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ABSTRACT
We consider the novel problem of evaluating a recommendation

policy offline in environments where the reward signal is non-

stationary. Non-stationarity appears in many Information Retrieval

(IR) applications such as recommendation and advertising, but its

effect on off-policy evaluation has not been studied at all. We are

the first to address this issue. First, we analyze standard off-policy

estimators in non-stationary environments and show both theo-

retically and experimentally that their bias grows with time. Then,

we propose new off-policy estimators with moving averages and

show that their bias is independent of time and can be bounded.

Furthermore, we provide a method to trade-off bias and variance

in a principled way to get an off-policy estimator that works well

in both non-stationary and stationary environments. We experi-

ment on publicly available recommendation datasets and show that

our newly proposed moving average estimators accurately capture

changes in non-stationary environments, while standard off-policy

estimators fail to do so.

CCS CONCEPTS
• Information systems→ Evaluation of retrieval results; Rec-
ommender systems.
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1 INTRODUCTION
Modern Information Retrieval (IR) systems leverage user interac-

tions such as clicks to optimize which items such as articles, music

or movies to show to users [11, 14, 22]. A challenge in utilizing

interaction feedback is that it is a “partial label” problem: We only

observe feedback for items that were shown to a user, but not for

other items that could have been shown. The contextual bandit

framework [19] provides a natural way to solve problems with this
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interactive nature. In the contextual bandit setup, an interactive

system (e.g., a recommender system), often called a policy, observes
a context (e.g., a user visiting a website), performs an action (e.g.,

by showing a recommendation to the user) and finally observes a

reward for the performed action (e.g., a click or no click) [19].

To evaluate a policy, it is best to deploy it online, e.g., in the

form of an A/B test. However, this is expensive in terms of en-

gineering and logistic overhead [13, 42] and may harm the user

experience [30]. Off-policy evaluation is an alternative strategy that

avoids the problems of deploying and measuring a policy’s per-

formance online [20]. In off-policy evaluation, we use historical

interaction data, often referred to as bandit feedback, collected by

an existing logging policy to estimate the performance of a new

policy. In existing work, off-policy evaluation has been well studied

in the context of a stationary world, one where interactions happen

independent of time [2, 9, 20, 27, 33, 35, 39].

However, IR environments are usually non-stationary with user

preferences changing over time [16, 24, 25, 29, 41]. Existing off-

policy evaluation techniques fail to work in such environments. In

this paper, we address the problem of off-policy evaluation in non-

stationary environments. We propose several off-policy estimators

that operate well when the environment is non-stationary. Our esti-

mators are based on applying two types of moving averages to the

collected bandit feedback: (1) a sliding window average and, (2) an

exponential decay average. These proposed estimators rely more

on recent bandit feedback and, thus, accurately capture changes in

non-stationary environments.

We provide a rigorous analysis of the proposed estimators’ bias

in the non-stationary setting and show that the bias does not grow

over time. In contrast, we show that the standard Inverse Propensity

Scoring (IPS) estimator suffers from a large bias that grows over

time when applied to non-stationary environments. Finally, we

use the results from our analysis to create adaptive variants of the

sliding window and exponential decay estimators that change their

parameters in real-time to improve estimation performance.

We perform extensive empirical evaluation of the proposed off-

policy estimators on two recommendation datasets to showcase

how they behave under varying levels of non-stationarity. Our main

finding is that the proposed estimators significantly outperform

the regular IPS estimator and provide a much more accurate esti-

mation of a policy’s true performance, while the regular IPS fails

to capture the changes in non-stationary environments. Moreover,

we demonstrate that these results hold for both smooth and abrupt

changes in the environment. Our findings open up the way for

off-policy evaluation to be applied to real-world settings where

non-stationarity is prevalent.

The remainder of this paper is structured as follows: In Section 2

we provide background information about off-policy evaluation

and non-stationarity. Next, Section 3 describes our estimators for
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solving the non-stationary off-policy evaluation problem. The ex-

perimental setup and results are described in Section 4 and Section 5,

respectively. Finally, we conclude in Section 6.

2 BACKGROUND
2.1 Off-policy evaluation
Off-policy evaluation is an important technique for assessing the

behavior of a decision making policy, e.g., a new recommendation

strategy, ad-placement technique or some other new feature, with-

out deploying the policy in a classical A/B test [27]. In settings

where the deployment of a new policy is costly, either in terms of

logistic and engineering overhead or in terms of potential harm

to the user experience, off-policy evaluation is a safe and efficient

alternative to A/B testing [34]. The main idea in off-policy evalua-

tion is to collect data by having an already deployed policy taking

actions and logging the corresponding user interactions. The typi-

cal approach in off-policy evaluation is to then re-weigh the logged

data according to what the new policy would have done to obtain

an unbiased estimate of the expected return of this new policy.

Although a randomized logging policy is typically required for un-

biased off-policy evaluation, the amount of randomness can usually

be controlled through some parameter, trading off exploration and

exploitation [9].

Existing work in off-policy evaluation has focused on creating

unbiased estimators [12, 20, 33] and reducing their variance [2, 9,

39]. However, these off-policy estimators usually do not take into

account the temporal component and assume the world and rewards

are stationary. In contrast to existing work, we postulate that the

world is non-stationary and create off-policy estimators that take

this into account. We should note that Dudík et al. [8] have studied

policy evaluation in a different non-stationary setting, namely one

where a policy’s behavior depends on a history of contexts and

actions. However, unlike our work, Dudík et al. still assumes a

stationary world and rewards.

In the reinforcement learning domain, the application of time

series prediction methods to predict future off-policy performance

in non-stationary environments has been studied by Thomas et al.

[36]. Our work is different in important ways: (1) Our work focuses

on the contextual bandit scenario, whereas theirs is in the reinforce-

ment learning domain. (2) We are the first to develop a theory for

non-stationary off-policy evaluation. (3) Their work is designed for

small-scale problems, with up to a few thousand iterations as the

complexity of their method is quadratic in the number of iterations,

whereas our method scales linearly with the number of iterations,

enabling experimentation that is two orders of magnitude larger.

(4) We target the recommendation setting, whereas Thomas et al.

[36] focus on proprietary datasets from digital ad marketing, limit-

ing reproducibility. The only publicly available dataset used in their

work is a synthetic scenario called mountain car [32]. Our results

are produced on more realistic publicly available recommendation

datasets from LastFM [17] and Delicious [4, 6].

Finally, Garivier and Moulines [10] studied the use of sliding-

window and exponential decay techniques for optimizing contex-

tual bandits in abruptly changing environments. Our work differs

in two ways: (1) we study off-policy evaluation and not contextual

bandit learning, and (2) we focus on the smooth non-stationary set-

ting instead of the abrupt non-stationary setting, as we will explain

in the next section.

2.2 Non-stationary environments
Non-stationarity environments have been studied in the context

of learning multi-armed bandits [3, 10, 21, 40] and contextual ban-

dits [41]. Two settings naturally arise when dealing with a non-

stationary world:

(1) abrupt non-stationarity [10, 41], sometimes called piecewise-

stationary [21], and

(2) smooth non-stationarity [40].

The first setting, abrupt non-stationarity, assumes a stationary

world that changes abruptly at certain points in time. This is a

natural setting in, for example, news recommendation, where a

sudden event causes a shift in users’ interests [18].

The second setting, smooth non-stationarity, assumes that the

world changes constantly but that it changes only a little bit at a

time. This is the natural condition of human attitudes (including

likes and dislikes). Social psychologists have found that preferences

are neither enduring nor stable [31, 37]. In cognitive psychology,

numerous experiments have provided evidence of gradual taste

changes, for instance in response to changing constraints and abili-

ties [1] or in relation to perceived risk levels [15].

Specifically, in settings such as e-commerce [23], music recom-

mendation [24, 28] and news recommendation [7], the behavior of

users is often non-stationary in a smooth manner. Pereira et al. [26]

have studied non-stationarity in user preferences on social media

and have found strong correlations between the temporal dynamics

of users’ preferences and changes in their social network graph.

Taking smooth non-stationarity into account may benefit overall

search and recommendation performance, e.g., in music recommen-

dation; Quadrana et al. [28] have found that encoding the evolution

of users’ listening preferences via recurrent neural networks, can

lead to substantial improvements in recommendation quality.

In our work, we specifically design off-policy estimators that

deal with the non-abrupt case, that is, estimators that work well

when the environment exhibits smooth non-stationarity.

3 NON-STATIONARY OFF-POLICY
EVALUATION

In this section we first formulate the problem of off-policy evalua-

tion in non-stationary environments. In this setting, we prove that

the upper bound on the bias of the regular IPS estimator grows with

time. Then we propose two alternative estimators, a sliding window

approach and an exponential decay approach, and show that their

bias can be bounded. Finally, we use our theoretical findings to

propose a method that can adaptively set the window-size or the

decay rate of our proposed estimators, based on the principle of

minimizing the Mean Squared Error (MSE).

3.1 Problem definition
We consider the following two policies: (i) π0 is a stochastic logging
policy that collects data, and (ii) πw is a new policy that we want

to evaluate. We observe an infinite stream of log data, generated

by the logging policy π0. At each time t = 1, . . . ,∞, the following
occurs:

(1) The environment generates a context vector xt and rewards rt
for all possible actions at time t :

(xt , rt )
i.i.d.

∼ Dt . (1)



The context could, for example, be a user who interacts with a

recommender system, while actions could be possible recom-

mendations for that user. The true interest of the user, e.g., what

recommendation they are actually interested in, is captured by

rewards. We build on previous work [20], which assumes that

contexts and rewards are sampled i.i.d. from an unknown dis-

tribution Dt . However, unlike previous work, we generalize
to a non-stationary world that may change over time. More

formally, we allow the distribution Dt to change with t :

D1 , D2 , . . . , Dt . (2)

(2) After observing the context vector xt , the logging policy π0 sam-

ples an action (e.g., given a user, π0 chooses a recommendation

for that user):

at ∼ π0(· | xt ) (3)

and records the corresponding propensity score:

pt ← π0(at | xt ). (4)

(3) The reward rt (at ) for the chosen action is revealed, but not the

rewards for other possible actions that could have been chosen.

Without loss of generality we assume rt (at ) ∈ [0, 1]. In practice,

the reward would be a click or no-click on the recommendation

that was shown.

Our goal is to estimate the value of the new policy πw at time t ,
denoted as V

∗
t (πw ), based on the data collected by the logging pol-

icy π0. We write this value as the expected reward of the policy πw :

V
∗
t (πw ) = E(xt ,rt )∼Dt ,at∼πw (· |xt ) [rt (at )] = Eπw [rt (at )] . (5)

Finding an estimator for the above quantity would be near impossi-

ble if no further assumptions are made about the reward function rt .
For example, if a user’s preferences completely changed every time

they enter a recommendation website, it would be impossible to

perform any type of estimation or evaluation. To make this prob-

lem approachable, we assume that the change of a policy’s value

between any two consecutive points in time is bounded. More

formally:

Assumption 3.1. The value of a policy is a Lipschitz function of

time:

|V∗t1 (πw ) − V
∗
t2 (πw )| ≤ |t1 − t2 |k, (6)

where k is the Lipschitz-constant.

This assumption ensures that the expected reward of a policy cannot

abruptly jump between time t1 and time t2. This is supported by

practical observations that for real-world recommendation systems

user behavior changes slowly over time [24, 25].

3.2 Regular IPS
A widely used policy evaluation technique is Inverse Propensity

Scoring (IPS) [12], defined as:

V
IPS

t (πw ) =
1

t

t∑
i=1

ri (ai )
πw (ai | xi )

pi
. (7)

Under the assumption of a stationary world, this is an unbiased

estimate of V
∗
t (πw ) [12]:

Lemma 3.1. V
IPS(πw ) is an unbiased estimate of V∗t (πw ), under

the assumption of a stationary world (D1 = D2 = . . . = Dt ).

Proof. First, we show that for any point in time i ∈ {1, . . . , t},
the IPS estimate of a single observation is unbiased. To do this,

we take the expectation of the IPS estimate under the logging pol-

icy, and show that it is equal to the reward of the policy under

evaluation:

Eπ0

[
ri (ai )

πw (ai | xi )

pi

]
=
∑
a′

ri (a
′
i )
πw (a

′
i | xi )

π0(a
′
i | xi )

π0(a
′
i | xi )

=
∑
a′

ri (a
′
i )πw (a

′
i | xi )

= Eπw [ri (ai )] .

Using this fact, it is easy to show that V
IPS

t (πw ) is indeed an unbiased
estimate of V

∗
t (πw ):

Eπ0

[
V
IPS

t (πw )
]
= Eπ0

[
1

t

t∑
i=1

ri (ai )
πw (ai | xi )

pi

]
=

1

t

t∑
i=1
Eπw [ri (ai )]

=
1

t

t∑
i=1
Eπw [rt (at )]

= Eπw [rt (at )] = V
∗
t (πw ). □

When generalizing to a non-stationaryworld (under Assumption 3.1),

it can be shown that the standard IPS estimate is biased.

Lemma 3.2. Under Assumption 3.1, VIPS

t (πw ) is a biased estimate
of V∗t (πw ) and the upper bound on the bias grows with t .

Proof. We have:

Eπ0

[
V
IPS

t (πw )
]
= Eπ0

[
1

t

t∑
i=1

ri (ai )
πw (ai | xi )

pi

]
=

1

t

t∑
i=1
Eπw [ri (ai )]

=
1

t

t∑
i=1
Eπw [ri (ai ) − rt (at ) + rt (at )]

=
1

t

t∑
i=1

(
Eπw [rt (at )] + Eπw [ri (ai ) − rt (at )]

)
= Eπw [rt (at )] +

1

t

t∑
i=1

(
Eπw [ri (ai )] − Eπw [rt (at )]

)
= V
∗
t (πw ) +

1

t

t∑
i=1

(
V
∗
t (πw ) − V

∗
t (πw )

)
≤ V
∗
t (πw ) +

1

t

t∑
i=1
|t − i |k = V

∗
t (πw ) +

k(t − 1)

2︸   ︷︷   ︸
bias

□

The upper bound on the bias term, i.e.,
k(t−1)

2
, grows with t , which

is unfortunate because it means that the more data we observe, the

larger our bias potentially becomes. We propose two estimators

that deal with this problem by avoiding a bias term that grows with

t : the sliding window IPS and the exponential decay IPS, which we

describe next.



3.3 Sliding window IPS
The first IPS estimator we propose is the sliding window IPS estima-
tor, Vτ IPSt (πw ). This estimator only takes into account the τ most

recent observations and ignores older ones:

V
τ IPS
t (πw ) =

1

τ

t∑
i=t−τ

ri (ai )
πw (ai | xi )

pi
. (8)

This estimator has a bias that does not grow with t , but is instead
controlled by the window size τ :

Lemma 3.3. Under Assumption 3.1, Vτ IPSt (πw ) is a biased estimate

of V∗t (πw ) and its bias is at most k(τ−1)
2

.

Proof. This proof largely follows the proof of Lemma 3.2, so we

will be concise:

Eπ0

[
V
τ IPS
t (πw )

]
= Eπ0

[
1

τ

t∑
i=t−τ

ri (ai )
πw (ai | xi )

pi

]
≤ V
∗
t (πw ) +

1

τ

t∑
i=t−τ

|t − i |k

= V
∗
t (πw ) +

1

τ

τ∑
i=1
|τ − i |k

≤ V
∗
t (πw ) +

k(τ − 1)

2︸    ︷︷    ︸
bias

. □

The advantage of the sliding window estimator V
τ IPS
t (πw ) is that its

bias term can be controlled by the window size τ . One may consider

setting the window size τ to 1, which would effectively produce an

unbiased estimate:

k(τ − 1)

2

=
k(1 − 1)

2

= 0. (9)

This is a particularly powerful statement because we would obtain

an unbiased estimator even in the face of non-stationarity. Unfor-

tunately, a drawback would be that having such a small window

size will cause a large variance.

To formally derive the variance of the V
τ IPS
t (πw ) estimator, we

assume that the following variance does not change over time:

V

[
ri (ai )

πw (ai | xi )

pi

]
= V

[
ri+1(ai+1)

πw (ai+1 | xi+1)

pi+1

]
. (10)

We make this assumption to simplify writing down the variance

of our estimator. To further motivate this assumption, we note

that the variance of IPS estimators scales quadratically with the

inverse propensity scores [9]. As a result, the variance term of the

IPS estimator is dominated by the usually large inverse propensity

weights and not by the variance in the rewards. Since we do not

change our logging policy over time, the distribution of propensity

scores will also not change, and hence we expect the variance to

remain constant over time. We can write down the variance of

V
τ IPS
t (πw ) as follows:

V
[
V
τ IPS
t (πw )

]
= V

[
1

τ

t∑
i=t−τ

ri (ai )
πw (ai | xi )

pi

]
=

1

τ 2

t∑
i=t−τ

V

[
ri (ai )

πw (ai | xi )

pi

]
=

1

τ
V

[
rt (at )

πw (at | xt )

pt

]
.

As we can see, the variance scales by
1

τ , which means larger values

of τ reduce variance and conversely smaller values of τ increase

variance.

Hence, setting the window size is a trade-off between how much

bias and variance we are willing to tolerate. We will see a similar

bias-variance trade-off in the next estimator, the exponential decay

IPS.

3.4 Exponential decay IPS
The exponential decay IPS estimator, Vα IPSt (πw ), uses an exponential
moving average to weigh recent observations more heavily than

old observations:

V
α IPS
t (πw ) =

1 − α

1 − α t

t∑
i=1

α t−iri (ai )
πw (ai | xi )

pi
, (11)

where α ∈ (0, 1) is a hyper parameter controlling the rate of decay.

A large value of α indicates a slow decay, meaning that old observa-

tions weigh more heavily. Conversely, a small value of α indicates a

rapid decay, which means recent observations weigh more heavily.

The bias of this estimator does not grow with t and is controlled

by the decay rate α :

Lemma 3.4. Under Assumption 3.1, Vα IPSt (πw ) is a biased estimate
of V∗t (πw ) and its bias is at most kα

(1−α )(1−α t ) .

Proof. For notational simplicity, we define V
∗
i = V

∗
i (πw ). Then:

Eπ0

[
V
α IPS
t (πw )

]
= Eπ0

[
1 − α

1 − α t

t∑
i=1

α t−iri (ai )
πw (ai | xi )

pi

]
=

1 − α

1 − α t

t∑
i=1

α t−iEπw [ri (ai )]

=
1 − α

1 − α t

t∑
i=1

α t−i (V∗i − V
∗
t + V

∗
t )

=
1 − α

1 − α t

t∑
i=1

α t−iV∗t +
1 − α

1 − α t

t∑
i=1

α t−i (V∗i − V
∗
t )

= V
∗
t +

1 − α

1 − α t

t∑
i=1

α t−i (V∗i − V
∗
t ).︸                            ︷︷                            ︸

bias

We can further simplify the bias term as follows:

1 − α

1 − α t

t∑
i=1

α t−i (V∗i − V
∗
t ) ≤

1 − α

1 − α t

t∑
i=1

α t−i |t − i |k

= k
1 − α

1 − α t

t∑
i=1

α t−i |t − i |.

Note that

∑t
i=1 α

t−i |t − i | is a convergent series for |α | < 1:

t∑
i=1

α t−i |t − i | ≤
α

(1 − α)2
.

Plugging this expression into the above equation completes the

proof:

k
1 − α

1 − α t

t∑
i=1

α t−i |t − i | ≤ k
1 − α

1 − α t
α

(1 − α)2
=

kα

(1 − α)(1 − α t )
. □



The bias term
kα

(1−α )(1−α t ) exhibits behavior that we expect: If k

is large, and thus the environment is highly non-stationary, the

estimate will be more biased. Conversely, when k = 0, we recover

the stationary case and have an unbiased estimator. Furthermore,

when α approaches 1, the bias term grows because we weigh old

observations more heavily. Finally, we note that limt→∞(1−α
t ) = 1

and thus t vanishes from the bias term as t approaches infinity.
Let us now consider the variance of the exponential decay IPS

estimator. Similarly to the sliding window IPS estimator, we assume

that the variance does not change over time. This gives us:

V
[
V
α IPS
t (πw )

]
= V

[
1 − α

1 − α t

t∑
i=1

α t−iri (ai )
πw (ai | xi )

pi

]
=

(
1 − α

1 − α t

)
2 t∑
i=1

α2(t−i)V

[
ri (ai )

πw (ai | xi )

pi

]
=

(
1 − α

1 − α t

)
2
(
1 − α2t

1 − α2

)
V

[
rt (at )

πw (at | xt )

pt

]
.

As expected, the variance scaling factor

(
1−α
1−α t

)
2
(
1−α 2t

1−α 2

)
decreases

as α goes to 1. Conversely, the variance increases as α goes to 0.

Similarly to the bias term, we see that t vanishes from the variance

as t approaches infinity: limt→∞

(
1−α
1−α t

)
2
(
1−α 2t

1−α 2

)
= 1−α

1+α .

3.5 How to choose τ and α
Compared to regular IPS estimators, V

τ IPS
t and V

α IPS
t have addi-

tional parameters τ and α , respectively, that need to be set.

Let us first consider the scenario where an unbiased estimator is

the goal. We can set τ = 1 or α = 0 to obtain an unbiased estimator.

This is equivalent to computing an IPS estimate on only the current

observation. It is obvious that such a strategy will suffer from high

variance and is not very useful in practice.

Conversely, if we were to consider the scenario where an esti-

mator with minimal variance is the goal, we could set τ = ∞ or α
arbitrarily close to 1, resulting in an estimator that would heavily

weigh as many old observations as possible. This is also a poor

strategy as it would result in potentially unbounded bias.

Setting τ or α comes down to finding a balance between bias

and variance. A principled way to trade off these quantities is by

minimizing the mean squared error of the estimator [38]:

MSE = bias
2 + variance.

If the Lipschitz constant k is known, we can compute τ or α that

minimizes the mean squared error at every time t as follows:

τ ∗t = argmin

τ ∈N
λ

(
k(τ − 1)

2

)
2

+ V
[
V
τ IPS
t (πw )

]
,

α∗t = argmin

α ∈[0,1)
λ

(
kα

(1 − α)(1 − α t )

)
2

+ V
[
V
α IPS
t (πw )

]
,

where λ is a hyperparameter that trades off bias for variance. In

practice we would tune λ to achieve a good trade-off.

Finding the optimal values τ ∗t and α∗t requires knowledge about

the Lipschitz constant k which is usually not known in practice. In

the next section, we describe a heuristic that estimates k .

3.6 Estimating the Lipschitz constant k
The Lipschitz constantk tells us how fast the true value of a policy is

moving (see Eq. (6)). Since the true value V
∗
t (πw ) cannot be observed

without deploying the policy πw , we rely on the IPS estimated

rewards. To estimate k , we track the difference between twomoving

averages: one at time t , denoted asVt and one at time t − s , denoted
as Vt−s , where s > 0 is a parameter representing a window size for

estimating k .
Now, we can estimate k at every time t as follows:

ˆkt =
1

s
(Vt − Vt−s ) , (12)

where Vt is a moving average estimator at time t . For example, Vt
could be the exponential decay estimator V

α IPS
t (πw ).

Tracking the difference between two averages at different points

in time has previously been used as a change-point detectionmecha-

nism for contextual bandits. For example, the windowed mean-shift

algorithm uses a very similar method to detect when an abrupt

change occurs [43]. Our heuristic is different in the fact that it does

not detect an abrupt change, but instead is measuring how fast the

true value of the policy is moving up and down.

4 EXPERIMENTAL SETUP
In this section we describe our experimental setup. The goal of

our experiments is to answer the following research questions:

(1) How well do the proposed estimators perform in a non-station-

ary environment? (2) How well do the estimators function when

Assumption 3.1 is violated? E.g., when the environment changes

abruptly? (3) Can the proposed estimators be applied to stationary

environments? (4) How do the estimators behave under different

parameters?

To answer these questionswe consider a simulated non-stationary

contextual bandit setup as described in [41]. Note that although

our setup is the same as in [41], we are solving a different problem:

particularly, we perform off-policy evaluation whereas Wu et al.

[41] perform online learning.

4.1 Experimental methodology
We evaluate our proposed off-policy estimators in the context of

recommendation, where a policy recommends an item to a user.

We use the non-stationary contextual bandit setup of Wu et al. [41],

which, in turn, builds on the experimental setup of Cesa-Bianchi

et al. [5]. In this experimental setup, we use two datasets made

available as part of the HetRec2011 workshop [4, 6, 17] and convert

them into a contextual bandit problem: LastFM and Delicious. For

the LastFM dataset [17], we consider a random artist that the user

has listened to as positive feedback and an artist that the user has

not listened to as negative feedback. For the Delicious dataset [6],

we consider a website that the user has bookmarked as positive

feedback and websites that the user has not bookmarked as nega-

tive feedback. For each user we consider a random positive item

and 24 random negative items as the set of candidate actions. Cor-

respondingly, a reward of 1 is given if a policy chooses the positive

item and 0 otherwise. Each item is described by a TF-IDF feature

vector comprised of the item’s tags, e.g., “metal”, “electronic”, “rock”,

etc. in the case of music recommendation (LastFM), and “social”,

“games”, “tech”, etc. in the case of bookmark recommendation (De-

licious). This feature vector is reduced to 25 dimensions via PCA,

as described in [5].



To introduce non-stationarity we follow the setup of Wu et al.

[41]: We cluster users into 10 user groups (or super-users) via spec-

tral clustering based on the social network graph structure. Users

who are close in the social network graph are hypothesized to have

similar preferences.

Then, a single hybrid user is created from the 10 super-users by

stacking the preferences of the 10 user groups chronologically. This

hybrid user is non-stationary because its preferences change when

it moves from one super-user to the next. In [41], the hybrid user

switches abruptly between the 10 super-users at certain points in

time. We experiment with the existing abrupt case of [41] and intro-

duce a setup where a mixture of the 10 super-users slowly changes

over time as observed in real-world recommender systems [24, 25].

Below we describe both setups in detail.

The hybrid user can be represented by a mixture with 10 compo-

nents which add up to 1. For example:

[0, 1, 0, 0, . . . , 0].

To simulate a smooth non-stationary setup, we introduce a transi-

tion period from time t1 to t2. In this transition period we change

two components, linearly reducing one component while linearly

increasing the other. For example, changing from the second to the

third super-user would happen as follows:

t1 : [0, 1, 0, 0, . . . , 0]

t1 + 1 : [0, 0.9, 0.1, 0, . . . , 0]

t1 + 2 : [0, 0.8, 0.2, 0, . . . , 0]

...
t2 : [0, 0, 1, 0, . . . , 0].

This setup is in line with Assumption 3.1, which states that the

environment changes only a little bit at a time and not abruptly.

In the abrupt setup, one component is set to 1 and the other

components are set to 0. An abrupt change happens by changing

which component is set to 1. This is equivalent to the setup in [41]

where the hybrid user switches abruptly between the 10 super-

users.

Using the non-stationary setups described in this section, we

can now deploy a logging policy that collects bandit feedback and

evaluate a set of candidate policies using the proposed off-policy

estimators. The choice of a logging policy and candidate policies

are described next.

4.2 Logging policy
As described in Section 3.1, the deployed logging policy π0 logs
the data on which we evaluate our candidate policies. The logging

policy was trained via LinUCB [19], which is a state-of-the-art

contextual bandit method, across all super-users and is expected to

function well on average.

To ensure a logging policy that explores, we make the logging

policy stochastic and give it full support (that is, every action has

a non-zero probability). This is accomplished by using ϵ-greedy
exploration (with ϵ > 0) [32]; ϵ-greedy exploration selects an ac-

tion uniformly at random with probability ϵ and the best action

(according to the logging policy) with probability (1 − ϵ). The ϵ
parameter allows us to trade off the exploration aggressiveness and

the performance of the logging policy.

On the one hand, we want a logging policy that explores ag-

gressively, so as to obtain as much information as possible in the

logged feedback. On the other hand, we want a logging policy that

performs well, as it is the only component that is exposed to users

of the system and we would not want to hurt the user experience.

We use ϵ = 0.2 in our experiments, resulting in a policy that ex-

ploits 80% of the time and explores 20% of the time. Exploration

is necessary for off-policy evaluation and ϵ = 0.2 strikes a decent
balance where the logging policy is expected to still function well.

We definitely want to avoid ϵ = 0 because it would result in a

deterministic policy which is problematic for off-policy evaluation

and we want to avoid ϵ = 1 because it is unrealistic to expect a

purely random policy to be deployed. In practice one would want to

deploy a policy that mostly performs the best actions but performs

a little bit of exploration, thus ϵ tends to be closer to 0 than 1.

4.3 Candidate policies
To perform off-policy evaluation we need a set of candidate policies.

These are policies whose performance we wish to estimate. In our

experiments, candidate policies are trained via LinUCB on each of

the 10 super-users, thus, resulting in 10 candidate policies. Each of

the 10 candidate policies is expected to work well when the hybrid

user switches to the super-user the candidate policy was trained

on, but is expected to underperform at any other point in time.

4.4 Ground-truth and metrics
To evaluate how well an estimator predicts a policy’s performance

we require a ground-truth, i.e., the true performance of a policy. The

ground-truth can obtained by deploying the policy and measuring

how well it actually performs [8]. According to our task definition,

this cannot be done in practice as we have only one deployed log-

ging policy, which does not change. However, in our experimental

setup we have full control over the environment and so can simu-

late the deployment of any candidate policy and measure its true

performance. This is done by, at any point in time t , running the
candidate policy for 20,000 contextual bandit interactions (observ-

ing a context, playing an action and obtaining a reward) and then

averaging the rewards.

To evaluate estimators, we measure the Mean Squared Error

(MSE) between the estimated policy performance, given by the es-

timators, and the ground-truth, obtained as described above. The

reported MSE values are averaged across the 10 candidate policies

described in the previous section. Lower values of MSE correspond

to better performance. To measure statistical significance, we run

each experiment 20 times and compare the outcomes of the consid-

ered off-policy estimators using a paired two-tailed t-test.

4.5 Hyperparameters
Some of the estimators require setting a parameter. For example,

V
τ IPS

and V
α IPS

require a window size τ and a decay rate α , respec-
tively. The adaptive variants require us to set λ, which trades off

variance and bias, and s , which is the Lipschitz estimation window.

We found parameters that minimize MSE via a grid search. The

final parameters are displayed in Table 1.

5 RESULTS
In this section, we present the results of our empirical evaluation.

We separate our results in four sections, each answering one of our

research questions. The overall results of the proposed methods

are presented in Tables 2 and 3. The figures for the sliding window

estimator V
τ IPS

and exponential decay estimator V
α IPS

are very

similar to each other, so due to the lack of space we present the



Table 1: The best parameters (in terms of minimizing MSE)
for each estimator after a grid search.

Estimator LastFM Delicious

V
τ IPS τ = 10,000 τ = 50,000

V
τ IPS

(adaptive) τ = 10,000
λ = 0.00005
s = 50,000

τ = 50,000
λ = 0.00001
s = 30,000

V
α IPS α = 0.9999 α = 0.99995

V
α IPS

(adaptive) α = 0.99995
λ = 0.00005
s = 50,000

α = 0.99995
λ = 0.00005
s = 100,000

figures for V
α IPS

in the paper, while the figures for V
τ IPS

can be

found given in the supplementary material.

Table 2: Mean Squared Error (×10−3) on the LastFM dataset.
Lower is better. We use ▽ and △ to denote statistically signif-
icantly (p < 0.01) lower and higher MSE respectively com-
pared to VIPS. For the adaptive estimators we use ▼ and ▲ to
denote statistically significantly (p < 0.01) lower and higher
MSE compared to their non-adaptive counterparts.

Estimator Smooth Abrupt Stationary

V
IPS

6.029 7.787 1.183

V
τ IPS

1.709
▽

3.041
▽

1.657
△

V
τ IPS

(adaptive) 1.565
▽▼

2.881
▽▼

1.407
△▼

V
α IPS

1.541
▽

2.981
▽

1.408
△

V
α IPS

(adaptive) 1.546
▽

3.067
▽▲

1.278
△▼

Table 3: Mean Squared Error (×10−3) on the Delicious dataset.
Lower is better. Statistical significance is denoted in the
same way as in Table 2.

Estimator Smooth Abrupt Stationary

V
IPS

0.312 0.469 0.022

V
τ IPS

0.111
▽

0.268
▽

0.058
△

V
τ IPS

(adaptive) 0.116
▽▲

0.260
▽▼

0.045
△▼

V
α IPS

0.099
▽

0.218
▽

0.070
△

V
α IPS

(adaptive) 0.104
▽▲

0.230
▽▲

0.047
△▼

5.1 Smooth non-stationarity
Our first and main research question is:

How well do the proposed estimators perform in a non-
stationary environment?

The first column of Tables 2 and 3 shows that the proposed V
τ IPS

and V
α IPS

off-policy estimators have significantly lower MSE than

the standard V
IPS

estimator, being three times more effective in

estimating the actual performance of a recommendation policy on

both the LastFM and Delicious datasets. Note that the rewards on

the LastFM dataset are higher than those on the Delicious dataset,

which is in line with the results of [41] and can be attributed to the

fact that it is easier to recommend correct artists (and, thus, accumu-

late higher reward) than to recommend correct websites, because

the number of artists is smaller than the number of websites.

To better understand the behavior of the proposed off-policy

estimators over time, we plot the actual and estimated rewards of

one of the 10 candidate policies in Figs. 1 and 2 (the choice of a

policy is not important, we use policy 6 in all figures). We only

present figures for the exponential decay estimator V
α IPS

here; the

figures for the sliding window estimator V
τ IPS

are similar.

The top plots in Figs. 1 and 2 show that the V
α IPS

estimator

closely follows the actual performance of a recommendation policy

on both the LastFM and Delicious datasets. The standard V
IPS

esti-

mator, instead, fails to approximate the policy’s actual performance

and accumulates a large amount of bias.
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Figure 1: Exponential decay estimators in a smooth (top
row), abrupt (middle row) and stationary (bottom row) set-
ting on the LastFM dataset. The shaded areas indicate the
standard deviation across 20 runs.

The adaptive variants of our proposed off-policy estimators per-

form similarly to their non-adaptive counterparts, outperforming

or underperforming the latter in a few cases (see Tables 2 and 3).

This means that in the smooth non-stationary setup we can use

either type of estimator. Below we will show that in other setups

adaptive estimators should be preferred over non-adaptive ones.

5.2 Abrupt non-stationarity
Our work builds on the assumption of a smooth non-stationary

environment, one where the world changes slowly over time. We

wish to investigate how well our estimators work when this as-

sumption is violated, i.e., when the world behaves in an abrupt

non-stationary way. This leads to our second research question:

How well do the estimators function when Assumption 3.1
is violated? E.g., when the environment changes abruptly?

The second column of Tables 2 and 3 indicates that in the abrupt

non-stationary setup the MSE of V
τ IPS

and V
α IPS

is about two

times lower than the MSE of V
IPS

(all differences are statistically

significant). This shows that our proposed estimators approximate

the actual performance of a policy well even when the theoretical

upper bounds on the estimators’ bias are no longer valid.

The second row of Figs. 1 and 2 further confirms this by showing

that the V
α IPS

estimator closely follows the true reward of a policy
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Figure 2: Exponential decay estimators in a smooth (top
row), abrupt (middle row) and stationary (bottom row) set-
ting on the Delicious dataset. The shaded areas indicate the
standard deviation across 20 runs. See Fig. 1 for the legend.

even if the changes in the environment are abrupt. The standard

V
IPS

estimator still cannot follow the true reward in this setup.

5.3 Stationary environment
Our third research question is:

Can the proposed estimators be applied to stationary en-
vironments?

In the stationary environment, the regular V
IPS

estimator is guaran-

teed to perform the best: in this setup it is unbiased and has variance

that goes to zero when t grows [9]. Our proposed estimators are

also unbiased in the stationary environment, but their variance

does not decrease over time. Thus, we expect the V
IPS

estimator to

outperform V
τ IPS

and V
α IPS

in the stationary setup.

The above intuitions are confirmed by the results in the last

column of Tables 2 and 3. The V
IPS

estimator indeed has the low-

est MSE compared to all other estimators. Interestingly, V
τ IPS

and

V
α IPS

are also able to approximate the true reward of a policy rela-

tively well. Particularly, the MSE of V
τ IPS

and V
α IPS

on the LastFM

dataset is at most 0.4 times higher than the MSE of V
IPS

(recall,

that V
IPS

has 2–3 times higher MSE in the non-stationary setups).

On the Delicious dataset the differences in MSE are larger, but the

absolute MSE values are an order of magnitude smaller than in

the non-stationary setups. The adaptive variants of our estimators

are significantly better than the non-adaptive ones in the station-

ary environment, having much lower MSE: the adaptive variants

are able to detect the stationary situation, adapt their parameters

appropriately and reduce their overall variance.

Thus, we can conclude that although designed for non-stationary

environments, the V
τ IPS

and V
α IPS

estimators, and especially their

adaptive variants, can be applied in stationary environments. This

is further confirmed by the bottom plots in Figs. 1 and 2, where all

estimators closely follow the true (stationary) reward.

5.4 Impact of parameters
The final research question that we answer is:

How do the estimators behave under different parameters?

To answer this question, we have investigated different parameter

settings for τ , α and λ. In Fig. 3, we plot the true and estimated

rewards for different values of α for the V
α IPS

estimator on the

LastFM dataset. The observations for τ and λ are very similar, so we

omit these results to save space. From Fig. 3, we see that setting α is

a trade-off in bias and variance. This is in line with our theoretical

results (Section 3), which state that as α approaches 1, we expect

lower variance but higher bias, and vice versa for α → 0. The same

results hold for the window size τ (a higher value causes lower

variance and higher bias) and the λ parameter, which, by design,

trades off variance and bias.

0 200,000 400,000 600,000 800,000 1,000,000
Time t

0.0

0.2

0.4

0.6

R
ew

ar
d

α = 0.999
α = 0.9999

α = 0.99999
True

Figure 3: Impact of the α parameter on the exponential de-
cay estimator Vα IPS in a smooth non-stationary setting on
the LastFM dataset.

6 CONCLUSION
In this paper we studied non-stationary off-policy evaluation. We

showed that in non-stationary environments the traditional IPS

off-policy estimator fails to approximate the true performance of

a recommendation policy and suffers from a large bias that grows

over time. To address the problem of non-stationary off-policy

evaluation, we proposed two estimators that closely follow the

changes in the true performance of a policy: one using a sliding

window average and one using an exponential decay average. Our

analysis of the proposed estimators shows that their bias that does

not grow over time and can be bounded. The bias of our estimators

can be controlled by the window size τ and the decay rate α . Using
the results of our analysis, we proposed a principled way to adapt

τ and α automatically according to the changing environment.

We evaluated the proposed estimators in non-stationary recom-

mendation environments using the LastFM and Delicious data sets.

The experimental results show that our estimators approximate

the policy’s actual performance well, having MSE that is 2–3 times

lower than that of the standard IPS estimator. We showed that

these results hold not only in smooth non-stationary environments,

where we can derive upper bounds on the bias of our estimators,

but also in the abrupt non-stationary setup, where the theory does

not hold. Finally, our results suggest that the proposed off-policy

estimators, although designed for non-stationary environments,

can be applied in the stationary setup with adaptive variants of

the proposed estimators being particularly effective. These findings

open up the way for off-policy evaluation to be applied to practical

non-stationary real-world scenarios.



An interesting direction for future work is to investigate the use

of more advanced off-policy estimators such as Doubly Robust [9]

or Switch [39] in non-stationary environments. We hypothesize

that such estimators will also suffer from a large bias, while the

moving average estimators will be able to solve this issue.

Code
The code for re-running all of the experiments in the paper is avail-

able at https://github.com/rjagerman/wsdm2019-nonstationary.
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