Learning to Transform Linguistic Graphs

Valentin Jijkoun and Maarten de Rijke
ISLA, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
jijkoun,mdr@science.uva.nl

Abstract ods (Jijkoun and de Rijke, 2004) use combinations
of pattern matching and classification.
We argue in favor of the the use of la- The method presented in this paper belongs to

beled directed graph to represent various the latter category. Specifically, we propose (1) to
types of linguistic structures, and illustrate use a flexible and expressive graph-based represen-
how this allows one to view NLP tasks as tation of linguistic structures at different levels; and
graph transformations. We present a gen- (2) to view NLP tasks as graph transformation prob-
eral method for learning such transforma- lems: namely, problems of transforming graphs of
tions from an annotated corpus and de- one type into graphs of another type. An exam-
scribe experiments with two applications ple of such a transformation is adding a level of
of the method: identification of non-local the predicate argument structure or semantic argu-
depenencies (using Penn Treebank data) ments to syntactically annotated sentences. Further-
and semantic role labeling (using Propo- more, we describe a general method to automati-
sition Bank data). cally learn such transformations from annotated cor-
pora. Our method combines pattern matching on
_ graphs and machine learning (classification) and can
1 Introduction be viewed as an extension of the Transformation-

Availability of linguistically annotated corpora such Based Learning paradigm (Brill, 1995). After de-

as the Penn Treebank (Bies et al., 1995) Propositic?r(fribing the method for learning graph transforma-
Bank (Palmer et al., 2005) and’ FraméNet (Joh lons we demonstrate its applicability on two tasks:
son et al., 2003) ha’s stimu’lated much research (Jﬂentification of non-local dependencies (using Penn

methods for automatic syntactic and semantic anal) €€Pank data) and semantic roles labeling (using
Proposition Bank data).

ysis of text. Rich annotations of corpora has al- h) ed as foll In Section 2
lowed for the development of techniques for recov- e paper is organized as follows. In Section

ering deep linguistic structures: syntactic non-locaf’€ 9've our motlvatlon_s for using gra_phs to encode
dependencies (Johnson, 2002; Hockenmaier, Zod@’gwstlc_ data. In Section 3 We_descrlbe_our me_thod
Dienes, 2004; Jijkoun and de Rijke, 2004) and Serpr learning graph tr_ansforma_ltlons apd in Section 4
mantic arguments (Gildea, 2001; Pradhan et aive report on experlm(_ants Wlt[h applications of our
2005; Toutanova et al., 2005; Giuglea and Moschittf,nethOd' We conclude in Section 5.

2006). Most state-of-the-art methods for the Iatteé
two tasks use a cascaded architecture: they employ
syntactic parsers and re-cast the corresponding tasks
as pattern matching (Johnson, 2002) or classificdtees and graphs are natural and common ways of
tion (Pradhan et al., 2005) problems. Other metlencoding linguistic information, in particular, syn-

Graphs for linguistic structures and
language processing tasks

S

ey 4//\

4 NP-SBJ VP NP VP
s ~ 1 ~
1 directors Np_TnMp planﬁg S directors NP plang S
#7 ™ s 5N {
this month NP-SBJ this month VP
*r/ VP /;\
- /$\ to seek NP
to seek NP ‘
s:ats seats
Figure 1: Local and non-local syntantic relations. Figure 3: Output of a syntactic parser.
B pred
PO A . . , .
S ARG ned ARG aRom manlpulatlo_ns with graphs, in other words, as graph
e feature=TMP transformation problems.
P)"1\\ T Consider the task of recovering non-local depen-
Lorillard Inc swpped\s’\ * dencies (such as control, WH-extraction, topicaliza-
14 . . .
vp PP PP tion) in the surface syntactic phrase trees produced
VAN /N / N\ by the state-of-the-art parser of (Charniak, 2000).
using NP in NP in NP . .
‘ AN ‘ Figure 3 shows a graph-bas_ed enco_dmg of the output
crocidolite cigarette filers 1956 of the parser, and the task in question would consist

_ _ _ in transforming the graph in Figure 3 into the graph
Figure 2: Syntactic structure and semantic roles. jy Figure 1. We notice that this transformation can
be realised as a sequence of independent and rela-

tively simple graph transformations: adding nodes

tactic structures (phrase trees, dependency Struga edges to the graph or changing their labels (e.g.,
tures). In this paper we use node- and edge-label%m NP t0 NP-SBJ).

directed graphs as our representational formalism. Similarly, for the example in Figure 2, adding a

Flgur(ist.l and 2 give informal examples of such r®Psemantic layer (dashed edges) to the syntactic struc-
resentations. ture can also be seen as transforming a graph.

T Flgéurekl sh()twtg a gﬁﬁh Ienc?dlnglg_dof Otlhe Penn In general, we can view NLP tasks as adding ad-
reebank annotation of the local (solid edges) angitional linguistic information to text, based on the

hon-local (dashed edges) syntantic structure of ﬂ]ﬁformation already present. e.g., syntactic pars-

sentencedwe_zctors this month plgnneq to seek m'or(?ng taking part-of-speech tagged sentences as in-
seats In this example, the co-indexing-based im-

Ili 1 h luti k-
plicit annotation of the non-local dependency (subEUt (Collins, 1999), or anaphora resolution ta

.) . g sequences of syntactically analysed and named-
J.eCt control) n _th_e Penn Treebank (Bies et_al., lgggSntity-tagged sentences. If both input and output lin-
is made explicit in the graph-based encoding.

Ei > sh h di £ linquist guistic structures are encoded as graphs, such NLP
\gure 2 Shows a graph encoding o INGUIStiGa ks become graph transformation problems.
structures for the sententerillard Inc stopped us- . .
In the next section we describe our general

'ng crgcodollte in sigarette filters in 19§6Here, method for learning graph transformations from an
solid lines correspond to surface syntactic Strucwr%hnotated corpus
produced by Charniak's parser (Charniak, 2000), ’

and dashed Ii_nes are an encodi_ng of the Eropositi%n Learning graph transformations

Bank annotation of the semantic roles with respect

to the verbstopped We start with a few basic definitions. Similar
Graph-based representations allow for a uniforrto (Schurr, 1997), we define iemphgraph as a rela-

view on the linguistic structures on different layerstional structure, i.e., a set of objects and relations

An advantage of such a uniform view is that apbetween them; we represent such structures as sets

parently different NLP tasks can be considered asf first-order logic atomic predicates defining nodes,

directed edges and their attributes (labels). Coralignmentof two graphs is an alignment that maxi-
stants used in the predicates represdigcts(nodes mizes the sum of (1) the number of aligned objects
and edges) of graphs, as well as attribute names afbdes and edges), and (2) the number of match-
values. Atomic predicatesode(-), edge(-,-,-) and ing attribute values of all aligned objects. In other
attr(+, -, -) define nodes, edges and their attributesvords, a maximal alignment identifies as many sim-
We refer to (Schirr, 1997; Jijkoun, 2006) for formal ilarities between two graphs as possible. Given an
definitions and only illustrate these concepts with aalignment of two graphs, it is possible to extract a

example. The following set of predicates: list of rewrite rules that can transform one graph into
another. For a maximal alignment such a list will
node(n1), node(nz), edge(e, n1,n2), consist of rules with the smallest possible left- and

attr(ny, label, Src), attr(n2, label, Dst) right-hand sides. See (Jijkoun, 2006) for details.

As stated above, we view NLP applications as
defines a graph with two nodes; andng, hav- graph transformation modules. Our supervised
ing labelssrc andDst (encoded as attributes namednethod for learning graph transformation requires
label), and an (unlabelled) edgegoing fromn; to two corpora: input graphg&. = {In;} and corre-
ng. sponding output graph®ut = {Out;}, such that

A patternis an arbitrary graph and atcurence Qut,, is the desired output of the NLP module on
of a patternP in graph(is a total injective homo- the inputlng,.

morphism(2 from P to G, i.e., a mapping that asso- The result of the method is an ordered list of graph
ciates each object af with one objectz and pre- rewrite rulesk = (ry,...r,), that can be applied in

serves the graph structure (relations between nodegquence to input graphs to produce the output of the
edges, attribute names and values). We will also u$@§_p module.

the termoccurenceo refer to the grapf(P), asub- oyr method for learning graph transforma-
graph ofG, the image of the mapping on P. tions follows the structure of Transformation-Based
A graph rewrite rule is a triple 7 = | eaming (Brill, 1995) and proceeds iteratively, as

(Ihsy, Cp, rhsy): the left-hand side, the constraintgnown in Figure 4. At each iteration, we compare
and the right-hand side of respectively, wheréis, gng align pairs of input and output graphs, identify
andrhs, are graphs and;, is a function that returns possible rewrite rules and select rules with the most
Oor1givenagraply, pattern/as, and its occurence frequent left-hand sides. For each selected rewrite
in G (i.e., C, specifies a constraint on occurences ofyle -, we extract all occurences of its left-hand
a pattern in a graph). side and use them to train a two-class classifier im-
To apply a rewrite ruler = (ihs;, Cy, hsr) 10 plementing the constrair®,: the classifier, given

a graphG; means finding all occurences dis, in an encoding of an occurence of the left-hand side
G for which C; evaluates to 1, and replacing suctpredicts whether this particular occurence should
occurences ofhs, with occurences ofhs,. Effec- pe replaced with the corresponding right-hand side.
tively, objects and relations presentii, butnotin - \when encoding an occurence as a feature vector, we
rhs, will be removed from(, objects and relations aq4q as features all paths and all attributes of nodes
in rhs, but not inlhs, will be added ta&7, and com- anq edges in the one-edge neighborhood from the
mon objects and relations will remain intact. Again,odes of the occurence. For the experiments de-
we refer to (Jijkoun, 2006) for formal definitions. gcriped in this paper we used the SVM Light classi-

As will be discussed below, our method for learntier (Joachims, 1999) with a standard linear kernel.
ing graph transformations is based on the ability t&@ee (Jijkoun, 2006) for details.

compare pairs of graphs, identifying where the two

graphs are similar and where they differ. align- 4 Applications

mentof two graphs is a partial one-to-one homomor-

phism between their nodes and edges, such thatHfaving presented a general method for learning
two edges of the two graphs are aligned, their regraph transformations, we now illustrate the method
spective endpoints are aligned as well.maximal at work and describe two applications to concrete

Input graphs Ideal output graphs

Aligned graphs |
i
T

Apply |

iIteration N

Aligned graphs

Tteration 1

| Aligned graphs

. | Extract rules

Iteration 2

Figure 4: Structure of our method for learning graph transformations.

NLP problems: identification of non-local depen-tic model. (Jijkoun and de Rijke, 2004) described
dencies (with the Penn Treebank data) and semanéa extension of the pattern-matching method with a
role labeling (with the Proposition Bank data). classifier trained on the dependency graphs derived
from the Penn Treebank data.

In order to apply our graph transformation method
State-of-the-art statistical phrase structure parsets, the task of identifying non-local dependencies,
e.g., Charniak’s and Collins’ parsers trained omve need to encode the information provided in the
the Penn Treebank, produce syntactic parse treBenn Treebank annotations and in the output of a
with bare phrase labelsNg, PP, S, see Figure 3), syntactic parser using directed labeled graphs. We
i.e., providing surface grammatical analysis of serdsed a straightforward encoding of syntactic trees,
tences, even though the training corpus, the Pemwith nodes representing terminals and non-terminals
Treebank, is richer and contains additional gramand edges defining the parent-child relationship. For
matical and semantic information: it distinguishegach node, we used the attribujge to specify
various types of modifiers, complements, subjectsyhether it is a terminal or a non-terminal. Ter-
objects and annotates non-local dependencies, i.minals corresponding to Penn empty nodes were
relations between phrases not adjacent in the pansearked with the attributempty = 1. For each
tree (see Figure 1). The task of recovering this interminal (i.e., each word), the values of attributes
formation in the parser’s output has received a googbs, word andlemma provided the part-of-speech tag,
deal of attention. (Campbell, 2004) presents a rulghe actual form and the lemma of the word. For
based algorithm for empty node identification innon-terminals, the attributbel contained the la-
syntactic trees, competitive with the machine learrbel of the corresponding syntactic phrase. The co-
ing methods we mention next. In (Johnson, 200Ahdexing of empty nodes and non-terminals used in
a simple pattern-matching algorithm was proposethe Penn Treebank to annotate non-local dependen-
for inserting empty nodes into syntactic trees, witlties was encoded using explicit edges with a distinct
patterns extracted from the Penn Treebank. (Dienagpe attribute, connecting empty nodes with their an-
2004) used a preprocessor that identified surface Itecedents (e.g., the dashed edge in Figure 1). For
cation of empty nodes and a syntactic parser incoeach non-terminal node, its head child was marked
porating non-local dependencies into its probabilishy attaching attributeead with value1 to the corre-

4.1 Non-local dependencies

sponding parent-child edge, and the lexical head of Ii‘lfl‘gf OPO oRo 181 . PARSSES\?"-F 1
each non-terminal was explicitly indicated using ad- 1 | 882 386 537 88.4
ditional edges with the attributgpe = lexhead. We 2 87.2 486 625 88.4
et ; 3 |875 519 652 88.4
gsed_g hgurlstlc method of (Collins, 1999) for head 2 867 521 651 88.4
identification. 5 |861 563 681 88.3
When Penn Treebank sentences and the output of 6 |860 572 687 88.4
: 7 |83 613 717 88.4
the parser are encoded as dlrecte_d Iat?el_ed graphs 8 866 634 732 88.4
as described above, the task of identifying non- 9 86.7 646 74.0 88.4
local dependencies can be formulated as transform- 10 | 86.7 649 742 88.4
: : 11 | 866 651 74.3 88.4
ing phrase structure graphs produced by a parser into 12 | 867 652 744 884

graphs of the type used in Penn Treebank annota-

tions. Table 1: Evaluation of our method for identification

We parsed the strings of the Penn Treebank witgf empty nodes and their antecedents (12 first itera-
Charniak’s parser and then used the data from segsns).

tions 02—-21 of the Penn Treebank for training: en-
coding of the parser’s output was used as the cor-
pus of input graphs for our learning method, anghown in Table 1.
the encoding of the original Penn annotations was As one can expect, at each iteration the method
used as the corpus of output graphs. Similarly, wextracts graph rewrite rules that introduce empty
used the data of sections 00-01 for development afi@¢des and non-local relations into syntactic struc-
section 23 for testing. Using the input and outputures, increasing the recall. The performance of the
corpora, we ran the learning method as describdthal system (P/RF; = 86.7/65.2/74.4) for the task
above, at each iteration considering 20 most frequeff identifying non-local dependencies is compara-
left-hand sides of rewrite rules. At each iterationble to the performance of the best model of (Di-
the learned rewrite rules were applied to the currenes, 2004): P/R/=82.5/70.1/75.8. The PARSE-
training and development corpora to create a coMAL score for the present system (88.4) is, however,
pus of input graphs for the next iteration (see Fighigher than the 87.3 for the system of Dienes.
ure 4) and to estimate the performance of the systemAnother effect of the learned transformations is
at the current iteration. The system was evaluatezhanging node labels of non-terminals, specifically,
on the development corpus with respect to non-locahodifying labels to include Penn functional tags
dependencies using the “strict” evaluation measui@.g., changingiP in the input graph in Figure 3 to
of (Johnson, 2002): thé} score of precision and NP-SBJ in the output graph in Figure 1). In fact, 17%
recall of correctly identified empty nodes and anef all learned rewrite rules involved only changing
tecedents. If the absolute improvement of the labels of non-terminal nodes. Analysis of the results
score for the evaluation measure was smaller thaowed that the system is capable of assigning Penn
0.1, the learning cycle was terminated, otherwise &unction tags to constituents produced by Charniak’s
new iteration was started. parser withFy; = 91.4 (we use here the evalua-
The learning cycle terminated after 12 iterationstion measure of (Blaheta, 2004): tli¢ score of the
The resulting sequence a2 x 20 = 240 graph precision and recall for assigning function tags to
rewrite rules was applied to the test corpus of ineonstituents with surface spans correctly identified
put graphs: Charniak’s parser output on the stringdy Charniak’s parser). Comparison to the evalua-
of section 23 of the Penn Treebank. The resution results of the function tagging method presented
was evaluated against the original annotations of thie (Blaheta, 2004) is shown in Table 2.
Penn Treebank. The present system outperforms the system of
The results of the evaluation of the system omlaheta on semantic tags such asP or -MNR
empty nodes and non-local dependencies and thearking temporal and manner adjuncts, respec-
PARSEVAL F; score on local syntactic phrasetively, but performs worse on syntactic tags such
structure against the test corpus at each iteration a&e-sBJ or -PRD marking subjects and predicatives,

(Blaheta, 2004) Here i i i i _
Type Count PIRIE PIRIF be realized syntactically in the corpus, which re

All tags 8480 93378967914 Sulted in the choice of theory-neutral numbered la-
bels (e.g.Arg0, Argl,etc.) for semantic arguments.
Figure 2 shows an example of a PropBank annota-
tion (dashed edges).
Table 2: Evaluation of adding Penn Treebank func- ' this section we address a specific NLP task:
tion tags. identifying and Iabe_llng semantic arguments in the
output of a syntactic parser. For the example in
Figure 2 this task corresponds to adding “semantic”
respectively. Note that the present method was n@ibdes and edges to the syntactic tree.
specifically designed to add functional tags to con- As before, in order to apply our graph transfor-
stituent labels. The method is not even “aware” thahation method, we need to encode the available in-
functional tags exists: it simply treat® and\NP-SBJ formation using graphs. Our encoding of syntactic
as different labels and tries to correct labels compaphrase structure is the same as in Section 4.1 and the
ing input and output graphs in the training corpora.encoding of the semantic annotations of PropBank
In general, of the 240 graph rewrite rules exis straightforward. For each PropBank predicate, a
tracted during the 12 iterations of the method, 25%ew node with attributesgpe = propbank andiabel =
involved only one graph node in the left-hand sidepred is added. Another node withbel = head and
16% two nodes, 12% three nodes, etc. The twaodes for all semantic arguments of the predicate
most complicated extracted rewrite rules involveqwith labels indicating PropBank argument names)

Syntactic 4917 96.5/95.3/95.9 | 95.4/95.5/95.5
Semantic 3225 86.7/80.3/83.4| 89.7/82.5/86.0

left-hand sides with ten nodes. are added and connected to the predicate node. Ar-
We now switch to the second application of ougument nodes with labelrRGMm (adjunct) addition-
graph transformation method. ally have afeature attribute with valuesrmp, LOC,

etc., as specified in PropBank. The head node and
all argument nodes are linked to their respective syn-
Put very broadly, the task of semantic role labelingactic constituents, as specified in the PropBank an-
consists in detecting and labeling simple predicatesntation. All introduced semantic edges are marked
Who did what to whom, where, when, how, ywétg. with the attributetype = propbank.

There is no single definition of a universal set of As before, we used section 02-21 of the Prop-
semantic roles and moreover, different NLP appliBank (which annotates the same text as the Penn
cations may require different specificity of role la-Treebank) to train our graph transformation system,
bels. In this section we apply the graph transformasection 00-01 for development and section 23 for
tion method to the task of identification of semantigesting. We ran three experiments, taking three dif-
roles as annotated in the Proposition Bank (Palmégrent corpora of input graphs:

et al., 2005), PropBank for short. In PropBank, for

all verbs (except copular) of the syntactically anno- 1. the original syntactic structures of the Penn
tated sentences of the Wall Street Journal section of Treebank containing function tags, empty
the Penn Treebank, semantic arguments are marked Nodes, non-local dependencies, etc.;

using references to the syntactic constituents of the
Penn Treebank. For the 49,208 syntactically anno-
tated sentences of the Penn Treebank, the PropBank
annotated 112,917 verb predicates (2.3 predicates

per sgntence on average), with a total of 292_,815 S€3. the output of Charniak’s parser processed
mantic arguments (2.6 arguments per predicate on it the graph transformation system described

average). in4.1.
PropBank does not aim at cross-verb semantically

consistent labeling of arguments, but rather at anné-or all three experiments we used the gold stan-
tating the different ways arguments of a verb cadard syntactic and semantic annotations from the

4.2 Semantic role labeling

2. the output of Charniak’s parser (i.e., bare syn-
tactic trees) on the strings of sections 02-21;
and

Penn Treebank Charniak | Charniak + System ‘ P R)

Iter. P R P R P R

2| 90.7 765 | 812 639|810 64.2 Here 81.0 70.4 75.3

3| 907 781 | 813 656|811 658

4| 906 789 | 8l4 665|812 66.7 . .

5| 905 804 | 814 670/ 812 683 Table 4: Evaluation of our methods for semantic role

6| 904 812 |814 683|811 688 identification with Propbank (12 first iterations).

7] 903 819 | 813 689| 81.0 69.3

8| 90.3 822 |813 693|810 698

9| 90.3 825 | 813 69.6| 81.0 70.1 : : Lo

10| 903 828 | 814 698! 81.0 703 roles labeling with the output of Charniak’s parser to
11| 90.3 83.0 | 81.3 69.9| 81.0 70.4 the state-of-the-art system of (Pradhan et al., 2005).
12| 903 832 While showing good precision, our system per-

forms worse than state-of-the-art with respect to re-
Table 3: Evaluation of our method for semantic rolg;a)|. Taking into account the iterative nature of

identification with Propbank: with Charniak parseshe method and imperfect rule selection criteria (we

and with parses processed by the system of Segmply take the most frequent left-hand sides), we

tion4.1. believe that it is the rule selection and learning termi-
nation condition that account for the relatively low

Penn Treebank and PropBank as the corpora of odcall values. Indeed, in all three experiments de-
put graphs (for the experiment with bare CharniaRcribed above the learning loop stops while the recall
parses, we dropped function tags, empty nodes affustill on the rise, albeit very slowly. It seems that
non-local dependencies from the syntactic annot& more careful rule selection mechanism and loop
tion of the output graphs: we did not want our systermination criteria are needed to address the recall
tem to start recovering these annotations, but wersoblem.

interested in the identification of PropBank informa-
tion alone).

For each of the experiments, we used the corpofg this paper we argued that encoding diverse and
of input and output graphs as before, at each itergomplex linguistic structures as directed labeled
tion extracting 20 rewrite rules with most frequentgraphs allows one to view many NLP tasks as graph
left-hand sides, applying the rules to the developransformation problems. We proposed a general
ment data to measure the current performance of thgethod for learning graph transformation from an-
system. We stopped the learning in case the perfafptated corpora and described experiments with two
mance improvement was less than a threshold ang_p applications.
otherwise, continued the learning loop. As our per- For the task of identifying non-local dependen-
formance measure we used thigscore of precision ¢jes and for function tagging our general method
and recall of the correctly identified and labeled nondemonstrates performance similar to the state-of-
empty constituents—semantic arguments. the-art systems, designed specifically for these tasks.

In all experiments, the learning stopped after 1¥or the PropBank semantic role labeling the method
or 12 iterations. The results of the evaluation of thehows a relatively low recall, which can be explained
system at each iteration on the test section of Propy our sub-optimal “rule of thumb” heuristics (such
Bank are shown in Table 3. as selecting 20 most frequent rewrite rules at each

As one may expect, the performance of our seteration of the learning method). We see two ways
mantic role labeler is substantially higher on theof avoiding such heuristics. First, one can define
gold Penn Treebank syntactic structures than on tked fine-tune the heuristics for each specific appli-
parser’s output. Surprisingly, however, adding extrgation. Second, one can use more informed rewrite
information to the parser’s output (i.e., processing itule selection methods, based on graph-based rela-
with the system of Section 4.1) does not significantlyional learning and frequent subgraph detection al-
improve the performance of the resulting system. gorithms (Cook and Holder, 2000; Yan and Han,

In Table 4 we compare our system for semanti2002). Furthermore, more experiments are required

Conclusions

to see how the details of encoding linguistic in-Ana-Maria Giuglea and Alessandro Moschitti. 2006. Se-

formation in graphs affect the performance of the mantic role labeling via framenet, verbnet and prop-
bank. InProceedings of the 21st International Con-

method. ference on Computational Linguistics and 44th Annual
Meeting of the Association for Computational Linguis-
Acknowledgements tics, pages 929-936.

This research was supported by the NetherlandS'”?1 H(;Ckeg_matief- 2003. Ta;Sinst?] Witggene:thive med-
Organization for Scientific Research (NWQ) un- £'S Of predicate-argument structure.Hroceedings o
. he 41st M f A — .

der project numbers 017.001.190, 220-80-001, the 41st Meeting of AClpages 359-366
264-70-050, 354-20-005, 600.065.120, 612-13valentin Jijkoun and Maarten de Rijke. 2004. Enrich-
001. 612.000.106. 612.066.302. 612.069.006. ing the output of a parser using memory-based learn-

’ i A — . ~— ing. InProceedings of the 42nd Meeting of the Asso-
640.001.501, 640.002.501, and by the E.U. _IST ciation for Computational Linguistics (ACL'04), Main
programme of the 6th FP for RTD under project \olume pages 311-318, Barcelona, Spain, July.

MultiMATCH contract IST-033104. o _
Valentin Jijkoun. 2006 Graph Transformations for Nat-

ural Language Processind?h.D. thesis, University of

Amsterdam.
References

i Thorsten Joachims. 1999. Making large-scale svm

Ann Bles, Mark Ferguson-, Kareh KQI‘Z, and Robert Mac- |earning practica'_ In B. Saﬂkopf' C. BurgeS, and

|ntyre. 1995. BraCketlng gwdellnes .for Treebank ” A. Smola, editorsAdvances in Kernel Methods - Sup_

style Penn Treebank project. Technical report, Uni- port Vector LearningMIT-Press.

versity of Pennsylvania.

Christopher R. Johnson, Miriam R. L. Petruck, Collin F.

Don Blaheta. 2004.Function Tagging Ph.D. thesis, Baker, Michael Ellsworth, Josef Ruppenhofer, and

Brown University. Charles J. Fillmore. 2003. FrameNet: Theory and

Practice. http://www.icsi.berkeley.edu/

Eric Brill. 1995. Transformation-based error-driven framenet
learning and natural language processing: A ca
study in part-of-speech taggingcomputational Lin-
guistics 21(4):543-565.

Sl@lark Johnson. 2002. A simple pattern-matching al-
gorithm for recovering empty nodes and their an-
tecedents. IfProceedings of the 40th meeting of ACL

Richard Campbell. 2004. Using linguistic principles pages 136-143.

to recover empty categories. Froceedings of the \artha Palmer, Daniel Gildea, and Paul Kingsbury.
42nd Annual Meeting on Association for Computa- 2005, The proposition bank: An annotated corpus of
tional Linguistics pages 645-653. semantic rolesComputational Linguistics31(1).

Eugene Charniak. 2000. A maximum-entropy-inspiredbameer Pradhan, Wayne Ward, Kadri Hacioglu, Jim Mar-
parser. InProceedings of the 1st Meeting of NAACL tin, and Dan Jurafsky. 2005. Semantic role label-
pages 132-139. ing using different syntactic views. IRroceedings of

ACL-2005

Michael Collins. 1999.Head-Driven Statistical Models .
for Natural Language ParsingPh.D. thesis, Univer- A. Scturr. 1997. Programmed graph.replacement Sys-
sity of Pennsylvania. tems. In Grzegorz Rozenberg, editétandbook of

Graph Grammars and Computing by Graph Transfor-

Diane J. Cook and Lawrence B. Holder. 2000. mation chapter 7, pages 479-546.

Graph-based data miningEEE Intelligent Systems kistina Toutanova, Aria Haghighi, and Chris Manning.

15(2):32-41. 2005. Joint learning improves semantic role labeling.

i) o _) In Proceedings of the 43rd Meeting of the Association
Peter Dienes. 2004 Statistical Parsing with Non-local for Computational Linguistics (ACL)

DependenciesPh.D. thesis, Universit des Saarlan-
des, Saarlircken, Germany. Xifeng Yan and Jiawei Han. 2002. gspan: Graph-based
substructure pattern mining. IRroceedings of the
Daniel Gildea. 2001 Statistical Language Understand- 2002 IEEE International Conference on Data Mining
ing Using Frame SemanticsPh.D. thesis, University ~ (ICDM).
of California, Berkeley.

