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We report on our experience with TREC OpenSearch, an online evaluation campaign that enabled researchers
to evaluate their experimental retrieval methods using real users of a live website. Specifically, we focus on
the task of ad-hoc document retrieval within the academic search domain, and work with two search engines,
CiteSeerX and SSOAR, that provide us with traffic. We describe our experimental platform, which is based on
the living labs methodology, and report on the experimental results obtained. We also share our experiences,
challenges, and the lessons learned from running this track in 2016 and 2017.
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1 INTRODUCTION
Information Retrieval (IR) is about connecting people to information. Users have always been central
to the design and evaluation of retrieval systems. For a long time, system-oriented evaluation has
primarily been performed using offline test collections, following the Cranfield paradigm. This
rigorous methodology ensures the repeatability and reproducibility of experiments, and has been
instrumental to the progress made in the field. However, it has an inherent limitation, namely, that
the actual user is, to a large extent, abstracted away. Ways to overcome this include laboratory user
studies [10], simulated users [17], and online evaluation [6]. Our focus in this paper falls in the
latter category.
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The idea behind online evaluation is to observe users in situ, i.e., in a live setting in their natural
task environments. Hence, the search engine operates as a “living lab.” All major search engines
function as living labs, but these experimental facilities are restricted to those working at the
respective organizations. This means that most academic researchers do not have access to real
users, and are thus required to resort to simulated users or to data sets annotated by trained assessors.
Moreover, the scarce online evaluation resources available to researchers, whether academic or
industrial, usually cannot be shared, making it hard to compare or replicate experimental results.
The OpenSearch track at the Text Retrieval Conference (TREC) represents a recent effort that aims
to address this problem, by opening up live evaluation resources to the community:

“Open Search is a new evaluation paradigm for IR. The experimentation platform is
an existing search engine. Researchers have the opportunity to replace components
of this search engine and evaluate these components using interactions with real,
unsuspecting users of this search engine.” [3]

Specifically, TREC OpenSearch focuses on the task of academic literature search, using various
academic search engines as live sites from which user traffic is used. The task is set up as an ad-hoc
document retrieval task. The live sites provide a set of queries, for which a selection of candidate
documents have to be ranked. The teams participating in the experiment submit rankings, which
are interleaved with the production system during testing and clicks are recorded.
Our contributions in this paper are twofold. First, we present an analysis of data and results

obtained from the TREC 2016–2017 OpenSearch tracks and discuss lessons learned. Second, we
release a curated dataset containing observed clicks on interleaved result lists during these tracks.
The remainder of this paper is structured as follows. First, we provide background material on

evaluation in IR in Section 2. Next, we provide an overview of the living labs evaluationmethodology
in Section 3. In Section 4, we discuss the academic use-case. Our results and analysis are presented
in Section 5. Finally, we conclude in Section 6.

2 BACKGROUND
The Cranfield paradigm, where several judges attempt to quantify the relevance of documents for a
query [5], is a widely adopted IR evaluation paradigm, both in academia and industry. Relevance
judgements collected under the Cranfield paradigm can be used to evaluate the performance of a
ranking system in an offline setting. Although this benefits the repeatability and reproducibility
of experiments, there are major caveats: (1) it is expensive to obtain relevance judgments at scale,
as these have to be generated by humans, (2) it assumes that relevance is a concept that does
not change over time, (3) it ignores the fact that for some scenarios, i.e., private email search, the
actual user is the only credible judge, and (4) it assumes that relevance judgments produced by
professional judges accurately represent the preferences of real users.

Online evaluationmitigates these problems by inferring preferences directly from the interactions
of real users. There are two common ways of performing online evaluation of IR systems:
(1) A/B Testing

In A/B testing [12, 13], traffic to a search engine is split uniformly at random into two
buckets called A and B. Bucket A is typically considered the control group, where nothing
changes. Bucket B runs the alternative system we wish to evaluate. By observing statistically
significant changes between the behavior of users in bucket A and those in bucket B, we can
draw conclusions about the effectiveness of the alternative system.

(2) Interleaving
With interleaved comparisons [8, 14], the results of two systems A and B (“production” and
“alternative”) are combined into a single Search Engine Result Page (SERP), which is then
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Table 1. Overview of living labs benchmarking efforts.

Name Task Data Access Evaluation

CLEF LL4IR product search product records API interleaving
web search feature vectors API interleaving

CLEF NewsREEL news recommendation news items API A/B testing
NTCIR-13 OpenLiveQ question ranking QA pairs download multileaving

shown to the user. Preferences for either system A or B can be inferred by observing which
results get clicked, and attributing the clicked result to either one of the systems being
evaluated. Because of their within-subject nature, interleaved comparisons are usually much
more data efficient than A/B testing for studies of comparable dependent variables [4].

For online evaluation an online interactive system is required. This naturally limits the use of this
methodology to researchers at organizations with a live system. The Living Labs methodology [1]
has been proposed to open up online evaluation as an service to third-parties, allowing them to
expose rankings generated by experimental retrieval methods to live users.
Over the past years, we have seen a number of operationalizations of this methodology at

large-scale evaluation campaigns. One is the News Recommendation Evaluation Lab (NewsREEL)
at the Conference and Labs of the Evaluation Forum (CLEF) 2015–2017, which aims at optimizing
news recommender algorithms [7]. Participating systems at NewsREEL need to operate a service
that responds to requests within 100ms. The recommendations of a randomly selected system are
shown to the user directly.

Another instance is provided by the OpenLiveQ (Open Live Test for Question Retrieval) task at
NTCIR-13 [9], in which question retrieval systems are evaluated in the production environment
of Yahoo! Chiebukuro (a community Q&A service); evaluation is done using multileaving [16], a
generalization of interleaving to more than two competing approaches.
Yet another instance is the Living Labs for IR Evaluation (LL4IR) Lab at CLEF 2015 and 2016.

LL4IR relied on the idea of focusing on head queries, as proposed by Balog et al. [2], thereby
removing the requirement of providing rankings in real time for query requests. Two use-cases
were studied at LL4IR: product search and web search; see [15] for an overview. TREC OpenSearch
follows the same methodology of focusing on head queries, as we will explain next.

3 EVALUATION METHODOLOGY
TREC OpenSearch implements the living labs evaluation methodology [2]. It allows third-parties
to perform online evaluation on an existing service and enables experimentation using real users.
The idea behind living labs is to share a common service for evaluation instead of having every
research group attempt to build and maintain their own platform. The major benefit of sharing
an experimental platform in this way is that all researchers can make use of the large and active
user-base of a deployed and well-maintained service without any overhead.

Before we dive into a detailed explanation of TREC OpenSearch’s architecture, it is important to
introduce the main concepts that will be used throughout this paper:

Site An interactive website that makes their service available for third-parties to run experi-
ments involving their live traffic.

Participant A third-party who wants to experiment with some or all of the users that make up
the traffic of a site. In our case, these third-parties are participants of the TREC OpenSearch
track.
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Participant TREC OpenSearch
API

Site

(1) Provide queries
and documents

(2) Get queries
and documents

(3) Compute
ranked lists

(4) Submit
ranked lists

(5) Get an experimental
ranked list for a given query

Fig. 1. High-level overview of TREC OpenSearch architecture.

API The service that acts as a mediator between sites and participants. OpenSearch uses the
Living Labs API.1

Experimental query Sites make a designated set of queries available for experimentation.
Following [2], these are usually taken to be so-called head queries, i.e., queries that are
expected to be issued frequently by the site’s users. These queries are further subdivided into
a training and test set by the organizers of the evaluation campaign, so that every participant
uses the same splits.

Ranked list A relevance-ordered list of documents for a single query. (The collection of ranked
lists for the entire set of test queries constitutes of what is known as a run in TREC lingo.)

Evaluation round TREC OpenSearch is organized in several evaluation rounds, each typically
lasting between 4 and 6 weeks. During an evaluation round, the ranked lists that are submitted
for test queries cannot be changed, in order to compare participating systems in fair way.

Impression An impression occurs when a user of a site issues an experimental query and
observes a ranked lists.

Click A click is recorded whenever a user interacts with the observed ranked list and clicks on
one of the results in the ranked lists.

A high-level overview of the TREC OpenSearch architecture is provided in Figure 1. The site makes
available a set of experimental queries and a set of candidate documents for each query through the
API. Participants need to generate a (re)ranked list of these candidate documents, and then upload
the generated ranked lists to the API. When one of the experimental queries is issued by a user, the
site requests a random participant’s ranked lists from the API. This ranked list is interleaved with
a ranked list produced by the site’s production system, then presented to users. The user’s click
actions are recorded, and this feedback is later submitted to the API. Each of these steps will now
be explained in more detail.
In the first step in Figure 1, experimental queries are selected by the site, typically based on

historical log data. The selected queries are head queries, meaning that they appear very frequently
and are likely to be issued again in the future. For each query, the site also provides a set of candidate
documents. This also functions as a safety mechanism, to ensure that no “nonsense” is returned to
users of the site. The content of the documents is made available in a semistructured form, encoded
as JSON. This allows sites to provide additional metadata and it makes it easier to separate different
fields in the content, such as author, title and abstract. The queries are separated into training and
test queries. Participants will receive interaction (click) feedback on the training queries, allowing
them to tune their ranking algorithms, while test queries are used solely for evaluation purposes.

1The API is publicly available at https://bitbucket.org/living-labs/ll-api/.
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Table 2. Overview of evaluation rounds at TREC OpenSearch.

Year Round Period CiteSeerX queries SSOAR queries
training test training test

2016 Round 1 Jun 1 – July 15 100 107 57 74
Round 2 Aug 1 – Sep 15 100 107 57 74
Round 3 Oct 1 – Nov 15 100 871 57 1062

2017 Round 1 Aug 1 – Aug 31 655 501
Round 2 Oct 1 – Oct 31 655 501

That is, for test queries, only aggregated feedback statistics are made available and only at the end
of the evaluation round.
In the second and third step in Figure 1, participants download the experimental query and

document collections and produce ranked lists using their experimental methods. As a fourth
step, they submit their computed ranked lists back to the API. Ranking is thus done in an offline
fashion. This removes privacy concerns and lowers the barrier of entry. A limitation of this setup,
however, is that it is not feasible to include contextual information about the current user, making
it impossible to experiment with personalization.
Whenever a user submits one of the candidate queries to the site, the site will ask the API for

a participant’s ranking, as illustrated in step 5 of Figure 1. In the 2016 track we used a uniform
random process to select users, while in 2017 we implemented a load-balancer to distribute traffic
more fairly across users. The selected ranking is returned to the site. In an A/B test we would at this
point either display the participant ranking or the production ranking depending on the bucket the
user falls in. Because the participant ranking comes from a third-party, it is not very trustworthy
and could be potentially very bad. We do not want to expose the site to such risks, so instead we
use interleaving to ensure that the displayed ranking contains documents from both the production
ranking and the participant’s ranking. More specifically, we use Team-Draft Interleaving (TDI),
which is explained in more detail in Appendix B.

Once the interleaved ranked list is displayed to the user, the user can decide to interact with it or
not. The interactions that happen are recorded in the form of clicks. From these clicks it is possible
to infer whether the user prefers the production ranking or the participant ranking, producing a
winner or a draw.

4 THE ACADEMIC SEARCH USE-CASE
The setup we have introduced in the previous section is very generic and is applicable to any
ranking problem. Nevertheless, to make an evaluation exercise meaningful, it needs to be rooted
in a specific domain and task. At OpenSearch, this domain is academic search, and the specific
task is ad-hoc scientific literature search: given a keyword query, return a ranked list of documents
(scientific articles). We chose the academic search task for practical reasons, the search engines
in this domain were very willing to participate. The ad-hoc search task was chosen because it
integrates well with the existing living-labs infrastructure and it avoids any potential problems
with privacy (e.g., personalization or recommendation tasks). The ad-hoc scientific literature search
task has been evaluated with two academic search engines as our sites: CiteSeerX (in 2016) and
SSOAR (in 2016 and 2017). These sites vary in terms of the scientific field as well as in the document
fields/metadata that is made available, as we will detail below. Table 2 provides an overview of the
rounds and the number of queries that were used for training and testing.
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Table 3. Example queries from the CiteSeerX site.

id query string

citeseerx-q1 ontology
citeseerx-q32 journal for mathematics mobile learning
citeseerx-q261 selective fusion of heterogeneous classifiers
citeseerx-q313 recommender system
citeseerx-q442 on the evolution of random graphs
citeseerx-q534 spectral clustering
citeseerx-q729 hand tracking

4.1 CiteSeerX
CiteSeerX [18] is a digital library search engine with a main focus on computer and information
sciences. As of October, 2016, CiteSeerX included 8.7 million unique papers and 1.3 million unique
authors. The documents uploaded to the OpenSearch API comprise two fields: (i) the document title
and (ii) the full body text extracted from the PDF file. If the full document text is unavailable, the
abstract is used instead. An example document entry is shown in Listing 1. The (head) queries were
extracted based on access logs from 2014. The first two rounds in 2016 used a roughly even split
of training and test queries. For the third round, close to 800 additional test queries were added.
Table 3 shows a selection of queries as examples. The document lists are generated by a production
ranking system and have an average of 55 documents per query, where the largest list contains 100
documents.

Listing 1. Example CiteSeerX document.
{

"docid": "citeseerx -d10556",
"content": {

"text": "035$\nMunich Personal RePEc Archive\nAn Online Recruitment ..."
},
"creation_time": "2016 -10 -19 T12 :18:46.400+0200" ,
"site_id": "citeseerx",
"title": "An online recruitment system for economic experiments"

}

4.2 SSOAR
The Social Science Open Access Repository (SSOAR)2 contains about 38K full text documents
from the social sciences and neighboring fields. Documents have a rich set of metadata fields,
including title, abstract, authors, subject tags, publication type, year, language, and publisher.
Unlike for CiteSeerX, the full document text is not available. An example document entry is shown
in Listing 2. For Rounds 1 and 2 in 2016, frequent queries were selected based on access logs, and
were complemented with labels of browsing categories. For Round 3 that year, another approx.
thousand test queries were added, which are from the tail. As for 2017, roughly 1200 of the most
frequent queries were used as a query data set. The first 500 were used as test queries and the
rest as training queries. Unfortunately we later found out that this query data set was sorted by
frequency, and the aforementioned split led to a test set which contains only head queries while
2http://www.ssoar.info/en/home/about-ssoar.html
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the train set contains only tail queries. Table 4 lists some example queries. The document lists are
generated by a production ranking system and have an average of 63 documents per query, where
the largest list contains 100 documents.

Table 4. Example queries from the SSOAR site.

id query string

ssoar-q43 migration
ssoar-q115 bilateral relations
ssoar-q289 labor sozialwissenschaft
ssoar-q376 brexit
ssoar-q482 gruppendynamik
ssoar-q699 alkohol
ssoar-q803 migration und gesundheit

Listing 2. Example SSOAR document.
{

"docid": "ssoar -d10466",
"content": {

"abstract": "Plausibilit\u00e4t spielt in allen Wissenschaftskulturen eine gewichtige Rolle ...",
"author": "Reszke , Paul",
"available": "2015 -12 -14 T11 :20:34Z",
"description": "Published Version",
"identifier": "urn:nbn:de:0168-ssoar -455901" ,
"issued": "2015" ,
"language": "de",
"publisher": "DEU",
"subject": "10200" ,
"type": "collection article"

},
"creation_time": "2017 -06 -15 T17 :04:07.403+0200" ,
"site_id": "ssoar",
"title": "Linguistic -philosophical investigations of plausibility: patterns of communication in the ..."

}

5 EXPERIMENTAL RESULTS AND ANALYSIS
Using the setup described in Section 3, we organized TREC OpenSearch in collaboration with
SSOAR and CiteSeerX as sites in 2016, comprising 3 evaluation rounds. In 2017, we only had SSOAR
available as a site, and due to time limitations only 2 evaluation rounds were organized. An overview
of the evaluation periods is given in Table 2. Below, we present the results we obtained, followed
by an analysis of the data. Throughout this section, we focus only on test queries.

5.1 Impressions and Clicks
Table 5 presents the number of impressions and clicks, as well as the click through rate (CTR, the
fraction of clicks over impressions), for each site and round. We observe that for the academic search
task, clicks are extremely sparse. For the thousands of impressions that we received, only several
dozens resulted in a click. A more extensive analysis of the traffic data shows that some queries
are requested with extreme regularity, indicating some kind of crawler or bot. This is illustrated
in Figure 2. Notice that query ssoar-q1 is issued on an exact 5-minute interval throughout the
entire day, while the other queries follow a more natural access pattern. Filtering out ssoar-q1
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08:00 10:00 12:00 14:00 16:00 18:00

ssoar-q1
ssoar-q5
ssoar-q9

ssoar-q10
ssoar-q40

ssoar-q266
ssoar-q277
ssoar-q473

SSOAR queries on Aug 4 2017

Fig. 2. SSOAR query frequency over time during August 4th, 2017. Each bar indicates when a query is issued.
Notice that query ssoar-q1 is issued every 5 minutes, while the others are more naturally distributed over
the day.

is problematic, because regular users also issue that query frequently. This makes it difficult to
determine the actual number of human impressions for the sites.

We also observe the phenomenon of rank bias in our data, see Figure 5. We see that the overall
CTR is dependent on the position in the ranked list. Items near the top of the ranked list have
a higher CTR. Furthermore we see that for CiteSeerX, clicks stop after rank 10 and browsing to
the second page is not observed in our data at all. For SSOAR, we observe clicks as far as the
80th rank, indicating users are more willing to “browse” deeply into the ranked list to satisfy their
information needs. This indicates that the search patterns and behavior of users on the two sites is
very different, possibly due to the fact that CiteSeerX is a monolingual computer science repository
whereas SSOAR is a (multi-lingual) social science repository. This helps explain the difference in
overall CTR between the two sites.

Recall that in 2016, the number of test queries was increased for Round 3, over 8 fold for CiteSeerX
(from 107 to 871) and over 14 fold for SSOAR (from 74 to 1062). We find that the impressions and
clicks also increased substantially, even though not to the same extent. This is explained by the fact
that those additional queries are increasingly more “tail-ish.”

Table 5. Impressions, clicks and click through rate (CTR) for each evaluation round and site. Only test queries
are included.

Evaluation round Site Impressions Clicks CTR

2016

Round 1 SSOAR 4721 25 0.0053

CiteSeerX 359 144 0.4011

Round 2 SSOAR 8131 14 0.0017

CiteSeerX 571 128 0.2242

Round 3 SSOAR 20062 210 0.0105

CiteSeerX 4829 651 0.1802

2017 Round 1 SSOAR 10511 105 0.0100

Round 2 SSOAR 10744 82 0.0076

We also track the number of impressions over time in Figure 3. An interesting observation is
that for both CiteSeerX and SSOAR traffic goes up after September 1st. This may be due to the
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beginning of the semester in the northern hemisphere, when students are more likely to look for
research material on these academic sites.
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Fig. 3. Traffic on the different websites for each of the different rounds, plotted via Kernel Density Estimation.
We observe an increase in traffic after September 1st.

Next, in Figure 4, we look at how impressions are distributed across queries. We find that
impressions follow a power law distribution, i.e., a few queries are issued a large number of times,
while most queries are submitted only a handful of times. Given this, it is not surprising that many
queries do not receive any clicks at all. Figure 6 displays the distribution of clicks across queries.
For 2016 Round 3, out of the 871 CiteSeerX queries, only 309 got clicked. For SSOAR, this number
is 65 out of 1062 queries in 2016 (Round 3) and 52 out of 501 queries in 2017. Nevertheless, clicks
seem to tail off less rapidly than impressions.

5.2 Participating Systems
Next, we turn to a comparison of the participating systems. Table 6 presents the results for CiteSeerX.
For each participating system, represented by a column, we show the number of times it won, tied
or lost agains the production system (i.e., the site’s default ranking algorithm). A tie can occur if
the experimental and production rankers had identical rankings up to the position where the click
happened (cf. Appendix B). Notice that for Round 3, three participating teams, BJUT, webis and
UDEL-IRL, have numbers that are a magnitude higher than that of other teams. This is because
only these teams generated ranked lists for the new test queries that have been added for Round 3.
Their click counts are now in a range where we might be able to measure statistical significance.
Thus, we focus on these three systems for a further analysis.
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Fig. 4. The distribution of impressions follows a power law distribution with an extremely thin tail.
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Fig. 5. The CTR per rank, indicating position bias. Note that users of SSOAR go very deep into the result list
(as far as the 9th page), whereas users of CiteSeerX stop at rank 10.

Table 7 shows the results of the three participating systems for 2016 Round 3. Outcome is the
official evaluation measure used at TREC OpenSearch and is defined as:

Outcome =
#Wins

#Wins + #Losses
.

That is, an outcome greater than 0.5means that the experimental system is outperforming the site’s
production system. To perform significance testing we use the sign test. Our null-hypothesis is that
there is no preference, i.e., each system has a 50% chance to win. Table 7 reports the p-values. The
smallest p-value we observe is 0.3912, which is not statistically significant. Assuming the ratio of
wins to losses remains the same, we would need to gather roughly 7.6 times more clicks to achieve
a two-tailed p-value < 0.01 and about 4.7 times more clicks to achieve a p-value < 0.05. This is
equivalent to gathering data for about a year (for p < 0.01) or six months (for p < 0.05).

Table 8 presents the results for SSOAR. For Round 3 of 2016, we can observe a similar effect that
we have seen for CiteSeerX, namely, that systems that submitted ranked lists for the newly added

ACM Journal of Data and Information Quality, Vol. 1, No. 1, Article 1. Publication date: January 2018.



OpenSearch: Lessons Learned from an Online Evaluation Campaign 1:11

�ery
0

5

10

15

N
um

be
r

of
cl

ic
ks

2016 Round 1 - CiteSeerX

�ery
0

5

10

15

20

N
um

be
r

of
cl

ic
ks

2016 Round 2 - CiteSeerX

�ery
0

5

10

15

20

N
um

be
r

of
cl

ic
ks

2016 Round 3 - CiteSeerX

�ery
0

5

10

15

20

N
um

be
r

of
cl

ic
ks

2016 Round 1 - SSOAR

�ery
0

2

4

6

8

N
um

be
r

of
cl

ic
ks

2016 Round 2 - SSOAR

�ery
0

1

2

3

4

N
um

be
r

of
cl

ic
ks

2016 Round 3 - SSOAR

�ery
0

1

2

3

N
um

be
r

of
cl

ic
ks

2017 Round 1 - SSOAR

�ery
0

1

2

3
N

um
be

r
of

cl
ic

ks
2017 Round 2 - SSOAR

Fig. 6. The distribution of clicks follows a power law distribution, and are more heavily tailed than the
distribution of impressions.

Table 6. Outcome of TREC OpenSearch for the CiteSeerX site. Empty cells denote non-participation.

Participant

G
es
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ab
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T

O
pn

Se
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_4
04

Q
U

Ka
rM

at

U
W
M

w
eb
is

U
D
el
-IR

L

D
ai
ic
tIr
2

2016 Round 1
Jun 1 – Jul 15

Wins 4 9 3 0 3 3

Ties 3 1 1 1 3 2

Losses 2 3 6 0 3 2

2016 Round 2
Aug 1 – Sep 15

Wins 2 3 6 4 3 4 2 3 6

Ties 1 1 1 1 1 0 3 1 2

Losses 3 2 4 4 3 5 1 1 1

2016 Round 3
Oct 1 – Nov 15

Wins 5 5 48 5 2 4 2 27 35 6

Ties 0 2 15 2 2 0 0 11 14 5

Losses 2 3 39 2 6 2 1 22 32 10

test queries (Gesis, webis, and UDel-IRL) received more clicks than the other systems. However,
the overall click counts are still below 30. This is not enough data to draw conclusions about the
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Table 7. Evaluation results for CiteSeerX, for 2016 Round 3.

Participant Wins Ties Losses Outcome p-value

BJUT 48 15 39 0.5517 0.3912
webis 27 11 22 0.5510 0.5682
UDel-IRL 35 14 32 0.5224 0.8072

performance of the systems with statistical significance. Similar to our findings with CiteSeerX, we
would need roughly 13 times more clicks to achieve a two-tailed p-value < 0.01 and 7.8 times more
data for p < 0.05. To collect this amount of data, we would have to run the rounds for a little over a
year (for p < 0.01) or about 8 months (for p < 0.05).

Table 8. Outcome of TREC OpenSearch for the SSOAR site. Empty cells denote non-participation.

Participant

G
es
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U

Ka
rM

at

w
eb
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U
D
el
-IR

L

IA
PL

ab

IC
TN

ET

W
eb
is

FE
U
P

2016 Round 1
Jun 1 – Jul 15

Wins 1 3 1 4

Ties 0 1 1 0

Losses 1 2 2 1

2016 Round 2
Aug 1 – Sep 15

Wins 1 1 1 0 1 0

Ties 0 1 0 0 0 0

Losses 0 0 1 2 1 1

2016 Round 3
Oct 1 – Nov 15

Wins 13 0 2 2 1

Ties 2 1 3 7 1

Losses 8 1 5 19 0

2017 Round 1
Aug 1 – Aug 31

Wins 9 6 6

Ties 2 4 3

Losses 6 9 7

2017 Round 2
Oct 1 – Oct 31

Wins 5 1 6 8

Ties 3 3 2 2

Losses 3 9 4 11

Finally, we look at position bias. Figure 5 tells us that position bias does exist for both SSOAR and
CiteSeerX: clicks are more likely to occur at higher ranked documents. We compute the Spearman
correlation coefficient between the outcome (1 if the participant wins, -1 if it loses and 0 if it is a
tie) and the highest position a document from the participant’s ranking was placed. The hypothesis
is that a system is more likely to win if its documents happened to be placed at a higher position
by the interleaving algorithm. We plotted the correlation in Figure 7 and observe that a weak but
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Fig. 7. Correlation between the outcome of an interleaving experiment and the top-ranked position of a
document from the participants ranking. A larger circle indicates a higher number of occurrences.

statistically significant correlation exists: A participant is more likely to win if one of its documents
happens to be placed at a higher position by the interleaving algorithm.

6 CONCLUSIONS AND FUTURE DIRECTIONS
In this paper we have reported on our experiences with TREC OpenSearch. We conclude our work
by formulating lessons learned from organizing this evaluation campaign in 2016 and 2017.
Our focus has been on the living labs evaluation methodology, which we have instantiated

with academic search as a use-case. The scientific literature search task has been more successful
in attracting participants than earlier attempts at CLEF (with product search and web search as
use-cases, which had four and zero participating systems, respectively, excluding the organizers’
baselines [15]). We have also found that participating teams have managed to develop approaches
that outperformed the live site’s production system. Yet, we have not been able to report statistically
significant results, due to the low traffic volume (clicks).

The campaign ran without any significant technical hurdles, yet there is one issue that is worth
mentioning. While it sounds obvious that training and test queries should be sampled uniformly
from the set of head queries, this is a mistake that is easy to make—and we indeed managed to
make it on one occasion, for SSOAR in 2017. In particular, what happened was that the top frequent
queries were taken as test queries, while the remaining being train queries. This led to train/test
splits with very different characteristics.
One possible solution to overcome the problem of low query volume would be to use more (or

all) of the query traffic for experimentation, thereby tapping into the long tail. This, however, would
require rethinking the entire API architecture, as ranked lists could no longer be generated offline,
but would need to be produced on-the-fly.

Independent of whether this shift to an entirely online setting happens, the main challenge we
face is more of an organizational than of a technical nature. The success of a living labs setup
depends heavily on a large and active set of participants, and the involvement of large industrial
partners as sites is therefore critically important. However, it remains difficult to convince big
search engines to allow third-parties to influence the ranked lists produced for their queries.
Our participation at the TREC conference sparked several interesting discussions about the

future of online evaluation. One idea that resulted from these discussions is to look into tasks where
feedback data is already publicly available, instead of working with proprietary data providers. An
example is combining the efforts of the TREC Real-time Summarization Track (which uses Twitter
as a data source) with TREC OpenSearch. User’s feedback signals such as retweets or likes are
publicly available in very large quantities. We leave the exact details of such a task as future work.
Online evaluation is an extremely important part for the future of Information Retrieval. New

technologies are emerging that can no longer be evaluated solely using the offline Cranfield
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paradigm. For instance, the evaluation of conversational assistants and dialogue systems requires
incorporating all sorts of feedback signals from real users [11]. Also, the possibility of being able to
run multiple rounds of experiments, without having to wait for the completion of a full annual
evaluation cycle, was welcomed by participants. With our work we have made the first steps
towards an open online evaluation platform that can be used by all researchers. We strongly
believe that the community needs more initiatives like this, and we hope that our experiences will
encourage others to organize similar campaigns.

A RESOURCES RESULTING FROM TREC OPENSEARCH
The operation of TREC OpenSearch has resulted in several resources that are of use to anyone
wanting to run a living labs style experiment in the future.

We adopted the Living Labs API for TREC OpenSearch and have made numerous contributions
to its source code which is publicly available on https://bitbucket.org/living-labs/ll-api. We have:
(1) added an interleaving API endpoint to reduce engineering overhead for sites,
(2) improved authentication by implementing HTTP Basic authentication scheme,
(3) added the ability to upload multiple runs per participant, and
(4) created a fair load-balancer to distribute traffic more evenly across participants.

All the code is written in Python and uses MongoDB3 as a database. It is built on the web framework
Flask.4 Its implementation worked well for the purposes of our evaluation efforts, even on a small
virtual machine. During the evaluation campaign we ran the system on just two CPU cores (2.00
Ghz) with 11GB RAM without any performance problems.
The second resource that we release is the full documentation belonging to the source code. It

can be found at http://doc.trec-open-search.org/en/latest/. The documentation provides extensive
coverage of the API, including examples on how to use it. Furthermore, there are thorough expla-
nations for prospective participants and sites. Finally, there is a developer section, which explains
how to set up a testing living labs environment locally and contribute to the code base.

Finally, our third resource is a curated dataset that can be used for ad-hoc search. We release the
raw queries and structured documents as described in Section 4. For the queries where we observed
clicks, we also include the rankings that were shown to users and the documents that were clicked.
For each document in these rankings, we include whether the document came from the production
system or from a participant system. This makes it possible to reconstruct the baseline rankings from
the host sites, so the data can be re-used to run evaluation in a lab environment with annotators. Our
click data is extremely sparse, but may still be useful for training click models or for the evaluation
of an ad-hoc retrieval model. The latter is possible by treating clicks as ground-truth relevance. The
full data set (570MB compressed) is available online at https://github.com/living-labs/trec-os-data.

B TEAM-DRAFT INTERLEAVE (TDI)
The version of Team-Draft Interleaving (TDI) used by OpenSearch is specified in Algorithm 1. In
this variant, the interleaved list l is initialized with any common prefix that the ranked lists l1 and
l2 may have. For this common prefix, no preferences should be inferred. The algorithm continues
by flipping coins to decide which ranked list is given priority. Then, it appends the highest ranked
result from the selected ranked list, that is not already in l, and records the assignment of that item
(in a) to the ranker where it originates from. This repeats until all results in l1 and l2 have been
consumed. Finally, the outcome is inferred based on which ranked list was credited with more
clicks. We refer the reader to Chapelle et al. [4] for a more in-depth discussion of this algorithm.

3https://www.mongodb.com/
4http://flask.pocoo.org/
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ALGORITHM 1: Team Draft Interleaving, following [4].

1: Input: ranked lists l1, l2
2: l = []; a = []; i = 0
3: while l1[i] == l2[i] do
4: append(l, l1[i])
5: append(a, 0)
6: i = i + 1
7: while (∃i : l1[i] < l) ∨ (∃i : l2[i] < l) do
8: if count(a, 1) < count(a, 2) ∨ (rand_bit() == 1) then
9: k =min {i : l1[i] < l}
10: append(l, l1[k])
11: append(a, 1)
12: else
13: k =min {i : l2[i] < l}
14: append(l, l2[k])
15: append(a, 2)

// present l to user and observe clicks c, then infer outcome
16: c1 = len {i : c[i] = true ∧ a[i] == 1}
17: c2 = len {i : c[i] = true ∧ a[i] == 2}
18: return −1 if c1 > c2 else 1 if c1 < c2 else 0
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