Sequences of Part of Speech Tags vs. Sequences of
Phrase Labels
How Do They Help in Parsing?

Gabriel Infante-Lopezand Maarten de Rijke

1 FaMAF, Universidad Nacional de Cordoba, Cordoba, Arigent
gabri el @amaf . unc. edu. ar
2 Informatics Institute, University of Amsterdam, The Nelhads
nmdr @ci ence. uva. nl

Abstract. We compare the contributions made by sequences of part etkpe
tags and sequences of phrase labels for the task of grananatiation finding.
Both are used for grammar induction, and we show that Entgdiséls of gram-
matical relations follow a very strict sequential ordert bhot as strict as POS
tags, resulting in better performance of the latter on thetiom finding task.

1 Introduction

Some approaches to parsing can be viewed as a simple caexyirser with the spe-
cial feature that the context free rules of the grammar usetthé parser do not exist
a priori [1-3]. Instead, there is a device for generatingib®adf context free rules on
demand. Collins [1] and Eisner [2] use Markov chains as threegaive device, while
Infante-Lopez and De Rijke [3] use the more general clasgababilistic automata.
These devices are induced from sample instances obtaimmdfee-banks. The learn-
ing strategy consists of coping all bodies of rules insideRenn Tree-bank (PTB) to
a bodies of rules sample bag which is then treated as the samgl of arunknown
regular language. This unknown regular language is to heciedfrom the sample bag,
which is, later on, used for generating new bodies of rules.

Usually, the induced regular language is described by mebagrobabilistic au-
tomata. The quality of the resulting automata depends oryriangs; the alphabet of
the target regular language being one. At least two suctablgts have been considered
in the literature: Part of Speech (POS) tags and grammaséizions (GRs), where the
latter are labels describing the relation between the maib &nd its dependents; they
can be viewed as a kind of non-terminal labels. Using one @other alphabets for
grammar induction might produce different results on therall parsing task. Which
of the two produces “better” automata, that produce “bettkss,” which in turn lead to
“better” parsing scores? This is our main research questithis paper.

Let us provide some further motivation and explanationgrtier to obtain phrase
structures like the ones retrieved in [4], the dependents BODS tag should consist

of pairs of POS tags and non-terminal labels instead of sempseof POS tags alone.
Like sequences of POS tags, sequences of pairs of POS tageartdrminal labels
can be viewed as instances of a regular language: one wiglssbel is the product of
the set of possible POS tags and the set of possible nonrglrtabels. Moreover, they
can be viewed as instances of the combination of two regaeyuages: one modeling
sequences of POS tags, and another modeling sequencestefnonal labels. Infante-
Lopez and De Rijke [3] only use the first regular language fangmar induction, while
non-lexicalized approaches [5] use the second regulaukaggy and Markovian rules
[4] use a combination of the two. Combining the regular laaggiof POS tags and that
of non-terminal labels boosts the overall parsing perfarceact., [4,5], but it is not
clear why this is the case. Infante-Lopez and De Rijke [3lggsg that lexicalization
improves the quality of the automata modeling sequence®©& fags, but they do not
provide any insight about the differences or the interplayween these two regular
languages.

NP-SBJ

[Pierre Vinken] [61 years] [old], [joined] [the baard] [as][a nonexecutive director] [Nov.
N NNS JJ VBD NN PP NN CD

Fig. 1: Information we use from each tree in the PTB.

We design and implement experiments for exploring the difiees between the
regular language of POS tags and the regular language diemoniral labels in a pars-
ing setup. Our research aims at quantifying the differeretevéen the two and at un-
derstanding their contribution to parsing performanceaddress our research question
we focus on a task that cleary isolates these two regulaukayes: detecting and label-
ing dependents of the main verb of a sentence. We presentaproaches to dealing
with this task. In the first, we develop two grammars: one ftedting dependents and
another for labeling them. The first grammar uses sequerid@®$ tags as the main
feature for detecting dependents, and the second gramesmseguences of GRs as the
main feature for labeling the dependents found by the fiestngnar. The overall task of
detecting and labeling dependents is performed by casg#aéntwo grammars. In the
second approach, we build a single grammar that uses sespiehGRs as the main
feature for detecting and labeling dependents. The ovastl of is done in one go by
this grammar. The two approaches differ in that the first wsegiences of GRs and
sequences of POS tags, while the second only uses sequéi@Rs.o

English GRs are shown to follow a strict sequential ordetr,nmi as strict as POS
tags of verbal dependents. Counterintuitively, the latermore effective for detecting
and labeling dependents, and, hence, provide a more eliagtrument for detecting
GRs. This feature is responsible for boosting parsing perémce.

In Section 2 we detail the task on which we focus; Section &lbuihe grammars
used in the experiments. Section 4 argues for the apprepgas of the task on which
we focus for our main research questions. Section 5 desooilbeexperiments and an-
swers these questions. We present related work in Sectiod 6anclude in Section 7.

2 Task Definition

The task we use for our experiments is to find dependents of weabs and to deter-
mine their GR. Given a sentence, the input for the task ctsnsfghe following: (1) the
main verb of the sentence, (2) the head word for each of thakshinto which the
sentence has been split, and (3) POS tags for the heads diuh&s: The rest of the
information in the sentence is discarded. The informatielow the line in Figure 1
shows an example of the input data.

The output consists ofyes/no tag for each elementin the input string. A POS tag
markedy es implies that the tag depends on the main verb. If a POS tagriketdges,
the output has to specify the GR between the POS tags and thevarh. An example
of the desired output is shown in Figure 1. Tags labglkesl have been replaced by links
between the POS tags and the main viidi.all POS tags in our example sentence bare
a relation to the main verb. More generally, there may be R@S that depend on the
main verb but whose relation cannot be labeled by any of thelsave define below.
These links receive thdO- FUNC label. It is important to distinguish between the POS
tags that do not have a relation to the main verb and thoselépeend syntactically on
the main verb but whose relation cannot be labeled. The foameemarked with thao
tag, while the latter are marked with thies tag and the GR i8lO- FUNC; Figure 1 has
an example.

In order to define the regular language of GRs, we codify GRseénterminal sym-
bols. As an example, Figure 2 shows the verb dependents figune=1,nnp nn pp,
andcd, with labels as pictured, whilens j j , andnn are not in any relation to the
main verb and, consequently, they are not linked or labeteld@t shown in Figure 2.
One can clearly distinguish the two regular languages taatbe used for detecting
dependents of verbs: the sequendes SBJ andNP- OBJ PP- CLR NP- TMP are in-
stances of the regular languages whose alphabet is the pessible GRs, while the
sequenceanp andnn pp cd are instances of the regular language whose alphabet
is the set of possible POS tags.

3 Building Grammars

We build 3 grammars; each is a PCW-grammars (see Sectiooni3defails):Gp, G,
andG. The grammar= p aims todetect main verb dependents. It uses automata that
model sequences of POS tags. The parser uSings fed with all POS tags. For each
sentence parsed with this grammar, the parser outputs adepey structure in which
the main verb dependents are found. The gram@aaims tolabel dependents. It uses

NP-SBJ vbd NP-OBJ PP-CLR NP-TM¥

nnp nn pp cd

/\ e

nns jj

nn

Fig. 2: The desired tree for the input in Figure 1. The subpietired as a triangle denotes that it
can be adjoined to both points.

automata that model sequences of GRs. The parser Gsing fed with the POS tags
that are believed to depend on the main verb. The result is aaake for each POS tag
in the input sentence. This grammar assumes that (somehewyht dependents have
been identified, and its task is to assign the correct lab#eéalependents; it assigns
a label to all elements in the the input string. The gramé@aims todetect andlabel
main dependents. It uses automata that model sequencesabGdther with automata
that model sequences of POS tags. The input and output dhgawith G are as for
the grammatp.

Using Gp, G, andG we define two ways to address the relation finding task
described in Section 2: (1) We ué#, for detecting dependents, ang, for labeling
the dependents tha@fp outputs. (2) We usé& for detecting and labeling the main
dependents.

The three grammar are PCW-grammars (see Section 3.1). Wktbam follow-
ing the same procedure: (1) we build a bodies of rules trgiset extracted from the
PTB (see Section 3.2), (2) we induce an automaton from theingamaterial (see
Section 3.4), and, (3) we build a grammar using the autonmatacied in step 2 (see
Section 3.3).

3.1 Grammatical Framework

We need a grammatical framework that models rule bodiesstarioes of a regular
language and that allows us to transform automata to gramasatirectly as possible.
We use the grammatical framework of CW-grammars [6]. BaseB©FGs, they have
a clear and well-understood mathematical background andowet need to resort to
ad-hoc parsing algorithms.

A probabilistic constrained W-grammar (PCW-grammar) is a two-level grammar
consisting of two sets of PCF-like rulegséudo-rules and meta-rules) and three pair-
wise disjoint sets of symbolsdriables, non-terminals andterminals). Pseudo-rules
and meta-rules provide mechanisms for building ‘real’ ieavules, which are built by
first selecting a pseudo-rule, and then using meta-rulesstantiating the variables in
the body of the pseudo-rule.

AN

[Pierre Vinken], [61 years][old], [joined][the board][as] [a nonexecutive dirdditai 29
NNP NNS JJ VBD NN PP NN CD

Fig. 3: A dependency tree from which we extracted trainingemial.

Parsing PCW-grammars requires two steps: a generatienstep followed by a
tree-building step. Parsing with PCW-grammars can be \deag parsing with PCF
grammars. The main difference is that in PCW-parsing dgoima for variables remain
hidden in the final tree [6].

3.2 Training Material

The training material we use for buildingp, G, andG always comes from sections
11-19 of the PTB. We usehunkl i nk. pl [7] for transforming the PTB to labeled
dependency structures and for marking all the informatieruse. Briefly, [7] defines a
chunk to consist of a head, i.e., any word that has a labeled popites the continuous
sequence of all words around it that have an unlabeled pdmthis head. This chunk
correspond to the projection of the pre-terminal level ia driginal tree Labels are
defined as concatenation of the non-terminals labels foutitel PTB.

Clearly,chunkl i nk. pl doesnot define an invertible procedure, i.e., its output
dependency trees cant be mapped back to the original phrase structure tree, alslabe
of some intermediate constituents are deleted during pa.fi, p. 60]; some informa-
tion regarding the original attachment position of gramo@tfunctions is also lost.
Despite thischunkl i nk. pl does not appear to discard too much information; the
structures it produces are meaningful. All our experimesesthe same type of infor-
mation and the transformation performed withunkl i nk. pl does not favor one
experiment over another.

After the transformation, the resulting trees contain linfation about chunks and
labels (see Figure 1). From such trees, two further treebeaxtracted, each contain-
ing information relevant to the 3 grammars we want to builak. the tree in Figure 1,
the trees in Figures 3 and Figure 4 can be obtained. We use dieeised trees for ob-
taining the training material. The precise tree to be usqubdés on the grammar we
want to induce, as we will now explain.

meta-rules | pseudo-rules
Adj Zso.5 AdjAdj|S =1 Adj Noun
Adj o5 Adj Adj 201 big
Noun =—1 ball

Table 1: Example of a PCW-grammar.

TN

NP-SBJ

NNP

VBD NP-OBJ P\LD—CLR

NN

NP-TMP NO-FU

PP cD

Fig. 4: The tree representation we use, extracted from tr&egure 1.

For the grammar for detecting dependafdts, the dependency trees used are like
the one shown in Figure 3, and Table 2 shows the sample sdtshotind left depen-
dents we extracted from it.

POS Left Right
NNP NNP [NNP COMMA NNS COMMA
COMMA| COMMA COMMA
NNS NNS NNS JJ
JJ JJ JJ
COMMA| COMMA COMMA
VBD |VBD NNP VBD NN PP CD DOT
NN NN NN
PP PP PP NN
NN NN NN
CD CD CD
DOT DOT DOT

Table 2: Instances of left and right dependents extracteah fthe tree in Figure 3. The head
always starts the string of dependants. Left dependantgdsbe read backwards.

In contrast, for the gramma¥, we use trees like the one pictured in Figure 4. From
such trees, we extract two kinds of information. The firstdki® used to model meta-
rules yielding GRs, i.e., the first level of the output treshjle the second is used to
model pseudo-rules that rewrite names of GRs into POS tagsthie third level of the
output tree. Table 3 shows all instances to be added to thméntgamaterial extracted
from the tree in Figure 1.

Probabilities of pseudo-rules {#p were hand coded, because there is a one to one
correspondence with left-hand symbols and the body of r&@sthe present grammar,
this is no longer the case. Here, left hand symbols of pseulds-are GRs, and these
names can yield different POS tags. To estimate probasiitve extracted all pairs of
(GR, POS) from the training material and put them aside iy onk bag. Table 4 shows

VBD

Left Right
NP-SBJ VBOVBD NP-OBJ PP-CLR NP-TMP NO-FUNC
Table 3: Data extracted from the tree in Fig. 1. Left depetsishould be read from right to left.

VB - Right Side VB - Right Side

g &8 3 3 T T 2 2 T 3T g 8 3 3 T F 2 2 T 2T
P8 & 5 & & & & & ¢ Ps & 5 & & & & & g
S 4 =2 X &4 A4 0@ @ o5+ S 4 2 X &4 A4 0@ @ o5 0o+
Alpha Alpha
MDI Perplex. (PP) MDI Perplex. (PP)
MDI Missed Samples (MS) === MDI Missed Samples (MS) ===

Norm(PP.MS) - Norm(PP,MS) -

Fig. 5: Left and right plots for automata usedGh, andGp.

the instances of pairs extracted from the tree in Figure &.tfdining material used for
building G is the union of the training material fé¥;, andGp.

3.3 Defining Grammars

We start by buildingz . Once the training material has been extracted, we build two
automata per POS tag, one modeling left dependents, the righé dependents. Let
POS be the set of possible POS tagsan element inPOS, andAY and A, the two
automata associated to it. Lety andG%; be the PCFGs equivalent téy and A%,
respectively, following [8], and let}’ and S¥ be the start symbols afY and G,
respectively. We build a gramméip with start symbolS, by defining its meta-rules
as the disjoint union of all rules iy andG';, (for all POSw), its set of pseudo-rules
as the union of the setsS > Syv*Sy, : v € {VB,VBD, VBG, VBN, VBP, VBZ} }. The
grammar is designed in such a way that the start syrStmily yields the head words
of the sentences which are marked with theymbol. That is, all sentences that are
parsed using these grammars have one word marked withdhmbol indicating that
the marked word is the head of the sentence.

For G, automata are used to model sequences of GRs instead of BQSRS
are at depth one (see Figure 4) and they are modeled with ata@nd meta-rules. The
yield of the tree is at depth two and it is modeled using psewdks. The latter rewrite
GR names into a POS tag and they are read from the tree-bagik;ptiobabilities
are computed using maximum likelihood estimation [9]. Akterderivations that took
place to produce nodes at depth 1 remain hidden. Hence, guersee of GRs to the
right and to the left of the main verb are instances of the lsgdanguages modeling
right or left GRs, respectively.

GR |NP-SBJNP-OBJPP-CLRNP-TMP|NO-FUNC
POStag nnp | nn | pp | cd [dot
Table 4: Pairs of GRs and POS tags extracted from tree in &iur

Once the training material for meta-rules has been exulaate build two automata
per GR, one modeling left sequences of GRs, the other rigjtesees of GRs. Let’S
be the set of possible verb tagsan element inV/S, andAj andAY, the two automata
associated with it. Letr7 andG'}; be the PCFGs equivalent#t} andA?,, respectively,
and letS7 andS? be the start symbols @ andG?,, respectively. We build a grammar
G, with start symbolS, by defining its meta-rules as the disjoint union of all rutes
G andGY, (for all verb POS tags), and its set of pseudo-rules as the union of the two
sets. One set, given byS ~—; S¥v*S% : v € VS}, is connects automata modeling
left sequences of GRs with automata modeling right sequssnfd8Rs. The second set,
given by {GR >, w : w € POS}, whereGR is the name of a GRy is a POS
tag, andp the probability associated to the rule, is computed using,(BOS) pairs
extracted from the training material, using maximum likelbd estimation.

The automata we use for buildirig are the same as those used in the previous two
grammars, but the set of rules differs. LBO.S be the set of possible POS tags,debe
an elementinPOS; let AY and A% be the two automata built for each POS tag for the
grammarGp. Let VS be the set of possible verb tagsan element inl’S; let A} and
AY, the two automata we built for verb tags for gramrégy . LetGy, G, GY, andG';
be the PCFGs equivalentt; , A%, AY and A}, respectively, and le§7, 5%, S’ and
S be the start symbols @i} andGY,, respectively. We build a grammafwith start
symbol S, by defining its meta-rules as the disjoint union of all rules&:y, G%, GY,
andG?, for all POS tags and all verbs tags, while its set of pseuwdesris the union
of the following sets{S =1 S¥v*S% : v € VS}, {W 2= SPwSY : w € POS},
and{GR >—, S¥wS¥ : w € POS}, wherep is the probability assigned to the rule
{GR -, w: w € POS} using maximun likelihood estimation.

3.4 Optimizing Automata

LetT be a bag of training material extracted from the transfortresetbank. The nature
of T" depends on the grammar we are trying to induce. Since we asathe technique
for optimizing all automata, we describe the procedure fgeaeral bag. We usein-
imum discrimination information (MDI) [10] algorithm for inducing the automata, and
two different measure for evaluating them: perplexity (BRY missed samples (MS).
A PP value close ta indicates that the automaton is almost certain about thestep
while reading the string. MS counts the number of stringhentest samplé) that the
automaton failed to accept.

The MDI algorithm has one parametat: pha. We search for the value ef pha
that minimizes; = v PP? + M 5?2 (see [6] for motivation), where botR P and M S
depend onv. In Figure 5 we have plotteal pha vs. PP, MS ang for the VB tag used
in the grammarsy;, (left) andGp (right). Even though the PP values for automata
modeling sequences of GRs (left) and the PP values for atiégomadeling POS tags
(right) are close to each other, the difference betweem &8s is remarkable. Data

sparseness seems to affect the modeling of GRs much mor¢hiiaof POS tags; it
prevents the MDI algorithm from inducing a proper language3Rs.

4 Comparing Probability Distributions

The approach we follow to detect the value of sequences agésas to address the
task of detecting and labeling arguments using two diffesénategies. One is to cas-
cade the grammar§; and Gp, while the second is to us@ in one go. The first
approach uses the sequence of POS as a feature while thedsmmemloes not. Let
us take a closer look. We present the probabilities that gaaimmar assigns to its
tree language. Consider the trees shown in Figur&, G, and G generate the

S S S
TS
wi ws w, ws wy GRiGR: w;, GR3s GRy GR; GR; w;, GRs; GR;
t 1o ty ty V\ll V\L V\|13 V\|I4 V\|I1 V\|/2 V\|/3 V\|I4
t1 to t1 t1
(@ (b) (©)

Fig. 6: (a) Example of a structure retrieved by the gramdiar, (b) An example of a structure
retrieved by the gramma®;,, and (c) The result of cascading the grammars for detectiglg a
labeling dependents.

trees in Figure 6 (a), (b) and (c), respectively. The thresrgnars assigns probabili-
tiespa, (t)s), pr(tjw ... wys), andpg(t|s) as defined in Figure 7. Thergw,wiws),

PGy (ts) = plwpwiwz)p(wpwswa)p(ts) - .. p(ta)
PGy, (t|w1 e w4) = p(thRlGRQ)p(thRSGR4)p(GR1 — w1) . Ap(GR4 — w4)
pa(t]s)(t) = p(wpGR1GR2)p(wnGR3GR4)p(GR1 — w1) ... p(GR4 — wa) X
X p(tl) .. .p(t4)
pa(tls) = ponego(t)

Fig. 7: Probabilitiepa, (t]s), pa, (tlw: ... ws), andpa(t|s) assigned byep, Gr andG, re-
spectively.

p(wpwswy), p(w,GR1GRe) andp(w, GRsG Ry) are the probabilities assigned by the
automata to the strings,wiws, wpwswy, wy,GR1GRy, andw, GR3G Ry, respec-
tively, and similarly forw, GR;GRy) andw,GR3GR,). Further,p(GR; “— w;)
refers to the probability assigned to the r@®; ~— w, ands is the concatenation of
yield(ty)yield(ta)wpyield(ts)yield(ts).

If the grammar for labeling dependents is fed with the depatsgifound by the
grammar for detecting dependents, the probability astextia a tree like the one pic-

tured in Figure 6.(c) is as follows
Pcascading (t|$) = PD(f) X PL(f) = (1)
== p(GRl .. GR4) X
p(GRy 2= wy) ... p(GRy 2= wy) x
p(wpwiwa)p(wpwzwa)p(ts) . .. p(ta)

We can now establish the relation between the two probigsilitehind the two strate-
gies we defined for solving the task. L&hscading be the probability distribution gener-
ated over trees by cascading the two first grammars pang, the probability distri-
bution generated b§. Both pone.go @aNdpcascading @SSign probabilities to the same set of
trees, and the two are related as follows:

pcascading(t) = ponego(t) X p(whw1w2)p(whw3w4)- (2)

The difference between the two distributions is the prolitsuf the sequence of POS
tagsw; .. . wy.

Summing up, we have two probability distributions for theweame task, one
uses an additional feature, namely, the sequence. w4. An empirical comparison of
these two distributions will provide us with informationali the value of the additional
feature; this is what we turn to in next.

5 Experiments

For our experiments we shuffle the PTB sectidf$o 19 into 10 different sets. We run
the experiments using sétas the test set and s&tso 10 as training sets. The tuning
samples were extracted from Sectitth All sentences fed to the parser have the main
head marked; all sentences whose main head was not taggeddsare filtered out.
First, we perform the whole task (detecting dependentsamelihg their relation with
the main verb) according to the two strategies; resultstaes in Table 5; we observe
a 10% difference irfs—; between the cascaded strategy and the “direct” stratedy. Th
helps us answer our main research question (What is the tenpmar of the sequences of
POS tags for parsing?). Recall from Equation 2 that the offflgrénce betweeponego
andpcascading 1S thatpeqscading associates to sequences of POS tags. In other words,
the 10% difference in performance between the two stradegidue to the use of this
information.
The grammaiGG;, for labeling dependents allows us to quantify the effectdss
of sequences of GRs together with pseudo-ralés ~— w for labeling GRs. To this
end, we used grammar tl¢e;, for labeling dependents that are known to be the right
ApproachPrecisiofRecal| f5—1
Cascadinf 0.73 | 0.73 ‘0.73

One Go| 0.65 | 0.67|0.66
Table 5: The results on detecting and labeling main verbsrf#gnts.

10

dependents. We extracted the correct sequences of depeficen the gold standard
and used the grammaéf, for labeling them. Table 6 shows the results of this exper-
iment; the results show that labeling is not a trivial taske Ecores obtained are low,
especially if we take into account that the sentences felde@arser consisted only of
correct dependents. The poor performance of this gramndaeiso the data sparseness
problem mentioned above: there is a large number of MS in tihenaata that model
GRs. Moreover, the two grammars in the cascaded approawi a8l to quantify how
errors percolate from detecting dependents to labeling theow, the only aspect of the
task that is left is to study is the detection of dependent3able 6 we see how sensi-
tive the task of labeling dependents is to errors in its inthe labeling precision drops
from 0.76 to 0.73 when only the 85% of the arguments fed to the labeling granarear
correct.

6 Related Work

The task of finding GRs has mostly been considered as a otasiifi task [7]. A classi-
fier is trained to find relations and to decide the label of #atrons found. The training
material consists of sequences of 3-tuples (main verb|,labéd context). In contrast
to approaches based on classifiers, we view the task of fir@iRg as a parsing task.
We build grammars that specifically try to find GRs. In ordegie an impression of
state-of-the-art methods for finding and labeling main deleats, we compare exper-
iments to the approach presented in [7]. She rego®8 and0.80 for precision and
recall respectively. Thesescores are better than oursthendifferences are probably
due to the restricted amount of information we used for perfog the task. In contrast,
Buchholz [7] uses all kinds of features for detecting anelaly dependents.

7 Conclusions

The standard practice in parsing is to use all featuresitiyatave parsing performance
without clearly stating why they improve. In contrast, waeidgeed grammars and exper-
iments for isolating and explaining two particular typegexdtures: sequences of POS
tags and sequences of GRs, both for detecting and labelthtabaling dependents.
We designed and implemented experiments for exploring iffierehces in con-

tribution to the overall task of parsing between the regldaguage of POS tags and
the regular language of GRs. To assess the contributioneskttwo features, we car-
ried out an evaluation in terms of a task that clearly isaslaéite two regular languages.

Approach |PrecisiofiRecall f5—1
Labeling Gold Standard 0.76 | 0.76|0.76
Detecting Dependents 0.85 | 0.88|0.86

Table 6: Results of the experiment on labeling gold standemendents and detecting depen-
dents.

11

We used the task of detecting and labeling dependents of #ire verb of a sentence.
We presented two approaches for addressing this task. &dirsh we developed two
grammars: one for detecting dependents and another fdiriglitkem. The first gram-
mar used sequences of POS tags as the main feature for dgtdependents, and the
second grammar used sequences of GRs as the main featwaledting the dependents
found by the first grammar. The overall task of detecting afxtling dependents was
done by cascading these two grammars. In the second appveabhilt a single gram-
mar that uses sequences of GRs as the main feature for dgtélefpendents and for
labeling them; here, the overall task was done in one go lsygtdmmar. The first ap-
proach used sequences of GRs and sequences of POS tagsheisieond only used
sequences of GRs.

We showed that English GRs follow a very strict sequentidegrbut not as strict
as POS tags of verbal dependents. The latter are more eéféatidetecting and label-
ing dependents, and, hence, provide a more reliable instntifar detecting them. We
also showed that sequences of POS tags are fundamentatforgpperformance: they
provide a reliable source for predicting and detecting delpats.

Acknowledgments. Maarten de Rijke was supported by the Netherlands Orgaoizat
for Scientific Research (NWO) under project numbers 017181, 220-80-001, 264-
70-050, 354-20-005, 612-13-001, 612.000.106, 612.000.802.066.302, 612.069.-
006, and 640.001.501.

References

1. Collins, M.: Three generative, lexicalized models fatistical parsing. In: Proc. 35th ACL.
(1997)
2. Eisner, J.: Three new probabilistic models for depenglpacsing: An exploration. In: Proc.
COLING 1996. (1996)
3. Infante-Lopez, G., de Rijke, M.: Alternative approacfasgenerating bodies of grammar
rules. In: Proc. 42nd ACL. (2004)
4. Collins, M.: Head-Driven Statistical Models for Natutzdnguage Parsing. PhD thesis,
University of Pennsylvania, PA. (1999)
5. Charniak, E.: Tree-bank Grammars. In: Proceed®dd/’96 , Portland, Oregon (1996)
6. Infante-Lopez, G.: Two-Level Probabilistic Grammars Matural Language Parsing. PhD
thesis, Universiteit van Amsterdam (2005)
7. Buchholz, S.: Memory-Based Grammatical Relation FigdiRhD thesis, Universiteit van
Tilburg (2002)
8. Abney, S., McAllester, D., Pereira, F.: Relating proliatic grammars and automata. In:
Proc. 37th ACL. (1999) 542-549
9. Manning, C., Schiitze, H.: Foundations of Statisticalika Language Processing. The MIT
Press, Cambridge, MA (1999)
10. Thollard, F., Dupont, P., de la Higuera, C.: ProbabdifiFA inference using Kullback-
Leibler divergence and minimality. In: Proc. ICML, Stardq2000)

12

