilities using rules. In the next section we focus on question
(2).

Ours is not the first study of the expressive power of weighted formal devices.
Cortes and Mohri (2000) show that the expressive power of weighted automata is be-
yond regular fanguages. This result has in common with the result we present in Sec-
tion 3.3 that they both show that weighted systems accept a wider set of languages
than bare systems. The two results also use the same strategy; they present a language
that does not belong to the bare grammatical formalism but that is capturable by the
weighted version.

The two approaches differ in that in ours probabilities are used to select subtrees
as a side product of filtering. Cortes and Mohri (2000) show that they found a well-
known context free language to be accepted by a weighted automata under a general
definition of acceptance. The approaches also differ in that ours is concerned with the
tree-language and theirs with the string language. Finally, the two results differ in that
our proof is technically trivial, while the other is rather involved.

The result presented in this section is not directly linked to statistics. As already
discussed in (Abney, 1996), probabilities can help in many aspects of syntax (e.g., dis-
ambiguation, degrees of grammaticality, error tolerance, naturalness, structural prefer-
ences, learning, lexical acquisition). In that sense, weights are enough for capturing
these phenomena. In this section we deal with probabilities (weights) as they are cur-
rently used for disambiguation in the literature. We respond to the question “What can
we do with probabilities (weights)?” more than “How can we compute the probabili-
ties (weights)?”. Abney argues that, intuitively, probabilities can help disambiguating,
but this section shows that they provide a mechanism that simply cannot be mimicked
with rules. To put it very bluntly, we present a technical fact, not an intuition.

We have shown that probabilities add not only a statical perspective but also ex-
pressive power to CFGs. We think that this increment in the expressive power is due
to a probabilistic parser’s implicit but global requirement that it sees all rules building
up a tree for choosing the one with maximum probability.

3.4 Undecidability

While probabilities buy us additional expressive power on top of CFGs, they do not
buy us everything. Specifically, given that probabilities help to disambiguate their own
language, would it not be nice if we could predict, that is, determine before parsing,
whether a PCFG is capable of fully disambiguating its language?

We show that this is not possible. We establish the result by transforming an ar-

48 Chapter 3. The Role of Probubilities in Probabilistic Context Free Grammars

bitrary CFG into a PCFG such that the given CFG is unambiguous if, and only if. the
corresponding PCFG has only one tree in the candidate list of each sentence. Our result
then follows from the well-known fact that determining whether a CFG is unambigu-
ous is undecidable.

Probabilities single out, for each sentence x, a set PParser(r) of trees bearing
maximum probability. An ideal grammar is one that filters out all trees but one for each
sentence in the language. In other words, an ideal PCFG defines for each sentence r,
its set P Parser(z) with cardinality equal to 1.

We want to prove that it is undecidable to determine whether a PCFG is ideal. To
this end, we first prove that for every context free grammar G there is a way to extend
it with probabilities such that the resulting set A/(G) contains the same set of trees as
G. In other words, for any CFG we build a probabilistic version that does not filter out
any tree. Our undecidability result follows from the fact that our question is equivalent
to determining whether a CFG is unambiguous.

We have to build the probabilistic correlate of a CFG, in such a way that all trees
associated to a given sentence bear the same probability. In this case, the set of trees
with maximal probability is exactly the set of trees. We show the result for grammars
in Chomsky Normal Form whose definition we now recall.

A context free grammar G = (T, NT, R, S) is said to be in Chomsky Normal Form
(CNF) if, and only if, every rule in R is of one of the following forms:

e A—aforsome A€ NTandsomea e T.

e A— BC,forsome A€ NTand B,C € NT - {S}.

Our strategy is to show that any grammar in CNF assigns the same probability to all
trees yielding the same string. To this end we show that all trees yielding the same
string in a CNF use the same number of rules; we then build a grammar assigning the
same probability to all rules and we obtain what we are looking for.

We now present the lemmas needed.

3.4.1.LEMMA. Let G = (T,NT,S, R) be a grammar in CNF. All trees yielding a
k-length sub-string of NT™ use the same number of rules.

PROOF. Let us define a sequence Ay, ..., Ay, ... of subsets of NT™* as follows: Ag =
{S}, A; consists of elements a in NT* such that a is derived from S in one step, and,
in general, « is in A; if there is an element o’ in A;_; such that ¢ = . The lemma
is immediate from the fact that that all sets are pairwise disjoint, i.e., A; N A; = @ for
every i # j. =

3.4.2. COROLLARY. Let G be a CFG. Every derivation producing a string x of length
k in L(G) has the same number of rules.

3.4. Undecidability 49

3.4.3. LEMMA. Let G be a context free grammar. G can be transformed into a prob-
abilistic context free grammar G' with the special property that all rules have exactly
the same probability value.

PROOF. Let G be a grammar in CNF, and let R be its set of rules. Let X be the most
frequent non-terminal in the left-hand sides of rules. Let n be the number of times X
is the left hand-side of a rule. Let Z;, ..., Z, be brand new non-terminal symbols. For
every non-terminal Y we add as many rules Y — Z; as needed to have the number of
rules having Y in the left-hand side equal to n. We add probability 1/n to each of these
new rules. The resulting grammar is a well-defined, though not necessarily consistent,
probabilistic context free grammar, and all rules have exactly the same probability
values as required. —

The PCF grammar G’, obtained from a grammar G as described in Lemma 3.4.3, is
called the uniform version of G.

Note that the resulting grammar need not be consistent, given that some probability
mass is going to non-terminating derivations — derivations that end up in the dummy
non-terminal. Still, what is important to us is that the set of trees accepted by the
PCFG remains the same, and, even more importantly, that every derivation producing
the same sentence has the same probability value.

3.4.4. LEMMA. Let G be a context free grammar, and let G’ be its uniform version.
Let x be a string in L(G). Then all left-most derivations producing x have the same
probability.

PROOF. Since every string in the language has the same set of trees as G, the dummy
rule is not used in any derivation of final strings. According to Lemma 3.4.1, every tree
has the same number of rules. And since every rule has the same probability, every tree
for the sentence [has the same probability. Finally, the set of trees bearing maximum
probability is exactly the set of trees in the original grammar G -

As this lemma proves, trees defined through MPT include the class of trees defined
via CFG. As a direct consequence, we have the following lemma:

3.4.5. LEMMA. Deciding whether a PCFG disambiguates a tree language is undecid-
able.

PROOF. We have built a grammar that assigns the same probability mass to all possible
trees for a given string. As a consequence, the PCFG is unambiguous if, and only
if, the non-probabilistic grammar is. Deciding whether the PCFG is unambiguous is
equivalent to decided whether a CFG in CNF is unambiguous, which is known to be
undecidable (Hopcroft and Ullman, 1979). -

50 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammurs

The above lemma answers question (2) from the introduction, saying that it is not
possible to decide whether a PCFG has completely managed to solve all ambiguities.
Note that the results in the present section combined with the results in the previous
one imply that the class of tree languages described by PCFGs is a strict subclass of the
tree languages described by MPTGs. The inclusion is implied by the present section
while the proper inclusion is implied by the previous one.

3.5 The Meaning of Probabilities

Whenever only a single tree is required as output, all CF parsers face the question of
how to select that single tree from a set of trees yielding the same sentence. They
usually choose a tree non-deterministically, by randomly selecting a tree among all
possible trees. The selection is made under the assumption that all trees in the candidate
list (suggested by the grammar) have the same probability of being selected.

The use of probabilities is meant to reduce the size of the set of candidate trees.
On the one hand, the probability value assigned to a tree captures that tree’s chance
of being generated by the grammar and, consequently, of being found in a tree-bank
generated by the grammar. On the other hand, the idea of correctness is usually un-
derstood in terms of a comparison to a manually annotated tree-bank. The two things
combined suggest that the probability assigned to a tree can be thought of as its chance
of being the correct one. On this view, parsers try to find the tree that has the highest
probability of being the correct one. Clearly, some non-determinism remains: there
might be more than one tree bearing maximum probability and, consequently, parsers
have to non-deterministically choose among all trees bearing maximum probability.

In the following two subsections we use the just defined semantics for two different
purposes. First, we use it as a way to compare grammars. The general idea is to
compare grammars according to the amount of non-determinism they have left for the
non-deterministic choice. Second, we want to use it for boosting the probability of
picking the right tree from the set of candidate trees by adding trees to it that do not
bear maximum probability but that increase the probability mass of the candidate list
in substantial way.

3.5.1 Using Probabilities for Comparing PCFG

Recall that a grammar is ambiguous if there is a sentence in the language that has a
candidate list containing more than one analysis. Following (Wich, 2000, 2001), we
can think of the degree of ambiguity of a PCFG as a quantity proportional to the size
of the candidate lists, one per sentence in the language. That degree is related 1o both

3.5. The Meaning of Probabilities 51

the set of rules in the grammar and to the probabilities associated to the rules. Clearly,
a grammar with a lower degree of ambiguity is preferred over one with a higher degree
of ambiguities given that the first reduces the level of non-determinism by choosing
non-deterministically from smaller sets, in the second phase.

We propose a measure that compares grammars with respect to the way they re-
duce nondeterminism in the second phase of the parsing process. The measure is
based on the probabilistic distribution they generate over the set of trees. Our approach
is sample-based, i.e., the measure is computed over a finite sample set of sentences,
because is not possible to compute it for the whole language, as we will also show.
The measure we propose computes the probability of a tree of being chosen under the
two-stage parsing schema defined previously. This proposal has the advantage of tak-
ing into account two things: first, the confidence the probability measure has over the
proposed list of candidates, and, second, the non-deterministic choice in the final step.

One important desideratum that we have for our measure for determining a gram-
mar’s ability to reduce ambiguity is that it should capture the remaining non-determi-
nism after trees have been filtered out using probabilities. Clearly, the reduction on
non-determinism is related to the size of the set of candidate trees. However, it is not
a good idea to simply use the fraction of trees that were filtered out as a quality mea-
sure, or the size of the candidate list. The first idea is unsuitable because, in case the
grammar generates only a single tree per sentence, the probabilities do not filter out
any tree, and we would be assigning a very low score to the filtering mechanism. The
second idea fails because there is no information on the size of the list of trees before
using probabilities.

There has been quite a lot of research in the area of parsing evaluation (Lin, 1995;
Marcus et al., 1994; Carroll et al., 1998; Musillo and Sima’an, 2002), but it does not
seem appropriate to use any of these parser evaluation measures for quantifying ambi-
guity reduction. Parser evaluation measures are aimed at determining how well parsers
perform on parsing standard sentences. Under these approaches, only grammars that
output trees that follow the structure found in the tree-bank can be compared (or those
for whom a transformation between formats exists (Watkinson and Manandhar, 2001)).
Moreover, these approaches do not produce any information about the way in which
the grammar has dealt with ambiguity.

There have been some attempts, both to show that PCFGs do indeed reduce am-
biguity and to determine the extent to which they do this. For instance, Atsumi and
Masuyama (1998) compare the size of the list of candidate analyses before and after
having filtered out syntactic analysis with lower probability. Even though their moti-
vations are very similar to ours, they do not offer an explicit measure for comparing
different PCFGs with respect to their ambiguity reduction abilities.

Before giving the formal definition, let us give some more intuitions. The amount

52 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

of determinism for a given sentence r in the two-stage parsing procedure is given by
two main ingredients: the (size of the) set of trees T'(.r) yielding the sentence xr. and
the (size of the) set of trees bearing maximum probability P Parser(r). Both sets con-
tribute to ambiguity reduction. The sizes of T'(r) and P Parser{x) capture the amount
of ambiguity produced by the grammar before and after having used probabilities for
filtering out trees, respectively.

PCFGs reduce the set of trees in the candidate list using a probability distribu-
tion over the set of possible analysis. The distribution specifies the probability each
tree has of being the correct tree given the sentence.> Under our two-stage procedure
the probability of selecting a particular tree is given by the product of the probability
mass accumulated in the set P Parser(x) (that is, the probability of having the correct
tree in P Parser(x)) and the probability of uniformly selecting a particular tree from
PParser(z). More specifically, suppose the grammar defines a probability distribu-
tion p over the set of trees, specifying the probability each tree has of being the correct
one. Suppose, moreover, that for a given sentence x from the sample set, we select the
set of trees bearing maximum probability P Parser(x). The probability of selecting
any particular instance of the trees in P Parser(z) using a uniform distribution is

1

Qi (G) = p(PParser(a:))m<

where p(P Parser(z)) is the probability that the correct tree is in P Parser(z), while
)P’Tlm(zn is the probability of selecting it. The probability takes into account the
probability mass concentrated in P Parser(z) and its size: the bigger the probability
the better the output.

Since all trees in P Parser(x) have the same probability value p;, Q) (G) can be
simplified as follows

1

Qi) (G) = p,|PParser(z)|m

=p..
Finally, assuming that parsing sentences are independent experiments, our measure is
defined as follows:
Qs(G) =[] p-.
z€S

where S is a sample set of sentences from the grammar’s accepted language, and p,
is the probability assigned to the tree returned by the parser. Qg(G) is equal to 1 if,
and only if, there is a unique tree with maximum probability for each sentence in S.
The measure is easily computable if we work with probabilistic parsers that return both
trees and the probability value associated to the trees returned.

2“Correct tree” in the sense that it is the tree that appears in a sample tree-bank.

3.5. The Meaning of Probabilities 53

Finally, we say that a grammar (7 is better than a grammar (7, (based on a sample
set S) if, and only if,

Qs(G)) < Qs(Ga).

The measure does not capture the ambiguity reduction over the set of all possible sen-
tence. Why? In the following section we show that it is simply not possible to compute
it for the whole language.

In what follows we show that it is necessary to relativize our measure to a sample
set: it is not possible to compute Q5(G) if S is equal to the language accepted by the
grammar L(G). Suppose that it were possible to compute Q1) (G). Then, we would
also know whether Qp)(G) is equal to one. Since Qp)(G) = 1 if, and only if,
G has singled out exactly one element in the candidate list of each sentence, being
able to compute Q1(c)(G) would imply that it is possible to determine whether G has
completely disambiguated the language.

We have presented a measure for assessing grammars with respect to their ability
to reduce ambiguity. The measure we presented can also be applied to state-of-art-
parsers that return the selected analysis tree for a given input sentence together with its
probability (Collins, 1997; Eisner, 1996; Klein and Manning, 2003).

Our measure has at least three kinds of advantages in comparison to standard parser
evaluation methods:

1. It can be applied to unsupervised learned grammars for which the learned syn-
tactic structure is not as clearly defined as the ones induced from tree-banks.

2. Our measure is not domain dependent. Since a grammar induced from a tree-
bank is usually evaluated on the same type of sentences that were used for in-
ducing it, its evaluated performance does not tell us much about the grammars’
performance on sentences belonging to different domains from those covered in
the tree-bank.

3. Our measure yields information about the parser that is complementary to the
kind of information usually obtained by evaluating parsers (Lin, 1995; Marcus
et al., 1994; Carroll et al., 1998), given that it does not provide any kind of infor-
mation about the correctness of the resulting trees, and, moreover, the measure
does need to have access to the ‘right’ tree. The precise relation between per-
formance measured using existing parser evaluation measures and performance
measured with our new measure (applied to parsers) remains to be explored.

This subsection showed a possible use of probabilities other than probabilities as fil-
tering mechanism. The new semantics provides an answer to question (3) of the intro-
duction; in the next section we show yet another application.

54 Chapter 3. The Role of Probabilities in Probabilistic Context Free Grammars

3.5.2 Using Probabilities for Boosting Performance

In this section we use the new semantics associated to probabilities for increasing the
probability of guessing the right tree. We provide evidence that under certain ¢circum-
stances the probability of getting the correct tree can be increased by adding trees with
less than maximal probability to the set of candidates.

Note that the probability of PParser(z) is the probability of having the correct
tree in it. We can forget for a moment that P Parser(x) only contains trees bearing
maximurm probability and add trees to it in an attempt to increment its probability.
Incrementing its probability has the advantage of incrementing the probability of cap-
turing the correct tree, but has the disadvantage of decrementing the probability of
randomly choosing the correct one. Clearly, there is a trade-off between the number of
non-maximum probability trees we can add to P Parser(x) and the probability gained
at the end of the random selection procedure. Let us take a closer look, and give condi-
tions under which the probability of selecting the correct trees increases when picking
from a set of trees properly extends the set of trees bearing maximum probability.

Let R be a set of trees disjoint with P Parser(z). We show that the probability of
choosing the correct tree increases when R is added to the candidate list P Parser(z)
if, and only if,

E_(}_)]_%_) > |R| + |PParser(z)| - 1. 3.1)
where p, is the probability values shared by all trees in PParser(z). The proof is
simple. The condition in (3.1) above is fulfilled if, and only if,

p(R) + P > plel +p,,|PParser(:t)|,

which is equivalent to
P(R) + ps
|R| + |PParser(z

which, in turn, holds if, and only if,

> Pz,
)]

p(RU PParser(z))
|RU PParser(z)|

> p.

The final result follows from the fact that %A%—ﬁm is the probability of selecting
the correct tree from the expanded list.

Extending the set of candidates is not new in the literature. Collins and Duffy
(2001, 2002); Bod (2003) propose approaches other than uniformly selecting a tree.
Our result gives an estimate of the number of trees one needs to consider in the selec-
tion phase to gain a significant amount of probability mass.

3.6. Conclusions and Future Work 55

The present section focused on new uses of probabilities associated to trees. We an-
swered question (3) by giving two new applications. We show that probabilities can be
used for evaluation purposes and that they can be used to boost parsing performance.

As trivial as the results might look, it is very hard to find a parser implementation
that reports on the probability values associated to its trees. In order to be able to
compare parsers using the probability values they assign to their most probable trees,
the probabilistic models used by the parsers should be consistent. If this is not the case,
the probability values are meaningless. Clearly, this requirement is not trivial to fulfill.
For most of the probabilistic parsers it is unknown whether their underlying models
are consistent. Given the importance of the consistency conditions, we establish in
Chapter 4, consistency properties for bilexical grammars, and Markovian context free
grammars.

3.6 Conclusions and Future Work

This chapter has focused on questions related to the importance of probabilities in the
context of parsing and on investigating uses of probabilities others than filtering. We
have shown that probabilities, when used as a filtering mechanism, can add expres-
sive power to grammars defining a class of tree languages beyond the expressivity of
context free grammars. We also showed that it is not possible to decide whether prob-
abilities solve all ambiguities in the language.

We also gave examples that probabilities can be used in other ways others than as
filtering mechanism. We proposed to use them for evaluating the quality of PCFGs
and for boosting the performance of parsers. Experiments to back up this theoretical
finding would be of great value. We leave them out of the thesis and consider them as
future work.

We argued that in order to use these ideas, it is essential that the underlying proba-
bility models be consistent. We show in Chapter 4 that PCW-grammars provide us with
the machinery necessary to prove the consistency of bilexical grammars and Marko-
vian rules whenever they are induced from tree-banks using n-grams. Despite this,
proving consistency properties for the grammars we induce in Chapters 5, 6 and 7 are
desirable results on the todo list.

) T - _is - = R i 1
2
- 1 A
o
:
N
f
:
i
.
:
. N
.
|
]
; 3
s s - o = L1 R 2
] Ll a B -
' - ey R : - o
2 - -)) 'm’;"f“'p !.
'y . 3 et v,
l_ I_I I Sx! -;?E"\\-r ‘_ T' ' - = |l'\
T
. : ST
) . - N o . . i
)
, . '_
ir
-
N

Chapter 4
Constrained W-Grammars

This chapter consists of two sections. First, the grammatical formalism we propose is
introduced. Our framework is based on so-called W-grammars, due originally to Van
Wijngaarden (Van Wijngaarden, 1965; Mateescu and Salomaa, 1997). We constrain
W-grammars to obtain constrained W-grammars (CWG) which are more suitable for
statistical natural language parsing than W-grammars. As we have seen in the previous
chapter, probabilities are a fundamental part of state-of-the-art natural language pars-
ing technology. We extend CW-grammars with probabilities, defining probabilistic
constrained W-grammars (PCWGs).

In the second part of this chapter we show that the formalism we introduce is gen-
eral enough to capture grammatical frameworks used in three state-of-the-art parsers:
bilexical grammars, Markovian context free grammars, and stochastic tree substitution
grammars (STSGs). For each we provide an embedding into PCW-grammars, which
allows us to discover properties about their expressive power and consistency, and re-
lations between the formalisms studied.

4.1 Grammatical Framework

In this section we describe the grammatical framework we will be working with. We
introduce constrained W-grammars, then present a probabilistic version, and also in-
troduce technical notions needed in later sections.

4.1.1 Constrained W-Grammars

A constrained W-grammar (CW-grammar) is a 6-tuple (V, NT, T, S, =, 2-) such
that:

57

58 Chapter 4. Constrained W-Grammars

V" is a set of symbols called variables. Elements in V™ are denoted with overlined
capital letters, e.g., 4, B, C.

e NT is aset of symbols called non-terminals;, elements in NT are denoted with
upper-case letters, e.g., X, Y, Z.

e T is a set of symbols called terminals, denoted with lower-case letters, e.g., a, b,
c.

e V', T and NT are pairwise disjoint.
e Sisanelementof NT called the start symbol.

e - is a finite binary relation defined on (V' U NT U T)* such that if r = y,
then = € V. The elements of ~— are called meta-rules.

e = is a finite binary relation on (V U NT U T)* such that if u =— v then
u € NT, v is not empty and no variable in v appears more than once. The
elements of —— are called pseudo-rules.

CW-grammars differ from Van Wijngaarden’s original W-grammars in that pseudo-
rules have been constrained. Comparing the above definition with the one presented in
Section 2.4, we see that the original W-grammars allow pseudo-rules to have variables
on the left-hand side as well as repeated variables on both the right- and left-hand
side. The constrained version defined above yields a dramatic reduction in the ex-
pressive power of W-grammars. CW-grammars are weakly equivalent to context free
grammars. Despite the reduction of expressivity, CW grammars are capable of fuily
capturing grammar formalism used in state-of-the-art parsers, something that context
free grammars can not do by themselves.

CW-grammars are rewriting devices, and as such they consist of rewriting rules.
They differ from the usual rewriting systems in that the rewriting rules do not exist a
priori. Using pseudo-rules and meta-rules one builds ‘real’ rules that can be used in the
rewriting process. The rewriting rules produced are denoted by == and are called w-
rules. These rules are built by first selecting a pseudo-rule, and then using meta-rules
for instantiating all the variables the pseudo-rule might contain,

For example, let W = (V, NT, T, S, ™, 2-) be a CW-grammar where V =
{ADJ}, NT = {S, Adj, Noun}, T = {ball, big, fat, red, green, ...}, and =~ and
= are given by the following table:

4.1. Grammatical Framework 59
meta-rules pseudo-rules
ADJ ™ ADJAdj | S = ADJNoun
ADJ s Adj Adj = big

Noun = ball

Suppose now that we want to build the w-rule § == Adj Adj Noun. We take the
pseudo-rule S < ADJ Noun and instantiate the variable ADJ with Adj Adj to
get the desired w-rule. The w-rules defined by W have the following shape: S 2=
Adj™ Noun. Trees for this grammar are flat, with a root node S and series of adjectives
and nouns as daughters; see Figure 4.1.

Adj Adj Noun

| | |
big green ball

Figure 4.1: A flat w-tree.

The string language L(W) generated by a CW-grammar W is the set {3 € T+ :
s 7 B}. In words, a string 3 belongs to the language L(W) if there is a way to
instantiate w-rules == in such a way that they can derive 3 from S. A w-tree yielding
a string { is defined as the == derivation producing [. A w-tree ‘pictures’ the w-rules
(i.e., pseudo-rules + variable instantiations) that have been used for deriving a string;
Figure 4.1 has an example. The way in which a w-rule has been obtained from pseudo-
rules or the way in which its variables have been instantiated remains hidden. The
tree language generated by a CW-grammar W is the set T(W) consists of all w-trees
generated by W yielding a string in L(W).

4.1.1. THEOREM. CW-Grammars are weakly equivalent to context free grammars.

PROOF. Let W = (V, NT, T, S, ™, °—) be a CW-grammar. Let Gy = (NT", T",
S’, R') be a context free grammar defined as follows (to avoid confusion we denote the
rulesin Rby —): NT' = (VUNT); T' = T; S’ is identical to S;and X - a € R
iff X “»aor X 25 a.

Obviously, one has to prove that G is well-defined. The most problematic part is
the definition of the rules. We need to check whether all rules are well-formed. It is

enough to check that every left-hand side has one and only one non-terminal. If a rule
X — aisin Rbecause X = a, then it is clear that X is a non-terminal in V. If it is
in because of X - o, then it is a non-terminal given that X has to be in NT..

60 Chapter 4. Constrained W-Grammars

Next we show that the two grammars generate the same language. To prove this
we just prove that if r 25" sthenr —* 5. The proof is divided in three parts: (i) if
r 235 sthenr —* s (i) if r = sthenr — s (i) if r = sthenr —* s. W If
r 23 sthenr —* s follows immediately from the definition of Gyy-; —— is a subsel
of . () Ifr = sthenr — s also follows from the definition of Gy, (iii) Let r and

s be such that r == s. This implies that there exist ' and s’ such that

1 s 7

r - S
% 15
r S

Since ' € NT, the only possibility for ' == r is for r to be equal to r’, leading to
the following situation:

s l
r — S

l"l

s
But, under the assumption that every variable appears once and only once in the body
of s, both = and - can be emulated by —, implying that r —* s as required.

In the other direction, any CFG G can define a CW-grammar W. The only nec-
essary step for transforming G into a CW-grammar consists of partitioning the set of
rules in G into two different subsets, one functioning as the set of meta-rules, and the
other functioning as the the set of pseudo-rules. -

Note that the previous result does not follow directly from any of the results given in
Chapter 2. In the literature there are examples of different constraints applied to W-
grammars (Mateescu, 1989a,b). These constraints were meant to make subclasses of
enumerable languages. In contrast, our constraints are meant to reduce the expressive
power of W-grammars to a level that allows us to capture the grammatical formalisms
underlying state-of-the-art-parsers. The previous lemma shows that our constraints
reduce the expressive power of W-grammars from Turing computable to context free.
Given a CW-grammar W, the context free grammar underlying W, which we de-
note by CFG(W), is the grammar Gy defined in the proof of Theorem 4.1.1. In order
to facilitate our forthcoming discussion we suppose that rules in G have been marked
somehow to allow us to decide whether a rule in G corresponds to a meta-rule or to a
pseudo-rule in the original CW-grammar. We refer to the set of rules in G marked as
meta-rules as meta-rules and to the set of rules marked as pseudo-rules as pseudo-rules.
Let W be a W-Grammar and let G = CFG(W) be its underlying context free
grammar. Theorem 4.1.1 shows that both W and G accept the same string language.
In what follows we turn to study the relation between W’s tree language and G’s tree

4.1. Grammatical Framework 6l

language. We show that there is a surjective mapping I from T(G) to T(1") which
can be used for effectively parsing 11"-grammars, as we will soon discuss.

We define our tree transformation function T" using a tree rewriting schema. The
rewriting schema is applicable only to trees containing at least one meta-rule. Our
intention is to rewrite those trees in T(G) into trees in 7'(W). After each application of
the rewriting schema, the number of rules marked as meta-rules is reduced by one. The
function I is defined as the recursive application of the schema until applications are no
longer possible, i.e., until all meta-rules have been eliminated. The intermediate trees
in the rewriting procedure do not necessarily belong to either of the two tree languages
T(G) or T(W). The rewriting schema is pictured in Figure 4.2. Left-hand symbols of
meta-rules and pseudo-rules have been marked with superscripts m and s respectively.
The rewriting schema eliminates the rule V"= X, X, ... X, by transforming the tree
in part (a) into the tree in part (b).

NP7

£k AAA

Figure 4.2: A tree rewriting schema.

The function I for transforming trees in T'(W) into trees in T(G) is defined as follows:

I(t) = t, if t does not contain any meta-variable
~ | I(¢), fort suchthatt — ¢/,

where — is the reflexive and transitive closure of the rewriting schema defined above.
A simple inductive proof on the number of meta-rules shows that I" is well defined for
all elements in 7(G), i.e., T takes exactly one value for each ¢ in T(G).

In Figure 4.3 we picture the rewriting procedure for the tree in Figure 4.1. The
variable ADJ that is eliminated in each step is marked with * symbols. Since the tree
in part (c) does not have any more variables, it corresponds to the result of applying
function I" to the tree in part (a).

The function I' is very important for parsing. With it, we can implement a parser for
W-grammars by using a parser for CFGs plus a procedure implementing the function

62 Chapter 4. Constrained W-Grammars

S

Py S

xADJx* Noun

| *ADJx Adj Noun
ADJ Adj ball | | [

t | Adj reen ball
Adj green | J8

l

big big

(a) (b)

Figure 4.3: Two steps in the rewriting procedure. T applied to the tree in part (a) is
results in the tree in Figure 4.1,

. The CFG parser is first used to obtain the tree ¢ in 7(G), and then the procedure
implementing I is used for transforming ¢ into a tree in T{W).

Both the weak equivalence and the existence of the transformation function I sug-
gest that CW-grammars are close to CF-grammars. Do they offer anything more than
just context freeness? Since parsing technology is more interesting in the tree lan-
guage than the string language, the strong equivalence between CW-grammars and
CF-grammars becomes relevant. We give an example to show that CW-grammars are
not strongly equivalent to context free grammars. In other words, the set of trees gener-
ated by CW-grammars differs from the set of trees generated by context free grammars.

4.1.2. EXAMPLE. LetW = (V,NT,T,S, ™3, =5) be a CW-grammar with V = {4,
B,S}, NT = {A,B},T = {a, b}, Z» = {A ™5 44,4 > A, B > BB,
B B}and > = {4 5 4a,B 55,5 25 4B).

S
TR
A A A B B
b
a a a b b

Figure 4.4: A w-tree for the string “aaabb”.

The grammar W generates the language {a*b*} through instantiations of the variables
A and B to strings in A* and B”, respectively. The derivation == for a string aaabb is
as follows: S == AAABB = ¢AABB = aaABB == waaBB 2= aaabB =

aaabb. The tree representing this derivation (Figure 4.4) has only one internal level
(labeled AAABB), and its leaves form the accepted string. No context free grammar
can generate the kind of flat structures displayed in Figure 4.4 since any context free

4.1. Grammatical Framework 63

grammar producing the same language as 11" has more than one intermediate level in
its derivation trees.

4.1.2 Probabilistic CW-Grammars

In Chapter 3, probabilities were shown to be a fundamental part of PCFGs because they
add expressive power to vanilla CFGs. In order to capture state-of-the-art-parsers, we
need to be able to mimic the expressive power of PCFGs. Even though CW-grammars
are more powerful than CFGs, we do not know for certain if their probabilistic version,
to be defined below, adds expressive power to the vanilla version. Still, probabilities
add to CW-grammars a statistical perspective which we show to be very useful in the
following chapters, and which is necessary to easily capture grammar formalisms used
in state-of-the-art parsers.

Probabilistic CW-grammars (PCW-grammars) are CW-grammars where the meta-
rules and pseudo-rules are augmented with probability values, such that the probabili-
ties belonging to meta-rules and pseudo-rules sharing the same left-hand side sum up
to one. More formally, in a probabilistic CW-grammar (V, NT, S, -, =) we have
that

. ZIprp = 1 for all meta-rules z ™, y having z as the left-hand side.

® >+, p=1forall pseudo-rules z ——, y having z as the lefi-hand side.

Next, we need to define how we assign probabilities to derivations, w-rules, and w-
trees. To start with derivations, if o' Z-5 o then there are ay, .. ., ay such that a; =
@it1, 0 = ¢ and ax = a. We define the probability P(a’ ™5 a) of a derivation
o' 73 atobe [1) Play = ayyy)

Now, let X == a be a rule; its probability P(X = a) is defined as

P(X = a) = ZPX—»a YP(a! 23 a),
a’cA

where A = {¢/ € VUNTUT) : X =5 o/,a’ ™3 a}. In other words, the
probability of a w-rule is the sum of the probabilities of all meta derivations producing
it.

The probability of a tree is defined as the product of the probabilities of the w-rules
making up the tree, while the probability of a string a € T is defined as the sum of
the probabilities assigned to all trees yielding .

4.1.3. THEOREM. Let W be a CW-grammar, let G be CFG(W), and let W' be a
PCW-grammar that extends W by assigning probability values to all meta-rules and

64 Chapter 4. Constrained W-Grammars

pseudo-rules in W. There is a way to extend G into a PCFG G’ such that W and G'
assign the same probability mass to all strings in the language accepted by G (which
coincides with the language accepted by 11").

PROOF. LetG = (NT'.T'. 5. R") be a PCFG with NT". T", 5" as defined in the proof
of Theorem 4.1.1 and R’ such that X — a € Riff X "~ a or X =5 . Note that a
== derivation 7 might be the product of many different derivations using rules in R’
(G-derivations for short); let us notate this set of G-derivations with D(7). From the
definitions itis clear that p(7) = 3_ ., P(v). To prove the theorem we need to show

1. that for two different == derivations of the string a 7 and 7/, it holds that D(7)N
D(r") =0, and

2. that for every G-derivation v there is a === derivation 7 such that v € D(7).

Item (1) follows from the facts that I'(v) = 7 for all v in D(7) and that T'(v') = 7' for
all v"in D(7'); consequently, if there is an element in D(7) N D(7’), then 1 is equal to
7', Ttem (2) follows from the fact that I is defined for all G-derivations. -

The above result does not follow from Theorem 4.1.1 because that result does not take
probabilities into account.

For a given PCW-grammar W, the PCFG defined in the proof of Theorem 4.1.3 is
called the PCFG underlying W.

As in the case of non-probabilistic CW-grammars, the tree language of T(G) is
related to the tree language 7°(WW) through the tree transformation function I defined
above. The function I" can also be used for computing the probability of a tree ¢ in
T(W); its probability is equal to the sum of the probabilities of all trees t' in T'(G)
such that I'(#) = ¢. Moreover, since every tree in T(G) is mapped to a tree in T{W),
we obtain that the W grammar is consistent if, and only if, its underlying PCFG is
consistent.

4.1.3 Learning CW-Grammars from Treebanks

Suppose we have a collection of w-trees, from which we would like to induce a CW-
grammar. We distinguish two different strategies for solving this problem. One strat-
egy is aimed at using supervised techniques for learning PCFGs while the second is
aimed at using unsupervised techniques for learning PCFGs.

The first approach consists of three steps.

1. Handcraft a set of meta-rules that might be used for meta-derivation.

4.1. Grammatical Framework 65

2. Expand each tree with all meta-derivations. Such a procedure has the effect of
transforming the CW-treebank into a CF-treebank.

3. Use any PCFG inducing mechanisms, like those discussed in Section 2.3 for
inducing a PCFG from the transformed treebank.

Instead of returning a CW-grammar, the procedure returns the underlying PCFG G of
a W-grammar. Since all meta-rules are known, a unique W-grammar can be defined
from G.

Step (2) is straightforward only if meta-derivations produce unambiguous deriva-
tions, i.e., if for each string produced by meta-derivations produce there is only one
way to derive it. In the case of ambiguous meta-derivations, a way to distribute the
probability mass among all possible derivations has to be designed. In the literature
there are different proposals for re-assigning probabilities (Sima’an and Buratto, 2003;
Bod, 1998; Krotov et al., 1998). Most of these references refer to estimation techniques
for STSGs that, as we will see, deal these problems from the very beginning.

The second approach consists of 2 steps.

1. Extract all bodies of rules from the w-treebank where each body of a rule is a
string of non-terminal and terminal symbols.

2. Use the extracted strings to induce a PCFG grammar.

In contrast with the previous approach, the induced PCFG is not the underlying PCFG
of any CW-grammar; instead, it is the grammar describing the meta-derivation a PCW-
grammar should have. Pseudo-rules have to be handcrafted in order to make the meta-
rules interact with pseudo-rules to rebuild the trees that have appeared in the CW-
grammar.

Both approaches are different and require different techniques. Both have in com-
mon that one set of rules, either pseudo-rules or meta-rules have to be handcrafted.
The presentation we have given here is rather abstract; the differences between the two
become more evident in the rest of the thesis. In Section 4.2 we show that the learn-
ing methodology used for state-of-the-art parsers is an instance of the first approach,
while the grammars used in the experiments of Chapter 5 are instances of the second
approach.

4.1.4 Some Further Technical Notions

Below we will use PCW-grammars to “capture” models underlying a number of state-
of-the-art parsers. The following will prove useful. Let F' and G be two grammars with
tree languages T(G) and T F) and languages L{F') and L(G), respectively. Then, F'is

66 Chapter 4. Constrained W-Grammars

f-equivalent to G if L(F7) = L({(} and there is a bijective function [: T(F) — T(G).
Given two grammatical formalisms A and B. we say that A is f-transformable to B.
if for every grammar F in A there is a grammar G in I3 such that £ is f-equivalent
1o . Note that the definition of f-transformable is a generalization of the concepts of
weak and strong equivalence: both can be seen as f-equivalence for particutar choices
of the function f. Namely, two grammars are weakly equivalent if the function f
1s surjective, and they are equivalent if the function f is bijective and ¢ and f(¢) are
isomorphic trees, for all trees in the domain of f.

4.2 Capturing State-of-the-Art Grammars

In this section we show that PCW-grammars are a powerful formalism; we show that
they are powerful enough to capture the models underlying a number of state-of-the-art
parsers. Clearly, the grammatical framework underlying a parser is a key component
of the overall definition of the parser which determines important characteristics of the
parser, either directly or indirectly. Among others things, the grammatical framework
defines the set of languages the parser can deal with, a lower bound on the parser’s
complexity, and the type of items that should be learned by the second component men-
tioned in Section 4.1.3. Hence, a thorough understanding of the grammatical frame-
work on which a parser is based, provides a great deal of information about the parser
itself. We are particularly interested in the following properties:

I. The expressive power of a grammar formalism.

2. Conditions under which the probability distribution defined over the set of pos-
sible syntactic analyses is consistent: if this is the case, the probabilities asso-
ciated with an analysis can be used as meaningful probabilistic indicators both
for further stages of processing (Manning and Schiitze, 1999) and for evaluation
(Infante-Lopez and de Rijke, 2004b).

3. The relation to other grammatical frameworks; this provides insights about the
assumptions made by the various frameworks.

Since building a parser is a time consuming process, formal properties of the under-
lying grammatical framework are not always a priority. Also, comparisons between
parser models are usually based on experimental evidence. In order to establish formal
properties of parsers and to facilitate the comparison of parsers we believe that a uni-
fying grammatical framework, from which the grammars of different parsers can be
obtained as instances, is instrumental. We show that the PCW framework is capable
of capturing three state-of-the-art grammatical formalisms, namely bilexical grammars

4.2. Capturing State-of-the-Art Grammars 67

(Eisner, 2000), Markovian context tfree grammars (Collins, 1997), and stochastic tree
substitution grammars (Bod, 1998). For each of these three formalisms, we provide an
embedding in PCW-grammars, and we use this embedding to derive results regarding
expressive power, consistency, and relations with other grammatical formalisms.

4.2.1 Bilexical Grammars

Bilexical grammars (Eisner, 1996, 2000) is a formalism in which lexical items, such as
verbs and their arguments, can have idiosyncratic selectional influences on each other.
Such grammars can be used for describing bilexical approaches to dependency and
phrase-structure grammars, and a slight modification yields link grammars.

Background

A split unweighted bilexical grammar B is a 3-tuple (W, {r, }wew, {lw }wew) where:

e W is aset, called the (terminal) vocabulary, which contains a distinguished sym-
bol ROOT.

e For each word w € W, [, and r,, are a pair of regular grammars with start
symbols S;, and S, respectively. Each grammar accepts some regular subset of
wr.

A dependency tree is a tree whose nodes (internal and external) are labeled with words
from W; the root is labeled with the symbol ROOT. The children (*dependents’) of a
node are ordered with respect to each other and the node itself, so that the node has
both left children that precede it and right children that follow it. A dependency tree
T is grammatical if for every word token w that appears in the tree, [,, accepts the
(possibly empty) sequence of w’s left children (from right to left), and r,, accepts the
sequence of w’s right children (from left to right).

4.2.1. EXAMPLE. Let B = (W, {1, }wer}, {Tw}wer) be a split bilexical grammar de-
fined as follows: W = {a,b,ROOT}, I, = b*, v, = €, 1, = €, lroor = a, TrooT = €
and rp, = (a|b)*.! This grammar accepts the string “bbabaa” because {goor accepts a,
I, accepts “bbb”, I, accepts ¢, l, accepts ¢, and 7, accepts “a”. See, for example, the
tree in Figure 4.5.

'We use regular expressions instead of automata because the former are more compact. In order to
make the example follow the definition, regular languages have to be transformed into automata.

68 Chapter 4. Constrained W-Grammars

ROOT

. - .
b b a b a a ROOT
Figure 4.5: An example of a dependency tree.

Bilexical Grammars as CW-grammars

With every bilexical grammar B we can associate a CW-grammar W5 according to the
following definition.

4.2.2. DEFINITION. Let B = (W, {l, }wer}, {7w}wew) be a split bilexical grammar.
Let Wg = (V, NT, T, S, =, ->-) be the CW-grammar defined as follows:

e The set of variables V' consists of the set of start symbols S;,, and S, from
regulars grammars l,, and r,, respectively, for each w in W.

o The set of non-terminals NT is some set in 1-1-correspondence with W, e.g., it
can be defined as NT = {W : w € W} using a string-priming operation.

e The set of terminals T is the set of words W.

e The set of meta-rules is given by the union of {w’ *~ w : w € W} and the
rules in all of the right and left regular grammars in B.

e The set of pseudo-rules is given by w’ ~— Sp, wS,, where [, denotes the regular
expression inverting (reading backwards) all strings in L(l,,).

Below, we establish the (weak) equivalence between a bilexical grammar B and its
CW-grammar counterpart W. The idea is that the set of meta-rules, which produce
derivations that remain hidden in the tree, are used for simulating the regular automata.
Pseudo-rules are used as a nexus between a hidden derivation and a visible one: for
each word w in the alphabet, we define a pseudo-rule having w as a terminal, and
two variables Sy, and S, marking the left and right dependents, respectively. These
variables correspond to the start symbols for the left and right automata [,, and r,,
respectively. Instantiating the pseudo-rule associated to w would use a left and a right
derivation using the left and the right automata, respectively, via meta-rules. The whole
derivation remains hidden in the == derivation, as in bilexical grammars.

4.2. Capturing State-of-the-Art Grammars 69

4.2.3. LEMMA. Bilexical grammars are f-transformable to CW-grammars.

PROOE. We have to give a function f : T(B) — T(W'g), where B is a bilexical gram-
mar and V1 g the grammar defined in Definition 4.2.2, such that f is invertible. A bilex-
ical tree yielding the string s = wy..... w,, can be described as a sequence u;,....u,
of 3-tuples (a;. w;. 3;) such that [, accepts a; and -, accepts 3. The desired function
f transforms a dependency tree in a w-tree by transforming the sequence of tuples into
a =% derivation. We define f as f((a.w;, 3)) = Wi == aw;3. The rule correspond-
ing to (a. w;. 3) is the one produced by using the pseudo rule WY ~— S-S, and
instantiating S;; and S, with a and 3 respectively. Since the sequence of tuples forms
a dependency tree, the sequence of w-rules builds up a correct w-tree. -1

Weighted bilexical grammars are like unweighted bilexical grammars but all of their
automata assign weights to the strings they generate. By Lemma 4.2.3, weighted bilex-
ical grammars are a subset of PCW-grammars.

Expressive Power and Consistency

By Lemma 4.2.3 bilexical grammars are weakly equivalent to context free grammars.
In order to prove that they are not strongly equivalent it is enough to note that the
grammar in Example 4.2.1 can generate trees like the ones pictured in Figure 4.6 for
arbitrary k. That is, the grammar in Example 4.2.1 can generate flat trees like the
ones pictured in Figure 4.6 where nodes can have arbitrarily many siblings. Any CFG
generating the same string language will produce non-flat structures.

/—A/\ ﬁ/\
[- . [] [[] . -
b b a b b b a ROUT

.
ROOT
(a) (b)
/‘A/_\
e *°° 5 . .
b b a ROOT

(<)

Figure 4.6: Different dependency trees that can not be generated by CFGs.

We now show that the learning mechanism proposed in (Eisner, 1996) produces consis-
tent probability distributions. We start by presenting the way Eisner induces a bilexical
grammar B from a bilexical treebank; next, we show how the given treebank can be
transformed into a CF treebank. Finally, we show that the transformed treebank can be
used to learn the underlying PCFG G of a PCW-grammar W such that W' is equivalent
to B.

70 Chapter 4. Constrained W-Grammars

In (Eisner. 1996). bilexical grammars are learned under the assumption that all
words share a common automaton 4 and that this unique automaton is learned using
bigrams, or equivalently using a degree one Markov chain (see Appendix B for an in-
troduction to Markov chains in the context of natural language processing). The learn-
ing procedure proceeds as follows. First, training material for inducing the automaton
is extracted from the bilexical treebank. The training material is constructed adding
all right and left dependents strings in all bilexical trees. Extracted strings should be
prefixed with a special mark “-s- and postfixed with the special mark “-e-". These
marks should be treated as indivisible units. For example, if a tree like the one pic-

tured in Figure 4.5 is found in the treebank, strings “—s ~ bba — e—", “—s —q — e—",
“—s-—a—-e-"-s—a—-—e—""—s—b—e-","—s5—-ba—e-",“—s5s —a—e-",
“—8 — a _ 6_11’ “—S _ b — 6—”’ “‘S _ ba . 6—”. “—,5' — b _ 6_5"“_8 . b _ e_!!

are to be added to the training material. Since all words share the same automaton, the
definition of grammar B is direct from automaton A.

Now, suppose that a bilexical grammar G is learned as described above using an
automaton A, and suppose that G 4 is the linear PCFG equivalent to the automaton A
(for details on the equivalence between linear CFGs and automata see (Hopcroft and
Ullman, 1979); for details on the probabilistic flavor see (Abney et al., 1999)).

Our proof is complete if we manage to transform the bilexical treebank into a CF
treebank that can be used to learn a consistent CFG G. We also need to show that a
W-grammar W can be defined such that its underlying PCFG is equal to G and that W
is equivalent to B. In what follows we show how to accomplish this.

We start by transforming the bilexical-treebank into a CF-treebank. The main idea
of the transformation is to rewrite trees using the inverse of the transformation defined
in Lemma 4.2.3. Trees in the bilexical treebank are transformed into CF trees using
the assumption that the meta-rules used actually belong to GG. Figure 4.7 shows an
example of such a transformation.

All transformed trees form a new CF-treebank. Using a maximum likelihood es-
timation technique (see Section 2.3 for details) we can induce a PCFG G. Note that
the set of rules in G can be seen as the union of two subsets. The first is the set
{Xa —1 —s~a— s—} where a is terminal symbol and X, is a non-terminal uniquely
associated to a. Al such rules have probability 1 since each variable X, is always
expanded with the same body across the whole treebank. The second subset is given
by the set of rules in G 4.

G is a consistent grammar given that it has been induced using maximum likelihood
(Chi and Geman, 1998; Joan-Andreu and Benedi, 1997). Our task now is to show that
G can be used to build a CW-grammar W such that G is its underlying PCFG and W
is equivalent to B.

In order to define W' we have to define its set of rules and its set of meta-rules. The

4.2. Capturing State-of-the-Art Grammars 71

Xa

/A 77N S a S
[] [[] [] I
a b a ROOT /\
S-E
B Xy

S-

(@) (b

Figure 4.7: The dependency tree in (a) is transformed into the context free tree in (b).

set of pseudo-rules is given by the set {X, —1 —s — a — s—} while its set of meta-
rules is given by the set of rules in G 4. It is immediate from the tree transformation
function pictured in Figure 4.7 that W is strongly equivalent to B, moreover, it is
immediate that both grammars assign the same probability value to all trees in their
tree languages. Consequently, since G is consistent, W is consistent. Finally, since W
is consistent, B is consistent as desired.

4.2.2 Markovian Context Free Grammars

In this subsection we capture one of the models presented by Collins: his so-called
first model. The main idea behind (Collins, 1997, 1999) is to extend what he calls a
“simple” CFG to a lexicalized back-off grammar.

Background

Collins’s first model may be viewed as a way to describe the probabilities assigned to
CF-like rules. A rule has the following shape:2

P(h) — Lu(ln) ... Ly(l) HR)Ry(r1) . .. R (7)), (4.1)

2In this subsection, we follow Collins’s notion and denote the parent with P,

72 Chapter 4. Constrained W-Grammars

where H is the head-child of the phrase. and thus inherits the head word 4 from its
parent P, and where L, (I,), Li({;) and R\(r)), ..., R,.(r,,) are left and right
modifiers of [, respectively. Either or both of n and m may be zero, sothatn = m =0
for unary rules. Figure 4.8 shows a tree with its respective rules.

TOP

I
S(bought)

NP(week) NP(IBM) VP(bought)
PN |

JIJ NIN Nfl‘”’ VBD NP(Lotus)
! |
last week IBM bought NNP
|
Lotus
TOP — S (bought)
S (bought) — NP (week) NP (IBM) VP (bought)
NP (week) — JJ (last) NN (week)
NP (IBM) — NNP (IBM)
VP (bought) — VBD (bought) NP (Lotus)
NP (Lotus) — NNP (Lotus)

Figure 4.8: A lexicalized parse tree and the rules it contains; POS tags omitted.

Collins defines the probability of a rule such as (4.1) as the probability of its right-hand
side, conditioned on the probability of its left-hand side, which is then decomposed as
follows:

P(La(ln) ... Li()H(R)Ri(r1) - .. R ()| P(R)) = Pu(H|P(R))x
X H Pu(Li(L)|La(h), - - - Lica(lia), P(R), H) %

i=1,....n+1

X H Pr(Rj(Tj)lLl(lI)s~'-’Ln+l(ln+l)1Rl(rl)""»R}'—l(rj—l),P(h)’H)’

where [,, ;1 and r,, 4, are defined as STOP. Collins approximates the probabilities using
Markov independence assumptions for each order. In particular, the generation of the
right-hand side of a rule such as (4.1), given the left-hand side, is decomposed into
three steps:

1. The head constituent label of the phrase is generated, with probability equal to
Pu(H|P,h).

4.2. Capturing State-of-the-Art Grammars

2. Modifiers to the left of the head are generated, with probability equal to

[I PuLi)p.h H),
i=1..n+1
where L, ;1(l.+1) = STOP. The STOP symbol is a non-terminal, and the model
stops generating left modifiers as soon as it has been generated.

3. Modifiers to the right of the head are generated, with probability equal to

11 Pa(Ri(r)IP.h, H),

i=i..m+1
where Ry, 1(rmy1) is defined as STOP.

We can think of the probabilities Pr(R;(r;}| P, h, H) and Pr(L;({;)| P, h, H) as the
probabilities assigned to arcs labeled R;(r;) and L;(l;) respectively in a zero-order
Markov chain M. M has one state and as many arcs as combinations of symbols
R;(r;) and L;(l;). M also determines the probability to be assigned to rules.

Markovian Context Free Grammars as CW-grammars

Recall that for capturing bilexical grammars, we first described the formalism using
regular languages and later added probabilities. To capture Collins’s first model we
proceed in the opposite direction. We use the zero-order Markov models Collins builds
to define regular languages and use these to build a CW grammar corresponding to
Collins’s model.

Independent of their order, Markov chains describe a regular language. Let M =
(S, P, F, I) be a Markov chain, where S is a sequence of states, P is the transition
matrix, F' C S is the set of absorbing states, and [is the tnitial distribution of probabil-
ities. We can directly transform M into an automaton Ay, by taking S as the states of
the automaton, F' as the set of final states, and the initial state as the state that receives
an initial probability mass.

Let NT be the set of possible phrase names, e.g., NP, PP, etc.; let W be the set
of words in the lexicon; we assume that both sets are finite. For each pair (H,w) €
NT x W there are two Markov chains 7(g) and {(41), such that Collins’ rules can be
rewritten as (4.1) as follows:

(P,h) — (Lo, b)) . (L1, W) (H B)(Ri, 1) -« . (R Tm)-

For strings (H, h){L1,{1) ... (Ln, ;) and (H, R)(Ry,71) . . . (R, 7) the probability is
given by the probabilities assigned to paths

(L1,01) ... (Ln, 1,)STOP

74 Chapter 4. Constrained W-Grammars

and
(H1~ 7'1) s (Rmv rm)STOP

in the Markov chains [, 5, and r g », respectively.

4.2.4. DEFINITION. Let B = (JVT, W, {I(H,uv)}u-eu'.heNT}» {rlH.uz)}u'e“'.hENT) be a

grammar based on Markov rules. Let W = (V. NT.T.S. —. =) be the CW-
grammar defined as follows:

e The set of variables V" is given by the set of start symbols S;m‘u_) and Sy, . from

the regular grammars ly .,y and r(y ., respectively for each w in .

o The set of non-terminals N7 is some set in 1-1-correspondence with 1, e.g., it
can be defined as NT = {w' : w € W}, where _ is a string priming operation.

e The set of terminals T is the set of words 1.

e The set of probabilistic meta-rules is given by the union of the rules in each of the
right and left regular grammars (i.e., the set givenby 4 = aiff A — a € U H)
or A — a € r(y,, for some H and some w) plus the set {w’ Twiwe W)

e The set of pseudo-rules is given by (P, k) ~—p, (myphy) St (H:R)S,

T(H.h)"

4.2.5. LEMMA. Markov rules as used in Collins’s first model are f-transformable to
CW-grammars.

The proof of this lemma is similar to the proof of Lemma 4.2.3 and we omit it here.

Expressive Power and Consistency

By Lemma 4.2.5 Collins’s first model is weakly equivalent to context free grammars.
Moreover, the idea behind Example 4.1.2 can be used to show that Collins’s first model
is not strongly equivalent to CFGs: Collins’s first model can produce flat structures
that cannot be captured by PCFGs (see Example 4.6 and Example 4.1.2 for examples
of flat structures non-capturable by CFGs); as a consequence, the probabilistic version
of Collins’s first model cannot be captured using PCFGs.

As a consequence of Lemma 4.2.5, learning Markov rule-based grammars is equiv-
alent to learning PCW-grammars, which, in tumn, is equivalent to learning the PCFGs
underlying PCW-grammars. Collins (1997) assumes that all hidden derivations are
produced by Markov chains. Under the PCW-paradigm, his methodology is equivalent
to transforming all trees in the training material by making all their hidden derivations
visible and inducing the underlying PCFG from the transformed trees. Variables in the
equivalent PCW-grammar are defined according to the degree of the Markov chain.

4.2. Capruring State-of-the-Art Grammars 75

If the Markov chain used is of degree zero, there is only one variable (the Markov
chain contains a unique state), and the induced Markov rule-based grammar is consis-
tent. This consistency result follows from the fact that inducing a zero-degree Markov
chain is the same as inducing the underlying PCFG in the equivalent PCW-grammar
using maximum likelihood estimation, plus the fact that using maximum likelihood for
inducing PCFGs produces consistent grammars (Chi and Geman, 1998: Joan-Andreu
and Benedi, 1997).

Finally, the embedding of Collins’s and Eisner’s models into CW-grammars allows
us to compare them. Both models have quite similar meta-rules and pseudo-rules. The
main difference between their rules is that Collins’s codify more information as vari-
ables. The embedding into CW-grammars allows us to see their leaming step as a
treebank rewriting procedure, followed by a CFG induction step. The treebank gener-
ated in the first step is the one used as training material in the second. According to
this perspective, the two approaches differ in the rewriting function they use in the first
step, while both approaches use maximum likelihood in the second step.

4.2.3 Stochastic Tree Substitution Grammars

Data-oriented parsing (DOP) is a memory-based approach to syntactic parsing. The
basic idea is to use the subtrees from a syntactically annotated corpus directly as a
stochastic grammar. The DOP-1 model (Bod, 1995) was the first version of DOP, and
most later versions of DOP are vartations on it. The underlying grammatical formalism
is stochastic tree substitution grammars (STSG), which is the grammatical formalism
we capture here.

Background

The grammatical formalism is extremely simple and can be described as follows:
for every sentence in a parsed training corpus, extract every subtree. Now, we use
these trees to form a stochastic tree substitution grammar. Formally, a stochastic tree-
substitution grammar (STSG) G is a 5-tuple (V, V7, S, R, P) where:

e Vy is a finite set of nonterminal symbols.
e V7 is a finite set of terminal symbols.
e 5 € Vy is the distinguished symbol.

e R is a finite set of trees, called elementary trees, whose top nodes and interior
nodes are labeled by nonterminal symbols and whose yield nodes are labeled by
terminal or nonterminal symbols.

76 Chapter 4. Constrained W-Grammars

¢ P isafunction which assigns to every elementary tree { € R a probability P(t).
For a tree ¢ with a root node symbol root(t) = a, P(t) is interpreted as the
probability of substituting ¢ for a node a. We require, therefore, for a given a
that Z{,:mot(”:a} = 1 (where t's root node symbol is a).

If t; and ¢, are elementary trees such that the left-most non-terminal leaves node sym-
bol of ¢; is equal to the root node symbol of £,, then ¢; o t; is the tree that results
from substituting £, in this left-most non-terminal leaves node symbol in ¢;. The par-
tial function o is called leftmost substitution or simply substitution. Trees are derived
using leftmost substitution.

STSGs as CW-grammars

A STSG is not a context free grammar. The main difference, and the hardest to capture
in a CFG-like setting, is the way in which probabilities are computed for a given tree.
The probability of a tree is given by the sum of the probabilities of all derivations
producing it. CW-grammars offer a similar mechanism: the probability of the body of
a w-rule is the sum of the probabilities of all meta-derivations producing it. The idea
of the equivalence is to associate to every tree produced by a STSG a w-rule of the
PCW-grammar in such a way that the body of the w-rule codifies the whole tree.

To implement this idea, we need to code up trees as strings. The simplest way to
achieve this is to visit the nodes in a depth-first left-to-right order. For each inner node,
we write the CFG production, while for the leaves, we write the symbol itself if the
symbol is a terminal and a primed version of it if the symbol is a non-terminal. For
example, the code describing the tree in Figure 4.9(a) is

(A, BAB)B'(A, BAB)B'A'B'(B, a)a.

The first step in capturing STSGs is to build meta-rules capturing elementary trees
using the notation just introduced. Specifically, let ¢ be an elementary tree belonging
to a STSG. Let S be its root and « its string representation. The CF-like rule S’ — o
is called the elementary rule of t. Elementary rules store all information about the
elementary tree. They have primed non-terminals where a substitution can be carried
out. For example, if t is the elementary tree pictured in Figure 4.9.(b), its elementary
rule is §" — (S, AB)(A, B)(A, ab)ab(B, AC)(A, ab)abC’. Note the primed version
of C in the frontier of the derivation.

4.2.6. DEFINITION. Let H = (Vy, V7, S, R, P) be a STSG. Let Wy = (V, NT, T,
S’, I, 25) be the following CW-grammar.

e V is the primed version of Vp.

4.2. Capturing State-of-the-Art Grammars 77

A S
B A B A B
PN T
B/fl\\B 2|1 a b A C
P
a b
(a) (b)

Figure 4.9: (a) A derivation tree. (b) An elementary tree.

(A,a)isin NTiff (4, @) — € appears in some elementary tree.

T is exactly as Vr.
¢ S’ is a new symbol.

e The set of meta-rules is built by transforming each elementary tree into its cor-
responding elementary rule.

The set of pseudo-rules is given by (4, @) = ¢ if A — « appears in a elemen-
tary tree, plus rules S’ *— S.

Two remarks: first, all generative capacity is encoded in the set of meta-rules. In the
CW-world, the body of a rule (i.e., an instantiated pseudo-rule) encodes a derivation
of the STSG. Second, the probability of a w-rule is the sum of the probabilities of
meta-derivations yielding the rule’s body.

4.2.7.LEMMA. Let H = (Vn, V7, S, R, P) be a STSG and Wy the CW-grammar
for H as given in Definition 4.2.6. There is a one-to-one correspondence between
derivations in H and meta-rule derivations in Wy.

PROOF. Let ¢ be a tree produced by H. We prove the lemma using induction on the
length of the derivation producing t. If has length 1, there is an elementary tree ¢, such
that S is the root node and yields a, which implies that there is a meta-rule obtained
from the elementary rule corresponding to the elementary tree ¢,. The relation is one-
to-one as, by definition, meta-rules are in one-to-one correspondence with elementary
trees.

Chapter 4. Constrained W-Grammars

Suppose the lemma is true tor derivation lengths less than or equal to n. Suppose t
is generated by a derivation of length n+ 1. Assume there are trees ¢y, to with t,ot, = ¢.
By definition there is a unique meta-rule r; corresponding with ¢, and by the inductive
hypothesis there is a unique derivation for t,. -

4.2.8. LEMMA. Let H = (\'y V7. 5. R, P) be a STSG, and Wy the CW-grammar for
H as given in Definition 4.2.6. Then W'y accepts the same set of strings as H, i.e.,
STSGs and PCW-grammars are weakly equivalent.

PROOF. Let v be a string in L{H). There is at least one tree derivation ¢, o ... o t;
vielding a. From Lemma 4.2.7 we know that there is a w-rule S’ == « such that after
applying rules (A, 3) = ¢, a is obtained. =

4.2.9. COROLLARY. Let H == (Vy, V1, S, R, P) be a STSG and Wy the CW-grammar
for H as given in Definition 4.2.6. There is a one-to-one correspondence between
derivations in H and W'y.

4.2.10. COROLLARY. STSGs are f-transformable to CW-grammars.
PROOF. The result is a direct consequence of Lemma 4.2.8 and Lemma 4.2.9. -

4.2.11, LEMMA. Let H = (VN,V1, S, R, P) be a STSG, and let Wy be the CW-
grammar given in Definition 4.2.6. Both grammars assign the same probability mass
to trees related through the one-to-one mapping described in Corollary 4.2.9.

PROOF. A tree has a characteristic w-rule, defined by its shape. In other words, the
probability of a w-rule according to the definition of PCW-grammars is given by the
sum of the probabilities of all derivations producing the rule’s body, i.e., all STSG
derivations producing the same tree. As a consequence, a particular STSG tree, iden-
tified by the body of the corresponding w-rule, has the same probability mass as the
amount assigned to its corresponding w-rule by the equivalent CW-Grammar. -

Expressive Power and Consistency

By Corollary 4.2.10, STSGs are weakly equivalent to context free grammars. The con-
sistency of a STSG depends on the methodology used for computing the probabilities
assigned to its elementary trees. DOP-1 is one particular approach to computing these
probabilities. Under the DOP-1 perspective, a tree ¢ contributes all its possible sub-
trees to a new treebank from which the probabilities of elementary trees are computed.
Probabilities of an elementary tree are computed using maximum likelihood. Since

4.3. Discussion and Conclusion 79

the events in the new treebank are not independently distributed, the resulting proba-
bilities are inconsistent and biased (Johnson, 2002). Solutions taking into account the
dependence between trees in the resulting treebanks have been suggested (Sima’an and
Buratto, 2003).

Consistency conditions cannot be derived for the DOP-1 estimation procedure be-
cause it does not attempt to learn the underlying PCFG. In fact, our formalism suggests
that probabilities should be computed differently than they are done in DOP-1. By our
embedding, a tree ¢ in the treebank corresponds to the body of a pseudo-rule instanti-
ated through meta-derivations; ¢ is the final “string” and does not have any information
about the derivation that took place. But viewing ¢ as a final string changes the prob-
lem definition! Now, we have as input a set of elementary rules and a set of accepted
trees. The problem is to compute probabilities for these rules: an unsupervised prob-
lem that can be solved using any unsupervised technique, e.g., (Carroll and Charniak,
1992; Chen, 1995). The consistency of the resulting STSG depends on the consistency
properties of the unsupervised method.

4.3 Discussion and Conclusion

In this chapter we introduced constrained W-grammars and we augmented them with
probabilities. Probabilities provide a disambiguation mechanism and a statistical per-
spective. It is still an open question whether probabilities add expressive power to
CW-grammars; the strategy used in Chapter 3 can not be used for PCW-grammars. To
see this, one should note that CW-grammars do not have any inherently ambiguous
languages: any CW-grammar W with start symbol .S, meta-rules M and pseudo-rules
P can be transformed into an unambiguous grammar G’ by defining G”’s start symbol
to be S, its unique meta-rule to be S’ =~ S and its meta-rules to be M U P. G is
unambiguous because it hides inside meta-derivations practically all derivations. All
trees in T(G") are very flat, and there is exactly one tree for each string in the language.

Do PCW-grammars add anything? We think that the importance and contribution
of our grammatical formalism has to be considered from the perspective of grammat-
ical formalisms underlying state-of-the-art parsers. It is usually the case that gram-
matical formalisms used in parsers are not clearly stated, they are hard to identify
from the definition of the parser (see (Bikel, 2004) for an account of the details of
Collins’s parser) and their formal properties require ad-hoc proofs (see (Bod, 1998)
for expressive power properties of STSGs) or are not proven at all. We have shown
that PCW-grammars provide a common formalism based on a well-known grammat-
ical framework with computational properties that are very well understood. Clearly,
PCW-grammars greatly reduce the expressive power of W-grammars, but still, we man-

80 Chapter 4. Constrained W-Grammuars

age to capture the grammatical formalisms underlying state-of-the-art parsers with the
remaining expressive power and to establish new and important facts about them.

In particular, we examined the expressive power of three formalisms (bilexical
grammars, Markovian context free rules, and stochastic tree substitution grammars)
together with some conditions under which the inferred grammars are consistent. Fi-
nally, we should point out that, despite their similarities, there is a fundamental differ-
ence between PCW-grammars and PCFGs, and this is the two-level mechanism of the
former. This mechanism allows us to capture three state-of-the-art natural language
parsers, which cannot be done using standard PCFGs only.

The results in this chapter shed light on the relationship between a number of gram-
matical formalisms, not just between context free grammars and PCW-grammars. In
particular, we have shown that, from a formal perspective, bilexical grammars and
Markovian context free grammars do not differ in a principled way: both are based
on approximating bodies of rules using Markov models. We also found that STSGs
and Markov rules have certain similarities. Markov rules and STSGs suppose that rule
bodies are obtained by collapsing hidden derivations. That is, for Markov rules a rule
body is a regular expression (or equivalently a Markov chain). Similarly, STSGs take
this idea to the extreme by taking the whole sentence to be the yield of a hidden deriva-
tion. PCW-grammars naturally suggest intermediate levels of abstraction; in Chapter 5
we show that these levels can be used to reduce the size of grammars induced from
treebanks, and, hence, to optimize parsing procedures.

From a theoretical point of view, the concept of f-transformable grammars, which
we use heavily in our proofs, is a novel and very powerful concept that relaxes the
known equivalence notions between grammars. Since arbitrary functions f can be
defined between arbitrary tree languages and CFG-like trees, they can be used to
map other formalisms like tree adjoining grammars (Joshi, 1985) or categorial gram-
mars (Wood, 1993) to context free trees. As part of our future research, we aim to
capture further grammatical formalisms and to characterize the nature of the functions
S used to achieve this.

Chapter 5

Alternative Approaches for Generating Bodies
of Grammar Rules

5.1 Introduction

So far, we have developed a grammatical formalism capable of capturing different
state-of-the-art language models, which gave us a novel perspective on state-of-the-art
language models. In Chapter 4 we identified that some language models use n-grams
for building bodies of rules. From the literature, we know that n-grams have had a big
impact on the state-of-the-art in natural language models. They are central to many lan-
guage models (Charniak, 1997; Collins, 1997; Eisner, 1996; Collins, 2000), and despite
their simplicity, n-gram models have been very successful. Modeling with n-grams is
an induction task (Gold, 1967): given a sample set of strings, the task is to guess
the grammar that produced that sample. Usually, the grammar is not chosen from an
arbitrary set of possible grammars, but from some given restricted class. Grammar in-
duction consists of two parts: choosing the class of languages amongst which to search
and designing the procedure for performing the search. By using n-grams for gram-
mar induction one addresses the two parts in one go, and the use of n-grams implies
that the solution will be searched for in the class of probabilistic regular languages,
since n-grams induce probabilistic automata and, consequently, probabilistic regular
languages. But probabilistic regular languages induced using n-grams form a proper
subclass of the class of all probabilistic regular languages; for instance, n-grams are
incapable of capturing long-distance relations between words. At the technical level
the restricted nature of n-grams is witnessed by the special structure of the automata
induced from them, as we will see in Section 5.4.2.

N-grams are not the only way to induce regular languages, and they are not the
most powerful way to do so. There is a variety of general methods capable of inducing

81

82 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

all regular languages (Denis, 2001; Carrasco and Oncina, 1994; Thollard et al., 2000).
What is their relevance for natural language parsing? Recall from Chapter 4 that regu-
lar languages are used for describing the bodies of rules in a grammar. Consequently,
the quality and expressive power of the resulting grammar is tied to the quality and
expressive power of the regular languages used to describe them. And these proper-
ties, in turn, are influenced directly by the method used to induce them. At this point
a natural question arises: can we gain anything in parsing from using general methods
for inducing regular fanguages instead of methods based on n-grams? Specifically, can
we describe the bodies of grammatical rules more accurately and more concisely by
using general methods for inducing regular languages?

In the context of natural language parsing we present an empirical comparison
between algorithms for inducing regular languages using n-grams on the one hand,
and more general algorithms for learning the general class of regular language on the
other. We proceed as follows. We generate our training data from the Wall Street
Journal section of the Penn Tree Bank (PTB), transforming it to projective dependency
structures, following (Collins, 1996). Since projective dependency structures can be
seen as a special type of context free grammars (Gaifman, 1965), word dependents can
be seen as bodies of context free rules. We extract these rule bodies and use them as
training material for the rule induction algorithms we consider. The automata produced
this way are then used to build grammars which, in turn, are used for parsing.

We are interested in two aspects of the use of probabilistic regular languages for
natural language parsing: the quality of the induced automata and the performance of
the resulting parsers. For evaluation purposes, we use two metrics: perplexity for the
first aspect and percentage of correct attachments for the second, both explained in
detail in Section 2.2.3. The main results of the chapter are that, measured in terms of
perplexity, automata induced by algorithms other than n-grams describe rule bodies
better than automata induced using n-gram-based algorithms. Moreover, the gain in
automata quality is reflected by an improvement in parsing performance. The pars-
ing performance of both methods (n-grams vs. general automata) can be substantially
improved by splitting the training material into POS categories. As a side product,
we find empirical evidence to explain the effectiveness of rule lexicalization (Collins,
1997; Sima’an, 2000) and parent annotation techniques (Klein and Manning, 2003) in
terms of a reduction in perplexity in the automata induced from training corpora.

5.2 Overview

We want to build grammars using different algorithms for inducing their rules. Our
main question is aimed at understanding how different algorithms for inducing regular

5.3. From Automata to Grammars 83

languages impact the parsing performance with those grammars. A second issue that
we want to explore is how the grammars perform when the quality of the training
material is improved, that is, when the training material is separated into part of speech
(POS) categories before the regular language learning algorithms are run.

The first step is to transform the PTB into projective dependencies structures fol-
lowing (Collins, 1996). From the resulting tree bank we delete all fexical information
except POS tags. Every POS in a tree belonging to the tree-bank has associated to it
two different, possibly empty, sequences of right and left dependents, respectively. We
extract a}l these sequences for all trees, producing two different sets containing right
and left sequences of dependents, respectively.

These two sets form the training material used for building four different gram-
mars. The four grammars differ along two dimensions: the number of automata used
for building them and the algorithm used for inducing the automata. As to the latter
dimension, in Section 5.4 we use two algorithms: the Minimum Discriminative Infor-
mation (MDI) algorithm, and a bigram-based algorithm. As to the former dimension,
two of the grammars are built using only two different automata, each of which is
built using the two sample set generated from the PTB. The other two grammars are
built using two automata per POS, exploiting a split of the training samples into mul-
tiple samples, two samples per POS, to be precise, each containing only those samples
where the POS appeared as the head.

5.3 From Automata to Grammars

In this section we describe how to learn PCW-grammars from the automata that we are
going to induce in Section 5.4. Since we will induce two families of automata (“Many-
Automata” where we use two automata per POS, and “One-Automaton” where we use
only two automata to fit every POS), we need to describe two automata-to-grammar
transformations.

Let us start with the case where we build two automata per POS. Let w be a POS
in the PTB; let A¥ and AY be the two automata associated to it. Let G} and G be
the PCFGs equivalent to A¥ and A%, respectively, following (Abney et al., 1999), and
let S¥ and S% be the start symbols of G and G¥, respectively. We build our final
grammar G with start symbol S, by defining its meta-rules as the disjoint union of all
rules in G¥ and G% (for all POS w), its set of pseudo-rules as the union of the sets

{W =1 SpwSi}

and

S =) SFwSE},

84 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

where 117 is a unique new variable symbol associated 10 1w

When we use two automata for all parts of speech. the grammar is defined as fol-
lows. Let A; and Ag be the two automata learned. Let (¢ and G be the PCFGs
equivalent to A; and Ag. and let S; and Sg be the start symbols of GG and G, re-
spectively. Fix a POS w in the PTB. Since the automata are deterministic, there exist
states 57 and SY that are reachable from S; and Sk, respectively, by following the arc
labeled with w. Define a grammar as in the previous case. [ts start symbol is S, its set
of meta-rules is the disjoint union of all rules in G and G% (for all POS w), its set of
pseudo-rules is {I1" ==, S{wSE. S ——; S¥wSY : wis a POS in the PTB and 1 is
a unique new variable symbol associated to w}.

5.4 Building Automata

The four grammars we intend to induce are completely defined once the underlying
automata have been built. We now explain how we build those automata from the
training material. The process of building the automata consists of three steps:

1. Extracting the training material from the transformed PTB.
2. Applying the algorithm to learn automata to the training material.
3. Searching for the optimal automata.

Sections 5.4.1, 5.4.2 and 5.4.3 deal with steps 1, 2, and 3, respectively.

5.4.1 Building the Sample Sets

The training material is obtained as follows. We transform the PTB, sections 2-22, to
dependency structures, as suggested by (Collins, 1999). All sentences containing CC
tags are filtered out, following (Eisner, 1996). We also eliminate all word information,
leaving only POS tags. For each resulting dependency tree we extract a sample set
of right and left sequences of dependents. Figure 5.1 shows an example of a phase
structure, Figure 5.2 shows its corresponding dependency tree, and Table 5.1 shows
the sample sets of right and left dependents we extracted from it. The sample set used
for automata induction is the union of all individual tree sample sets.

5.4.2 Learning Probabilistic Automata

Probabilistic deterministic finite state automata (PDFA) inference is the problem of
inducing a stochastic regular grammar from a sample set of strings belonging to an

5.4. Building Automata 85
S
NP-SBJ VP DOTSYB
|
NNS P
| MD VP
Researchers |
can - yp PP-CLR
|
apply 1§ NP
f
o /\
NN S
|
permission NP-SBJ VP
l /\
TO VP
|
to
VB NP PP-CLR
I /\
use DT NNS IN/\NP

the probes for NN NNS
|]

brain studies

Figure 5.1: Tree extracted from the PTB, Section 02, file wsj_0297 .mrg.

i N N

O:Researchers l:can 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain 1 I:studies]2:.
NN MD VB IN NN TO VB DT NN IN NN NN DOTSYB

Figure 5.2: Dependency structure corresponding to the tree in Figure 5.1.

86 Chapter 5. Alternative Approaches for Generating Bodies of Granmar Rules

Word Position | Word's POS Left Right

NN NN NN

MD MDNN | MD VB DOTSYB
VB VB VB IN

IN IN IN NN

NN NN NN TO

TO TO TO VB

VB VB VB NN IN
DT DT DT

NN NN

IN IN
10 NN NN NN

11 NN NN NN NN

12 DOTSYB | DOTSYB DOTSYB

o0~ N R WwN - O

o

Table 5.1: Bags of left and right dependents. Left dependents are to be read from right
to left.

unknown regular language. The most direct approach for solving the task is by using
n-grams. The n-gram induction algorithm works as follows. It starts with an empty au-
tomaton, i.e., an automaton whose set of states and set of arcs are empty. It adds states
and arcs to the initial autormaton as follows. It adds a state to the current automaton for
each sequence of symbols 3 of length n that appear in the training material. It adds an
arc between states a3 and b labeled b to the current autornaton, if the sequence a3b
appears in the training set.

The probability assigned to the arc (a3, 3b) is defined as the number of times the
sequence aB3b appeared in the training set divided by the number of times af was
followed by any other character appeared in the training set. Note that a n STOP
symbols have to be postfixed to each string in the training material before the induction
algorithm is used. The role and importance of the STOP symbol is discussed in detail
in Appendix B.

Clearly, the size and quality of the automata produced by the n-gram based algo-
rithm depends on n. For our experiments, we chose n equal to 2 because n equal to
1 and n greater than 2 produce automata of very low quality. For n equal to 1 the
automata are uncapable of learning dependencies between words. For n greater than 2
the algorithm immediately suffers from data sparseness, because the automata model
bodies of rules which tend to be very short. Consequently, for the remainder of the
chapter, we take n-grams to be bigrams. Note also that we do no use any smoothing
technique that would make it possible to use other values of n and at the same time

5.4. Building Autromata 87

avoid the problems mentioned. If we want to carry out a fair comparison of both meth-
ods, smoothing techniques used for optimizing automata based on n-grams should also
be used for optimizing MDI-based automata. Two or more n-gram based automata
smoothed into a single automaton would have to be compared against two or more
MDI-based automata smoothed into a single automaton. It would be hard to determine
whether the differences between the final automata are due to the smoothing procedure
or to the algorithms used for creating the initial automata. By leaving smoothing out
of the picture, we obtain a clearer understanding of the differences between the two
algorithms to induce automata.

There are other approaches to inducing regular grammars besides ones based on
n-grams. The first algorithm to learn PDFAs was ALERGIA (Carrasco and Oncina,
1994); it learns cyclic automata with the so-called state-merging method. The Min-
imum Discrimination Information (MDI) algorithm (Thollard et al., 2000) improves
over ALERGIA and uses Kullback-Leibler divergence for deciding when to merge
states. We opted for the MDI algorithm as an alternative to n-gram based induction
algorithms, mainly because its working principles are radically different from the n-
gram-based algorithm. The MDI algorithm first builds an automaton that only accepts
the strings in the sample set by merging common prefixes, thus producing a tree-shaped
automaton in which each transition has a probability proportional to the number of
times it is used while generating the positive sample; see Section 2.2.2 for details.

For comparison purposes, let us repeat here the working principle of the MDI algo-
rithm. The MDI algorithm traverses the lattice of all possible partitions for this general
automaton, attempting to merge states that satisfy a trade-off that can be specified by
the user. Specifically, assume that A, is a temporary solution of the algorithm and that
A, is a tentative new solution derived from A,. A(A;, A2) = D(Ao||A2) — D(Ao|| A1)
denotes the divergence increment while going from A; to Ay, where D(Ay||A4;) is the
Kullback-Leibler divergence or relative entropy between the two distributions gener-
ated by the corresponding automata (Cover and Thomas, 1991). The new solution
Ay is compatible with the training data if the divergence increment relative to the
size reduction, that is, the reduction of the number of states, is small enough. For-
mally, let alpha denote a compatibility threshold; then the compatibility is satisfied
if SAudz) alpha. For this learning algorithm, alpha is the unique parameter; we

[Ax]- |4 ‘
tuned it to get better quality automata.

Note that the working principles of the n-gram-based algorithm and the MDI algo-
rithm are completely different. The n-gram based algorithm works locally by adding
arcs and states depending on the local configuration of strings in the sample set. In con-
trast, the MDI algorithm starts by building an automaton that accepts only the strings
in the training sample and it over-generalizes over the sample set by merging states that
it considers that can be merged. In this way, the MDI algorithm is capable of detecting

88 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

long distance dependencies between symbols.

5.4.3 Optimizing Automata

We use three measures to evaluate the quality of a probabilistic automaton (and set the
value of alpha optimally). The first two come from come Section 2.2.2Let Q be a
test bag extracted as T'. We use perplexity (PP) and missed samples (MS) to evaluate
the quality of a probabilistic automaton. The PP and MS measures are relative to a
test sample : as described in section 5.4.1, we transformed section 00 of the PTB to
obtain one. The third measure we use to evaluate the quality of automata concerns the
size of the automata. We compute NumEdges and NumStates, that is, the number of
edges and the number of states of the automaton.

We say that one automaton is of a berter quality than another if the values of the
4 indicators—PP, MS, NumEdges, and NumStates—are lower for the first than for the
second. Our aim is to find a value of alpha that produces an automaton of better
quality than the bigram-based counterpart.

By exhaustive search, we determined the optimal value of alpha. We selected the
value of alpha for which the MDI-based automaton outperforms the bigram-based
one. An equivalent value of alpha can be obtained independently of the performance
of the bigram-based automata by defining a measure that combines PP and MS. This
measure should reach its maximum when PP and MS reach their minimums, see Chap-
ters 6 and 7 for definitions of such functions.

We exemplify our optimization procedure by considering automata for the “One-
Automaton” setting (where we used the same automata for all parts of speech). In
Figure 5.3 we plot all values of PP and MS computed for different values of alpha,
for each training set (i.e., left and right). That is, we fix a value of alpha, feed the
MDI algorithm with the training material (sections 2-22 of the PTB), and compute PP
and MS for the resulting automaton using the test sample (section O of the PTB).

From the plots we can identify values of alpha that produce automata having
better values of PP and MS than the bigram-based ones. All such alphas are the ones
inside the marked areas (between 5e — 05 and 0.00012 for the left side and 5¢ — 05
and 0.0001 for the right side); all automata induced using those alphas possess a
lower value of PP as well as a smaller number of MS, as required. Based on these

MDI1 Bigrams
Right Left | Right Left
NumEdges | 268 328 | 20519 16473
NumStates | 12 15 844 755

Table 5.2: Automata sizes for the “One-Automaton” case, with alpha = 0.0001.

5.4. Building Automata 91

There are two remarkable things in the plots for VBP (Figure 5.4, second row).
First, it is one of the few examples where the bigram-based algorithm outperforms the
MDI algorithm. Second, the values of PP in this plot are relatively high and unstable
compared to other plots. Lower perplexity usually implies better quality automata, and
as we will see in the next section, better automata produce better grammars.

How can we obtain lower PP values for the automata associated to verbs? The
class of words tagged with verbs tags, e.g., VBP, harbors many different behaviors,
which is not surprising, given that verbs can differ widely in terms of, e.g., their sub-
categorization frames. One way to decrease the PP values is to split the class of words
tagged with VBP into multiple, more homogeneous classes. One attempt to implement
this idea is lexicalization: increasing the information in the POS tag by adding the
lemma to it (Collins, 1997; Sima’an, 2000). Lexicalization splits the class of verbs
into a family of singletons producing more homogeneous classes, as desired. A dif-
ferent approach (Klein and Manning, 2003) consists in adding head information to
dependents; words tagged with VBP are then split into classes according to the words
that dominate them in the training corpus. Following this strategy, in Chapter 6 we
propose an algorithm for finding the optimal splitting of the training set, which we
then use for splitting the training set corresponding to VB.

Some POS present very high perplexities, while other tags such as DT present a PP
close to 1 (and 0 MS) for all values of alpha. Hence, there is no need to introduce
further distinctions in DT, doing so will not increase the quality of the automata but
will increase their number; for these particular cases, splitting techniques are bound
to add noise to the resulting grammars. The plots also indicate that the bigram-based
algorithm captures them as well as the MDI algorithm.

In Figure 5.4, third row, we see that the MDI-based automata and the bigram-
based automata achieve the same value of PP (close to 5) for NN, but the MDI misses
fewer examples for alphas bigger than 1.4e — 04. As pointed out, we built the

MDI Bigrams

POS Right Left | Right Left
DT NumEdges 21 14 35 39
NumStates 4 3 25 17
VBP NumEdges | 300 204 | 2596 1311
NumStates 50 45 250 149

NN NumEdges | 104 111 | 3827 4709
NumStates 6 4 284 326

Table 5.3: Automata sizes for three parts of speech in the “Many-Automata” case, with
alpha = 0.0002 for all parts of speech.

92 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

One-Automaton-MDI using alpha = 0.0001 and even though the method allows
us 1o line-tune each alpha in the Many-Automata-MDI grammar, we used a fixed
alpha = 0.0002 for all parts of speech, which, for most parts of speech, produces
better automata than bigrams. Table 5.3 lists the sizes of the automata. The differences
between MDI-based and bigram-based automata are not as dramatic as in the “One-
Automaton” case (Table 5.2), but the former again have consistently lower NumEdges
and NumStates values. for all parts of speech. even where bigram-based automata have
a lower perplexity.

5.5 Parsing the PTB

We have just observed remarkable differences in quality between MDI-based and bi-
gram-based automata. Next, we present the parsing scores, and discuss the meaning
of the measures observed for automata in the context of the grammars they produce.
The measure that translates directly from automata to grammars is automaton size.
Since each automaton is transformed into a PCFG, the number of rules in the resulting
grammar is proportional to the number of arcs in the automaton, and the number of
non-terminals is proportional to the number of states. From Table 5.4 we see that MDI
compresses information better: the sizes of the grammars produced by the MDI-based
automata are an order of magnitude smaller that those produced using bigram-based
automata. Moreover, the “One-Automaton” versions substantially reduce the size of
the resulting grammars; this is obviously due to the fact that all POS share the same
underlying automaton so that information does not need to be duplicated across parts
of speech. We report the size of grammars before they are transformed to Chomskian
normal form, i.e., the grammars contain rules with empty bodies and relabeling rules.
Since our parser requires CNF grammars, we need to transform these grammars to
CNF before parsing. For details about our parsing algorithms implementation see Ap-
pendix A.

One Automaton | Many Automata
MDI Bigram | MDI Bigram
702 38670 | 5316 68394

Table 5.4: Numbers of rules in the grammars built.

To understand the meaning of PP and MS in the context of grammars it helps to think
of PCW-parsing as a two-phase procedure. The first phase consists of creating the rules
that will be used in the second phase. And the second phase consists of using the rules
created in the first phase as a PCFG and parsing the sentence using a PCF parser.

5.6. Related Work and Discussion 93

PCW-grammars make this distinction clear, and the abstraction is also useful at
this point. Since regular expressions are used to build rules, the values of PP and MS
quantify the quality of the set of rules built for the second phase: MS gives us a measure
of the number of rule bodies that should be created but that will not be created, and.
hence, it gives us a measure of the number of ““correct” trees that will not be produced.
PP tells us how uncertain the first phase is about producing rules.

Finally, we report on the parsing accuracy. We use two measures, the first one
(9% Words) was proposed by Lin (1995) and was the one reported in (Eisner, 1996).
Lin’s measure computes the fraction of words that have been attached to the right
word. The second one (%POS) marks as correct a word attachment if, and only if, the
POS tag of the head is the same as that of the right head, i.e., the word was attached
to the correct word-class, even though the word is not the correct one in the sentence.
Clearly, the second measure is always higher than the first one. The two measures
try to capture the performance of the PCW-parser in the two phases described above:
(%POS) tries to capture the performance in the first phase, and (% Words) in the sec-
ond phase. The measures reported in Table 5.5 are the mean values of (%POS) and
(% Words) computed over all sentences in section 23 having length at most 20. We
parsed only those sentences because the resulting grammars for bigrams are too big:
parsing all sentences without any serious pruning techniques was simply not feasible.

MDI Bigrams
J%oWords %POS | %Words %POS
One-Automaton 0.69 0.73 0.59 0.63
Many-Automata 0.85 0.88 0.73 0.76

Table 5.5: Parsing results for the PTB.

From Table 5.5 we see that the grammars induced with the MDI algorithm outperform
the grammars created with bigrams-based algorithm. Moreover, the grammars using
different automata per POS outperforms the ones built using only a single automaton
per side (left or right). The results suggest that an increase in quality of the automata
has a direct impact on the parsing performance.

5.6 Related Work and Discussion

Modeling rule bodies is a key component of parsers. N-grams have been used ex-
tensively for this purpose (Collins, 1996, 1997; Eisner, 1996). In n-gram-based for-
malisms the generative process is not considered in terms of probabilistic regular lan-
guages. Considering them as such (like we do) has two advantages. First, a vast arca
of research for inducing regular languages (Carrasco and Oncina, 1994; Thollard et al.,

94 Chapter 5. Alternative Approaches for Generating Bodies of Grammar Rules

2000; Dupont and Chase, 1998) comes in sight. Second. the parsing device itself can
be viewed under a unifying grammatical paradigm like PCW-grammars.

In our comparison we optimized the value of alpha. but we did not optimize the
n-grams, as doing so would mean two different things. First, smoothing techniques
would have to be used to combine different order n-grams. As pointed out, we would
also have to smooth different MDI-based automata, which would leave us in the same
point. Second, the degree of the n-gram. We opted for n = 2 as it seems the right
balance of informativeness and generalization. In this chapter n-grams are used to
model sequences of arguments, and these hardly ever have length > 3, making higher
degrees useless. To make a fair comparison for the Many-Automata grammars we did
not tune the MDI-based automata individually, but we picked a uniform alpha.

MDI presents a way to compress rule information on the PTB; of course, other
approaches exists. In particular, Krotov et al. (1998) try to induce a CW-grammar from
the PTB with the underlying assumption that some derivations that were supposed to
be hidden were left visible. The attempt to use algorithms other than n-grams-based
for inducing of regular languages in the context of grammar induction is not new; for
example, Kruijff (2003) uses profile hidden models in an attempt to quantify free order
variations across languages; we are not aware of evaluations of his grammars as parsing
devices.

5.7 Conclusions

Our experiments in this chapter support two kinds of conclusions. First, modeling rules
with algorithms other than n-grams not only produces smaller grammars but also better
performing ones. Second, the procedure used for optimizing alpha reveals that some
POS behave almost deterministically for selecting their arguments, while others do
not. These conclusions suggest that splitting classes that behave non-deterministically
into homogeneous ones could improve the quality of the inferred automata. We saw
that lexicalization and head-annotation seem to attack this problem. Obvious follow-
up questions arise: Are these two techniques the best way to split non-homogeneous
classes into homogeneous ones? Is there an optimal splitting? Answers to these ques-
tion will be given in Chapter 6.

Chapter 6
Splitting Training Material Optimally

6.1 Introduction

Our approach to parsing can be viewed as a simple CF parser with the special feature
that our context free rules do not exist a priori. Instead, there is a device for generating
them on demand. The device produces strings and these strings are used as CF bodies
of rules. In the previous chapter, we used probabilistic automata for generating bodies
of rules. These automata were not built manually, but we induced them from sample
instances obtained from tree-banks. The general idea used for building the probabilistic
automata model bodies of rules, consists of copying all bodies of rules inside the Penn
Tree-bank (PTB) to a bodies of rules sample bag. This sample bag is treated as the
sample set of a regular language and probabilistic automata are induced from it. Once
the probabilistic automata have been built, they are used for defining a grammar that
uses them for building rules on the fly.

The sample bag of rule bodies to be used as training material contains many differ-
ent types of strings. For example, some strings may describe arguments of transitive
verbs, while others may describe arguments of intransitive verbs. Chapter 5, together
with previous work from the literature (Galen et al., 2004), suggests that models which
are induced from the sample bag can be substantially improved as follows. First, split
the training material into sets containing only homogeneous material; second, induce a
model for each class, and third, combine the different models into one general model.

The assumption underlying this three step procedure is that the regular language
we want to model is in fact the union of several languages. We split the material
guided by the aim of keeping apart strings that belong to different languages. In this
way, the models induced from each of the bags created after splitting the material are
cleaner, because the algorithm that induces a regular language from one of the resulting
training bags simply does not see any string belonging to other bags. By splitting the

95

96 Chapter 6. Splitting Training Material Optimally

data splitting we try to minimize the noise to which the learning algorithm is exposed.

To help shape our intuitions, let us consider two examples. First. suppose that the
language we try to learn is the set {a. aa. aaa. aaaa, acaaa}. Suppose that we have
a bag of instances of this language and that we want to infer the original language
from it. The learning algorithm might consider the bag of samples as instances of the
language a*, while if we split the sample bag into five different bags, each containing
strings of the same length, it is more clear for the learning algorithm that each of the
bags is produced by a language containing only one element.

Second. suppose that we want to model verb arguments. Simplifying, verb argu-
ments can be thought of as the union of transitive verb arguments and intransitive verb
arguments. QOur working hypothesis is that a better model can be induced for verb
arguments if we first split the training material into two different samples, one contain-
ing all the instances of transitive verbs and the other containing all the instances for
intransitive verbs. Once the training material has been split, two models are induced,
one modeling transitive verbs and the other modeling intransitive ones. The original
material is divided into two bags to avoid the data instances from these two different
phenomena from interfering with each other. Conceptually, if the data is not split,
the algorithm for inducing a regular language for intransitive verbs sees the sample
instances of transitive verbs as noise and vice-versa.

How do we split the training material? One possible way consists in defining a split
by hand. Chapter 5 provides an example of this approach. There, the training material
was split according to the head word of the dependency rules. As a consequence, two
different automata for each part-of-speech (POS) were induced, one modeling right
dependents and one modeling left dependents. In contrast, the approach we pursue in
this chapter aims at finding an optimal splitting in an unsupervised manner. For this
purpose we define a quality measure that quantifies the quality of a partition, and we
search among a subset of all possible partitions for the one maximizing the proposed
quality measure. Thus, one of our main challenges will be to find such a measure.
Once the partition that optimizes our quality measure has been found, we use it for
building as many automata as there are components in the partition. Finally, we use
the induced automata for building PCW grammars, which we then use for parsing the
PTB.

In this chapter we present a measure that quantifies the quality of a partition, we
also show that the measure we found correlates with parsing performance. As a conse-
quence, the procedure we use for splitting the material is a procedure that can be used
for finding optimal grammars, optimal in the sense of parsing performance, without
having to parse the PTB.

This chapter is organized as follows. Section 6.2 presents an overview of the chap-
ter; Section 6.3 explains how to build grammars once the optimal partition has been

6.2. Overview 97

found; Section 6.4 explains how we search for the optimal partition, and Section 6.5
reports on the results on parsing the PTB. Section 6.6 discusses related work. and Sec-
tion 6.7 states conclusions and describes future work.

6.2 Overview

We want to build grammars using training material that has been split into homoge-
neous classes of strings. Our main research goal is to understand how the elements in
the training material interfere with each other, thus diminishing the quality of the re-
sulting grammars. We also want to quantify the gain in terms of parsing performance
that can be obtained by splitting the training material. Furthermore, we are interested
in finding a quality measure for grammars that only takes the grammar’s structure into
consideration and helps us to predict the grammar’s performance in parsing without
actually parsing.

We proceed as follows. As in Chapter 5, we first transform the PTB into projective
dependency structures following (Collins, 1996); see Section 2.1.1 for details. From
the resulting tree-bank we delete all lexical information except POS tags. Every occur-
rence of a POS in a tree belonging to the tree-bank has associated to it two different,
possibly empty, sequences of right and left dependents, respectively. We extract these
sequences for all trees, producing two different bags containing right and left sequences
of dependents, respectively.

We then proceed with a first splitting of the training material. For this purpose we
use the POS tag of the head word as described in Chapter 5. This first splitting produces
two different sample bags for each POS, one containing instances of left dependents,
and the other containing instances of right dependents.

To keep our experiments focused we decided to split the training material of a sin-
gle POS tag only: VB. VB is one of the POS with the highest value of perplexity (PP);
experiments in Chapter 5 suggest that higher values of PP are due to the use of a sin-
gle automaton for modeling different regular languages. Recall that, for instance, the
values of PP drop considerably when the training material is split using the POS tag
of the head word. Since the PP value associated to VB is one of the highest, VB seems
to include words with substantially different behaviors, an intuition that is clearly con-
firmed by the literature (Levin, 1993; Merlo and Stevenson, 2001). We isolate the
sentences containing the VB tag and see how dealing only with VB affects other tags.

The initial partition of the training set corresponding to the VB tag is split using
syntactic information such as father tag, number of dependents, depth in the tree, etc.
So, all instances in the training material that share the same feature are placed in the
same bag. The initial partition aims at using external knowledge to split the material;

98 Chapter 6. Splitting Training Material Optimally

we try to characterize each of the resulting bags according to the output of the syntactic
information used for building the split.

Recall that each component in the partition is a set of strings. We use such sets
to build as many automata as there are components in the partition. For each of the
automata built, we compute its quality, and the quality of the partition is defined as
a combination of the qualities of those individual automata. Once the initial partition
has been defined, genetic algorithms are used for finding a merging of components
in the partition that optimizes the quality measure. Next, we use the optimal merging
found by the genetic algorithm for building a PCW-grammar (see Section 6.3). Finally,
we use the resulting grammar for parsing the PTB, and we report on the results in
Section 6.5.

6.3 Building Grammars

In order to build a grammar we need to complete five steps: (1) obtain the training
material from the PTB, (2) build an initial partition, (3) find an optimal partition con-
taining the initial partition, (4) induce an automaton for each component in the optimal
partition, and (5) put all automata together in a grammar. In this section we focus on
steps (1), (4), and (5), while Section 6.4 focusses on steps (2) and (3).

6.3.1 Extracting Training Material

We extracted the training and testing material from the PTB. As we did in Chapter 5, all
sentences containing CC tags are filtered out. We also eliminate all lexical information,
leaving POS tags only. Dependents are extracted from dependency trees. For each
dependency tree, we extract sample bags of right and left sequences of dependents. As
an example, the tree in Figure 6.1 is transformed into the dependency tree shown in
Figure 6.2. Its bags of left and right dependents are shown in Table 6.1.

From trees in sections 2-22 of the PTB we build two bags Ty, and Tx containing left
and right dependents respectively. From trees in sections 0-1 we build two different
bags @1, and Qp, also containing left and right dependents respectively. The bags 77
and TF, are used as training material for automata induction algorithms, while bags Q,
and Qp are used for evaluating the resulting automata.

6.3.2 From Automata to Grammars

Let T be a bag of training material extracted from the transformed tree-bank. Recall
from Section 2.2.2 that we use two different measures for evaluating the quality of
automata. Let Q be a test bag extracted as 7. We use perplexity (PP) and missed

6.3. Building Grammars

NP-SBJ VP

|
NNS MD/\VP
|
Researchers l
can - yvp PP-CLR
|
apply 4 NP
| /\
for
NN S
|
permission \p_Sg) VP
l /\
TO VP
|
to
VB NP PP-CLR
| TN
use DT NNS IN/\\NP

| | | P
the probes for NN NNS

brain studies

Figure 6.1: Tree extracted from the PTB, Section 02, file wsj.0297 .mrg.

s i N N

0:Researchers 1:can 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain 11:studies12:.
NN MD VB IN NN TO VB DT NN IN NN NN DOTSYB

Figure 6.2: Dependency structure corresponding to the tree in Figure 6.1.

100 Chapter 6. Splitting Training Material Optimally

Word Position | Word's POS Left Right
0 NN NN NN
1 MD MD NN | MD VB DOTSYB
2 VB VB VB IN
3 IN IN IN NN
4 NN NN NN TO
5 TO TO TO VB
6 VB VB VB NN IN
7 DT DT DT
8 NN NN DT NN
9 IN IN IN NN
10 NN NN NN
11 NN NN NN NN
12 DOTSYB | DOTSYB DOTSYB

Table 6.1: Bags of left and right dependents. Left dependents are to be read from right
to left.

samples (MS) to evaluate the quality of a probabilistic automaton. A PP close to 1
indicates that the automaton is almost certain about the next step while reading the
string. MS counts the number of strings in the test sample @ that the automaton failed
to accept.

Now, we describe how we build grammars once partitions over the bags of training
material have been defined. Suppose that a partition Ilg,, = (my,...,7,) has been
found over the training material Tys. Suppose also that, for each component 7; in the
partition Ilz,,, two automata A7 and A%, modeling left and right dependents respec-
tively, have been induced. Finally, suppose that there are two automata A¥ and A% for
all POS w in the PTB other than VB. Let G} , G%, GT* and G} be their equivalent
PCFGs obtained following (Abney et al., 1999). Let S¥, S¥, S7* and SE be the start
symbols of G¥, G%, G} and G respectively.

Our final grammar G is defined as follows. Its start symbol is S, its set of pseudo-
rules is defined as the union of

(W =5, S¥wSE, S 2o SPwSE :w e POS)

and
{VB™ =, SP'VBSY, S -o) SP'VBSE :m € llg,},

and its set of meta-rules is the union of rules in G¥, G, GT' and G7* for all w in POS
and 7; in [lg,.

6.4. Splitting the Training Material 101

6.4 Splitting the Training Material

Let T2 and TL, be the training material corresponding to the right and left dependents
of words tagged with VB. Let QL and QF, be the left and right dependents from the
tuning set whose head symbol is VB.

Let 1 = (r,,....m,) be apartition of the set T = TREUTLUQLUQY, (we denote
the disjoint union of bags X and Y as XUY). Since II is a partition of 7', it induces a
partition of each of the bags TR, Tk, QL and Q¥, when each of the sets is intersected
with ;. For example, the partition induced by Il over T is defined as [lrx = {m N
TR ... m,NTR).

Once a partition of Tx and T7, is defined, constructing a grammar is straightforward.
Now, we focus on how to construct partitions I1. Partitions II are defined in a twofold
procedure. The first step defines an initial partition I1 = (7, ..., 7,) using syntactic
features. Syntactic features help to group VB arguments according to the position in
which they appear in the sentences extracted from the tree-bank. In the second step,
a quality measure for partitions is defined and an optimization of the global quality of
the partition is performed. The optimization phase searches for the optimal partition
among all partitions containing the initial partition. Consequently, the initial partition
determines the space search for the optimization phase in the second step.

6.4.1 Initial Partitions

In order to define initial partitions we use features. A feature is a function f that
takes two arguments; a dependency tree t and a number ¢. The number i is used as
a reference to the i-th position in the sentence x to which f is applied. Since words
in z are in direct correspondence with the nodes of the tree t yielding z, the index ¢
also corresponds to a node in the tree t. A feature returns any piece of information
regarding the position of the index 7 in the tree. Table 6.2 contains the features we use
together with a brief description for each of them. For each feature f in Table 6.2, the
table’s third column shows the result of applying f to the tree in Figure 6.2 at position
2.

From a linguistic point of view, our features are used to characterize the dependents
a verb might take. The underlying assumption is that features are capable of captur-
ing the different behaviors that words tagged with VB might display. The idea is to
group training instances according to their behavior. We divided the training material
depending on the value a particular feature takes for a particular word in the particu-
lar tree where the word appears. We put all words’ dependents tagged with VB with
similar feature values into the same sample set. Consequently, the initial sample set is
divided into smaller sample sets, each containing all dependents of words tagged VB

102 Chapter 6. Splitting Training Material Optimally

Name Description Example

WordStem stem of the word at i WordStem(2) = apply

gFather the grand-father of gFather(2) == NN

Father the father of ¢ Father(2) = IN

Depth the depth of the tree below i Depth(2) =1

rSibling first left sibling of i rSibling(2) = NONE

FstleftDep | the first left dependent of ¢ FstRightDep(2) =IN

NumLeftDep | the numbers of left dependents of i | NumRightDep(2) = 1

Table 6.2: All features we use; they all take two arguments: a dependency tree {, and a
node index i.

that share the same feature value. For example, suppose we use the feature father() to
partition the training material. All components in the partition share the same value of
father and there are as many components as there are possible outcomes for the feature
father(). The underlying assumption becomes then, that all instances in a component
are sampled from a regular language different from the regular language from which
others components are sampled.

Formally, the initial partition is defined as follows. Let T be the bag containing all
training material; let z be an element in T'; let ¢, be the tree in the tree-bank from which
x was extracted. Let ¢, be the position in £, from which z was extracted. Finally, let
f1,---, fx be the sequence of features we want to use for defining an initial partition.
The initial partition [T = {(my,...,7,) is given as the equivalence classes defined by
the following equivalence relation R:

.TRy = fj(tz,ix) - fj(ty,’iy),j = 1, N k.

Once a feature has been defined, we have to assign new tags to all the material we used
for building and testing the automata. For example, suppose that we use the father
feature to produce the initial splitting. In this case, the tree in Figure 6.2 is transformed
into the tree in Figure 6.3. The training material related to the retagged VB tags is
shown in Table 6.3.

N N

F N\ F N\
0:Researchers 1:can 2:apply 3:for 4:permission5:to 6:use 7:the 8:probes 9:for 10:brain | I:studies 12:.
NN MD VB-MD IN NN TO VB-TODT NN IN NN NN DOTSYB

Figure 6.3: Dependency tree retagged according to the newly defined splitting.

6.4. Splitting the Training Material 103
Word Position | Word’s POS Left Right
1 MD MD NN | MD VB-MD DOTSYB
2 VB-MD VB-MD VB-MD NN IN
5 TO TO TO VB-TO
6 VB-TO VB-TO VB-TO NN IN

Table 6.3: Bags of left and right dependents.

We use features to induce a partition of the training material and of the testing ma-
terial. Since the testing material is much smaller than the training material this might
yield empty components. Since the values for our quality measures obtained from
empty components are meaningless, we merge those empty components with those
where the resulting automaton has the lowest perplexity. The resulting partition has no
empty component. Such a partition is the starting partition for the algorithm searching
for the optimal merging. We present 8 different grammars built using different fea-
tures, the features used are described in Table 6.4. This table also shows the number
of components each feature produces together with the number of components in after
having searched for the best partition.

components in | # components in
Grammar name | initial partition | optimal partition
Baseline 1 1
rSibling 6 1
NumRightDep 4 1
Father 13 6
gFather 30 9
Depth 17 10
FstRightDep 27 17
WordStem 373 57

Table 6.4: Features used and the number of components in the partitions they induce.

6.4.2 Merging Partitions

In this section we discuss the. algorithm that searches for partitions over the training
material containing the initial partition. We say that a new partition Il' contains a
partition IT if for any two elements p and ¢ that belong to the same component 7,
there is a component 7’ in II' such that both elements are again in 7. Our intention is
to search among the partitions that contain the initial partition for an optimal one. In

104 Chapter 6. Splitting Training Material Optimally

order to decide which partition is the optimal one, we first need to define a measure for
evaluating its quality.

Recall that a component in a partition is used to define an automaton. For each
component in the partition, we can define a value of PP and MS; in what follows we
use each of these individual values to define a quality measure for the whole partition.

For every candidate merging, and for computing the partition’s quality, we have to
assign new tags to all the material. We assign new tags according to the redefinition of
the features function we used for building the initial partition. For example, suppose
that the father() feature was used for building the initial partition, suppose also that
a candidate merge states that the component where father is equal to MD should be
merged to the component where father is equal to TO. All tags VB in the training
material with fathers tagged MD and TO have to be retagged with the same tag. For
example, the tree in Figure 6.2 becomes the tree in Figure 6.4, where tags VB are
renamed as VB-1.

NN

0:Researchers 1:can 2:apply 3:for 4:permission5S:to 6:use 7:the 8:probes 9:for 10:brain I 1:studies 12:.
NN MD VB-1 IN NN TO VB-1 DT NN IN NN NN DOTSYB

Figure 6.4: Assigning new tags for computing the merging of [TO] and [MD].

Our measure has two main parts, each of which considers the automata related to the
left and to the right side. In order to simplify the exposition, we describe in detail our
measure for the component referring to the right side. The component referring to the
left side is obtained by replacing R in the superscripts with L.

Let Il = (my,...,m,) be apartition of the training material 7. Let A%,i =1,... .k
be the automata induced, as described in Section 6.3.2, using training sets m; N Tg,
respectively. Let PPR and MSE be the values of PP and MS respectively for the
automaton AR, computed using test sets m; N Qg, fori = 1,... k.

Our measure combines the values of PP, and M .S; for all . That is, we combine
all values of PP and MS to obtain a quality value of the whole partition. PP and MS
values can not be summed up directly given that the importance of an automaton is
proportional to the number of times it is used in parsing. The importance of PP and
MS values should be proportional to the number of times the corresponding automaton
is to be used in generating bodies of rules. We have estimates of such frequencies using
the training material. For that purpose, let

mNT
pr = O TRl ;
|Ta|

=1,....n.

6.4. Splitting the Training Material 105

One can view pf as the probability of using the automata AR. We use these proba-
bilities to measure the expected value for MS and PP as follows. Let E[MSf] be the
expected value of MS for a right automata defined as

E[(MSE) = pFMsE.
i=1
Let E[PPE] be the expected value of PP, defined as:
E[PP] = pPPL
i=1
Let E[M SE] and E|P Pk be the corresponding expected values for the left sides. Note
that the expected values depend on a particular partition, hence the subscript II. We
are now in a position to compare the quality of two partitions according to the values

they assigned to E[PPF|, E{MSE], E[PP%] and E[MS§]. We say that partition I
is better than partition I, if all of the following holds:

E[PPE] < E[PPL], (6.1)
EMSE] < E[MSE], (6.2)
E[PPY] < E[PPf), (6.3)
E[MSE] < E[MSE,). (6.4)

Ideally, we would like to find a quality function g defined over the class of possible
partitions such that ¢(I1,) < ¢(II,) if and only if Equations 6.1 through 6.4 are satis-
fied. If such a function exists, we can use many optimization methods for finding the
partition for which g is minimal. But, it is easy to see that such a function does not
exist. In what follows, we show that even a function ¢ satisfying

q(Th) < q(lly) < (E[PP{] < E[PPL]) A (E[MSH] < EIMSg)) (6.5

does not exist. Suppose that such a function does exist; suppose that the partitions
I1, and II; are two possible partitions with values E[PPp;,], E[MSp;,|, E[PPpy,),
E[M Sp;,] for PP and MS. In order to compare the pair (E{P Pp;, |, E[M Sp;,]} with the
pair (E[PPp;,], E[MSp;,]) we can plot each pair as a vector, as shown in Figure 6.5.
Since g is defined for all partitions, it takes values ¢; = g(I1;) and g, = ¢(I1,). Both ¢,
and g, are real numbers, so g1 < ¢z or g2 < gy, both possibilities imply that ¢(TI;) <
q(I13) or q(I13) < ¢(Il;), which contradicts Equation 6.5 if ¢; # ¢2. The constraints
imposed by Equation 6.5 are impossible to fulfill because they required function g to
map a partial order, defined over pairs of reals in the right-hand side to a total order
defined over reals in the left-hand side. We can not apply a function minimization

6.4. Splitting the Training Material 107

components at the same time. Formally, the function ¢, that we minimize is defined

as follows:

IX[I+C if E[PPI{?I] > E[PPIi]

IXI+C if E[MSE] > E[MSE]

gno(I) = § Xl +C i E[PPy] > E[PPg)]

IX||+C if E[MSL] > E[MSE |

X1 otherwise,
where X = (E[PP{), EIMSE |, E[PP}], E[MSE]), C is a constant number and
(z1,22,...,20)|l = /23 + 23+ ...+ 2. We use the constant C to penalize the

vectors outside the shaded area of Figure 6.6. We drop the reference partition subscript
from ¢ whenever the reference vector is clear from the context.

The measure defined this way, is a measure that depends on a starting configuration.
In Figure 6.7 we show an example in which ¢y, (I12) < gn, (I1;), while I1; and I1, are
incomparable using measures grj, and gy,. It is also interesting to note that whenever
partitions Ilp, I1; and Il; are such that gq,(I1;) < gn,(Il) and g, (I} < gp, (IL;)
then gp,(I2) < gn,(111).

In our experiments we use the trivial partition, i.e., the partition containing one and
only one component containing all the training material, as reference point. Note that
the reference point coincides with the partition we use in Chapter 5, consequently the
results presented in this chapter are comparable to the experiments we performed in
that chapter.

E[PP|

Catl
E[MS)
Figure 6.7: Two incomparable solutions.

We now apply this optimization technique to our specific problem, i.e., to find a
merging of components that minimizes values of F[MS] and E[PP]. We apply the
procedure to different initial partitions: Table 6.5 shows the values of E[PP), E[M S),
E[PP), E[M S}, and g for all the grammars we build. Since all the experiments we
carried out share the same reference partition, their values of ¢ are comparable.

Chapter 6. Splitting Training Material Optimally

left right
grammar E[PP] | E[MS] | E[PP] | E|AS) q

Baseline 1.189 0 9.633 6 10.911

1.189 0 9.633 10.911

NumRightDep | 1.189 9.633 10.911

Father 1.188 9.743 9.432

gFather 1.189 9.652 9.413

1

1

1

rSibling

Depth .180 9.783 S 9.065
FstRightDep .188 2.950 4 3.337
WordStem 195 9.647 b 4.705

Table 6.5: Results on ¢ for all the grammars we built.

From Table 6.5 we can see that the rSibling and NumRightDep do not suggest any
partition that outperforms the value of ¢ of the baseline; for this particular case genetic
algorithms exhaustively searched the whole space of possibilities. This was possible
because the space itself is not very big. The number of components in Table 6.4 gives
a hint about the size of the space of possible merges.

To understand the meaning of the measure ¢ in the context of two-level parsing, it
is important to recall from Chapter 5 the meaning of PP and MS in this context. Recall
that we are building PCW-grammars, and parsing with such grammars can be viewed
as a two-phase procedure. The first phase consists in creating the rules that will be
used in the second phase. The second phase consists in using the rules created in the
first phase as a PCFG and in parsing the sentence using a PCF parser. Since automata
are used to build rules, the values of PP and MS quantify the quality of the set of rules
built for the second phase: MS gives us a measure of the number of rule bodies that
should be created but that will not be created, and, hence, it gives us an indicator of the
number of “correct” trees that will not be produced. PP tells us how uncertain the first
phase is about producing rules. Now, g tries to minimize these two aspects: a partition
that outperforms the baseline means that the automata we induced missed, on average,
a smaller number of bodies of rules and that the bodies of rules that are created, on
average, are created with lower perplexity.

Searching for the Optimal Partition

Let I be an initial partition of T built as described in Section 6.4.1. Let I, be the ref-
erence partition, i.e., the partition containing one component in which the whole of the
training material is found. For each of the initial partitions we defined in Section 6.4.1,
we search for the merging that optimizes the quality function gq.

Formally, the search space is defined as the set of possible partitions containing the

6.4. Splitting the Training Material 109

initial one. Let IT and I1’ be two partitions over T', and let a and b be two elements in
T. Recall that a partition Il contains another partition I1" if all components in IT result
from merging components in . Consequently, a partition containing [V can be easily
generated by merging some of its components.

In order to search for the partition giving the minimum value of ¢ we use Genetic
Algorithms (GAs). We use GAs because our problem can naturally be re-phrased as a
GA optimization problem.

In GAs, a population of individuals competes for survival. Each individual is des-
ignated by a bag of genes that define its behavior. Individuals that perform better (as
defined by the fitness function) have a higher chance of mating with other individuals.
A GA implementation runs for a discrete number of steps, called generations. What
happens during each generation can vary greatly depending on the strategy being used.
Typically, a variation of the following happens at each generation:

1. Selection. The performance of all the individuals is evaluated based on the fit-
ness function, and each is given a specific fitness value. The higher the value,
the bigger the chance of an individual passing its genes on to future generations
through mating (crossover).

2. Crossover. Selected individuals are randomly paired up for crossover (also
known as sexual reproduction). This is further controlled by the crossover rate
specified and may result in a new offspring individual that contains genes from
each of its parents. New individuals are injected into the current population.

3. Mutation. Each individual is given the chance to mutate based on the mutation
probability specified. Each gene of an individual is looked at separately to decide
whether it will be mutated or not. Mutation is decided based upon the mutation
rate (or probability). If a mutation is to happen, the value of the gene is switched
to some other possible value.

In order to use GAs for our purposes we have to provide the following:

1. A definition of individuals: We design our individuals to codify two things.
First, a value of alpha to be used for building the automata and second a par-
tition of the training material. alpha is simply codified as the first gene in the
vector; the partition containing the initial partition is codified as follows. Note
that in order to describe a partition for the training material it is enough to de-
scribe a way to merge components in the initial partition. Individuals in the
population specify a way to merge components belonging to the initial partition
into new components. A number k in the i-th position in the vector V indicates
that component 7 in the original partition should be added to the new component

Chapter 6. Splitting Training Material Optimally

k. Formally, let V' —= {a,..... a,) be a vector with i < «, < n. The vector
V" defines the partition 11" - (7]... .. w0 such that 77 — {7, : V[K] = i}

Intuitively, the number of components in the resulting partition is equal to the
number of differcnt values stored in vector 7. E.g.. if all entries in 17 are the

o

same, the new partition defined by 17 contains only one component.

2. A fitness function defined on individuals: The fitness function for an individual
is defined as the quality measure g we defined in Section 6.4.2.

3. A strategy for evolution: The strategy we follow is defined as follows. We
apply two different operations to genes, namely crossover and mutation. We
decide which operation to apply by flipping a biased coin. Crossover get 0.95
probability of being applied while mutation gets 0.05. Once the operation is
chosen, genes to which the operations apply are selected from the population.
We select individuals using the roulette wheel strategy (Gen and Cheng, 1997),
in which the probability for an individual to be selected is proportional to its
fitness score. Crossover is implemented as follows, two points are selected along
the chromosomes of both parents. The chromosomes are then cut at those points,
and the middle parts are swapped, creating two child chromosomes. If mating
occurs, two new genes are added to the population. If no mating occurs, no new
gene is add to the population. Mutation is implemented as follows. Each gene of

| an individual is looked at separately to decide whether it will be mutated or not.

Mutation is decided based upon the mutation rate (or probability). If a mutation

is to happen, then the value of the gene is switched to some other possible value.

For further details on the implementation of GAs we used see (Qumsieh, 2003)

Finally, the population of each of our generation consists of 50 individuals; we let the
population evolve for 100 generations. We decided to use 100 generations because the
computation of the quality of partition g is time consuming and, moreover the quality
measure and the number of partition are stable around generation 65 as pictured in
Figure 6.8.

6.5 Parsing the Penn Treebank

Finally, we report on the accuracy in parsing. As in Chapter 5 we use two measures,
%Words and %Pos. The former computes the fraction of the words that have been
attached to their correct father, the latter computes the fraction of words that were
attached to the correct word-class. As explained in Chapter 5 the two measures try to
capture the performance of the PCW-parser in the two phases procedure described in

112 Chapter 6. Splitting Training Material Optimally

per part of the table there is a correlation between the quality measure and the parsing
score given that for lower values of ¢ we obtain greater values of parsing scores. This
does not seem to be the case for the grammar in the lower part of the table. For the
latter. even though the quality measure ¢ is quite a bit smaller than the baseline (4.705
vs. 10.911), its parsing score is only marginally different from the baseline score. As
g gives us the expected values of PP and MS, intuitively this states the grammar in
the lower part should have less ambiguity when choosing dependents of words tagged
VB, but it produces virtually identical parsing scores even though its g values are lower
than for nearly all grammars in the upper part. We think that is due to the number of
components in the partitions. Note that the grammars in the upper part are induced
from partitions containing less than 20 components, while the grammar in the lower
part is induced from a partition containing no less than 57 components. As a con-
sequence of having a large number of components each component contains a small
amount of training and testing material and the values of PP and MS become unreli-
able. A better version of g should take into consideration the number of components
in each partition and it should punish those components containing a small number of
instances. Obviously, another way to overcome this problem is to use more training
and testing material. Alternatively, a possible solution is to adopt a similar approach
to the use in many clustering techniques where the number of components is required
to be fixed and to search for the partition that optimizes ¢ among all partitions having
a fixed number of components.

With the experiments we carried out, it is possible to draw some conclusions for
the grammars in the upper part of Table 6.6. Note that for those grammars, the ranking
correlates (more correctly: inversely correlates) with the parsing score. This suggests
that ¢ is an indicator of the parsing score and that ¢ can be used to quantify the quality
of grammars without having to parse the whole gold standard. For the grammars in
the upper part of Table 6.6, columns 4 and 5, we computed Pearson’s product-moment
correlation (NIST, 2004; Wright, 1997). We computed the correlation between g and
%Words and between g and %POS for the case of sentences containing the VB tag.
Pearson’s correlation coefficient is usually signified by p, and can take on the values
from —1.0 to 1.0. Here, —1.0 is a perfect negative (inverse) correlation, 0.0 is no
correlation, and 1.0 is a perfect positive correlation. The statistical significance of p is
tested using a t-test. The t-test returns a p-value, where a low p-value (less than 0.05
for example) means that there is a statistically significant relationship between the two
variables. ’

Now, Pearson’s product-moment correlation test shows a correlation value of p =
—0.821, p = 0.04484 and p = —0.835, p = 0.03832, for g vs % Words and ¢ vs %POS,
respectively. The correlation values suggest that g is a measure that only takes into
consideration the way a grammar was built in order to predict its parsing performance.

6.5. Parsing the Penn Treebank

Grammar q #components | %Words | %POS | %POS - %Words
Baseline 10.911 1 0.8491 | 0.8787 0.02%96
rSibling 10.911 0.8491 | 0.8787 0.0296
NumRightDep | 10.911 0.8491 | 0.8787 0.0296
Father 9.432 0.8525 | 0.8826 0.0301
gFather 9.413 0.8484 | 0.8787 0.0303
Depth 9.065 0.8545 | 0.8836 0.0291
FstRightDep 3.337 0.8550 | 0.8846 0.0296
WordStem 4.705 0.8494 | 0.8801 0.0307

Table 6.7: Results on parsing the PTB (all sentences).

Note that the values of p are small, they are below 0.05 which is usually the weakest
evidence that is normally accepted in experimental sciences. However, the correlation
was computed only on a few sample points; in order to get more reliable values of
correlation it is necessary to use bigger collections as training material and to define
and compute q for a larger number of grammars. Nevertheless, the correlation values
found suggest that the observed differences are significant and that they are not the
product of a random improvement.

Since all the training material is retagged according to the components induced for
VB, automata induced for POS other than VB might alter their quality. In order to get
a quantitative picture of the impact of the splitting in POS other than VB we separately
parse sentences that do nor contain the VB. Columns 6 and 7 in Table 6.6 show the
results. Parsing scores are close to the baseline, whenever the sentences do not contain
the VB tag. Phrased more positively, while optimizing for sentences containing words
tagged VB, parser performance on sentences not containing words tagged VB did not
decrease. Indeed, the Pearson’s product-moment correlation tests for these columns
show a correlation value of p = —0.2860, p = 0.5816 and p = —0.5369, p = 0.271,
for g vs %Words and g vs %POS, respectively. These correlation values suggest that
q does not (inversely) correlate with parsing performance for sentences not containing
the VB tag.

We can speculate that splitting material for one particular POS tag does not hurt
the parser performance on other POS tags. This suggests that we could proceed by
splitting different POS separately and then combine them in one grammar. The parsing
performance for the final grammar should gain from all the gains in performance for
each of the non-trivial splitting.

Finally, for the sake of completeness Table 6.7 presents the parsing scores for all
the sentences in the test set. Observe that, indeed, the scores over all sentences do
improve, even if we only optimized for a single POS.

114 Chapter 6. Splitting Training Material Optimally

6.6 Related Work

There are several perspectives from which we can analyze the approach and the exper-
iments in this chapter. A first analysis sees our procedure to find optimal grammars
as a way to induce preterminal symbols from the PTB. They are optimized for pars-
ing and they provide information about the behavior of words tagged with VB. These
preterminal symbols define a classification of verbs based on their syntactic behav-
ior. There is a large collection of work on classification of verbs; most of them try
to induce a classification of verbs using syntactic features, in some cases the resulting
classification is evaluated (Merlo and Stevenson, 2001; Stevenson and Merlo, 2000),
while in others the resulting classification (Decadt and Daelemans, 2004) is compared
to the hand-crafted classification made by Levin (1993). We ran some experiments on
trying to classify verbs according to the components they belong to. We checked the
match between our classification and Levin’s manual classification of verbs. Unfortu-
nately, we did not see any clear match between the two. We also explored manually
the classification induced by our procedure, but we could not detect any linguistic ex-
planation of the classification. We think that in order to get a linguistically meaningful
classification, more training material and material tagged with other verb tags should
be used.

A second analysis sees our procedure as a method for finding labels for estimating
better probabilities. We can replace words by more general categories, like POS tags,
in order to induce better parameters. The clusters we found can be viewed as new
labels because these labels group words having comparable syntactic behavior. To
use our labels in order to obtain better probabilities we need to retag not only the
training material but also the gold standard. When the gold standard is retagged new
tags codify some structural information. The whole approach is a simplified version of
supertagging (Joshi and Srinivas, 1994; Srinivas, 1997) for PCW-grammars.

A third analysis considers the procedure as a way to induce sub-categorization
frames (Manning, 1993; Carroll and Fang, 2004) for words tagged with VB. Our sub-
categorization frames have the peculiarity that there is an infinite number of them given
that each string accepted by our automata is a possible sub-categorization frame. Our
induced sub-categorization frames are used for improving the parsing performance
and are induced specially for this purpose. Only recently (Carroll and Fang, 2004;
Yoshinaga, 2004; Hara et al., 2002) some work appeared where the induced sub-
categorization frames are used for improving the parsing task.

Outside the context of parsing, the methodology we presented in this chapter can
also be used for inducing regular languages. The idea of using clustering before induc-
ing automata is not new. Dupont and Chase (1998) clustered symbols using standard
clustering techniques (Brown et al., 1992; Ney and Kneser, 1993) before inferring the

6.7. Conclusions and Future Work 115

automata. The main difference between our approach and theirs is that our algorithm
presupposes that the target language is the union of different languages and the method
tries to automatically detect the different components. Our algorithm also tries to de-
tect the number of components automatically, while in (Dupont and Chase, 1998) the
number of components is a parameter of the algorithm. From a more technical point of
view, and still within the setting of inducing probabilistic regular languages, the pro-
cedure of, first, splitting the training material and, second, inducing as many regular
languages as there are components, is a technique that guides the merging of states
in the MDI algorithm and that disallows some of the possible merging. Recall from
Section 2.2.2 that the MDI algorithm builds an automata, first, by building an initial
automaton and, second, by merging some of the states in the initial automaton. When
the material is split, not one but many initial automata are buiit. For this case, the MDI
algorithm searches for candidate merges within each of the initial automaton. As a
consequence, some candidate merges that were possible when inducing one automa-
ton are not available any more in the case of many automata. Clearly, there are two
questions that the splitting approach has to address, the first one is how to recombine
the different automata in one single regular language, and the second, what criteria
should we follow for splitting the training material? For our particular case, we use
PCW-grammars for recombining the automata and syntactic information for splitting
the training material.

From the point of view of optimization, we present a solution for optimizing two
functions at the same time. The problem of optimizing more than one function at the
same time is known as multiobjective optimization (Coello Coello, 1999). Briefly, mul-
tiobjective optimization techniques try to optimize a combination of many functions,
called objectives, by finding a trade-off between the objectives. Under the multiobjec-
tive optimization perspective, it is possible to optimize the combination of objectives
by optimizing one of them while others are not optimized.

6.7 Conclusions and Future Work

We presented an approach that aims at finding an optimal splitting of the training ma-
terial, which in turn, is meant for improving parsing performance. For this purpose
we defined a quality measure that quantifies the quality of partitions. Using this mea-
sure, we search among a subset of all possible partitions for the one maximizing the
proposed quality measure. Our measure combines a quality measure defined for each
component in a partition. To measure each component’s quality, we compute an au-
tomaton for each of component and we computed the automaton’s MS and PP. The
measure we presented combines values of PP and MS for all resulting automata, one

116 Chapter 6. Splitting Training Material Optimally

per component, and it uses the resulting components to build grammars that are subse-
quently used for parsing the PTB.

For our particular case, it is not clear how to combine the functions E[PP] and
E[MS] in such a way that the optimization of the combined values produces better
parsing scores. What we know, is that if we optimize the four values (E[PP| and
E[MS] for the left and right side) at the same time, we gain in parsing performance.
While searching for the definition of the optimal function ¢, we noticed that there
might be a measure that uses only a subset of these four values. It seems that the
four functions are not fully independent but the underlying relation remains an open
problem.

We have shown that the quality measure we defined can be used for comparing
parsing scores of two grammars whenever the grammars are built from partitions hav-
ing a similar number of components. It would be interesting to define a measure that
correlates with parsing performance independent of the number of components in the
partition. The natural next step is, then, to define a measure that takes into account
the number of components and the number of elements in each component. It is also
important to investigate the impact a bigger corpus has in the measure we defined.

In this chapter we used PCW-grammars as the backbone for our experiments. They
provide us with the appropriate level of abstraction for carrying out the experiments,
and an easy way to combine all automata we induced for the different components into
one single grammar. In contrast to the grammars in Chapter 5, the grammars we built
in this chapter are not bilexical grammars. But, since the parser we implemented (see
Appendix A for details) is a parser for PCW-grammars, it can handle both types of
grammars. Grammars in Chapter 5 and the grammars in this chapter have in common
that they search for unlabeled links.

Finally, this chapter changes the way the parsing task is usually addressed. Parsing
is usually treated more as a modeling task than as an optimization task. A modeling
task is a task where a model is designed and its parameters estimated from training
material. Once these parameters are estimated, the model is tested on the parsing task
and its results reported. In contrast, an optimization task is a task where a model is
designed and its parameters are optimized according to the performance of the model
and parameters in the final task. The difficulty of treating parsing as an optimization
task resides in the time it takes to test a set of candidate values for the parameters. Since
our measure ¢q is a good indicator of the parsing performance we can treat parsing as an
optimization task without having to parse. As a consequence, the procedure we defined
is a procedure for building optimal grammars.

Chapter 7
Sequences as Features

7.1 Introduction

In the parsing activities and methods discussed so far in this thesis, we set out to dis-
cover syntactic structure, and in particular word dependents, using only sequences of
POS tags. In contrast, nearly all other parsing approaches discussed in the literature use
both sequences of POS tags and sequences of grammatical relations (GRs). Grammati-
cal relations are labels describing the relation between the main verb and its dependents
and they can be viewed as a kind of non-terminal labels. This observation suggests an
obvious research question: which of the two types of information helps more for the
discovery of word dependents, sequences of POS tags or sequences of GRs? This is
our main research question in this chapter. Let us make more precise what it means.

In order to obtain phrase structures like the ones retrieved in (Collins, 1999), the
dependents of a POS tag should consist of pairs of POS tags and non-terminal labels
instead of sequences of POS tags alone (Markovian rules capture such pairs; see Chap-
ter 4 for details on how PCW-grammars capture them). Like sequences of POS tags,
sequences of pairs of POS tags and non-terminal labels can be viewed as instances
of a regular language: a regular language whose alphabet is the product of the set of
possible POS tags and the set of possible non-terminal labels. Moreover, they can be
viewed as instances of the combination of two different regular languages: one regular
language modeling sequences of POS tags, and another regular language modeling se-
quences of non-terminal labels. Under this perspective, it is clear that Chapters 5 and 6
only use the first regular language, while non-lexicalized approaches use the second
regular language, and Markovian rules use a combination of the two.

From the literature, it is clear that combining the regular language of POS tags and
the regular language of non-terminal labels boosts parsing performance, but it is not
clear why this is the case. Chapter 5 suggests that lexicalization improves the quality

117

118 Chapter 7. Sequences as Features

of the automata modeling sequences of POS tags, but it does not provide any insight
about the differences or the interplay between these two regular languages.

In this chapter we design and implement experiments for exploring the differences
between the regular language of POS tags and the regular language of non-terminal
labels in a parsing setup. Our research aims at quantifying the difference between the
two and at understanding their contribution to parsing performance. In order to clearly
assess the contribution of these two features, we need to carry out an evaluation in terms
of a task that clearly isolates the two regular languages. We decided to use the task of
detecting and labeling dependents of the main verb of a sentence. Labels describing
the relation between the main verb and its dependents are what we call grammatical
relations (GRs), and they can be viewed as a kind of non-terminal labels.

We present two different approaches for dealing with the task of finding grammat-
ical relations. In the first approach, we develop two grammars: one for detecting de-
pendents and another for labeling them. The first grammar uses sequences of POS tags
as the main feature for detecting dependents, and the second grammar uses sequences
of GRs as the main feature for labeling the dependents found by the first grammar. The
task of detecting and labeling dependents as a whole is done by cascading these two
grammars. In the second approach, we build a single grammar that uses sequences of
GRs as the main feature for detecting dependents and for labeling them. The task of
detecting and labeling dependents as a whole is done in one go by this grammar. The
two approaches differ in that the first one uses sequences of GRs and sequences of POS
tags, while the second only uses sequences of GRs.

We show that English GRs follow a very strict sequential order, but not as strict as
POS tags of verbal dependents. We show that the latter is more effective for detecting
and labeling dependents, and, hence, it provides a more reliable instrument for detect-
ing them. We argue that this feature is responsible for boosting parsing performance.

The rest of the chapter is organized as follows. Section 7.2 details the task we use
for testing the two features. Section 7.3 explains how to encode this task as parsing.
Section 7.4 discusses how the training material used in our experiments is obtained.
Section 7.5 explains how the grammars we use are built. Section 7.6 discusses the
optimization phase for those grammars. Section 7.7 shows the experimental results;
Section 7.8 discusses related work and, Section 7.9 concludes the chapter.

7.2 Detecting and Labeling Main Verb Dependents

The task we use for our experiments is to find main verbs dependents and to determine
their GR. In this section we describe the selected task as a black-box procedure. We
specify its input and its output. The input of the task consists of the following items:

7.3. PCW-Grammars for Detecting and Labeling Arguments 119

1. the main verb of the sentence,
2. the head word for each of the chunks into which the sentence has been split, and

3. the POS tags for the heads of the chunks.

The definition of chunks becomes clearer in the next section. For now it is enough
to know that the sentences is chunked and that not all the words are used. Figure 7.1
shows an example of the input data.

[Pierre Vinken), [61 years] [old], [joined] [the board] [as] [a nonexecutive director] [Nov. 29].
NNP NNS JJ VBD* NN PP NN CD

Figure 7.1: Example of the information to be parsed by the grammars we build.

The output consists of a yes/no tag for each element in the input string. A POS tag
marked yes implies that the tag depends on the main verb. If a POS tag is marked
yes, the outputs has to specify the GR between the POS tags and the main verb.

The desired output for the input in Figure 7.1 is shown in Figure 7.2. Tags labeled
yes have been replaced by links between the POS tags and the main verb.

NP-SBJ

[Pierre Vinken], [61 years } [old]. [joined][the board][as] [a nonexecutive director][Nov. 29 }.
NNP NNS 11} VBD NN PP NN CD

Figure 7.2: Information we use from each tree in the PTB.

Note that not all POS tags in our example sentence bare a relation to the main verb.
More generally, there might be POS tags that depend on the main verb but whose
relation cannot be labeled by any of the labels we define later in this chapter. These
links receive the NO- FUNC label. It is important to distinguish between the POS tags
that do not have a relation to the main verb and those that depend syntactically on
the main verb but whose relation cannot be labeled. The former are marked with the
no tag, while the latter are marked with the yes tag and the GR is NO-FUNC. See
Figure 7.2 for an example.

7.3 PCW-Grammars for Detecting and Labeling Argu-
ments

In order to determine the contribution of the two kinds of information (sequences of
POS tags and sequences of GRs), we set up the task of detecting and labeling as a

120 Chapter 7. Sequences as Features

combination of two independent tasks. The first one is to find the dependents of the
main verb, and the second to label them.

In order to try to use sequences of POS tags and sequences of GRs as features, we
codify GRs in pre-terminal symbols. Figure 7.3 shows an example. It shows the verb
dependents from Figure 7.1: nnp nn pp, and cd, with labels as pictured, while nns
33, and nn do not hold any relation to the main verb and. consequently, they are not
linked or labeled and not shown in Figure 7.3.

S

NP-SBJ vbd NP-OBJ] PP-CLR NP-TMI

nnp nn PP cd
ans jj A

Figure 7.3: The tree we want to retrieve.

In Figure 7.3, we can clearly distinguish the two regular languages that can be used
for detecting dependents of verbs: the sequences NP-SBJ and NP-OBJ PP-CLR
NP-TMP are instances of the regular languages whose alphabet is the set of possible
GRs, while the sequences nnp and nn pp cd are instances of the regular language
whose alphabet is the set of possible POS tags.

We build 3 different grammars:

1. A grammar G p that aims at detecting main verb dependents. This grammar uses
automata that model sequences of POS tags. The parser that uses this grammar
is fed as with all the POS tags.

2. A grammar G that aims at labeling dependents. This grammar uses automata
that model sequences of GRs. The parser that uses this grammar is fed with the
POS tags that are believed to depend on the main verb. The result is a GR name
for each POS tag in the input sentence.

3. A grammar G that aims at detecting and labeling main dependents. This gram-
mar uses automata that model sequences of GRs together with automata that
models sequences of POS tags. The input and output of parsing with this gram-
mar is as described in Section 7.2.

7.4. Transforming the Penn Treebank to Labeled Dependency Structures 121

With these three grammars we can achieve the task described in Section 7.2 in two
different ways:

1. We use G p for detecting dependents, and G, for labeling the dependents that
G p outputs.

2. We use G for detecting and labeling the main dependents.

Each of these three grammars are PCW-grammars (see Section 6.3), and they all are
built using automata, just like the grammars we built in Chapters 5 and 6. In order to
build them we have to carry out the following three steps:

1. generate the training material for training the automata,
2. optimize the automata, and
3. build the grammar.

Sections 7.5.1, 7.5.3 and 7.5.2 describe steps 1 and 3 for grammars for detecting de-
pendents, labeling dependents and detecting and labeling dependents respectively. Sec-
tion 7.6 explains which automata are optimized, and in which way.

For all grammars, Step 1 uses training material extracted from a labeled depen-
dency grammar version of the PTB. The following section gives an overview of how
we transform the PTB into labeled dependency trees.

7.4 Transforming the Penn Treebank to Labeled De-
pendency Structures

The set of GRs we aim to capture is a fixed set that is defined by the annotation schema
followed in the Penn Tree-bank (PTB). We transformed the PTB into labeled depen-
dency structures from which we induced our grammars.

All the training material we used comes from the PTB, hence the grammatical
relations we are able to retrieve are those that are marked in the training material. We
used chunkl ink .pl for transforming the PTB to labeled dependency structures and
for marking all the information we need in the PTB (Buchholz, 2002). For detailed
information on chunklink.pl, the reader is referred to the latter publication. In
order to better understand the nature of the GRs to be found, we briefly describe how
GRs are marked by chunklink.pl in the PTB.

The procedure for identifying links, chunks, and labels consists of four steps:

1. detecting words that may be heads of chunks,

http://chunklink.pl

122 Chapter 7. Sequences as Features

2. drawing dependency relations (links) between these words,
3. assigning labels to these relations and
4. detecting chunks.

As to step (1) chunklink.pl detects heads using a head table, pretty much as ex-
plained in Section 2.1.1. Still, the application of tables described in Section 2.1.1 is
different from the strategy used by chunklink.pl. In the latter, the head is either
the right-most pre-terminal child that matches the (regular expression) POS tags list in
the table, or all non-terminal children that match the (regular expression) constituent
list. Consequently, there is a preference for lexical over non-lexical head children, but
no preference within these groups. In the approach presented in Section 2.1.1, the list
is ordered by preference and it also has an associated direction (starting left or right
depending on the index of the table). The head detection algorithm first tries to find
a child of the kind indicated by the first element of the list in the indicated direction,
and stops as soon as it finds one. If no child of this kind can be found, the algorithm
next looks for a child of the kind of the second element of the list, and so on, down
to the last. If even the last kind of child cannot be found, the algorithm takes the
left/rightmost child (of any kind) to be the head. The two different approaches, accord-
ing to (Buchholz, 2002), differ mainly with respect to coordinated structures. For us,
this difference is irrelevant, because we compare our approaches in each of the cases
using the corresponding training material. Buchholz (2002) has an extensive descrip-
tion of the strategy followed by chunklink.pl for handling special cases that can
not be described in the table. Clearly, the result of both heuristics may be “unknown.”
For these cases chunklink.pl returns an unknown head. In our experiments we
discarded all sentences that contain at least one “unknown” head.

Once heads have been marked, the algorithm proceeds with step (2). Links (de-
pendency relations) are drawn in a bottom-up fashion. In the process of drawing links,
the tree ends up in an intermediate structure, which is then used in the third step. We
describe here how the tree is transformed into a directed graph; the resulting graphs
contain a partial dependency structure like the one used in previous chapters, plus links
between non-terminals in the original tree and words in their yield. Step (3) uses the
latter links for labeling relations in the dependency tree and completing the dependency
trec; it finally eliminates them from the the graph producing a labeled dependency tree.

Step (2) starts by adding a link for each word in the yield of the tree that links
the word to itself. Recall that, for each non-terminal, the algorithm knows which of
its child nodes contains the head word. Step (2) traverses the tree in a bottom-up
fashion: it adds a link between the current non-terminal and whatever the head child is
pointing at. The result is a link between the non-terminal and a word in the yield. Step

http://chunklink.pl
http://chunklink.pl

7.4. Transforming the Penn Treebank to Labeled Dependency Structures 123

(2) also redirects all links outgoing from the current non-terminal child to the same
word the current non-terminal is pointing to. Note that step (2) outputs an incomplete
dependency structure at word level, together with a graph where all non-terminals point
to a word in the yield.

Step (3) uses the structure that step (2) outputs to add labeled links to words that
remain to be linked in the dependency structure output by (3). A link between a non-
terminal T and a word w in the yield encodes a dependency between w and the word
that is found by descending in the tree from T to the yield, always following head
children. These dependencies are the ones that step (3) draws. Recall that each non-
terminal points to a word w in the yield. Step (3) adds a link for each non-terminal
NT in the tree. The link goes from the word in the yield resulting from going down
the non-terminal, always following the head children and the word w in the yield.

The pointer introduced by step (3) indicates dependency relations between syntac-
tic constituents and head words. We are interested in relations between constituents
and words, but to establish relations between pairs of words, step (3) traverses again
the tree in a top-down fashion, and pushes the labeled pointer of the parent to the head
child. If the syntactical part of the pointer label and of the non-terminal head children
are identical, the pointer label stays the same. However, if the syntactic part is differ-
ent, the head child label is prefixed to the pointer label, separated by the “/” symbol.
When “pushing down” the function pointers, we lose the information about the level
at which they were originally attached. In most cases this information is not relevant,
as the function is defined by the combination of syntactic category and function tag.
However, in the case of NPs without function tag, the level of attachment makes the
difference between a complement (object) and an adjunct. In order to preserve this
distinction, Buchholz (2002) adds the new function tag -OBJ to the following con-
stituents if they occur without function tags and as siblings of lexical heads: NP, VP,
ADJP, S, SBAR, SINV, SQ, SBARQ. These is done during phase (2).

Step (4) uses the links between words that were already present at step (2) for
finding chunks. Buchholz (2002) defines a chunk to consist of a head, i.e., any word
that has a labeled pointer, plus the continuous sequence of all words around it that have
an unlabeled pointer to this head. Since labeled links between words were introduced
by step (3), chunks are defined by all links between words that appear up to step (2) in
the algorithm. This chunk correspond to the projection of the pre-terminal level in the
original tree.

Since our experiments use the transformed version of the PTB and try to com-
pare two different aspects of syntax, there are two issues we should discuss. The first
is related to the nature of the transformation defined by chunklink.pl. Clearly,
chunklink.pl takes a phrase structure as input and returns a dependency tree: it
might be that this transformation discards some information from the PTB and that this

http://chunklink.pl
http://chunklink.pl

124 Chapter 7. Sequences as Features

loss of information produces misleading results in our experiments. It seems to us that
chunklink.pl does not define an invertible procedure. i.e.. the dependency trees
returned by it can nor be transformed back to the original phase structure tree, because
labels of some of the intermediate constituents are deleted during pruning (Buchholz,
2002, page 60). Buchholz (2002, page 59) also mentions loss of information regarding
the original attachment position of grammatical functions. Despite all this, we think
that chunklink.pl does not discard too much information and that the structures it
produces are still meaningful.

The second issue to discuss is that, in theory, the transformation might be more
beneficial for one of our experiments than for the other. It is not clear to us that this is
indeed the case. All of our experiments are close to each other in that they use the same
type of information and that the transformation does not favor a particular experiment.

7.5 Building the Grammars

For each of the tree grammars we build, we have to follow the same 3 steps:
1. extract the training material,
2. find the best automata, and
3. use the automata to build the grammar.

The optimization procedure we use for selecting the best automata, step (2), is the same
for all grammars, while steps (1) and (3) are different for each particular grammar.
Sections 7.5.1, 7.5.2, and 7.5.3 describe steps (1) and (3) for each of the grammars,
while Section 7.6 describes step (2).

7.5.1 Grammars for Detecting Main Dependents

The grammar for detecting dependents is very similar to the grammars we built in
Chapters 5 and 6. For each sentence parsed with this grammar, the parser outputs a de-
pendency structure; the main verb dependents are found in this dependency structure.

Extracting Training Material

In order to obtain training material we transformed the PTB, sections 11-19, as ex-
plained in Section 7.4. For each dependency tree in the transformed TB, we extracted
a sample set of right and left sequences of dependents. Figure 7.4 shows an example
of a dependency tree, and Table 7.1 shows the sample sets of right and left dependents
we extracted from it. We built two different sample bags per POS tag, one containing

http://chunklink.pl

7.5. Building the Grammars 125

N

[Pierre Vinken]. [61 years] [old]. [joined][the board][as] [a nonexecuu\e director][NO\ 291.
NNP VBD NN

Figure 7.4: A dependency tree from which we extracted training material.

all instances of left dependents and one containing all instances of right dependents.
For each of the bags we built an automaton. The description of how to build an au-
tomaton from a bag of samples and the steps we follow for optimizing all automata are
discussed in Section 7.6.

POS Left Right
NNP NNP COMMA COMMA NNP
COMMA NNP NNP
NNS NNS NNS
1 JJINNS 1
COMMA COMMA COMMA
VBD VBD NNP VBD NN PP CD DOT
NN NN NN
PP PP PP NN
NN NN NN
CD CDh CD
DOT DOT DOT

Table 7.1: Instances of left and right dependents extracted from the tree in Figure 7.4,

Building the Grammar

Once the training material has been extracted, we build two different automata per POS
tag, one modeling left dependents and one modeling right dependents. Let POS be the
set of possible POS tags, and let w be an element in POS; let A7 and A}, be the two au-
tomata associated to it. Let G¥ and G be the PCFGs equivalent to AY and A%, respec-
tively, following (Abney et al., 1999), and let S¥ and S¥ be the start symbols of G} and

%, respectively. We build a grammar G p with start symbol S, by defining its meta-
rules as the disjoint union of all rules in G} and G'% (for all POS w), its set of pseudo-
rules as the union of the sets {S -, S¥v*S% : v € {VB, VBD, VBG, VBN, VBP, VBZ} }.

The grammar is designed in such a way that the grammar’s start symbol S only yields
the head words of the sentences which are marked with the * symbol. The main dif-
ference between the grammar we built in this section and the grammars we built in

126 Chapter 7. Sequences as Features

Chapters 5 and 6 is that the sentences that are parsed with this grammar have the main
head verb marked. We design the grammar to take advantage of this information.

To understand our experiments, we need to take a closer at the probabilities, and
specially assigned by the grammars to the tree languages involved. Here is an exam-
ple. Figure 7.5 shows a tree generated by G together with its probability. Here,
plwpwiws)plwpwsw,) is the probability assigned by the automata to wywyw, and
wyzwy. In fact, this is a simplification of the probability; it does not affect the analysis
we carry out later but it makes the analysis clearer.

S
T e N T polt) = plunwnwgplunuse)
_— = e p(ti)...plty)
31 tz 3 !
(a) (b)

Figure 7.5: (a) An example of a structure retrieved by the grammar G p, and (b) the
probability value Gp assigns to it.

7.5.2 Grammars for Labeling Main Dependents

The second grammar we build is for labeling dependents. The sentences this grammar
process are supposed to be only the dependents of a verb. In other words, the gram-
mar assumes that somehow the right dependents have been identified, the task of this
grammar is to assign the correct label to the dependents. It assigns a label to all ele-
ments in the the input string. The grammar built in the previous sections selects a set
of candidate dependents, and the selected dependents are fed to grammars described in
the present section.

Sequences of GRs are modeled as instances of regular languages. Every verb tag
has two automata associated to it: one modeling the sequence of left GRs and one
modeling sequences of right GRs. A sequence of left (right) GRs is then an instance
of the left (right) automata.

The grammar we build in this chapter is similar to the grammars built in Chap-
ters 5 and 6 in that automata are used for building meta-rules. In contrast, automata
are used to model sequences of GRs instead of sequences of POS tags. Figure 7.6
shows an example of a possible tree. From the figure, it is clear that GRs are encoded
in preterminal symbols. All trees in the tree language defined by this grammar are flat
trees of depth two. GRs are at depth one and they are modeled with automata and meta-
rules. The yield of the tree is at depth two and it is modeled using pseudo-rules. These

127

7.5. Building the Grammars

pseudo-rules rewrite GR names into a POS tag and they are read from the tree-bank;
their probabilities are computed using the maximum likelihood estimator (Manning
and Schiitze, 1999).

Observe that these are w-trees, and not CFG trees; all meta-derivations that took
place to produce nodes at depth 1 remain hidden. Hence, the sequence of GRs to the
right and to the left of the main verb are instances of the regular languages modeling
right or left GRs, respectively.

Summing up, we build a grammar for labeling GRs by combining two techniques
for estimating probabilities for rules: the techniques presented in Chapters 5 and 6
for estimating probabilities for meta-rules, and maximum likelihood estimators for
estimating probabilities for pseudo-rules.

Extracting Training Material

For this grammar we build two automata per verb POS tag, one modeling left GRs
and one modeling right GRs. In order to extract the training material required for this
grammar, we discarded all information not related to GRs from the transformed PTB.
Figure 7.6 shows an example of the information we kept from the tree in Figure 7.2.

/‘\KF\\

NP-SBJ VBD NP-OBJ PP—CLR NP-TMP NO—FUN(

/

NNP NN PP CD

Figure 7.6: The tree representation we use, extracted from tree in Figure 7.2.

From the tree in Figure 7.6 we extract two kinds of information. The first kind is used
to model meta-rules yiclding GRs, i.e., the first level of the output trees, while the
second kind of information is used to model pseudo-rules that rewrite names of GRs
into POS tags, i.e., the third level of the output tree.

We first discuss the extraction of the material to build the automata. For this pur-
pose we build two training bags, one containing right GRs and the other containing left
GRs. Table 7.2 shows all instances to be added to the training material extracted from
the tree in Figure 7.2.

We build two sample bags per verb POS tag, one containing all instances of left
sequences of GRs and one containing all instances of right sequences of GRs. For
each of the resulting bags we build one automaton. The description of how to build an
automaton from a bag of samples, and the steps we follow for optimizing all automata,
are discussed in Section 7.6.

128 Chapter 7. Sequences as Features

VBD
Left Right
NP-SBJ VBD | VBD NP-OBJ PP-CLR NP-TMP NO-FUNC

Table 7.2: Data extracted from the tree in Figure 7.2. Left dependents should be read
from right to left.

In contrast to Chapters 5 and 6, where probabilities for pseudo-rules were hand-
coded, for this grammar probabilities for pseudo-rules have to be estimated from the
training material. This is the case because pseudo-rules in Chapters 5 and 6 could be
rewritten in only one way. For the present grammar, this is no longer the case. Left
hand symbols of pseudo-rules are GRs, and these names can yield different POS tags.
In order to estimate probabilities, we extracted all pairs of (GR, POS) from the training
material and put them aside in only one bag. Table 7.3 shows the instances of pairs
extracted from the tree in Figure 7.2.

GR POS tag
NP-SBJ nnp
NP-OBJ nn
PP-CLR PP
NP-TMP cd

NO-FUNC dot

Table 7.3: Pairs of GRs and POS tags extracted from tree in Figure 7.2.

Building a Grammar for Labeling

For building a grammar for labeling, we have to estimate two sets of probabilities and
rules. On the one hand, we have to estimate meta-rules and their probabilities, and on
the other hand we have 10 estimate the probabilities for pseudo-rules. The estimation
of meta-rules and their probabilities is done by inducing an automaton for each of the
sample sets of sequences of GRs.

Once the training material for meta-rules has been extracted, we build two automata
per POS tag, one modeling left sequences of GRs and one modeling right sequences
of GRs. Let VS be the set of possible verb tags, let v an element in VS; and A} and

% the two automata associated with it. Let G} and G% be the PCFGs equivalent
to A} and A%, respectively, and let S} and S} be the start symbols of GY and GY,
respectively. We build a grammar G, with start symbol S, by defining its meta-rules
as the disjoint union of all rules in G} and G¥%, (for all verb POS tags v), and its set of

7.5. Building the Grammars

pseudo-rules as the union of the two sets. One set, given by
{S 2o S¥v*SY i v € VSY,

is in charge of connecting the automata modeling left sequences of GRs with the au-
tomata modeling right sequences of GRs. The second set, given by

{GR *>,w:w e POS},

where GR is the name of a GR, w is a POS tag, and p the probability associated to the
rule, is computed using the pairs of (GR, POS) extracted from the training material,
using the maximum likelihood estimator.

S
GR; GRy w, GR3 GRy pL(t) = p(GRy...GRy) x
| | | | p(GRy — wy) x
w1 Wwo W3 Wy
p(GRy = wy)
(@ (b)

Figure 7.7: (a) An example of a structure retrieved by the grammar G, and (b) its
probability value.

Again, the key to understanding our experiments lies in the way G, assigns probability
mass to its grammatical trees. Figure 7.7 shows a tree generated by G, together with
the probability assigned to it. In the figure, p(GR; —— w;) refers to the probability
assigned to the rule GR; = w; and p(GR; ... GRy) is a simplification of the prob-
ability associated to the string GR; ... G R, by the automata modeling sequences of
GRs.

If the grammar for labeling dependents is fed with the dependents found by the
grammar for detecting dependents, the probability associated to a tree like the one
pictured in Figure 7.8 is

Peascading(t) = Ppp(t) x pL(t) (7.1
= p(GR;...GRy) x

p(GR, 5 wy)...p(GRy > wy) x

pwpwwe)p(whwsws) X

p(t1) ... p(t)

130 Chapter 7. Sequences as Features

That is, peascading 15 the product of the probability assigned by G and G p, the main
difference between this probability and Pone-go (the one assigned by the grammar G
defined in Section 7.5.3 below), is that Peascading US€S the probability ot the sequences
wpwiwy and wywsw,s for detecting and labeling dependents.

Summing up, we have two probability distributions for the very same task, one
of the distributions uses one more feature. An empirical comparison of these two
distributions would provide us with information about the value of the extra feature;
this is what we turn to in Section 7.7.

GR] GR] Wi GR3 GRI
| I I l

Wi Wo W3 Wy

- - - -
ty t2 i t

Figure 7.8: The result of cascading the grammars for detecting and labeling depen-
dents.

7.5.3 Grammars for Detecting and Labeling Main Dependents

This grammar to be defined in this section does in one go what the two grammars in
Section 7.5.1 and 7.5.2 do in two steps.

Extracting Training Material

The training material we used for building this grammar is the union of the training
materials we used for building the two previous grammars.

Building the Grammar

The automata we used for building this grammar are the same as the automata used
in the previous two grammars, but the set of rules is different. Let POS be the set of
possible POS tags, let w be a an element in POS; let A¥ and A% be the two automata
built for each POS tag in Section 7.5.1. Let VS be the set of possible verb tags, v an
elementin VS, let A7 and A}, the two automata built for verb tags in Section 7.5.2. Let

7. G, Gt and G} be the PCFGs equivalent to AY, A%, AY and A%, respectively,
and let S7, 5%, S¢ and S¥ be the start symbols of G and G%, respectively. We build
a grammar (& with start symbol S, by defining its meta-rules as the disjoint union of

7.6. Optimizing Automata 131

all rules in G§, G%, Gy and G%, for all POS tags and all verbs tags, while its set of
pseudo-rules is the union of the following sets:

S 2., SWrSy v e VS {W 25| S¥YwSY i w € POS}. and
LV Or LWOR
{GR *>, S¥wS}§ : w € POS},

where p is the probability assigned to the rule {GR ——, w : w € POS} in Sec-
tion 7.5.2.

The difference between this grammar and the grammar for detecting dependents is
that this grammar uses sequences of GRs for detecting the main dependents, while the
grammar for detecting dependents uses sequences of POS tags.

Figure 7.9 shows an example of a tree accepted by & together with the probability
G assigns to it.

S

GR, GR; Wh GR3 GR; pone~ga(t) - p(GRl ‘o GR?) X

[| ! l p(GR; — wy) %

w1 Wy w3 Wy
— — = h

4y to 1 t p(G’R4 — w4) x

p(ti) ... p(ts)
(a) (b)

Figure 7.9: (a) An example of a structure retrieved by the grammar G, and (b) its
probability value.

Now that we have the tree probability distributions we can establish the relation be-
tween the two. Let pogcading be the probability distribution generated over trees by
cascading the two first grammars, and let p,..;, be exactly the probability distribution
generated by G. The probability distributions pone.go and Peascading assign probabilities
to the same set of trees, and the two are related as follows

prasmding(t) = pone-go(t) X p(whwlw2)p(whw3w4) (7.2)

As is clear from Equation 7.2, the difference between the two distributions is the prob-
ability of the sequence of POS tags w; ... ws.

7.6 Optimizing Automata

Let T be a bag of training material extracted from the transformed tree-bank. The
nature of T depends on the grammar we are trying to induce. But since we use the

132 Chapter 7. Sequences as Features

same technique for optimizing all automata. we describe the procedure for a general
bag.

Recall from Section 2.2.2 that we use two different measures for evaluating the
quality of automata. Let) be a test bag extracted as T'. As before, we use perplexity
(PP) and missed samples (MS) to evaluate the quality of a probabilistic automaton. A
PP value close to 1 indicates that the automaton is almost certain about the next step
while reading the string. MS counts the number of strings in the test sample Q that the
automaton fatled to accept.

We search for the value of alpha that minimizes ¢ = v PP? + M52 (see Chap-
ter 6.4.2, page 103, for the motivation of this function). In Figures 7.10 and 7.11 we
have plotted alpha vs. PP, MS and g for all verb POS tags used in the grammar for
detecting the main dependents of verbs. Table 7.4 shows the values of alpha that
produce the mintmum value of q.

Alpha
POS tag | Left Right
VB 0.0004 | 0.0004
VBD | 0.0004 | 0.0002
VBG | 0.0002 | 0.0004
VBN | 0.0005 | 0.0004
VBP | 0.0004 | 0.0004
VBZ | 0.0004 | 0.0004

Table 7.4: Optimal values of PP and MS for automata used for labeling dependents.

In Figures 7.12 and 7.13 we have plotted alpha vs. PP, MS and ¢ for all verb POS tags
used in the grammar for labeling dependents, an instance of the regular languages these
automata model are GRs sequences. Table 7.5 shows the values of alpha that produce
the minimum value of g. Recall from Section 7.5.2 that we build one automaton per
verb POS tag.

Note that, even though the PP values for automata modeling sequences of GRs and
the PP values for automata modeling POS tags are close to each other, the difference
between their MSs is remarkable. We think that data sparseness affects the modeling
of GRs much more than the modeling of POS tags. This sparseness prevents the MDI
algorithm from inducing a proper language for GRs.

7.7 Experiments

For our experiments we shuffle the PTB sections 10 to 19 into 10 different sets. We run
the experiments using set 1 as the test set and sets 2 to 10 as training sets. The tuning

7.7. Experiments

Alpha

POS tag Left Right
VB 0.00015 | 0.00015
VBD | 0.00020 | 0.00010
VBG | 0.00030 | 0.00020
VBN | 0.00020 | 0.00020
VBP | 0.00050 | 0.00050
VBZ | 0.00030 | 0.00015

Table 7.5: Optimal values of alpha for automata used for detecting dependents.

samples were extracted from Section 00. All the sentences we fed to the parser have
the main head marked; all sentences whose main head was not tagged as a verb were
filtered out.

We start by performing the whole task (detecting dependents and labeling their
relation with the main verb) by the two different approaches; results are shown in
Table 7.7. These results, together with Equation 7.2, answer one of our main research
questions, namely what is the importance of the sequences of POS tags for parsing.

Recall from Equation 7.2 that the only difference between the two probability dis-
tributions Pone.go aNd Pegscading 15 the probability that pegscading associates to sequences
of POS tags. Note also that the grammar that does not take it into account, namely
G, performs significantly worse than the one that does take this sequence into account.
From this we can conclude that the 10% jump in performance is due to the use of this
specific information. The grammar G, for labeling dependents allows us to quantify

Approach | Precision | Recall | fa=1
Cascading | 0.73 l 0.73 |0.73

One Go 0.65 0.67 | 0.66

Table 7.6: The results on detecting and labeling dependents of main verbs.

how effective are the sequences of GRs together with pseudo-rules GR ~— w for la-
beling GRs. To isolate these features, we used grammar G, for labeling dependents
that are known to be the right dependents. We extracted the correct sequences of de-
pendents from the gold standard and used grammar G, for labeling them. Table 7.7
shows the results of this experiment.

Precision | Recall I fa=1
076 | 076 |0.76

Table 7.7: Results of the experiment on labeling gold standard dependents.

138 Chapter 7. Sequences us Features

The experimental results show that labeling is not a trivial task. The score obtained
is low. even more so if we take into account that the sentences we fed to the parser con-
sisted only of correct dependents. We think that the poor performance of this grammar
ts due to the data sparseness problem mentioned above, because there is a high amount
of MS in the automata that model GRs.

The two grammars in the first approach allow us to quantify how the errors per-
colated from detecting dependents to labeling them. Now, the only aspect of the task
that is left is to study is the detection of dependents. Table 7.8 shows the results of the
experiment to assess the goodness of G for detecting dependents.

Precision [Recall I fa=1
085 | 0.88 [0.86

Table 7.8: Results of the experiment on detecting dependents.

We can see how sensitive the task of labeling dependents is to errors in its input. Ta-
ble 7.7 states that the labeling precision drops from 0.76 to (.73 when only the 85% of
the arguments fed to the labeling grammar are correct.

7.8 Related Work

The 1ask of finding GRs has usually been considered as a classification task (Buchholz,
2002). A classifier is trained to find relations and to decide the label of the relations that
are found. The training material consists of sequences of 3-tuples (main verb, label,
and context). In order to have a better impression of the difficulty of the task, Table 7.9
shows some baselines extracted from (Buchholz, 2002). To understand the table, it is
important to note that “no relations” refers to the absence of the predicted relation and
that 0 divided by 0 is defined as 1. In contrast to approaches based on classifiers, we

Description Precision | Recall s
always predict “no relation” 100 0 0
always predict NP- SBJ 6.85] 30.73 | 11.20
most probable class for focus chunk type/POS 100 0 0
most probable class for focus word 31.21 1.07 | 2.07
most probable class for distance 49.43 { 37.30 | 42.51

Table 7.9: Some possible baselines. Results extracted from Table 3.2 in (Buchholz,
2002).

consider the task of finding GRs as a parsing task. We build grammars that specifically

7.9. Conclusions and Future Work 139

try to find GRs. It is possible to find GRs as a side product of full parsing because full
trees output by a parser can be transformed as we transformed PTB. In order to give an
impression of state-of-the-art methods for finding and labeling main dependents, we
compare experiments to the approach presented in (Buchholz, 2002).

Approach ’ Precision | Recall | F3
Cascading 0.73 0.73 | 0.73
One-go 0.65 0.67 | 0.66

Memory Based Approach 0.86 0.80 | 0.83

Table 7.10: Comparison to state-of-the-art techniques for detecting and labeling main
verb dependents.

The main difference in the scores obtained by Buchholz (2002) and our own approach
is probably due to the little information we used for performing the task. In contrast
to our approach, Buchholz (2002) uses all kinds of features for detecting and labeling
dependents.

7.9 Conclusions and Future Work

In this chapter we designed and implemented experiments for exploring the differences
between the regular language of POS tags and the regular language of non-terminal
labels in a parsing setup. Our research aimed at quantifying the difference between the
two and at understanding their contribution to parsing performance. In order to clearly
assess the contribution of these two features, we needed to carry out an evaluation in
terms of a task that clearly isolates the two regular languages. We used the task of
detecting and labeling dependents of the main verb of a sentence.

We presented two different approaches for dealing with the task of finding gram-
matical relations. In the first approach, we developed two grammars: one for detecting
dependents and another for labeling them. The first grammar used sequences of POS
tags as the main feature for detecting dependents, and the second grammar used se-
quences of GRs as the main feature for labeling the dependents found by the first
grammar. The task of detecting and labeling dependents as a whole was done by cas-
cading these two grammars. In the second approach, we built a single grammar that
uses sequences of GRs as the main feature for detecting dependents and for labeling
them. The task of detecting and labeling dependents as a whole was done in one go by
this grammar. The two approaches differ in that the first one used sequences of GRs
and sequences of POS tags, while the second only used sequences of GRs.

We showed that English GRs follow a very strict sequential order, but not as strict
as POS tags of verbal dependents. We showed that the latter is more effective for de-

140 Chapter 7. Sequences as Features

tecting and labeling dependents, and, hence, it provides a more reliable instrument for
detecting them. Moreover, we have shown that sequences of POS tags are fundamen-
tal for parsing performance: they provide a reliable source for predicting and detecting
dependents. Our experiments also show that sequences of GRs are not as reliable as
sequences of POS tags.

The usual perspective on parsing is that all features that improve parsing perfor-
mance are used without clearly stating why these features improve. Our approach aims
at changing this perspective; we designed grammars and experiments for isolating,
testing and explaining two particular features: sequences of POS tags and sequences
of GRs, both for detecting and labeling and labeling dependents. PCW-grammars al-
low us to do these. Note that trees returned by our parser are flat trees and they can not
be modeled either by PCFGs nor by bilexical grammars. This is the case because some
of the dependencies we model using automata in this chapter do not yield terminals but
preterminal symbols.

Chapter 8

Conclusions

In this thesis we have applied an abstract model to learn more about natural language
parsing. We have surveyed three state-of-the-art probabilistic parsers and we have iden-
tified their characteristic features. We have abstracted from these particular features
and models to produce and formalize a general, and abstract, language model. This
abstract language model provides us with a suitable framework to carry out principled
investigations of new directions into parsing based on different parameterizations of
the general model.

While reviewing state-of-the-art parsers, we focused on crucial issues like the role
of probabilities in the context of parsing, their importance and their possible uses. We
have shown that, when used as a filtering mechanism, probabilities can add expres-
sive power to context free grammars, defining a class of tree languages beyond the
expressivity of context free grammars. We have shown that it is not possible to decide
whether probabilities solve all ambiguities in a language. In addition, we have shown
that probabilities can be used for purposes other than the mere filtering of unwanted
trees. We have illustrated this claim with some examples, like using probabilities to
evaluate the quality of PCFGs and to boost the performance of parsers.

The general language model we have presented is based on W-grammars. We have
introduced constrained W-grammars and have augmented them with probabilities. The
resulting formalism, probabilistic constrained W-grammars, is the backbone formalism
for all our experiments. Like every general model, the suitability of PCW-grammars is
mainly given by two aspects: that they can capture multiple existing formalisms in a
single formalism, and that they provide a structured framework where new directions
of research can be identified and pursued in a principled way.

141

142 Chapter 8. Conclusions

8.1 PCW-Grammars as a General Model

We have shown that PCW-grammars provide an encompassing formalism for explain-
ing three state-of-the-art language models. PCW-grammars are based on a well-known
grammatical framework, and their computational properties are well-understood. It
is true that the expressive power of PCW-grammars is significantly lower than that
of W-grammars, but their expressiveness is perfectly adequate to capture grammatical
formalisms underlying state-of-the-art parsers.

For example, probabilistic constrained W-grammars are capable of capturing bilex-
ical grammars, Markovian context free rules, and stochastic tree substitution gram-
mars. We have described the expressive power of these three formalisms, together
with some conditions under which grammars inferred from treebanks are consistent.
Despite the similarities between PCW-grammars and PCFGs, there is a fundamen-
tal difference between the two: the two-level mechanism of PCW-grammars. This
mechanism allowed us to capture these three state-of-the-art natural language models
mentioned above, which cannot be done using standard PCFGs only.

The suitability of the general language model provided by PCW-grammars is that
it allowed us to compare three apparently different formalisms within the same formal
perspective. We have shown that the essence of bilexical grammars and Markovian
context free grammars is quite comparable: both are based on approximating bodies of
rules using Markov models. We also found similarities between STSGs and Markov
rules: both suppose that rule bodies are obtained by collapsing hidden derivations.
More concretely, for Markovian rules, a rule body is a regular expression (or a Markov
chain, which is equivalent) and STSGs take this idea to the extreme by considering the
whole sentence as the yield of a hidden derivation.

8.2 PCW-Grammars as a New Parsing Paradigm

PCW-grammars are not only useful for capturing the formalisms underlying state-of-
the-art parsers, but also for suggesting new research directions. These come as a con-
sequence of different instantiations of the parameters of the general model, or by re-
thinking the set of assumptions the particular instances have made. A brief description
of the directions explored in this thesis follows.

Explicit Use of Probabilistic Automata: PCW-grammars allowed us to use general
methods for inducing regular languages instead of the usual n-based algorithms.
Our experiments along this line lead to two types of conclusions. First, that mod-
eling rules with algorithms other than n-grams does not only produce smaller
grammars, but also better performing ones. Second, that the procedure used for

8.2. PCW-Grammars as a New Parsing Paradigm 143

optimizing the parameters of the parser reveals that some POS behave almost
deterministically for selecting their dependents, while others do not. This con-
clusion suggests that splitting classes that behave non-deterministically into ho-
mogeneous ones could improve the quality of the inferred automata. We argued
that lexicalization and head-annotation seem to take advantage of the properties
of splitting.

Splitting the Training Material: We have presented an approach that aims at finding

an optimal splitting of the material before inducing a PCW-grammar. The split-
ting was aimed at improving parsing performance. For this purpose, we defined
a quality measure to quantify the quality of different partitions of the material.
Using this measure, we searched among a subset of all possible partitions for the
one maximizing the proposed quality measure. This measure is a combination
of a quality measure defined for each component in a partition. For each com-
ponent, we built an autornaton and computed the automaton’s missed samples
and perplexity. The measure we presented combines the values of perplexity
and missed samples for all resulting automata. We used the resulting automata
to build grammars that were subsequently used for parsing the Penn Treebank.
We have shown that the quality measure we defined can be used for comparing
two grammars’ parsing scores if the grammars are built from partitions having
a similar number of components. Since our measure ¢ is a good indicator of
the parsing performance, the process of inferring grammars can be treated as an
optimization task. This implies that this procedure spares us the need to assess
the performance of a particular grammar by parsing.

Sequences as Features: The usual perspective on parsing is that all features that im-

prove parsing performance are used for parsing, without a clear study of how
these features improve parsing. Our approach is aimed at changing this per-
spective; we have designed grammars and experiments for isolating, testing and
explaining the value of two particular features that are known to improve parsing
performance: sequences of POS tags and sequences of GRs. We have shown that
sequences of POS tags are fundamental for parsing performance, because they
provide a reliable source for predicting and detecting dependents. Our expeni-
ments have also shown that sequences of GRs are not as reliable as sequences
of POS tags. We think this is the case because the training material for GRs is
small compared to the training material for sequences of POS.

PCW-grammars are versatile enough to allow us to address the variety of experimental
questions and aspects we tried out in this thesis. For all of them we used only one

parsing algorithm and a unified mathematical theory. PCW-grammars have reduced

144 Chapter 8. Conclusions

the design cycle for all of our experiments; we only need to focus on very specific
aspects of parsing, and we could leave aside all conditions on expressive power, com-
plexity of parsing, and parsing algorithms. We think that PCW-grammars have proven
their suitability: the formalism is abstract enough to capture the formalisms underlying
state-of-the-art parsers and to suggest new research directions in parsing.

8.3 Two Roads Ahead

This thesis presents a rather unusual perspective on parsing. The usual perspective
aims at designing and building parsers that produce better scores on parsing the Penn
treebank. In contrast, we presented measures, grammars, tasks and experiments that
were designed for testing particular aspects of syntax, language modeling and parsing.

In my opinion, these two approaches are exponents of two different research direc-
tions. The first one focuses on understanding why particular features improve parsing
performance, while the second focuses on finding new features that can improve pars-
ing performance. The second direction has reached a plateau; different approaches do
not differ substantially in terms of their parsing scores and it is hard to identify the key
features that may produce a future jump in performance scores. It is also difficult to
determine which differences in performance are statistically significant. I think that in
the forthcoming years the research focus will shift from the second line of research to
the first one. I think that this shift will result in deeper, more detailed knowledge of the
structure of human language, and its impact on parsing performance.

The ultimate aim of parsing is twofold: understanding human language and pro-
ducing parsers that process naturally ocurring sentences with an acceptable esror rate.
Depending on the scientific discipline, one of these interests might be more impor-
tant than the other: linguistics aims at understanding human language, while statistical
parsing aims at producing computational models that process natural language with
an acceptable level of performance. If there is any flow of ideas here, it seems to go
mostly from the linguistic side to the statistical one. The reverse direction is blocked to
the point that some linguists claim that the knowledge that can be inferred by statistical
methods cannot be considered as a reliable model of language (Andor, 2004). 1 hope
this situation will change in the years to come. I think that the parsing community
has to focus on two main research areas. One area will focus on identifying, under-
standing and testing particular aspects of features used for parsing which will provide
linguists with interesting data about language as they understand it. The second stream
will try to incorporate insights suggested by the first line of research in parsers. I hope
that this thesis has suggested new directions; translating them into improvements in
state-of-the-art parsing performance is the next step.

Appendix A
Parsing PCW-Grammars

A.1 Introduction

In this appendix we focus on two aspects of our PCW-grammar parsing algorithm. One
aspect, the most theoretical one, is related to the study of the capacity and computa-
tional complexity of our implementation for handling PCW-grammars. Since various
meta-derivations can produce the same w-rule, it is important to distinguish between
the most probable derivation tree and the most probable w-tree. As described in Chap-
ter 4, different meta-derivations can yield the same w-rule and consequently the same
w-tree. A parser returning the most probable derivation tree considers the probability
of a w-rule as the probability value of the most probable meta-derivation. In contrast,
a parsing algorithm searching for the most probable tree considers the probability of a
w-rule as the sum of all probabilities assigned to the meta-derivations producing it. In
this appendix we investigate the differences between these two approaches, focusing
on necessary and sufficient conditions for both approaches to return the same tree.
The second aspect we focus on, is related to technical issues of our PCW-grammar
parsing algorithm implementation. In some of the experiments we performed, the
parser had to handle grammars containing a number of rules close to one million. The
parsing algorithm is an optimization algorithm, it searches for the best solution among
a set of possible solutions. At each step in the optimization process, the algorithm
builds possible solutions retrieving new rules from the grammar. When working with
large grammars, as we did, the complexity of the parsing algorithm becomes unman-
ageable if the retrieval step takes more than constant time. In this appendix, we briefly
describe the approach we followed to minimize the computational costs of this step.
The rest of the appendix is organized as follows. Section A.2 discusses the theoret-
ical issues related to the parsing algorithm, Section A.3 discusses the Java implemen-
tation, and Section A.4 concludes the appendix.

145

146 Appendix A. Parsing PCW-Grammars

A.2 Theoretical Issues

m &

Recall from Chapter 4 that a PCW-grammar is a 6-tuple (V', NT, T, S, =—.) such
that:

¢ |Visaset of symbols called variables. Elements in 1" are denoted with over-lined
capital letters, e.g., A,B.C.

e NTis aset of symbols called non-rerminals: elements in NT are denoted with
upper-case letters, e.g., X, VY, Z.

e T'is a set of symbols called terminals, denoted with lower-case letters, e.g.: a, b,
c,such that V, T and NT are pairwise disjoint.

o Sisanelement of NT called start symbol.

e " is a finite binary relation defined on (V U NT U T)* such that if r 7= y,
thenr € V. The elements of — are called meta-rules.

e ~— is a finite binary relation on (V.U NT UT)* such that if « —— v then
u € NT, v # € and v does not have any variable appearing more than once. The
elements of —— are called pseudo-rules.

Meta-rules and pseudo-rules have probabilities associated to them, see Example A.2.1
for an example of a w-grammar.

A.2.1. EXAMPLE. Let W = (V,NT,T,S, ™, 2-) be a W-grammar, where V =
{A,C}, NT = {B, S}, T = {a,c}, ™ and = as described in Table A.1.

pseudo-rules (—) l meta-rules (=)

K] y = m =
S —0.5 A A —0.5 aC
s - m -
S —0.5 B A —05 Ca
s —
B —3p.75 AQ C —“’m 1a

s
B —q.35 cc

Table A.1: A W-grammar that has a best derivation tree that does not correspond to the
most probable tree.

As described in Chapter 4, there are two types of derivations depending on the type of
the rules used to produce them. Mera-derivations are derivations in which only meta-
rules are used, while w-derivations are derivations in which only w-rules are used.
Since w-rules are built by meta-deriving all variables in a pseudo-rule, there might be

A.2. Theoretical Issues 147

w-rules that are the product of different meta-derivations. We can think of a w-rule as a
way to pack all meta-derivations that yield the w-rule, because the probability assigned
to the w-rule is the sum of all the possible meta-derivations it covers.

Since a w-rule covers many meta-derivations, the underlying PCFG can not be
used for parsing PCW grammars. A parser for PCFGs can be used for parsing PCW-
grammars if and only if all possible w-rules cover one and only one meta-derivation.
If this is not the case, the w-tree resulting from parsing with the underlying PCFG plus
hiding its meta-derivations might not be the w-tree with the highest probability.

In order to better understand this phenomenon, we use the grammar in Exam-
ple A.2.1. This grammar produces the two w-trees pictured in Figure A.l.a and Fig-
ure A.1.b, both of them yielding “aa”. Clearly, the most probable w-tree is the tree in
Figure A.1.a, given that it is the one with the highest probability.

While trees in (a) and (b) are trees belonging to the forest of the PCW-grammar,
trees in (¢), (d) and (e) are trees that belong to the forest of the underlying PCFG. The
procedure for hiding meta-rules maps trees (c) and (d) to tree (a), and (e) to (b).

w-trees underlying PCFG trees
S S S S S
| 1 1 |
a a B A A B
N TN T~ AN
a a a C C a a a
| |
a a
p=05 p=0.375 p=1025 p=0.25 p=0.375
(a) () (©) (d) (e)

Figure A.1: Trees (a) and (b) belong to the forest of the W-grammar in Example A.2.1,
while trees in (c), (d) and (e) are trees in the forest of the PCFG underlying the same
W-grammar.

The PCFG parser using the PCFG underlying searches for the best parser among
the trees that belong to the forest generated by the PCFG underlying, i.e., the parser
searches for the best among the trees in the right-hand side of Figure A.1. Once the
best tree is found, it is mapped to a w-tree by hiding all meta-derivations. In this ex-
ample, the most probable tree in the forest generated by the PCFG underlying is the
tree in part (), which is mapped to the w-tree in part (b). Clearly, the w-tree with the
highest probability is the tree in part (a) and not the one in part (b). The algorithm
failed in returning the most probable tree. In other words, the PCW parser defined as

148 Appendix A. Parsing PCW-Grammars

the procedure of, first, searching for the most probable tree in the forest generated by
the PCFG underlying and, second, hiding all of its meta-derivations, might not return
the most probable w-tree.

Clearly, if the hiding procedure maps one tree in the forest generated by the PCFG
underlying to one tree in the forest generated by the W-grammar, then a parser for W-
grammar is equivalent to the process of using a PCFG parser plus post tree-processing.

There are two configurations for which the mapping between the two forests is not
a one-to-one map. The first one occurs when there is at least one meta-variable that
can be instantiated with a value that can be meta-derived in two different ways. The
second one occurs when there is a pseudo-rule that has only one terminal in its body,
and that body can be generated with another w-rule. For the grammar in Example A.1,
the mapping between two forests is not a one-to-one mapping because the variable A
in pseudo-rule S <— 5 A can be instantiated with two different meta-derivations.

Note that in all our experiments, meta-rules come from probabilistic determinis-
tic automata. Since they are deterministic, all possible variable instantiations have a
unique way to derive them. Also, not all the pseudo-rules we used in our grammars
have a variable in their body. Consequently, since, for all the grammars we developed
in this thesis, there is a one-to-one mapping between the forest generated by the w-
grammar and the forest generated by the PCFG underlying, we decided to implement
our parser as a Cocke-Younger-Kasami (CYK) parsing algorithm plus a procedure that
hides all meta-derivations from the tree returned by the CYK algorithm.

The parser we implemented can be used as a parser that returns the most probable
tree, because we know that the most probable tree corresponds to the most probable
derivation tree. The problem of knowing when these two trees are the same is not
a trivial one. As we discussed before, the two trees are the same tree if there are
no variables that can be instantiated in the same way with two different derivations.
Since variables are instantiated through a context free like system, the problem of
knowing whether there are two ways to derive the same string becomes equivalent to
the problem of knowing whether a context free grammar is unambiguous. It is well-
known that the latter is an undecidable problem, which implies that it is is undecidable
whether the most probable tree is the same as the most probable derivation tree for a
given grammar.

A.3 Practical Issues
Conceptually, our parsing algorithm consists of two different modules. One module,

a CYK parser, searches for the most probable derivation in the underlying PCFG (see
Chapter 4 for the definition of the underlying PCFG). The second module, the function

A.3. Practical Issues 149

devoted to hiding meta-derivations, is in charge of transforming the most probable
derivation tree into a w-tree.

The rules handled by the version of the CYK algorithm we implemented have an
number associated to them. This integer, called level of visibility, is a generalization of
the concept of meta-rules and pseudo-rules. The tree returned by the CYK algorithm
is transformed to many different trees, depending on the visibility level of the rules to
be hidden.

A.3.1 Levels of Visibility

Trees to be transformed can be thought of as trees in which, for each node, there is an
integer marking the node’s level of visibility. In order to transform a tree by hiding a
level of visibility, we implemented a function that takes two arguments, one argument
is the tree to be transformed and the second argument is the level of visibility to be
hidden. The algorithm traverses the tree in a bottom up fashion and, for each node
having the visibility level to be replaced, it replaces the node itself with the sub-trees
hanging from that node in the original tree. Figure A.2 shows an example of hiding
operations for different levels of visibility. Since the hide operation can be applied to
a tree which was already transformed, a tree has many possible sets of visibility levels
to hide. For example, the tree in Figure A.2.d is the result of hiding level of visibility 1
from the tree in Figure A.2.c, which is in turn the result of hiding visibility tevel 2 from
the tree in Figure A.2.a. Note that the order in which the visibility levels are applied
does not matter.

The PCW parser is a particular case of the parser we implemented. In order to
obtain a PCW-parser, we marked meta-rules with visibility level 1 and pseudo-rules
with visibility level 0. In order to obtain a w-tree from the tree output by the CYK
component, we hide nodes whose level of visibility equals 1.

A.3.2 Optimization Aspects

The core of our algorithm is a Probabilistic CYK parsing algorithm capable only of
parsing grammars in Chomsky Normal Form (CNF). Probabilistic CYK parsing was
first described by Ney (1991), but the version we discuss here is adapted from Collins
(1999) and Aho and Ullman (1972).

The CYK algorithm assumes the following input, output and data structures.

e Input

— A CNF PCFG. Assume that the | N| non-terminals have indices 1, 2, ...,
| N], and that the start symbol S has index 1.

150 Appendix A. Parsing PCW-Grammars

S() SU
Al B ¢ a a B C°
—~ | | o~
a a D! c b b ¢
SN
b b
(a) (b)
SO SO
/‘\
AK)N‘q a a b b C?
|
P S l I

a a b b ¢
(c) (d)

Figure A.2: (a) A tree with its nodes augmented with visibility levels. (b) Level of
visibility 1 hidden. (c) Level of visibility 2 hidden. (d) Levels of visibility 1 and 2
hidden.

- n words wy, ..., w,.

¢ Data structures. A dynamic programming array 7[i, 5, a] holds the maximum
probability for a constituent with non-terminal index a spanning words i. . . j.

¢ Output. The maximum probability parse will be 7|1, 7, 1]: the parse tree whose
root is S and which spans the entire string of words w1, .. ., wp.

The CYK algorithm fills out the probability array by induction. Figure A.3 gives the
pseudo-code for this probabilistic CYK algorithms as it appears in (Jurafsky and Mar-
tin, 2000).

Note that steps 10, 11 and 12 are actually building all possible rules that can be
built using the non-terminals of the grammar. In order to minimize the number of
iterations, we iterate only on those rules that actually belong to the grammar and that
can help building the solution. In order to achieve this, we implement our grammars
as dictionaries indexed on bodies of rules. This approach is easy to implement because
bodies of rules are of length one or two. Unfortunately, this modification does not
reduce the worst case complexity, because in that case the grammar contains all the
possible rules that can be built with its set of non-terminals.

In order to parse with a grammar that is not in CNF, our parsing algorithm first
transforms the given grammar into an equivalent grammar in CNF. Clearly, since the

A.3. Practical Issues

function CYK(words,grammar) returns The most probable parse
and its probability.

. Create and clear 7[num_words, num_words, num_nonterminals] {Base case}
. for i — 1to numyords do
for A «— w; to numy,onTerminals do
if A — w; is in the grammar then
{recursive case}

EANE A Sy

6: for span — 2 to num_words do

7. for begin — 1 to num_words — spam + 1 do
8: end — begin + span — 1

9 for m = begintoend — 1 do

10: for A = 1 to num_nonterminals do

1t for B = 1 to num_nonterminals do

12: for C' = 1 to num_nonterminals do
13: prob = n[begin,m, B] x n[m + 1,end, C] x P(A — BC)
14: if prob > |begin, end, A] then

15: wlbegin, end, A] = prob

16: back[begin, end, A] = {m, B,C}

17: return buildtree(back[l, num_words, 1}, w[1, num_words, 1])

Figure A.3: The probabilistic CYK algorithm for finding the maximum probability
parse of a string of num_words words given a PCFG grammar with num_rules rules
in Chomsky Normal Form. back is an array of back-pointers used to recover the best
parse.

algorithm parses with a CNF, it will return a tree generated by the CNF grammar and
not by the original grammar. Since we are interested in the tree generated by the
grammar before it was transformed to CNF, we use a new level of visibility j in all the
rules that were added during the transformation into CNF process. In order to obtain
the tree in the original grammar, we hide the level of visibility j.

Summing up, our parsing algorithm consists of the following items:

1. A translation module: An algorithm that transforms any grammar into CNE.
2. A parsing module: A CYK parsing algorithm for CNF grammars.

3. A post processing module: An algorithm that hides levels of visibility in a tree.

We compute now the computational complexity of our parsing algorithm. For this
purpose we only take into consideration items (2) and (3). Since item (1) is done one

152 Appendix A. Parsing PCW-Grammars

time for each grammar, we only consider it indirectly: we take into consideration how
the transformation to CNF affects the size of the grammar.

We want to compute the computational complexity of the three items whenever a
grammar G is used to parse a sentence s.

By (Ney, 1991), the computational complexity of the CYK algorithm for parsing a
sentence s using grammar G is 2nQ + (n3/6) R, where n is the length of the sentence,
¢ the number of preterminal rules in the grammar, and R the number of rules in the
grammar. Note that the number of rules and preterminal rules refer to the transformed
grammar.

According to (Hopcroft and Ullman, 1979), if a grammar G with R rules is trans-
formed to CNF, the resulting grammar contains O(R?} rules. The complexity of the
post processing time depends on the number of rules in the CNF tree. Since a CNF tree
yielding a sentence of length n has Z?:'lli rules, the post processing step takes time
S i. Finally, the complexity for the whole algorithm becomes 2nQ + (n®/6)R2.

A.4 Conclusions

In this appendix we have dealt with two particular aspects of our implementation. First,
we showed that it may happen that our implementation does not always return the most
probable tree. We also showed that there are some grammars for which our grammar
does return the most probable tree. For all grammars used in this thesis, however,
the parser does return the most probable tree. We also showed that the problem of
determining whether the parser returns the most probable tree or the most probable
derivation tree is undecidable.

The second aspect we focused on was related to the actual implementation of the
parser. We decomposed our implementation into three different modules, we gave
the computational complexity of each of them, and showed that the computational
complexity of the whole algorithm is O(n®R?), where n is the length of the sentence
and R the size of the grammar.

Appendix B
Revising the STOP Symbol for Markov Rules

B.1 The Importance of the STOP Symbol

In this section we discuss Section 2.4.1 of Collins PhD thesis, where he discusses the
importance of the STOP symbol for generating Markovian sequences. The idea is that
any sequence of strings that is generated by a Markovian process should end in a STOP
symbol. He argues that without the STOP symbol the probability distribution generated
by a Markovian process over finite strings is not really a probability distribution.

We argue that the even though the STOP symbol is indeed important, the justifica-
tion Collins provides is not fully correct. We show that the mere existence of the STOP
symbol is not enough to guarantee consistency. We argue that probability distributions
generated by Markovian process over finite sequences of symbols should be thought
of as probability distributions defined over infinite sequences of symbols instead of
probability distributions defined over finite sequences.

In Section B.2 we present Collins’s explanation on STOP symbols; in Section B.3
we provide background definitions on Markov chains; in Section B.4 we use Markov
chains for rethinking the importance of STOP symbols, and in Section B.5 we conclude
the appendix.

B.2 Collins’s Explanation

Suppose we want to assign a probability p to sequences of symbols wq, wg, ws, . .., W,
where each symbol w; belongs to a finite alphabet 3.

We first rewrite the probability of the given sequence using the chain rule of prob-

153

154 Appendix B. Revising the STOP Symbol for Markov Rules

abilities as:

n
Plw wo, ws. . .., wy) = H P(uwjwy, .. ., wi_1). (B.1)
i=1

Second, we use m-order Markovian independence assumptions and the equation above
becomes:

n
Plwows ws, ... wy) = H Plwiwy, ..., wi_py). (B.2)
i=1

Collins {1999, page 46) argues that such a definition of probabilities is not correct: the
problems arises because n, the sentence length, is variable. In his argumentation, he
states that Equation B.| would be correct if the event space under consideration would
have been the space of n-dimensional vectors X" instead of the set of all strings in the
language X*. Writing the probability under consideration as P(wy, wq, ws, .. S W)
implies that £™ is the event space. To avoid this confusion he writes the probability
of a sequence (w. wa, ..., wy) as P({w;, wo, ..., w,)): the angled braces imply that
(wr, wa, ..., w,) is a sequence of variable length rather than an n-dimensional vector.

He states that in the case of speech recognition, the length n of strings is often large
and that STOP probabilities in that case may not be too significant. In Collins’s use of
Markov processes, the sequences under consideration are typically of length 0, 1 or 2,
and for this case the STOP probabilities certainly become important.

He presents the following example to support his point on the failing of Equa-
tion B.1

B.2.1. EXAMPLE. Consider the following.
e Assume ¥ = {a, b}, and therefore that 5* is {¢, a, b, aa, bb, ab, bb, . . .}.

o Assume that we will model the probability over £* with a 0’th order Markov
process, with parameters P(a) = P(b) = 0.5

We can now calculate the probability of several strings using the formula in Equa-
tion B.2: P((a)) = 0.5, P((b)) = 0.5, P({aa)) = 0.5%, P({bb)) = 0.25 and so on. We
already see from these 4 probabilities that the sum, over the event space will be greater
than 1: P((a)) + P((b)) + P({aa)) + P((bb)) = 1.5!. An additional problem is that
the probability of the empty string, P(()), where n = 0, is undefined.

Collins argues that adding STOP symbols fixes this inconsistency. He adds STOP
symbols with the parameters of the Markov process modified to include. For example,
let P(a) = P(b) = 0.25, P(STOP) = 0.5). In this case we have P((STOP)) = 0.5,
P({aSTOP)) = 0.25 % 0.5 = 0.125, P((bSTOP)) = 0.25* 0.5 = 0.125, P({aaSTOP)) =
0.25% x 0.5 = 0.03125, P((bbSTOP)) = 0.03125 and so on. Thus far the sum of

.

B.3. Background on Markoy Chains 155

probabilities does not exceed 1, and the distribution looks much better behaved. We
can prove that the sum over all sequences is | by noting that the probability of any
sequence of length n is 0.25" x 0.5, and that there are 2" sequences of length n, giving:

¥

Z = ZQ"*().%”*O.F)

Wex- n=0

X
Z 0.5" 0.5

n=0

~
= Y 05!

n=0

n=0
= 1.

In a 0’th order Markov process the distribution over length of strings is related di-
rectly to P(STOP) — the probability of a string having length n is the probability of
generating n non-STOP symbols followed by the STOP symbol:

P(length = n) = (1 — P(STOP))" * p(STOP).

With higher order Markov processes, where the probability is conditioned on pre-
viously generated symbols, the conditional probability P(STOP|w;_pm, ..., w;—_1) en-
codes the preference for certain symbols or sequences of symbols to end or nor to end
a sentence. For example, if we were building a bigram (1st order Markov) model of
English we would expect the word rhe to end a sentence very rarely, and the corre-
sponding parameter P(STOP|the) to be very low. The STOP symbol not only ensures
the probability distributions to be well defined, but also to have useful interpretation.

B.3 Background on Markov Chains

Markovian processes like the one described in Example B.2.1 are better described
through Markov chains (Taylor and Karlin, 1998).

B.3.1. DEFINITION. A Markov chain is 3-tuple M = (W, P, I'} where W is a set of
states, P is areal |W| x |W| matrix with entries in R, such that ZL"I{ pij = 15 py; is the
probability of jumping from state 7 to state j, and [is | |-dimensional vector defining

the initial probability distribution.

156 Appendix B. Revising the STOP Svmbol for Markov Rules

B.3.2. EXAMPLE. Let A/ = (. P.T) be a Markov chain where 1™ = {a.b}.

and [= (0.5,0.5)". The graphical representation for this Markov chain is in Figure B.1

o o

0.5 0.5

Figure B.1: A graphical representation of the model in Example B.2.1

Markov chains may be viewed as discrete stochastic processes. A discrete stochastic
process is a distribution over an infinite sequence of the random variables, each taking
a value out of a finite set. We say that the process is Markovian if the outcome of a
particular random variable in the sequence depends only on its two neighbors (the one
before it and the one after it in the sequence).

The following definition formalizes this idea.

B.3.3. DEFINITION. A stochastic process {Wo, Wi, ..., W,, ...} atconsecutive points
of observations 0, 1,...,n,...is a discrete Markov process if, foralln € N, w,, € W
PWasi = wa1]lWy = w, Wl = wpy, ..., Wy = wp) = (B.3)
P (Wit = w1 [W, = wy) (B.4)

Let W = {w,...,w,}. The quantities

p,'j = P(VV,,_H = ijWn) = P(VVI = w_,-IWO = w,—)

are known as the transition probabilities of the Markov process.

B.3.4. DEFINITION. A state W in a Markov chain is called absorbing if it does not
have any outgoing arc, or, equivalently, every outgoing arc points to the state itself.

B.4. The STOP Symbol Revisited 157

Markov chains have been widely used in software modeling for describing probability
distributions over infinire sequences of states (Infante-Lopez et al., 2001). Under these
approach, every string accepted by a Markov chain is in fact an infinite string, and it
describes an infinite path in the Markov chain. To define the probability distribution,
sets of infinite strings are used as a building block. Each block is characterized by a
finite string «, and it contains all infinite strings starting with prefix o that are accepted
by the Markov chain. The probability assigned to an o block, by a Markov chain Af is
defined as the probability of traversing the path described by a in M. The probability
associated to a path X, ..., X is defined as (X)) x H:j‘l P(X;, Xit1)-

The probability of a finite sequence o of length n is defined as the probability of the
infinite sequence o3 where § is an infinite sequence consisting of the STOP symbol,
i.e., 3 = STOP. The intuition underlying this definition is that the Markov chains
reach a state from which it can not leave, and consequently, the 3 cycles for ever in the
same state.

Under this perspective, the Markov chain in Example B.2.1 does not generate any
distribution over finite sequences. But it does generate a distribution over infinite se-
quences. It is interesting to note that every single infinite path receives probability
zero, but sets of infinite paths do receive probability values greater than zero. This sit-
uation is comparable to probability distributions over real numbers, where each single
number receives a probability zero but where subsets of real numbers receive non-zero
probability values.

B.4 The STOP Symbol Revisited

Collins Example B.2.1 has a direct translation into a Markov chains. We can define a
Markov chain with states W = {a, b}, and transition matrix

P(Wpp1 = was Wy = wn, Wiy = wpy, Wo = wp) = (B.5)
P (W,H, = ll)n_Han = wn) (B6)

and initial distributions / = (0.5,0.5). Figure B.1 presents this Markov chain in a
graphical way. This Markov chain generates a well defined probability distribution
over infinite sequences of states, and since there is no absorbing state, it can not be
used for deriving probability distributions over finite sequences.

The solution suggested by Collins adds a new state named STOP. Again, the so-
lution can be described using a zero order Markov chain; the corresponding chain is
pictured in Figure B.2.

As Collins suggests, the probability of the STOP state is 0.5, since it is a zero order
Markov model it has two fundamental properties: first, all incoming edges have the

158 Appendix B. Revising the STOP Symbol for Markov Rules

Figure B.2: A zero order Markov chain using the STOP symbol

same probability and second there is a directed arc connecting every pair of states. The
resulting Markov chain has a serious problem. It assigns probability mass to strings
like “aaSTOPabbSTOP”, i.e., strings containing the STOP symbol more than once.

The situation we have so far is that, even though Collins’s solution ruled out prob-
ability distributions over “correct strings” to sum up above one, the solution proposed
produces distributions that sum up below one. We would like to disallow this kind
of distributions, a way to solve this particular problem is to modify Figure B.2 into
Figure B.3. This Markov chain is a first order Markov model, even more it can not be
define using 0 order Markov chains.

0.25 0.25

—

0.25 — i 0.25
(==

Figure B.3: A Markov chain with the STOP state absorbing.

Actually, it seems that Collins assumes that the STOP state is an absorbing state. His
model is a zero order Markov chain plus the condition that generation stops once the
STOP symbol has been generated. His solution can be restated as “there has to be a

B.5. Conclusions 159

STOP symbol and it has to be absorbing.”

But again, this is not a proper solution, the mere presence an absorbing STOP
symbol is not enough to rule out inconsistent models. There can be Markov chains
with a STOP symbol, that still produce wrong distributions; an example is shown in
Figure B.4.

Figure B.4: A Markov chain with an absorbing STOP symbol that defines an inconsis-
tent probability distribution over finite strings.

The model assigns probability 0.5 to the infinity sequence wow, wawowowawaews - - .,
and 0.5 to the finite string wow;ws. The problem is that the model will enter into the
infinite ¢ycle producing w, with probability 0.5.

Summing up: In principle the formalism presented by Collins has a potential prob-
ability inconsistency. But Collins’s model is still on the safe side because his Markov
models are leamed from data and the following lemma applies:

B.4.1. LEMMA. A Markov model learned from strings augmented with the STOP sym-
bol generate consistent probability distributions over finite strings.

The lemma has already been proven in Section 4.2.2.

B.5 Conclusions

We presented a different perspective for the presence of the STOP symbols in the gen-
eration of finite sequences of strings. We show that formally a Markov chain of order
zero can not have an absorbing STOP state. We show that Collins explanation of
STOP symbols is not fully correct and we show that independently of his explanation,
the Markov chains he induces are consistent.

Bibliography

Abney, S., 1996. Statistical methods and linguistics. In J. Klavans and P. Resnik (eds.),
The Balancing Act: Combining Symbolic and Statistical Approaches to Language.
Cambridge, MA: The MIT Press.

Abney, S., 1997. Stochastic attribute-value grammars. Computational Linguistics, 23
(4):597-618.

Abney, S., D. McAllester, and F. Pereira, 1999. Relating probabilistic grammars and
automata. In Proceedings of the 37th Annual Meeting of the ACL. Maryland.

Aho, A. and J. Ullman, 1972. The Theory of Parsing, Translation and Compiling,
volume I. Prentice-Hall Series in Automatic Computation.

Alshawi, H., 1996. Head automata and bilingual tiling: Translation with minimal
representations. In Proceedings of the 34th Annual Meeting of the Association for
Computational Linguistics. Santa Cruz.

Andor, J., 2004. The master and his performance: An interview with Noam Chomsky.
Intercultural Pragmatics, 1(1).

Atsumi, K. and S. Masuyama, 1998. On the ambiguity reduction ability of a proba-
bilistic context-free grammar. IEICE Transanctions on Fundamentals of Electronics,
Communications and Computer Sciences, E81-A(5):825-831.

Berger, A., S. Della Pietra, and V. Della Pietra, 1996. A maximum entropy approach
to natural language processing. Journal of Computational Linguistics, 22(1):39-71.

Bikel, D., 2004. Intricacies of Collins’ parsing model. Computational Linguistics. To
appear.

161

162 Bibliography

Black, E., F. Jelinek. J. Lafferty, D. Magerman, R. Mercer. and S. Roukos, 1993. To-
wards history-based grammars: Using richer models for probabilistic parsing. In
Proceedings of 31st Annual Meeting of the ACL. Ohio.

Bod, R., 1995. Enriching Linguistics with Statistics: Performance models of Natural
Language. Ph.D. thesis, University of Amsterdam, The Netherlands.

Bod, R., 1998. Beyond Grammar: An Experience-Based Theory of Language. Stan-
ford: CSLI Publications.

Bod, R., 2003. An efficient implementation of a new DOP model. In Proceedings of
the 10th Conference of the European Chapter of the Association for Computational
Linguistics. Budapest.

Booth, T. and R. Thompson, 1973. Applying probability measures to abstract lan-
guages. IEEE Transaction on Computers, C-33(5):442-450.

Brew, C., 1995. Stochastic HPSG. In Proceedings of the 7th Conference of the Euro-
pean Chapter of the Association for Computational Linguistics. Dublin,

Brill, E., 1993. Automatic grammar induction and parsing free text: A transformation-
based approach. In Proceedings of the 31st Annual Meeting of the Association for
Computational Linguistics. Ohio.

Brown, P., V. Della Pietra, P. de Souza, J. C. Lai, and R. L. Mercer, 1992. Class-based
n-gram models of natural language. Computational Linguistics, 18(4):467-479.

Buchholz, S., 2002. Memory-Based Grammatical Relation Finding. Ph.D. thesis,
Universiteit van Tilburg.

Caraballo, S. and E. Charniak, 1998. New figures of merit for best-first probabilistic
chart parsing. Computational Linguistics, 24-2:275-298.

Cardie, C., 1993a. A case-based approach to knowledge acquisition for domain-
specific sentence analysis. In Proceedings of the 11th National Conference on Arti-
ficial Intelligence. AAAI Press / MIT Press.

Cardie, C., 1993b. Using decision trees to improve case-based learning. In Proceedings
of the 10th International Conference on Machine Learning.

Carrasco, R. and J. Oncina, 1994. Learning sthocastic regular grammars by means of
state merging method. In Grammatical Inference and Applications, Springer Lecture
Notes in Artificial Intelligence. Berlin: Springer-Verlag.

Bibliography 163

Carrasco. R. and J. Oncina, 1999. Learning deterministic regular grammars from
stochastic samples in polynomial time. Theoretical Informatics and Applications,
33(1):1-20.

Carreras, X., L. Marquez, V. Punyakanok, and D. Roth, 2002. Learning and infer-
ence for clause identification. In Proceedings of the 14th European Conference on
Machine Learning.

Carrol, J., 1993. Practical Unification-based Parsing of Natural Language. Ph.D.
thesis, Computer Lab., University of Cambridge.

Carroll, J., T. Briscoe, and A. Sanfilippo, 1998. Parser evaluation: a survey and a
new proposal. In Proceedings of the Ist International Conference on Language
Resources and Evaluation. Granada, Spain.

Carroll, J. and E. Charniak, 1992. Two experiments on leaming probabilistic de-
pendency grammars from corpora. In C. Weir, S. Abney, R. Grishman, and
R. Weischedel (eds.), Working Notes of the Workshop Statistically-Based NLP Tech-
niques. Menlo Park.

Carroll, J. and A. Fang, 2004. The automatic acquisition of verb subcategorisations
and their impact on the performance of an HPSG parser. In Proceedings of the 1st
International Joint Conference on Natural Language Processing (IJCNLP).

Charniak, E., 1995. Parsing with context-free grammars and word statistics. Technical
Report CS-95-28, Department of Computer Science, Brown University, Providence.

Charniak, E., 1997. Statistical parsing with a context-free grammar and word statistics.
In Proceedings of the 14th National Conference on Artificial Intelligence. Menlo
Park: AAAI Press/MIT Press.

Charniak, E., 1999. A maximum-entropy-inspired parser. In Technical Report C5-99-
12. Providence, Rhode Island.

Charniak, E., 2000. A Maximum-Entropy-Inspired Parser. In Proceedings ANLP-
NAACL’2000, Seattle, Washington.

Chastellier, G. and A. Colmerauer, 1969. W-Grammars. In Proceedings of the 24th
National Conference.

Chaudhuri, R. and A. N. V. Rao, 1986. Approximating grammar probabilities: Solution
of a conjecture. Journal of the ACM., 33(4):702-705.

164 Bibliography

Chen, §., 1995. Bayesian grammar induction for language modeling. In Proceedings
of the 33rd Annual Meeting of the ACL. Morristown, USA.

Chi, Z. and S. Geman, 1998. Estimation of probabilistic context-free grammars. Com-
putational Linguistics, 24(2):299~305.

Coello Coello, C., 1999. A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowledge and Information Systems. 3(1):269-308.

Collins, M., 1996. A new statistical parser based on bigram lexical dependencies. In
Proceedings of the 34th Annual Meeting of the ACL.

Collins, M., 1997. Three generative, lexicalized models for statistical parsing. In
Proceedings of the 35th Annual Meeting of the ACL and the 8th Conference of the
European Chapter of the ACL. Madrid, Spain.

Collins, M., 1999. Head-Driven Statistical Models for Natural Language Parsing.
Ph.D. thesis, University of Pennsylvania, PA.

Collins, M., 2000. Discriminative reranking for natural language parsing. In Proceed-
ings of the 7th International Conference on Machine Learning {ICML). Stanford.

Collins, M., 2001. Parameter estimation for statistical parsing models: Theory and
practice of distribution-free methods. In Proceedings of the 7th International Work-
shop on Parsing Technologies. Beijing.

Collins, M. and N. Duffy, 2001. Convolution kernels for natural language. In Proceed-
ings of Neural Information Processing Systems (NIPS 14).

Collins, M. and N. Duffy, 2002. New ranking algorithms for parsing and tagging:
Kemnels over discrete structures, and the voted perceptron. In Proceedings of the
40th Annual Meeting of the ACL.

Cortes, C. and M. Mohri, 2000. Context-free recognition with weighted automata.
Grammars, 2-3(3).

Cover, T. and J. Thomas, 1991. Elements of Information Theory. New York: John
Wiley and Sons.

Daelemans, W., S. Buchholz, and J. Veenstra, 1999. Memory-based shallow pars-
ing. In Proceedings of the Computational Natural Language Learning Workshop
(CoNLL99). Bergen.

Bibliography 165

Daelemans, W.. A. van den Bosch, and A. Weijters, 1997. Igtree: using trees for
compression and classification in lazy learning algorithms. Artificial Intelligence
Review, 11:407-423.

Decadt, B. and W. Daelemans, 2004. Verb classification — machine learning experi-
ments in classifying verbs into semantic classes. In Proceedings of the LREC 2004
Workshop Bevond Named Entity Recognition - Semantic Labelling for NLP Tasks.

Denis, E, 2001. Learning regular languages from simple positive examples. Machine
Learning, 44(1/2):37-66.

Dupont, P. and L. Chase, 1998. Using symbol clustering to improve probabilistic
automaton inference. In V. Honavar and G. Slutzki (eds.), Proceedings of the Fourth
International Colloquium on Grammatical Inference, Lecture Notes in Computer
Science. Springer-Verlag.

Dupont, P, F. Denis, and Y. Esposito, 2004. Links between probabilistic automata and
hidden markov models: probability distributions, learning models and induction al-
gorithms. Pattern Recognition: Special Issue on Grammatical Inference Techniques
& Applications. To appear.

Dupont, P., L. Miclet, and E. Vidal, 1994. What is the search space of the regular in-
ference? In R. Carrasco and J. Oncina (eds.), Grammatical Inference and Applica-
tions; 2nd International Colloquium, ICGI-94, Lecture Notes in Computer Science.
Springer-Verlag.

Eisner, J., 1996. Three new probabilistic models for dependency parsing: An explo-
ration. In Proceedings of 16th International Conference on Computational Linguis-
tics (COLING). Copenhagen, Denmark.

Eisner, J., 2000. Bilexical grammars and their cubic-time parsing algorithms. In
H. Bunt and A. Nijholt (eds.), Advances in Probabilistic and Other Parsing Tech-
nologies. Kluwer Academic Publishers, pages 29-62.

Eisner, J. and G. Satta, 1999. Efficient parsing for bilexical context-free grammars and
head automaton grammars. In Proceedings of the 37th Annual Meeting of the ACL.
Maryland.

Gaifman, G., 1965. Dependency systems and phrase-structure systems. Information
and Control, 8(3):304-337.

Galen, A., T. Grenager, and C. Manning, 2004. Verb sense and subcategorization: Us-
ing joint inference to inprove performance on complementary tasks. In Proceedings
of Empirical Methods in Natural Language Processing (EMNLP).

166 Bibliography

Gen, M. and R. Cheng, 1997. Genetic Algorithms and Engineering Design. New York:
John Wiley and Sons.

Gold, E. M., 1967. Language identification in the limit. Information and Control,
10:447-474.

Goodman, J., 1997. Probabilistic feature grammars. In Proceedings of the Sth Inter-
national Workshop on Parsing Technologies. MIT, Cambridge, MA.

Goodman, J., 1998. Parsing Inside-Out. PhD thesis, Departement of Computer Sci-
ence, Harvard University, Cambridge, Massachusetts.

Hara, T., Y. Miyao, and J. Tsujii, 2002. Clustering for obtaining syntactic classes of
words from automatically extracted Itag grammars. In Proceedings of the sixth Inter-
national Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+6).

Hemphill, C., J. Godfrey, and G. Doddington, 1990. The ATIS Spoken Language
Systems pilot corpus. In Proceedings of the DARPA Speech and Natural Language
Workshop. Hidden Valley, Pa.

Henderson, J. and E. Brill, 1999. Exploiting diversity in natural language processing:
Combining parsers. In Proceedings of the 1999 Joint SIGDAT Conference on Em-
pirical Methods in Natural Language Processing (EMNLP) and Very Large Corpora
(VLC). Maryland.

Hermjakob, U. and R. J. Mooney, 1997. Learning parse and translation decisions from
examples with rich context. In Proceedings of the 35th Annual Meeting of the ACL
and 8th Conference of the European Chapter of the ACL. Madrid.

Hopcroft, J. and J. Ullman, 1979. Introduction to Automata Theory, Lanaguges, and
Computation. Reading, MA: Addison Wesley.

Horning, J. J., 1969. A study of grammatical inference. Unpublished doctoral disser-
tation, Standford University.

Infante-Lopez, G. and M. de Rijke, 2003. Natural language parsing with W-grammars.
Paper presented at CLIN’03.

Infante-Lopez, G. and M. de Rijke, 2004a. Alternative approaches for generating
bodies of grammar rules. In Proceedings of the 42nd Annual Meeting of the ACL.
Barcelona.

Infante-Lopez, G. and M. de Rijke, 2004b. Comparing the ambiguity reduction abili-
ties of probabilistic context-free grammars. In Proceedings of LREC’04.

Bibliography 167

Infante-Lopez, G. and M. de Rijke, 2004¢c. Expressive power and consistency prop-
erties of state-of-the-art natural language parsers. In J. Vicedo, P. Martinez-Barco,
and R. M. et al. (eds.), Proceedings Advances in Natural Language Processing: 4th
International Conference, EsTAL 2004.

Infante-Lopez, G., H. Hermanns, and J.-P. Katoen, 2001. Beyond memoryless distri-
butions: Model checking semi-markov chains. In PAPM-ProbMiV 2001, Springer
LNCS 2165..

Infante-Lopez, G., K. Sim’aan, and M. de Rijke, 2002. A general model for depen-
dency parsing. In Proceedings of BNAIC 02.

Inui, K., V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga, 1998. Probabilistic GLR
parsing: a new formatisation and its impact on parsing performance. Journal of
Natural Language Processing, 5(3).

Jelinek, F, J. Lafferty, D. Magerman, R. Mercer, A. Ratnaparkhi, and S. Roukos, 1994.
Decision tree parsing using a hidden derivation model. In Proceedings of the 1994
Human Language Technology Workshop. DARPA.

Joan-Andreu, S. and J.-M. Benedi, 1997. Consistency of stochastic context-free gram-
mars from probabilistic estimation based on growth transformations. [EEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(9):1052-1055.

Johnson, M., 2002. The DOP estimation method is biased and inconsistent. Computa-
tional Linguistics, 28(1):71-76.

Johnson, M., S. Geman, S. Canon, Z. Chi, and S. Riezler, 1999. Estimators for stochas-
tic unification-based grammars. In Proceedings of the 37th Annual Meeting of the
ACL. Maryland.

Joshi, A., 1985. Tree Adjoining Grammars: How much context sensitivity is required
to provide a reasonable structural description. In I. K. D. Dowty and A. Zwicky
(eds.), Natural Language Parsing. Cambridge, U.K.: Cambridge University Press.

Joshi, A., 1987. An introduction to tree adjoining grammars. In A. Manaster Ramer
(ed.), Mathematics and Language. Amsterdam: John Benjamins Publishing Co,
pages 87-115.

Joshi, A. and B. Srinivas, 1994. Disambiguation of super parts of speech (or supertags):
Almost parsing. In Proceedings of the 17th International Conference on Computa-
tional Linguistics (COLING). Kyoto, Japan.

168 Bibliography

Jurafsky, D. and J. Martin. 2000. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR.

Klein, D. and C. Manning, 2003. Accurate unlexicalized parsing. In Proceedings of
the 41st Annual Meeting of the ACL.

Krotov, A.. M. Hepple. R. J. Gaizauskas, and Y. Wilks, 1998. Compacting the Penn
treebank grammar. In Proceedings of the 36th Annual Meeting of the ACL and 17th
International Conference on Computational Linguistics COLING.

Kruijff, G., 2003. 3-Phase grammar leaming. In Proceedings of the Workshop on Ideas
and Strategies for Multilingual Grammar Development .

Kucera, H. and W. N. Francis, 1967. Computational analvsis of present-day American
English. RI: Brown University Press.

Lafferty, J., D. Sleator, and D. Temperley, 1992. Grammatical trigrams: A probabilistic
model of link grammar. In Proceedings of the AAAI Conference on Probabilistic
Approaches to Natural Language Processing.

Levin, B., 1993. English Verb Classes and Alternations: A preliminary Investigation.
Chicago: The University of Chicago Press.

Lin, D., 1995. A dependency-based method for evaluating broad-coverage parsers. In
Proceedings of IICAI-95.

Magerman, D., 1995a. Parsing as Statistical Pattern Recognition. Ph.D. thesis, Stan-
ford University.

Magerman, D., 1995b. Statistical decision-tree models for parsing. In Proceedings of
the 33rd Annual Meeting of the ACL. Cambridge, MA.

Magerman, D. and M. Marcus, 1991. Pearl: A Probabilistic Chart Parser. In Proceed-
ings the European Chapter of the ACL. Berlin,

Magerman, D. and C. Weir, 1992. Efficiency, robustness and accuracy in picky Chart
Parsing. In Proceedings of the 30th Annual Meeting of the ACL. Newark, Delaware.

Manning, C., 1993. Automatic acquisition of a large subcategorization dictionary from
corpora. In Proceedings of the 31st Annual Meeting of the ACL.

Manning, C. and H. Schiitze, 1999. Foundations of Statistical Natural Language Pro-
cessing. The MIT Press, Cambridge, MA.

Bibliography 169

Marcus, M., G. Kim, M. Marcinkiewicz, R. Maclntyre, A. Bies, M. Ferguson, K. Katz,
and B. Schasberger, 1994. The Penn treebank: Annotating predicate argument struc-
ture. In ARPA Human Language Technology Workshop.

Marcus, M., B. Santorini, and M. Marcinkiewicz, 1993. Building a large annotated
corpus of English: The Penn treebank. Computational Linguistics, 19:313-330.

Mateescu, A., 1989a. Van Wijngaarden grammars and systems. Annals University of
Bucharest, 2:75-81.

Mateescu, A., 1989b. van Wijngaarden grammars and the generative complexity of
recursively enumerable languages. Annals University of Bucharest, 2:49-54.

Mateescu, A. and A. Salomaa, 1997. Aspects of classical language theory. In Rozem-
berg and Salomaa (1997), pages 175-251.

Merlo, P. and S. Stevenson, 2001. Automatic verb classification based on statistical
distributions of argument structure. Computational Linguistics, 27(3).373—-408.

Miikkulainen, R., 1996. Subsymbolic case-role analysis of sentences with embedded
clauses. Cognitive Science, 1(20).

Mitchell, T., 1997. Machine Learning. McGraw-Hill Series in Computer Science.

Musillo, G. and K. Sima’an, 2002. Towards comparing parsers from different linguistic
frameworks: An information theoretic approach. In Proceedings of Beyond PARSE-
VAL: Towards Improved Evaluation Measures for Parsing Systems, LREC'02. Las
Palmas, Gran Canaria, Spain, 2002.

Nederhof, M.-J., A. Sarkar, and G. Satta, 1998. Prefix probabilities from probabilistic
tree adjoining grammars. In Proceedings of the 36th Annual Meeting of the ACL and
17th International Conference on Computational Linguistics (COLING). Montreal.

Nederhof, M.-J. and G. Satta, 2002. Probabilistic parsing strategies. In J. Dassow,
M. Hoeberechts, H. Jirgensen, and D. Wotschke (eds.), Descriptional Complexity
of Formal Systems (DCFS), Pre-Proceedings of a Workshop. London.

Ney, H., 1991. Dynamic programming parsing for context-free grammars in continu-
ous speech recognition. IEEE Transactions on Signal Processing, 39(2):336-340.

Ney, H. and R. Kneser, 1993. Inproved clustering techniques for class-based statis-
tical language modelling. In European Conference on Speech Communication and
Technology.

170 Bibliography

Ng, S.-K. and M. Tomita, 1991. Probabilistic LR parsing for general contextfree gram-
mars. In Proceedings of the 2nd International Workshop on Parsing Technologies.

NIST, 2004. NIST/SEMATECH e-Handbook of Statistical Methods. NIST. URL:
http://www.1itl .nist.gov/div898/handbook/.

Oncina, J. and P. Garcia, 1992. Inferring regular languages in polynomial update time.
In Fattern Recognition and Image Analysis, volume 1 of Series in Machine Percep-
tion and Artificial Intelligence. pages 49-61.

Parikh, R. J., 1966. On context-free languages. Journal of the ACM, 13:570-581.

Perrault, R., 1984. On the mathematical properties of linguistic theories. Computa-

tional Linguistics - Special issue on mathematical properties of grammatical for-
malisms, 10(3-4):165-176.

Punyakanok, V. and D. Roth, 2000. The use of classifiers in sequential inference. In
Proceedings of NIPS-13, The 2000 Conference on Advances in Neural Information
Processing Systems.

Qumsieh, A., 2003. Ai::genetic - a pure perl genetic algorithm implementation. Perl
Package, htip://search.cpan.org/ aqumsieh/AI-Genetic-0.02/Genetic.pm.

Ratnaparkhi, A., 1997. A linear observed time statistical parser based on maximum
entropy models. In Empirical Methods in Natural Language Processing (EMNLP).

Ratnaparkhi, A., 1998. Maximum Entropy Models for Natural Language Ambiguity
Resolution. Ph.D. thesis, University of Pennsylvania.

Ratnaparkhi, A., 1999. Leamning to parse natural language with maximum entropy
models. Machine Learning, 34:151-175.

Rayner, M. and D. Cater, 1996. Fast parsing using pruning and grammar specialization.
In Proceedings of the 34th Annual Meeting of the Association for Computational
Linguistics. Santa Cruz.

Resnik, P, 1992. Probabilistic tree-adjoining grammar as a framework for statistical
natural language processing. In Proceedings of the 14th International Conference
on Computational Linguistics (COLING). Nantes.

Rosenfeld, R., 1994. Adaptive Statistical Language Modeling: A Maximum Entropy
Approach. Ph.D. thesis, University of Carnegie Mellon.

Rozemberg, G. and A. Salomaa (eds.), 1997. Handbook of Formal Languages.

http://www.itl.nist.gov/div8
http://98/handbook/
http://search.cpan.org/aqumsieh/AI-Genetic-0.02/Genetic.pm

Bibliography 171

Samuelsson, C., 1994. Grammar specialization through entropy thresholds. In Pro-
ceedings of the 32nd Annual Meeting of the ACL.

Sarkar, A., 2001. Applying co-training methods to statistical parsing. In Proceed-
ings of the 2nd Meeting of the North American Chapter of the ACL (NAACL 2001).
Pittsburgh.

Satta, G., 1998. Recognition and parsing for tree adjoining grammars. In Turorial
presented at the 4th International Workshop on Tree Adjoining Grammars (TAG+4).
Pennsylvania.

Satta, G., 2000. Parsing techniques for lexicalized context-free grammars. In Proceed-
ings of the 6th International Workshop on Parsing Technologies (IWPT). Trento,
Italy.

Schabes, Y., 1992. Stochastic lexicalized tree-adjoining grammars. In Proceedings of
the 14th International Conference on Computational Linguistics (COLING). Nantes.

Schapire, R. E. and Y. Singer, 1999. Improved boosting algorithms using confidence-
rated predictions. Machine Learning, 37(3).

Sima’an, K., 2000. Tree-gram parsing: Lexical dependencies and structual relations.
In Proceedings of the 38th Annual Meeting of the ACL. Hong Kong, China.

Sima’an, K. and L. Buratto, 2003. Backoff parameter estimation for the dop model. In
Proceedings of ECML.

Simmons, R. and Y. Yu, 1992. The acquisition and use of context-dependent grammars
for English. Computational Linguistics, 4(18).

Sleator, D. and D. Temperley, 1991. Parsing English with a link grammar. Technical
Report CMU-CS-91-196, Camegie Mellon University, School of Computer Science.

Sleator, D. and D. Temperley, 1993. Parsing English with a link grammar. In Proceed-
ings of the 3rd International Workshop on Parsing Technologies (IWPT). Bergen,
Norway.

Srinivas, B., 1997. Complexity of Lexical Descriptions and its Relevance to Fartial
Parsing. PhD thesis, Computer and Information Science, University of Pennsylva-
nia.

Stevenson, S. and P. Merlo, 2000. Automatic lexical acquisition based on statistical
distributions. In /7th conference on Computational linguistics.

172 Bibliography

Taylor, H. and S. Karlin, 1998. An Introduction to Stochastic Modeling. Academic
Press.

Thollard. .. P. Dupont, and C. de la Higuera, 2000. Probabilistic DFA inference using
Kullback-Leibler divergence and minimality. In Proceedings of the 7th International
Conference on Machine Learning (ICML). Stanford.

Tjong Kim Sang, E. and H. Déjean, 2001. Introduction to the CoNLL-2001 shared
task: clause identification. In Proceedings of the Computational Natural Language
Learning Workshop (CoNLL-2001). Toulouse.

Tomita, M., 1996. Efficient Parsing for Natural Language. The Netherlands: Kluwer
Academic Publishers.

Van Wijngaarden, A., 1965. Orthogonal design and description of a formal language.
Technical Report MR76, Mathematisch Centrum. Amsterdam.

Van Wijngaarden, A., 1969. Report on the algorithmic language ALGOL 68. Nu-
merische Mathematik, 14:79-218.

Veenstra, J. and W. Daelemans, 2000. A memory-based alternative for connectionist
shift-reduce parsing. Technical Report ILK Report 00-12.

Venable, P., 2001. Lynx: Building a statistical parser from a rule-based parser. In
Proceedings of the Student Research Workshop of the NAACL. Pittsburgh.

Watkinson, S. and S. Manandhar, 2001. Translating treebank annotation for evaluation.
In Workshop on Evaluation for Language and Dialogue Systems, ACL/EACL.

Wetherell, C. S., 1980. Probabilistic languages: A review and some questions. ACM
Computer Surveys., 4(12):361-379.

Wich, K., 2000. Exponential ambiguity of context-free grammars. In Proceedings of
the 4th International Conference on Developments in Language Theory.

Wich, K., 2001. Characterization of context-free languages with polynomially
bounded ambiguity. In Proceedings of the 26th International Symposium on Math-
ematical Foundations of Computer Science (MFCS).

Wood, M., 1993. Categorial Grammars. London: Routledge.

Wright, D., 1997. Understanding Statistics. An Introduction for the Social Sciences.
London: Thousand Oaks, New Delhj: Sage.

Bibliography 173

Wright, J., 1990. LR parsing of probabilistic grammars with input uncertainty for
speech recognition. Computer Speech and Language, 4:297-323.

Wright, J. and E. Wrigley, 1989. Probabilistic LR parsing for speech recognition. In
Proceedings of the 1st International Workshop on Parsing Technologies. Pittsburgh.

Wright, J., E. Wrigley, and R. Sharman, 1991. Adaptive probabilistic generalized LR
parsing. In Proceedings of the 2nd International Workshop on Parsing Technologies.
Cancun, Mexico.

Xia, F., C. Han, M. Palmer, and A. Joshi, 2001. Automatically extracting and com-
paring lexicalized grammars for different languages. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI 2001). Seattle.

Yoshinaga, N., 2004. Improving the accuracy of subcategorizations acquired from
corpora. In Student Session ACLO4.

Zelle, J. and R. Mooney, 1996. Learning to parse database queries using inductive
logic programming. In Proceedings of the 13th National Conference on Artificial
Intelligence. Portland, OR.

g

Abstract

Natural language is a very complex phenomenon. Undoubtedly, the sentences we utter
are organized according to a set of rules or constraints. In order to communicate with
others, we have to stick to these rules up to a certain degree. This set of rules, which
is language dependent, is well-known to all speakers of a given language, and it is
this common knowledge that makes communication possible. Every sentence has a
clear organization: words in an utterance glue together to describe complex objects
and actions. This hidden structure, called syntactic structure, is to be recovered by a
parser. A parser is a program that takes a sentence as input and tries to find its syntactic
organization. A parser searches for the right structure among a set of possible analyses,
which are defined by a grammar. The language model decides what the syntactic
components of the sentence are and how they are related to each other, depending on
the required level of detail.

Designing and building language models is not a trivial task; the design cycle usu-
ally comprises designing a model of syntax, understanding its underlying mathematical
theory, defining its probability distribution, and finally, implementing the parsing al-
gorithm. The building of a new language model has to complete at least these steps,
and each of them is very complex and a line of research in itself. To help handling the
intrinsic complexity of this cycle a good level of abstraction is required.

Our view is that state-of-the-art natural language models lack abstraction; their de-
sign is often ad hoc, and they mix many features that, at least conceptually, should
be kept separated. In this thesis, we explore new levels of abstraction for natural lan-
guage models. We survey state-of-the-art probabilistic language models looking for
characteristic features, and we abstract away from these features to produce a general
language model. We investigate three state-of-the-art language models and discover
that they have one very noticeable feature: the set of rules they use for building trees is
built on the fly, meaning that the set of rules is not defined a priori. The formalisms we

175

176 Bibliography

review have two different levels of derivations even though this is not explicitly stated.
One level is for generating the set of rules to be used in the second step, and the second
step is for building the set of trees that characterize a given sentence. Our formalism,
based on Van Wijngaarden grammars (W-grammars), makes these two levels explicit.
Our approach to parsing comes from a formal language perspective: we identify fea-
tures that are used by state-of-the-art language models and take a formalism off the
shelf and modify it to incorporate the necessary features.

From a theoretical point of view, general models help us to clarify the set of pa-
rameters a particular instance has fixed, and to make explicit assumptions that underlie
a particular instance. When analyzing the necessary features from the formal language
perspective, the need for probabilities and their role in parsing are the first issue to
address. We answer many questions regarding the role of probabilities in probabilistic
context free grammars. We focus on these grammars because they are central to the
formalism we present.

From a computational point of view, general models for which a clear parsing al-
gorithm and a relatively fast implementation can be defined, produce fast and clear
implementations for all particular instances.

General models do not add anything per se. Their importance is rather in the set of
instances they can capture and the new directions they are able to suggest. We show
that bilexical grammars, Markovian context free grammars and stochastic tree substi-
tution grammars are instances of our general model. Our model has well-established
consistency properties which we use to derive consistency properties of these three
formalisms. The new research directions suggested by a general formalism are a con-
sequence of instantiating the model’s parameters in different ways or by re-thinking
the set of assumptions the particular instances have made. A brief description of the
directions explored in this thesis follows.

Markov models are heavily used in parsing models and they can be replaced by
probabilistic regular languages. Since our formalism is not bound to Markov models,
we can use any algorithm for inducing probabilistic automata. We explore this idea.
We define a type of grammar that uses probabilistic automata for building the set of
rules. We compare two classes of grammars that differ in the type of algorithm they
use for learning the probabilistic automata. One of them is based on n-grams, and the
other one is based on the minimum divergence algorithm (MDI). We show that the
MDI algorithm produces both smaller and better performing grammars.

The fact that probabilistic automata replace Markov chains in the definition of our
model allows us to think of a regular language as the union of smaller, more specific
sublanguages. Our intuition is that the sublanguages are easier to induce and that
the combination of them fully determines the whole language. We explore this idea by
splitting the training material before inducing the probabilistic automata, then inducing

Bibliography 177

one automaton for each component, and, finally, combining them into one grammar.
We show that in this way, a measure that correlates well with parsing performance can
be defined over grammars.

Our formalism allows us to isolate particular aspects of parsing. For example, the
linear order in which arguments appear in a parse tree is a fundamental feature used
by language models. We investigate which sequences of information better predict se-
quences of dependents. We compare sequences of part-of-speech tags to sequences of
non-terminal labels. We show that part-of-speech tags are better predictors of depen-
dents.

Samenvatting

Natuurlijke taal is een erg complex fenomeen. Het lijdt geen twijfel dat de zinnen
die we uiten georganiseerd zijn volgens een verzameling regels of randvoorwaarden.
Om met anderen te kunnen communiceren dienen we ons tot op zekere hoogte aan
deze regels te houden. Deze verzameling regels, die taalafhankelijk is, is bekend bij
alle sprekers van een gegeven taal, en het is deze gedeelde kennis die communicatie
mogelijk maakt. Iedere zin heeft een duidelijke organisatie: woorden in een uiting
kunnen samen gebruikt worden om complexe objecten en acties te beschrijven. Het is
deze verborgen structuur, de syntactische structuur, die door een parser ontdekt moet
worden. Een parser is een programma dat een zin als invoer neemt en probeert de
syntactische organisatie van die zin te vinden. Een parser zoekt naar de juiste structuur
temidden van een verzameling van mogelijke analyses, die gedefinieerd wordt door
een grammatica. Het taalmodel besluit wat de syntactische componenten van de zin
zijn, en hoe ze met elkaar verbonden zijn, afhankelijk van de gewenste mate van detail.

Het ontwerpen en bouwen van taalmodellen is verre van triviaal; de ontwerpcyclus
bestaat doorgaans uit het ontwerpen van een model van de syntax, het begrijpen van de
onderliggende wiskundige theorie, het defini€ren van een waarschijnlijkheidsverdel-
ing, en tenslotte, het implementeren van een parseeralgoritme. Het bouwen van een
nieuw taalmodel dient elk van deze stappen te doorlopen, en elk van deze stappen is
complex, en een onderzoeksveld op zich. Om de intrinsieke complexiteit van deze
cyclus te beheersen is een zeker niveau van abstractie vereist.

Ons standpunt is dat het moderne natuurlijke taalmodellen aan abstractie ontbreekt.
Hun ontwerp is vaak ad hoc, en ze vermengen aspecten die uit elkaar gehouden zouden
moeten worden, in ieder geval op een conceptueel niveau. In dit proefschrift onder-
zoeken we nieuwe niveaus van abstractie voor natuurlijke taalmodellen. Op zoek naar
karakteristicke aspecten geven we een overzicht van probabilistische taalmodellen, en
we abstraheren van deze karakteristicke aspecten weg om tot een algemeen taalmodel

179

180 Bibliography

te komen. We onderzocken drie modemne taalmodellen en ontdekken dat ze één op-
merkelijk aspect delen: de regels die zij gebruiken voor het bouwen van bomen worden
on the fly gecreeérd. Met andere woorden, deze regels staan niet « priori vast. De for-
malismen die wij bestuderen hebben twee niveaus van afleidingen, hoewel dit niet ex-
pliciet vermeld wordt. Eén niveau betreft het genereren van de verzameling van regels
die in de tweede stap gebruikt zullen worden, en de tweede stap betreft het bouwen
van de bomen die een gegeven zin karakteriseren. Ons formalisme, dat gebaseerd is op
Van Wijngaardengrammatica’s (W-grammatica’s), maakt deze twee niveaus expliciet.
Ons perspectief op parseren vindt zijn oorsprong in de formele talen: we identificeren
aspecten die door moderne taalmodellen gebruikt worden en nemen een bestaand for-
malisme dat we z6 aanpassen, dat het de vereiste aspecten in zich opneemt.

Vanuit een theoretische gezichtspunt helpen algemene taalmodellen ons om duide-
lijk te maken welke parameters een specifieke instantie heeft ingevuld en vastgelegd,
en om expliciet te maken welke aannames een specifieke instantie heeft gemaakt. Wan-
neer we de voor parseren vereiste aspecten vanuit een formele talenperspectief willen
bestuderen, dan is duidelijk dat we voor alles waarschijnlijkheden en hun rol in het
parseren moeten bestuderen. In het proefschrift beantwoorden we een groot aantal vra-
gen betreffende de rol van waarschijnlijkheden in probabilistische context-vrije gram-
matica’s, die een centrale rol spelen in de formalismen die we bestuderen.

Vanuit een computationeel gezichtspunt kunnen algemene modellen waarvoor een
duidelijk parseeralgoritme en redelijke snelle implementaties gedefinieerd kunnen wor-
den, leiden tot snelle en doorzichtige implementaties voor alle specificke instanties.

Op zich voegen algemene modellen niets toe. Hun belang ligt veeleer in de verza-
meling instanties die ze kunnen beschrijven en de nieuwe onderzoeksrichtingen die ze
kunnen suggereren. We laten zien dat bilexicale grammatica’s, Markoviaanse context-
vrije grammatica’s, en stochastische boomstubstitutiegrammatica’s instanties zijn van
ons algemene model. Ons model heeft duidelijke en goed begrepen consistentie-
eigenschappen die we gebruiken om consistentie-eigenschappen af te leiden voor de
genoemde drie formalismen. De nieuwe onderzoeksrichtingen die ons algemene for-
malisme suggereert zijn een gevolg van het instantiéren van de parameters van het
model of van herbezinning op de aannames die cen specifieke instantie doet. We geven
nu een korte beschrijving van de richtingen die we in het proefschrift onderzoeken.

Markov-modellen worden veelvuldig gebruikt in parseermodellen, en ze kunnen
vervangen worden door, meer algemene, probabilistische reguliere talen. Omdat ons
formalisme niet beperkt is tot Markov-modellen, kunnen we om het even welk algo-
ritme gebruiken voor het induceren van probabilistische automaten. We onderzoeken
dit idee. We defini€ren een soort van grammatica’s die probabilistische automaten ge-
bruiken voor het genereren van regels, en vergelijken twee klassen van grammatica’s,
die verschillen in het soort van algoritme dat ze gebruiken voor het leren van proba-

Bibliography 181

bilistische automaten. De ene klasse is gebaseerd op n-grammen, en de ander op het
minimale divergentie algoritme (MDI). We laten zien dat het MDI-algoritme leidt tot
kleinere grammatica’s die zich beter gedragen.

Het feit dat probabilistische automaten Markov-ketens vervangen in de definitie
van ons model stelt ons in staat een reguliere taal te zien als de vereniging van kleinere,
meer specifieke deel-talen. Een belangrijke intuitie is dat de deel-talen eenvoudiger
geinduceerd kunnen worden dan de gehele taal (in één keer), en dat hun combinatie
de gehele taal volledig vastlegt. We onderzoeken dit idee door het trainingsmateriaal
te splitsen voordat we de probabilistische automaten induceren. Vervolgens induceren
we €én automaat per componenent, en tot slot combineren we deze tot één grammatica.
We laten zien dat we op deze manier een maat op grammatica’s kunnen definiéren die
goed correleert met het uviteindelijke parseergedrag.

Ons algemene formalisme stelt ons in staat om specifieke aspecten van het parseren
te isoleren en bestuderen. Om een voorbeeld te noemen, de lineaire orde waarin de ar-
gumenten in een parseerboom verschijnen is een wezenlijk aspect dat door taalmodel-
len gebruikt wordt. We onderzoeken welke reeksen van informatie bettere voorspellin-
gen geven over reeksen van afhankelijken in een parseerboom. We vergelijken recksen
van labels van woordklassen met reeksen van niet-terminale labels, en we laten zien
dat wooordklasse-labels betere voorspellers zijn.

