
Answer Selection in a Multi-Stream
Open Domain Question Answering System

Valentin Jijkoun and Maarten de Rijke

Language & Inference Technology Group, University of Amsterdam
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

E-mail: jijkoun, mdr@science.uva.nl

Abstract. Question answering systems aim to meet users’ informa-
tion needs by returning exact answers in response to a question. Tra-
ditional open domain question answering systems are built around a
single pipeline architecture. In an attempt to exploit multiple resources
as well as multiple answering strategies, systems based on a multi-stream
architecture have recently been introduced. Such systems face the chal-
lenging problem of having to select a single answer from pools of an-
swers obtained using essentially different techniques. We report on ex-
periments aimed at understanding and evaluating the effect of different
options for answer selection in a multi-stream question answering sys-
tem. We examine the impact of local tiling techniques, assignments of
weights to streams based on past performance and/or question type, as
well redundancy-based ideas. Our main finding is that redundancy-based
ideas in combination with naively learned stream weights conditioned on
question type work best, and improve significantly over a number of
baselines.

1 Introduction

Question answering is a variation on the traditional document retrieval task
where, in response to a user’s question, an answer has to be returned instead of
a ranked list of relevant documents from which the user has to extract an answer
herself.

Traditional question answering systems typically consist of a single process-
ing stream that performs three steps in a sequential fashion: question analysis,
search, and answer selection [10, 14, 16, 17]. These systems typically focus on the
corpus from which the answers are to be extracted, and they may use a small
number of additional resources, either unstructured (such as the Web), semi-
structured (such as WordNet or the CIA World Fact Book), or structured (such
as geography databases). Essentially, such single-stream systems adopt a “one
size fits all” approach, treating factoid questions of all types in the same manner.

Recently, a number of teams have adopted more complex architectures for
their question answering systems, either involving feedback loops as part of a
single stream architecture [15], or involving multiple streams that somehow im-
plement different answering strategies [1, 2, 4, 11]. The motivations underlying

these multi-stream approaches are two-fold: 1. Some answering strategies may
be highly effective for certain question types, but not for others. 2. An important
practical benefit of multi-stream architectures is easy modification, maintenance,
and testing of the different subsystems as well as easy integration of multiple
source of information.

One of the big challenges raised by multi-stream approaches to open domain
question answering is that at some stage a global choice needs to be made: which
of the many candidate answers produced by the independent streams is to be
chosen as the answer to be returned by the system? The important thing to
notice here is that techniques and information sources used by different streams
can be very different: some can be more reliable than others and the scoring
methods of the streams may be incompatible. Think, for instance, of a Web
answering stream based on redundancy and a knowledge base lookup stream. In
such a combined system, the task of reducing answer candidates “to a common
denominator” is highly non-trivial.

In this paper we experiment with a number of answer selection strategies in
a multi-stream question answering environment. We generalize and develop the
methods described earlier [1, 4], present novel techniques for combining answer
streams and systematically evaluate the performance of different methods in
different combinations, using our own multi-stream question answering system
for a case study. One of our main findings is that, using a fairly limited amount
of data, a relatively simple machine learning method performs just as well as
humans in assigning weights to streams, measured in terms of the performance
of the overall system.

The selection methods we consider do not make any assumptions about the
precise nature of the streams involved, or even about the answer types being
used in question classification. All we need is data on the past performance of
the streams. For these reasons, we believe that the methods and results that we
present below are widely applicable in the question answering domain.

In the remainder of this paper, we first discuss related work on answer se-
lection and result merging. We then describe the architecture of one particular
multi-stream question answering architecture. Next, we discuss in detail different
aspects of answer selection in such architectures. Finally, we report on experi-
ments with different answer selection schemes and discuss our findings.

2 Related Work

In a single-stream question answering environment, the goal of answer selection
is to choose from a pool of answer candidates the most likely answer for the
question. There are many approaches to answer selection in the single-stream
setting. Here, we only have space to mention a few. In their TREC 2002 system,
the BBN team used the standard single-stream pipeline by using a document
retrieval system to select documents that are likely to contain answers to a given
question and then ranking candidate answers based on the answer contexts using
the same retrieval system [20]. They then used a few constraints to re-rank

the candidates; these constraints include whether a numerical answer quantifies
the correct noun, whether the answer is of the correct location sub-type and
whether the answer satisfies the verb arguments of the question. Like BBN’s
question answering system, the system developed by LCC is an example of a
single-stream architecture whose answer selection process is very knowledge-
intensive [15]. It incorporates lots of AI-like technology, by actually attempting
to prove candidate answers from text, with a number of feedback loops and
sanity-checking that can reject answers or require additional checking. By way of
contrast to these knowledge-intensive selection and reranking methods in single-
stream architectures we mention a purely data-driven approach due to Magnini
et al. [13]. They employ the redundancy of the Web to re-rank answer candidates
found in the collection, by using hit counts for question and answer terms.

Let’s turn to multi-stream question answering environments now. Here, the
task of selecting the final answer is complicated by the fact that the final answer
has to be selected from several pools of ranked candidates found by different
streams. We need to compare answers coming from different, often incomparable
sources and pick the one that is most likely to be correct.

IBM’s PIQUANT question answering system used at TREC 2002 [1] imple-
ments a multi-strategy and multi-source approach. It faces a problem of com-
bining answers coming from external resources (such as the Web) and answers
extracted from the reference corpus. The question answering evaluation method-
ology of TREC requires that all answers be justified in the corpus, so the pro-
posed solution is to use answer feedback: for each external answer candidate the
best (if any) relevant passage in the reference corpus is found and used for can-
didate ranking. Because of this answer feedback, all answering streams produce
ranked candidate answers in a uniform fashion, which obviously simplifies the
final answer selection.

Some multi-stream systems solve the answer selection problem based solely
on the stream that produced it. E.g., the University of Waterloo’s MultiText
system consults multiple resources, using a variety of methods, ranging from
shallow parsing to word n-gram mining [2]. In MultiText, these approaches are
organized in two streams, one called the early-answering subsystem (which con-
sults ready-made databases), the other called statistical answer-selection (which
resembles the traditional single-stream question answering pipeline). Final an-
swer selection is based purely on the stream that delivered the answer: whenever
the early-answering stream produces an answer, MultiText judges it to be cor-
rect, based on the fact that whenever this stream does produce an answer, it is
usually correct.

Another possibility that has been explored in the literature is to favor an-
swers that are returned by the highest number of streams. At TREC 2002, the
LIMSI team experimented with an architecture consisting of two streams, one
based on the local text collection and one based on the Web [4]. The underlying
assumption is that similar answers coming from very different sources are more
reliable, so the answer selection module favors those answer candidates found in
the local collection, which have also been found in Web documents.

In the experiments on which we report below, we compare answer selection
strategies that incorporate and build on ideas from both the MultiText and
LIMSI approaches. Before reporting on those experiments, we briefly point to
related work, not in question answering but in document retrieval, where the
combination of retrieval runs is one of the recurring themes. It goes back at
least to [7], and a recent overview of combination approaches is given in [3], de-
scribing combinations of document representation, query formulations, ranking
algorithms, and search systems. The standard combination methods for merging
ranked document lists are discussed and compared in [7, p.245/246].1

– combMAX Take the maximal query-document similarity score of the indi-
vidual runs.

– combMIN Take the minimal similarity score of the individual runs.
– combSUM Take the sum of the similarity scores of the individual runs.
– combANZ Take the sum of the similarity scores of the individual runs, and

divide by the number of non-zero entries.
– combMNZ Take the sum of the similarity scores of the individual runs, and

multiply by the number of non-zero entries.
– combMED Take the median similarity score of the individual runs.

Since the similarity scores produced by different systems may differ radically,
one often finds that a score normalization step takes place before one of the
above methods is applied. In the question answering setting evaluations are
not based on mean average precision (MAP) scores, but, in effect, on p@1.
Because of this, there is no point in considering methods that may hurt early
precision (but benefit MAP), such as combMIN, combANZ, and combMED. In
our experiments in Section 5 we do consider answer selection methods based on
the same intuitions as combMAX, combSUM, and, especially, combMNZ.

3 Overview of the Quartz Question Answering System

To make matters concrete, and to prepare for a report on our answer selection
experiments, we will now zoom in on our own multi-stream open domain question
answering, called Quartz. Quartz exists in two incarnation, a Dutch language
version [12], and an English language version [11]. The brief overview below is
based on the English version; we refer to [11] for more details.

After analyzing an incoming question, Quartz sends it to six streams in paral-
lel, each of which is a small question answering system on its own. Every stream
produces a ranked list of answer candidates (an answer pool). At the end of the
process, the six answer pools are merged and the best candidate is returned as
the final answer. While they share some components (named entity and part-
of-speech taggers, parser, lexical resources, retrieval engine), the streams are
independent and use very different strategies for answer extraction. The streams
making up Quartz are briefly described as follows:
1 In the setting of multi-lingual document retrieval, round robin is another merging

method sometimes used [9]. Since we have to return a single final answer in the
question answering setting, this method is not relevant for our discussions.

Table Lookup. This stream uses specialized knowledge bases constructed by pre-
processing the collection. The stream exploits the fact that certain types of infor-
mation (such as country capitals, abbreviations, and names of political leaders)
tend to occur in a small number of fixed patterns. Similar to [6] we developed a
small number of patterns for offline extraction of this information, using surface
text and syntactic templates and WordNet. The knowledge base currently con-
sists of 15 specialized tables. A fairly intricate knowledge base lookup process
allows for non-exact matches.

Pattern Matching. Inspired by the success of methods based on pattern matching
for certain question type [18], this stream exploits the fact that in some cases,
the contextual format of an answer to a question can be back-generated from the
question itself. For example, an answer to a question such as 2257. What is the
richest country in the world? may match the pattern <Capitalized-Words>(,|
is) the richest country in the world. For each incoming question a set
of possible answer patterns is generated and matches are attempted in relevant
documents. We have two streams implementing this approach, Web Patterns and
Collection Patterns, that use Google and our in-house IR engine, respectively,
to retrieve relevant documents from the Web or from the AQUAINT corpus.

Ngram Mining. This stream, similar in spirit to [5], constructs a weighted list of
queries for each question using a shallow reformulation process and then looks
at word ngrams in the relevant retrieved document snippets. Quartz uses two
variations of this stream: Web Ngrams and Collection Ngrams, using the Web
and the local AQUAINT corpus, respectively.

Tequesta. Tequesta is a stream that implements a linguistically informed ap-
proach to QA. We refer to [11] for more details.

Each of the six streams described above provides a confidence score for each
answer candidate. However, the actual values of the scores are calculated in
a stream-specific way. The Table Lookup’s confidence depends on the number
of occurrences of the relevant fact in the database and on the “exactness” of
the match. The candidates’ scores in the Collection Patterns and Web Patterns
streams are based on the manually assigned accuracy of the patterns and the fre-
quencies of the found answers. The Web Ngrams and Collection Ngrams streams
use the number of ngram occurrences and some other features (e.g., presence of
named entities of the appropriate type). Finally, the confidence scores of Tequesta
stem from document scores given by the retrieval engine, the distance between
question and answer terms in documents as well as a few additional syntactic,
semantic and statistical features. Taking into account these differences, our an-
swer selection module brings the candidates from all six streams together and
selects the final answer.

Since Quartz’s streams employ essentially different answering techniques, we
expected that different streams would perform well on different question types.
Indeed, an analysis of the results of the overall system and of the individual

streams shows that each stream finds correct answers that are not found by
other streams. Table 1 presents an evaluation of our best run at the TREC
2003 question answering track; we only consider factoid questions here, leaving
out so-called list question and definition questions as these were assessed and
scored differently. Evaluation is done by us, using the answer patterns provided
by NIST [19].2 We show the performance of our six streams for all questions and
for questions of the 4 most frequent question types: location (e.g. 2316. What is
the largest city in Austria?), number-many (e.g. 1979. How many moons does
Venus have?), date (e.g. 1924. When was the first hair dryer made?) and pers-
ident (e.g. 2301. What composer wrote “Die Götterdämmerung”?). The row
alone gives the number of questions correctly answered by the stream alone, the
row increase gives the number of questions that the system would not answer
without the stream (i.e., the number of questions correctly answered by the full
system, but not answered by the system with this stream disabled).

Table 1. Comparison of the performance of the six question answering streams im-
plemented in Quartz, on all question types and on the four most frequent question
types.

Correct answers

Questions T
a
b
le

L
o
o
k
u
p

C
o
ll
ec

ti
o
n

P
a
tt

er
n
s

W
eb

P
a
tt

er
n
s

C
o
ll
ec

ti
o
n

N
g
ra

m
s

W
eb

N
g
ra

m
s

T
eq

u
es

ta
Total
#q’s

All
alone

increase
71
17

39
1

51
6

39
3

65
30

63
30

413

location
alone

increase
16
2

9
1

2
1

9
3

17
10

15
10

67

number-many
alone

increase
5
0

5
0

5
0

5
0

10
2

17
9

46

date
alone

increase
8
1

3
0

8
2

3
0

7
4

14
3

37

person-ident
alone

increase
6
0

5
0

6
1

6
0

10
3

2
1

31

The numbers in Table 1 clearly indicate that all of Quartz’ six streams con-
tribute to the system’s performance, but the significance of the contribution
depends on the question type. While each stream does find answer candidates

2 Observe that these patterns do not distinguish between so-called correct, inexact
and unsupported answers.

not found by any of the others (see the rows labeled increase in the table),
many answers are found simultaneously by several streams, which explains the
difference between increase and alone values.

4 Answer Selection in Quartz

In a single-stream question answering environment, the goal of answer selection
is to choose from a pool of answer candidates the most likely answer for the
question. As we pointed out in our discussion of related work, in a multi-stream
environment, the task is complicated by the fact that the final answer now has to
be selected from several pools of ranked candidates found by different streams.
We need to compare answers coming from different sources and pick the one
that is most likely to be correct. In this section we describe the way this has
been implemented in Quartz.

4.1 Reranking and Score Normalization using Web

As described before, all of Quartz’ six streams produce pools of answer candi-
dates together with numerical confidence scores. For the non-Web-based streams
(Table Lookup, Collection Ngrams, Collection Patterns and Tequesta) we use
Web hit counts (in a way similar to [13]) to adjust the stream’s scores and
thereby rerank the candidates within each pool. Apart from boosting correct
answers this allows us to normalize the scores across the streams in order to
make them comparable. However, this normalization does not take into account
the fact that the initial scores are calculated differenly by each stream and have
different and hard to predict ranges of possible values. The normalized candi-
date’s score is based only on the stream’s condifence and the Web frequency of
the words of the question and of the answer.

4.2 Identifying Similar Answers

Next, we run a separate filtering module that mainly uses hand-coded heuristics
to remove non-relevant candidates (e.g., it checks that answers to questions about
person names indeed contain names, or for date questions the candidates bear
temporal information).

In the next step, called tiling, the system tries to identify similar answers
across the pools of answer candidates, using ideas similar to [8]. Two answers
are considered similar if

– they are identical as strings, or
– the one is the substring of the other, or
– the edit distance between the strings is small compared to their length.

Note that according to this definition our notion of similarity is not an equiv-
alence relation: the strings “6th March 1863” and “May 1-3, 1863” are both
similar to “1863”, but not to each other. At the moment, when selecting one
representative in a class of similar answers our system breaks ties randomly.

4.3 Weighting Streams

After similar answer candidates have been identified, the six pools must be
merged and the answer with the highest confidence selected. However, even after
adjusting scores with Web hit counts, the range of possible values is different for
different streams, and it is likely that more adjustment is needed for scores to
be comparable. We considered several options here:

– adjust each candidate’s score by a factor wstream that depends on the stream
generating the candidate;

– adjust with a factor wstream,qtype that depends on both the generating stream
and the type of the question being answered;

– use confidence values as given by the streams, without adjustments.

Intuitively, the weight wstream serves two purposes: in addition to normalizing
scores across streams it can indicate the reliability of the streams in general.
Setting wstream higher would favor answers coming from the particular stream.
Similarly, using the wstream,qtype adjustment we can also indicate the trustwor-
thiness of the streams for different question types. The last option (no adjust-
ment) corresponds to the (not unreasonable) belief that the scores of different
streams are comparable “as is” since we have already used Web hit counts which
might also have normalizing effect.

There are several ways to choose actual values for the stream weights. They
can be made equal, assigned manually based on an analysis of the performance
of the streams, or they can be learned automatically, from a training set of
question/answer pairs. While the first two approaches are fairly straightforward
and leave little room for variation, the learning of weights can be done in a variety
of ways. Here, we describe a naive learning algorithm that proceeds by iteratively
adjusting weights for each stream-question type pair. This is the method used
in the experiments of Section 5.

Given a set of questions and correct answers, we learn the weights for the
streams so as to maximize the number of questions answered correctly by the
system as a whole. The algorithm starts with initial weights for all pairs (stream,
question type):

ws,qt :=
correct answers by stream s to questions of type qt∑
s′ # correct answers by stream s′ to questions of type qt

.

Then, for each question q of type qt, if the stream s∗ found a correct answer
a∗, but with the current stream weights the answer selection module chooses
an incorrect answer, the weight ws∗,qt is increased so that the correct answer is
selected. Let scores(q, a) denote the confidence score assigned by the stream s
to an answer candidate a for a question q. Then the weight of the stream s∗ is
adjusted as

ws∗,qt := ws∗,qt · maxs,a scores(q, a) · ws,qt

scores∗(q, a∗) · ws∗,qt
.

The weights of the other streams remain the same. Then all the weights are
normalized so that

∑
s ws,qt = 1. It is easy to see that after this adjustment

the answer a∗ will have the highest weighted score and thus will be selected as
the final answer. This procedure is repeated for all questions and then several
times for the whole training set. Although this algorithm does not find globally
optimal weights and even does not necessarily converge (we chose the number
of iterations empirically, so that it gives the best performance on the set of
training questions), our experiments showed that it does increase substantially
the number of correct answers produced by the system.

Clearly, standard, more sophisticated and better understood machine learn-
ing techniques could also be applied to the task of learning optimal weights.
However, one of our aims was to see whether the idea of learning stream/question
type weights could be made to work in a straightforward way; it appeared to
be easier to implement the naive and intuitively clear algorithm outlined above
rather than squeeze the task into any of the well-known but more complicated
methods. While our simple approach gives encouraging performance improve-
ment, in future work we plan to investigate other, classical techniques.

4.4 Creating the Final Pool

Once the confidence scores of all answer candidates have been adjusted, there
are still a number of ways to create a single pool of candidates:

– similar answers (as identified during tiling) are merged and their confidence
scores added;

– similar answers are merged and those answers are favored that come from a
larger number of streams.

As pointed in Section 2, the second approach was used in [4] for a question
answering system consisting of two streams: collection- and Web-based. The un-
derlying assumption was that similar answers coming from very different sources
are more reliable. The extension of the technique to many sources may allow us
to use in full the redundancy of the multi-stream architecture.

5 Experiments

Our aim was to systematically evaluate the effect of different options for answer
selection in our heterogeneous QA system. Here is a short summary of the options
we considered:

– use tiling or not;
– use weights based on stream (ws) or based on stream and question type

(ws,qt);
– the choice of weights: equal, manually assigned or automatically learned from

past experience;
– exploit or not the redundancy in full: consider only those answer candidates

that come from the greatest number of streams, and among those pick the
one with the highest final score.

For the purposes of our experiments we also created stream/question type weights
manually. We analyzed the candidates of Quartz’s streams for the 500 TREC
2002 questions and assigned a confidence value (0, 2, 5 or 10) to each stream and
question type, based on an intuitive understanding of how good the candidates
were. Observe that since these 500 questions also constituted more than a half
of our training/testing collection (see below), the results for the manual voting
on which we report below might be an over-estimate.

For a proper evaluation of different answer selection schemes we took the
set of factoid questions from TREC 2002 and 2003 question answering tracks
(913 questions) together with the patterns of correct answers provided by NIST.
Since one of the options involves learning and, moreover, since our aim was to
understand the significance of the differences, we randomly split the question
set into training and evaluation sections (180 question for evaluation, the rest
for training) and repeated the experiments 50 times with different splits. The
splits of the question sets had to satisfy the following constraint: for all question
types 80% of the questions are in the training set.

We evaluated the following variants of the answer selection module:

ET equal weights, tiling
MT manual weights, tiling
AT automatically learned weights, tiling
A automatically learned weights, no tiling
ATU automatically learned weights with weights not dependent on question type,

tiling
ATB automatically learned weights, only answers from the largest number of

streams are left, tiling
ETB equal weights, only answers from the largest number of streams are left,

tiling.

We used a one-tailed t-test to establish the statistical significance of the differ-
ences observed in our experiments.

6 Results

Table 2 shows the evaluation results for the seven answer selection schemes: the
average number of correct answers on a set of 180 randomly chosen questions
after training on the remaining 733, measured after 50 iterations. It also shows
differences between several voting schemes.

Not surprisingly, the answer selection scheme using stream/question type
weights, tiling and stream redundancy (ATB) improves significantly over the sim-
ple baseline scheme (ET: with tiling but no weights) and it allows our system to
give over 30% more correct answers. Moreover, both stream weighting (AT over
ET) and exploiting the system’s redundancy (ETB over ET) alone make significant
improvements as well.

Tiling gives better performance (AT over A), although it sometimes results
in answers that would have been judged inexact rather than correct by human

Table 2. Comparison of answer selection methods, measuring the average number of
correct answers out of 180 randomly chosen questions (50 iterations).

Baseline Modifications
Scheme #answers Scheme #answers %change Significance

MT 52.0 +30.3% ** (p < 0.001)
ET 39.9 AT 50.8 +27.3% ** (p < 0.001)

ATB 52.6 +31.8% ** (p < 0.001)

A 43.4 AT 50.8 +17.1% ** (p < 0.001)

ATU 48.2 AT 50.8 +5.4% ** (p < 0.001)

AT 50.8 ATB 52.6 +3.5% * (p < 0.05)

ET 39.9 ETB 48.8 +22.3% ** (p < 0.001)

assessors. E.g., for question 1912. In which city is the River Seine? our system
returns the answer Paris Opera House rather than Paris only because of the
tiling. In the TREC 2003 QA track over 25% of the “not wrong” answers pro-
duced by our system were judged inexact. While tiling does indeed help to boost
strings containing correct answers, more informed filtering and type checking
need to be done in the end.

The difference between AT and ATU (weighting depends on question type
or not) indicates that it does indeed make sense to look at the type of the
question during final answer selection, rather than simply basing the decision on
the overall performance of the streams. This is explained by the fact that the
streams show very different accuracy on different question types.

It is interesting to note that there is no significant difference between selec-
tion schemes with manually assigned weights (MT) and with weights chosen so
as to optimize the performance on a training set of questions (AT). This is an
important point as it demonstrates that there is no need to manually analyze
the performance of the streams on different questions, which is a very labori-
ous process given the number of streams and different question types. Even a
very naive learning method can produce a set of weights that yields an end-to-
end performance of the question answering system that equals the performance
obtained with manual assignment of weights.

7 Conclusions

We have described experiments with different methods for answer selection in
a multi-stream question answering system. We examined the impact of local
tiling techniques, assignment of weights to streams based on past performance
and/or question type, as well redundancy-based ideas. Our main finding is that
redundancy-based ideas in combination with naively learned stream weights con-
ditioned on question type work best, and improve significantly over baselines.

In future work we plan to apply other, better understood machine learning
techniques to the task of learning optimal weights, and use more informed and
reliable methods for answer tiling and answer filtering.

Summing up, open domain question answering systems are becoming more
and more complex, increasingly relying on multiple approaches and multiple
external resources. Since we do not make any assumptions about the nature of
the streams, or even about the types being used in question classification, we
believe that the methods and results that we have presented are widely applicable
in open domain question answering.

Acknowledgments

We want to thank Gilad Mishne for help and advice, and we are grateful to our
referees for useful comments. This research was supported by the Netherlands
Organization for Scientific Research (NWO) under project number 220-80-001.
Maarten de Rijke was also supported by NWO under project numbers 612-13-
001, 365-20-005, 612.069.006, 612.000.106, 612.000.207, and 612.066.302.

References

1. J. Chu-Carrol, J. Prager, C. Welty, K. Czuba, and D. Ferrucci. A multi-strategy
and multi-source approach to question answering. In Proceedings of TREC 2002,
pages 281–288, 2003.

2. C.L.A. Clarke, G.V. Cormack, G. Kemkes, M. Laszlo, T.R. Lynam, E.L. Terra,
and P.L. Tilker. Statistical selection of exact answers. In Proceedings of TREC
2002, pages 823–831, 2003.

3. W.B. Croft. Combining approaches to information retrieval. In W.B. Croft, editor,
Advances in Information Retrieval, pages 1–36. Kluwer Academic Publishers, 2000.

4. G. de Chalendar, T. Dalmas, F. Elkateb-Gara, O. Ferret, M. Hurault-Plantet
B. Grau, G. Illouz, L. Monceaux, I. Robba, and A. Vilnat. The Question An-
swering System QALC at LIMSI, Experiments in Using Web and WordNet. In
Proceedings of TREC 2002, pages 407–416, 2003.

5. M. Banko et al. AskMSR: Question answering using the Worldwide Web. In Proc.
EMNLP 2002, 2002.

6. M. Fleischman, E.H. Hovy, and A. Echihabi. Offline strategies for online question
answering: Answering questions before they are asked. In Proceedings ACL 2003,
pages 1–7, 2003.

7. E.A. Fox and J.A. Shaw. Combination of multiple searches. In Proceedings TREC-
2, pages 243–252, 1994.

8. M. Greenwood, I. Roberts, and R. Gaizauskas. The University of Sheffield TREC
2002 Q&A system. In Proceedings of TREC 2002, pages 823–831, 2003.

9. D. Hiemstra, W. Kraaij, R. Pohlmann, and T. Westerveld. Translation resources,
merging strategies, and relevance feedback for cross-language information retrieval.
In Proceedings CLEF 2000, pages 102–115. Springer, 2001.

10. E. Hovy, H. Hermjakob, M. Junk, and C.-Y. Lin. Question answering in Webclo-
pedia. In Proceedings TREC-9, 2000.

11. V. Jijkoun, J. Kamps, G. Mishne, C. Monz, M. de Rijke, S. Schlobach, and O. Tsur.
The University of Amsterdam at TREC 2003. In TREC 2003 Notebook Papers,
2003.

12. V. Jijkoun, G. Mishne, and M. de Rijke. How frogs built the Berlin Wall. In
Proceedings CLEF 2003. Springer, to appear.

13. B. Magnini, M. Negri, R. Prevete, and H. Tanev. Is it the right answer? Exploiting
web redundancy for answer validation. In Proceedings of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL), pages 425–432, 2002.

14. D. Moldovan, S. Harabagiu, M. Paşca, R. Mihalcea, R. Girju, R. Goodrum, and
V. Rus. The structure and performance of an open domain question answering
system. In Proceedings ACL 2000, pages 563–570, 2000.

15. D. Moldovan, M. Paşca, S. Harabagiu, and M. Surdeanu. Performance issues and
error analysis in an open-domain question answering system. ACM Transactions
on Information Systems, 21:133–154, 2003.

16. C. Monz and M. de Rijke. Tequesta: The University of Amsterdam’s textual
question answering system. In Proceedings TREC 2001, pages 519–528, 2002.

17. J. Prager, E. Brown, A. Coden, and D. Radev. Question-answering by predicitive
annotation. In Proceedings SIGIR 2000, pages 184–191, 2000.

18. M.M. Soubbotin and S.M. Soubbotin. Use of patterns for detection of likely answer
strings: A systematic approach. In Proceedings TREC 2002, pages 325–331, 2003.

19. Text REtreival Conference (TREC). URL: http://trec.nist.gov.
20. J. Xu, A. Licuanan, J. May, S. Miller, and R. Weischedel. TREC 2002 QA at BBN:

Answer Selection and Confidence Estimation. In Proceedings of TREC 2002, pages
96–101, 2003.

