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ABSTRACT
Traditional Learning to Rank models optimize a single ranking
function for all available queries. �is assumes that all queries
come from a homogenous source. Instead, it seems reasonable to
assume that queries originate from heterogenous sources, where
certain queries may require documents to be ranked di�erently. We
introduce the Specialized Ranker Model which assigns queries to
di�erent rankers that become specialized on a subset of the avail-
able queries. We provide a theoretical foundation for this model
starting from the listwise Placke�-Luce ranking model and derive
a computationally feasible expectation-maximization procedure to
infer the model’s parameters. Furthermore we experiment using
a noisy oracle to model the risk/reward tradeo� that exists when
deciding which specialized ranker to use for unseen queries.
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1 INTRODUCTION
Search engines have long been the predominant way to navigate the
World Wide Web. As the amount of available content continues to
grow and the popularity of search engines increases, the necessity
of quality search systems is ever increasing. One of the most vital
parts of any search system is the Learning to Rank (LTR) model, it
considers hundreds of relevance signals and decides in what order
documents should be displayed to the user [9].

Existing work has mainly focused on algorithms that optimize
a single ranking model for all available queries [1, 2, 7, 9]. In
contrast it seems reasonable to assume that not all queries should
be ranked the same. For instance the queries ICTIR 2017 Home Page
and Python require very di�erent rankers. �e former requires a
ranker that focusses on retrieving a single relevant result and is
thus navigational where the la�er needs a ranker which provides
documents relevant to di�erent aspects of python and is more
informational. In theory non-linear models could recognize this
distinction and rank accordingly, however in practice the algorithms
have limited capability of recognizing such query level pa�erns [11].
�e main research question we address in this paper is:
Main RQ Can a mixture of rankers e�ectively recognize di�erent

ranking pa�erns in LTR data?
We propose a mixture of rankers approach that assigns queries
to di�erent rankers, thus these rankers become specialized on a
subset of the available queries. Assignment is based on how the
documents of a query should be ranked, thus we do not make
assumptions about anything like query intent but let the model
�nd such pa�erns implicitly.

2 RELATED WORK
Combining relevance signals to rank documents is the central prob-
lem in the �eld of learning to rank. Listwise methods have seen
the greatest success [1, 2]. �ese approaches treat entire lists of
ranked documents as learning instances. It is so successful because
it can directly optimize the objective of ranking. �e traditional
learning to rank methods, however, learn a single ranking function
or model with which all queries are ranked. In our work we capture
heterogeneous ranking pa�erns and build a mixture of rankers
based on a listwise approach.

�e closest related work is the Placke�-Luce Regression Mixture
Model [14]. �ere, the authors deal with item preferences, where
users are assigned to so-called “preference groups”. �ese groups
contain users that have similar preferences in the way that they
rank items. Our method bears a lot of similarity to their method,
but there are two major di�erences that set our work apart. First,
our work applies to the LTR se�ing, where we model queries and
unique document sets for each query. Second is the fact that we deal
with incomplete preferences for ranking. We consider the scenario
where relevance labels are shared across documents resulting in
multiple correct rankings.

3 MODEL
In this section we discuss the Specialized Rankers Model (SRM) and
provide a formal de�nition. We contrast with existing work [14] by
considering the predominant LTR scenario in Information Retrieval
(IR). Here a query qn is provided by a user at each time step and
the system responds by displaying a result list of documents r .

�e idea of this paper is to �nd several specialist rankers that
work very well for a subset of queries. �e main assumption is that
there are K query groups. �eries within a group agree with each
other on how documents should be ranked whilst disagreeing with
queries from other groups. Each of the query groups has a ranking
function modeled by PLk which determines the preferred order of
documents. No assumptions are made about what characterizes
such groups or what the reasons for their disagreement are; instead,
SRM recognizes them solely based on their ranking preferences.

For this paper we assume that the ranking functions are Placke�-
Luce (PL) models, thus the ranking function is a probabilistic distri-
bution over all possible rankings of {d}n . For brevity we will denote
the feature representation of a query-document pair Φ(qn ,d) = d ,
the Placke�-Luce probability [10, 12] of a ranking r is then de�ned
by:

PLk (r ) =

|r |∏
i=1

Pk (ri | {ri ,ri+1, ...,r |r |}) (1)
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Figure 1: Plate notation of the Specialized Rankers Model,
for each of theN queries there is a preferred rankings r . �is
ranking is determined by the ranking group indicated by the
latent variable z.

where Pk (di | D) gives the probability that document di is sampled
out of the set of remaining documents D:

Pk (di | D) =
exp(fk (di ))∑

dj ∈D exp(fk (dj ))
. (2)

Here, fk (d) is a scoring function that predicts a relevance score for
each document d . In the �eld of IR the PL model is the basis for the
Listwise approach introduced by Cao et al. [2]. With this model
a result list is generated stepwise, where at each step a document
is sampled from the remaining documents based on Pk . Since this
probability depends on both the individual document as the remain-
ing documents this approach is considered Listwise. Furthermore,
in practice the PL model is only used for optimization, since non-
deterministic ranking models are o�en avoided in production. A�er
optimization the production ranker simply orders the documents
on their fk (d) values, thus giving the ranking that maximizes the
PL model [2]. �e original PL model did not include a exponent
and only requires every object to have a positively associated score.
However, the exponent allows any scoring function fk to be valid
and is thus the prominent approach [2, 14]. For simplicity we will
assume fk is the linear model:

fk (d) = w
T
k d, (3)

where the weights wk have to be learned for each of the K ranking
groups. We note, however, that any function that is di�erentiable
with respect to its weights can be used here.

Figure 1 displays the plate notation for SRM, the generative
process of the graphical model can be described as follows:
(1) �e mixture proportions of the K ranking groups π is sampled

from a Dirichlet distribution with the prior α :

π ∼ Dirichlet(α). (4)

(2) �e weights wk for each of the K ranking groups is sampled
from the multivariate Gaussian distribution with zero mean
and σ 2 variance:

wk ∼ N(0,σ
2). (5)

(3) For all queries {qn | n = 1 . . .N }

(a) A ranking group zn is sampled

zn ∼ Multinomial(π ). (6)

(b) A ranking of its corresponding documents Dn is sampled
from the PL model belonging to its ranking group zn :

rn ∼ PL(r | Dn ,wzn ) (7)

Accordingly, this gives us the following likelihood:

L(R,Z ,W ,π | D) = P(π | α) ×
K∏
k=1

P(wk | 0,σ
2) (8)

×

N∏
n=1

P(zn | π )PL(rn | wzn ,Dn ) (9)

where R = {r1, . . . ,rN } is the set of all N rankings, W = {w1,
. . . , wK } the set of K weights, and Z = {z1, . . . ,zN } the set of all
ranking group assignments.

�e novelty of this model w.r.t. previous IR methods comes from
the existence of multiple rankers which producing the preferred
rankings. In contrast with the PL Regression Model [14] the SRM
models queries and unique document sets for each query. Fur-
thermore, if K = 1 is chosen this method reduced to the Listwise
approach [2] where a single ranker produced all preferred rankings.
However there is a mismatch between LTR data and the assumption
that a single preferred ranking per query exists. Because most LTR
datasets are based on relevance labels, some ambiguity exists since
there is no preference in the order of documents with the same
level of relevance. To the best of our knowledge, this ambiguity has
been ignored in previous work regarding the Listwise approach,
thus we contrast further by introducing a method that can handle
such ambiguity.

4 OPTIMIZATION PROCESS
In order to optimize our mixture model the Expectation Maximiza-
tion (EM) algorithm is used. EM is an iterative algorithm for maxi-
mizing the likelihood of a model that contains latent variables. In
our case the group assignments zn can not be observed, during op-
timization EM considers the expected values of the zn and chooses
the parameters wk and π accordingly. By iteratively estimating
zn and then maximizing the remaining parameters, the procedure
recognizes the K ranking groups while simultaneously �nding the
optimal rankers wk for each group. �e following sections will
discuss the derivation of the expectation and maximization steps
separately.

4.1 Ambiguity in LTR datasets
Unlike previous Listwise LTR work [2], we do not assume that there
is just one preferred ranking r . Instead we consider many di�erent
possible rankings that are correct. �is generalization is appropri-
ate because LTR datasets are usually graded on an ordinal scale,
where many documents can share the same relevance label. Any
permutation of the documents that corresponds to these relevance
labels can be considered a correct ranking.

Each query has a corresponding set of documents {d}q and a
set of correct rankings of these documents Ωq = {rq1, rq2, . . .}.
For notational simplicity we de�ne the probability that a correct
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ranking is sampled:

P(Ωn | wzn ,Dn ) =
∑

rn ∈Ωn

PL(rn | wzn ,Dn )

4.2 Expectation
To formulate the EM algorithm, we de�ne the Q function as the
conditional expectation of the log-likelihood:

Q(W ,π ,W ′,π ′) = EZ |R,W ,π ,D [logL(R,Z ,W ,π | D)]

= log P(π | α) +
K∑
k=1

log P
(
wk | 0,σ 2

)
+

N∑
n=1

K∑
k=1

Tnk (log P(zn = k | π ) + log P(Ωn | wk ,Dn )) .

�us, the output of the expectation step are the membership proba-
bilities Tnk , which can be computed as follows:

Tnk =
P(zn = k | π )P(Ωn | wk ,Dn )∑K

k ′=1 P(zn = k
′ | π )P(Ωn | wk ′ ,Dn )

. (10)

4.3 Maximization
To maximize the Q-function, we update the model parameters π
andW . We can compute the optimal values for π directly using
Lagrangian optimization, obtaining the same result as [14]:

πk =
α − 1 +

∑N
n=1Tnk∑K

k ′=1

(
α − 1 +

∑N
n=1Tnk ′

) (11)

�e optimization problem forW is more complicated. We need to
�ndW that maximizes our Q function:

arg max
W

Q(W ,π ,W ′,π ′)

= arg max
W

K∑
k=1

(
log P

(
wk | 0,σ 2

)
+

N∑
n=1

Tnk log P(Ωn | wk ,Dn )

)
.

Since the expression is a sum over independent terms ofW , we can
solve it for each wk individually:

arg max
wk

log P
(
wk | 0,σ 2

)
+

N∑
n=1

Tnk log P(Ωn | wk ,Dn ). (12)

To solve this optimization problem we perform Stochastic Gradient
Descent (SGD). To do this, we compute the �rst-order gradient of
the objective function:

−
1
σ 2wk +

N∑
n=1

Tnk
∂

∂wk
log P(Ωn | wk ,Dn ). (13)

�is resembles a weighted and L2-regularized SGD step, where the
regularization strength is 1

σ 2 and where each query is weighted
according to Tnk . �e major challenge that remains is computing
the stochastic gradient ∂

∂wk
log P(Ωn | wk ,Dn ). Using the chain

rule and product rule we end up with the following formula:∑
r ∈Ωn

PL(r | wk ,Dn )

P(Ωn | wk ,Dn )

|r |∑
i=1

∂
∂wk

Pk (ri | {ri , . . . , r |r |})

Pk (ri | {ri , . . . , r |r |})
(14)

In order to compute ∂
∂wk

Pk (ri | {ri , . . . , r |r |}), we use the quotient
rule and get the following result:

Pk (ri | {ri , . . . , r |r |})

∑ |x |
j=i e

fk (dj )
(
f ′k (di ) − f ′k (dj )

)
∑ |x |
j=i e

fk (dj )
(15)

Plugging equation 15 into equation 14, gives us the gradient:∑
r ∈Ωn

PL(r | wk ,Dn )

P(Ωn | wk ,Dn )

|r |∑
i=1

∑ |r |
j=i e

fk (dj )
(
f ′k (di ) − f ′k (dj )

)
∑ |r |
j=i e

fk (dj )
(16)

With this gradient, we can now �nd the optimal values forwk using
SGD. Note, however, that computing the gradient still requires
computing a sum over all rankings r in Ωn , which is prohibitively
expensive for datasets with many documents per query. In the next
section, we will discuss how to tackle this large computational cost.

4.4 Dealing with the complexity of ambiguity
�e size of the set of correct rankings Ωn is on the order of O(|Dn |!).
As a result, computing the EM steps quickly becomes infeasible
when there are many documents to be ranked per query. To solve
this problem we use several techniques:
Top-m. Similar to the original Listwise method [2] we use the
top-m approach to reduce computational complexity. �e set of
correct top-m rankings is de�ned as:

Ω̂n =
{
r | ∃r ′∈Ωnr0 = r

′
0 ∧ . . . ∧ rm = r

′
m

}
Accordingly the likelihood that the top m documents are correct is:
P(Ω̂n | wzn ,Dn ). �e derivation for the E-step and M-step remain
the same, but use Ω̂n instead of Ωn .
Dynamic programming. An important property of the PL model
is that the probability of a document being sampled only depends
on the set of remaining documents. �us the order of the previously
sampled documents does not ma�er, as a result the E-step and M-
step can be computed by iterating over all subsets of documents
instead of all their permutations. Using Dynamic Programming this
reduces the computational complexity of our method to O

(
2 |Dn |

)
.

Importance sampling. Despite the large gains achieved with
dynamic programming, there are queries where the number of
relevant documents is so great that exact computations are still
intractable. For these cases we have a �nal sampling method that
approximates the gradient but can be computed in constant time.
�is approach samples a subset of rankings from Ωn and then per-
forms calculations as if this is the complete set of correct rankings.
However since there is no way to directly sample Ωn , we sample
rankings from the current ranker and using importance sampling
weigh them so that every ranker in Ωn has the same weight. �is
approach works well because generally a small subset of Ωn has
almost all the probability mass (PL(r | wk ,Dn )).

5 EXPERIMENTS
We evaluate our model and method on two widely used learning to
rank datasets:
MSLR-WEB10k [13]. �is dataset contains 10,000 queries. It rep-
resents query-document pairs as 136-dimensional feature vector
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Figure 2: Ranker performance with a corrupted oracle. �e X-axis indicates the oracle accuracy, where 100% means the oracle
always assigns the best performing ranker to the test query and 0% means the oracle chooses a ranker uniformly at random.
�e shaded areas indicate a 95% con�dence interval.

and grades them on a scale from 0 (irrelevant) to 4 (perfectly rele-
vant). 6,000 queries are used for training, 2,000 for validation and
2,000 for testing.

Webscope [3]. �is dataset contains 29,921 queries. �e query-
document pairs are represented using 519-dimensional feature vec-
tor and graded on a scale from 0 (irrelevant) to 4 (perfectly relevant).
19,944 queries are used for training, 2,994 for validation and 6,983
for testing.

We evaluate the rankings produced by our models using nDCG [6].
Given a test query, we assign one of K specialist rankers. In this
paper we choose an oracle setup so that we can systematically
control the number of mistakes we make in assigning a specialist
ranker to a given query. An oracle’s accuracy ranges from 0%
(choosing a ranker uniformly at random) to 100% (choosing the best
ranker every time). �is allows us to study the risk/reward tradeo�
associated with selecting a specialist ranker for unseen test queries.

We train the SRM model for di�erent number of rankers (K =
1, 2, 5, 10) using hyperparameters α = 1.01 and σ = 0.1. In our
implementation we use Adam [8] as the SGD optimizer with a
minibatch size of 128 and the default Adam se�ings β1 = 0.9, β2 =
0.999 and ϵ = 1 × 10−7. We compare our work with LambdaMART,
a state-of-the-art non-linear model [1]. �e LambdaMART model’s
hyper-parameters (sampling rate, feature sampling rate, learning
rate, maximum number of leaf nodes and minimum number of
observations per leaf) are tuned on a held-out validation set.

We evaluate our model’s performance on the test set using the
aforementioned oracle setup. �e results are shown in Figure 2. As
expected, when the oracle becomes more accurate, the performance
gains become greater. However, if one were to only select the best
ranker less than 30% of the time, the model would perform worse
than just using a single ranker. �is makes sense, as selecting a
suboptimal ranker for a query can have adverse e�ects on its rank-
ing performance. If the oracle selects the best specialized ranker
about 60% of the time, we already see a statistically signi�cant per-
formance gain over using a single ranker. An 80% accurate oracle
outperforms LambdaMART if at least 5 to 10 specialized rankers
are used.

An oracle function could in theory be realized by using query-
level features. Such features occur very rarely in public LTR datasets,
thus this falls outside our experimental possibilities. Previous work
that uses datasets obtained from commercial search engines has
shown that classifying queries, especially for specialization pur-
poses, is possible [4, 5].

6 CONCLUSION
In this paper we introduce SRM, a model that uses a mixture of
ranking functions to recognize di�erent ranking pa�erns in LTR
data. We describe an e�cient expectation-maximization algorithm
for inferring the model’s parameters. Our �ndings show that the
model picks up on latent pa�erns in LTR datasets.

We evaluated SRM by making use of an oracle setup, where
an oracle select the best specialized ranker for the query at hand.
Depending on the dataset our experiments show that a 60% ac-
curate oracle can already signi�cantly outperform a single linear
ranker. We require an at least 80% accurate oracle to signi�cantly
outperform a state-of-the-art LambdaMART model.

�ere are several directions for future work: (1) In our experimen-
tal setup we use a linear function fk (d), but our model can easily
be extended to non-linear functions such as deep neural networks,
which are worth investigating. (2) Assigning test queries to spe-
cialized rankers based on query-level features has previously been
shown to be possible [4] and would be an interesting continuation.
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