
Support for Decision Making: Electoral Search

Valentin Jijkoun Maarten Marx Maarten de Rijke Frank van Waveren
ISLA, University of Amsterdam

Kruislaan 403
1098 SJ Amsterdam, The Netherlands

jijkoun,marx,mdr,fwaveren@science.uva.nl

ABSTRACT
The Netherlands had parliamentary elections on 22 Novem-
ber 2006. We built a system which helps voters to make
an informed choice among the 16 participating parties. One
of the most important pieces of information in the Dutch
election and subsequent coalition government formation is
the party manifesto. This is a text document with an aver-
age length of 45 pages. Our system provides the voter with
focused access to party programs: given a search term, the
system displays a ranked list of relevant paragraphs from
the programs. Ranking is possible by relevance or by party.
By selecting only the parties of interest, the voter can make
a topic-wise comparison of party view-points.

The paper describes the system in full detail, including
design, requirements, technical details, and user statistics.
It can be used at www.verkiezingskijker.nl. The system
is presented as a case-study in building applications which
aid decision making.

Categories and Subject Descriptors
H.4.m [Information Systems]: Miscellaneous; D.2 [Software]:
Software Engineering

Keywords
Elections, Democracy, Information Retrieval, Language Tech-
nology

1. INTRODUCTION
In this paper we describe—in the form of a case study—a

decision support system based on information retrieval tech-
niques. It addresses the problem of providing easy access to
information that, on the one hand, users are very interested
in and is highly relevant to their lives, but which, on the
other hand, may be almost inaccessable to a broad audi-
ence. This inaccessibility exists because of lack of focused,
topic-driven access facilities, as well as the lack of instru-
ments for comparing information from different sources.

Often such hard to reach informational niches are occu-
pied by commerical/professional brokers, advisors or media-
tors. They offer help with complex decisions with long-term
consequences on e.g., the welfare, wealth, or well-being of a
person. Examples of such decisions include:

• choosing among several bidders on a contract;

Copyright is held by the author/owner(s).
DIR 2007.
.

• buying an important and expensive object for which
there are many vendors, e.g., a mobile phone provider,
health insurance, mortgage, marriage ceremony, choos-
ing a school for your children, etc.

One common aspect to these cases is the necessity to make a
well-informed and judicious decision, often under high time
pressure. The decision consists of making a unique choice
among many competitors, who often swamp the decision
maker in poorly structured textual information.

The search engine described in this paper is not intended
to guide the user in making decisions. It merely helps her
by providing quick and easy access to those parts of the
data that are relevant to the user, and in putting together
different competitors along a dimension chosen by the user.
Hence, our search engine can be seen as an important back-
end for a real-world decision support system.

But even without the front-end of the decision support
system, such a search engine can be very useful. In the case
study we describe in this paper, we find 16 competitors,
namely, political parties, competing to attract user’s votes,
and each describing in their manifestos (election programs in
our case) their standpoints and advantages and sometimes
even drawbacks and flaws of their competitors. The number
of dimensions through which a user might approach this
complex information knot is almost limitless and different
users might be interested in very different dimensions.

Making an informed decision in such a case is neigh im-
possible without additional informational support. In our
case study of election programs, the best a user can do
without such a support is to locate online (or even offline,
e.g., printed) versions of election programs and study and/or
compare them by performing string searches in the elec-
tronic documents or even by reading entire programs hoping
to come across the relevant information.

Main contributions.We describe an electoral search en-
gine aimed at helping the general public in its electoral de-
cision making. Based on interest from real users, on user
feedback and media coverage, we believe that this applica-
tion of search and language technology is one of wide inter-
est. We motivate the choices made in our design, describe
the technical challenges and our solutions, and lift our find-
ings to the general decision making problem outlined above.

The main contribution of the paper is the description of
our case study. This can be viewed as a recipe describing
how to use off-the-shelf technology to quickly build a web ac-
cessible search engine for cases which fit the given problem:
make an informed choice among several competitors which

www.verkiezingskijker.nl


drown the choice-maker in textual, mostly unstructured, in-
formation.

Website.The website for the system described in this paper
is available at http://ilps.science.uva.nl/verkiezingen.

Organization.Section 2 provides background on the Dutch
electoral system, and describes the motivation for the system
that we built. Section 3 describes how the perceived prob-
lem was translated into functional requirements and design
of the system. Preprocessing and indexing of the data is
covered in Section 4. Technical details and results are in
Sections 5 and 6, respectively. Section 7 describes related
work. We conclude in Section 8.

2. BACKGROUND

Dutch parliamentary elections.The last Dutch parlia-
mentary elections were held on November 22, 2006. Mem-
bers of the Dutch parliament (150 seats) are chosen ac-
cording to the principle of proportional representation. In
2006, 65.591 votes were needed for a single seat (http:
//www.kiesraad.nl). This system leads to a proliferation of
political parties; in general, some twenty parties participate
in the national elections (in 2006: 24 parties). Before the
election, the Dutch parliament contained representatives of
10 regular parties, as well as a small number of independent
members. 10 parties are represented after the elections, two
of them are new. In this system, it is nearly impossible
for a party to obtain an absolute majority, and the Dutch
government thus always consists of a coalition of parties.

The global trend of parties moving towards the center of
the political spectrum is also visible in The Netherlands.
For each election, all parties create manifestos (a.k.a. party
platforms) which contain their plans and promises should
they be elected into government. These documents tend to
be quite long (45 pages, on average) and are mostly read by
professionals.

The general public has a hard time making up their minds
in this complex setting, as is witnessed by the existence of
multiple (we found 12) “voting advice websites.” The el-
dest and most popular of these (www.stemwijzer.nl, pro-
viding over 4.5 million advices during the last parliamentary
elections) measures the similarity between a voter and the
parties, and returns a ranked list of parties. Similarity is
measured by answering agree/disagree on 30 theses cover-
ing the “hot election topics.” This advice site is set up
and created by the Instituut voor Publiek en Politiek (IPP,
[15]), a public-private non-profit foundation with the aim of
bringing politics and the general public closer together. The
Stemwijzer site does not aim to predict what a person will
vote. On the contrary, it advices the voter by showing those
parties which most agree with the voter on the “hot topics.”
The top ranked (most similar) party is often unexpected by
the voter. This aspect generates heated debates among vot-
ers, ranging from hate-mail to the site to opinionated articles
by professionals in leading national newspapers.

The problem and our proposed solution.IPP analyzed
the reason for this and concluded that the general public
just does not know the views of the participating political
parties, but rather has stereotypical images of them. They

asked our help in building a system which can easily inform
voters on the viewpoints of parties. Because the manifestos
are considered to present the official party-line, we decided
on a system which makes these easily accessible, with the
following requirements:

1. users can choose a topic from a predefined list, and
possibly a number of parties; the system returns all
relevant passages from the programs (of the chosen
parties);

2. users can also decide on their own search terms;

3. for the predefined topics, the precision at 5 should be
high;

4. because the manifestos were made available less than
one month before the elections, manual tagging of pas-
sages was not possible, so the system had to be fully
automatic.

The next section translates these informal desiderata into
functional requirements on the system.

3. FUNCTIONAL REQUIREMENTS AND DE-
SIGN

In this section we describe the requirements from the per-
spectives of the user, the developers, and the system. It
ends with the architecture of the main modules.

Requirements from the user’s perspective

Pinpointing to relevant passages. Voters do not read man-
ifestos because they are too long. The system must
therefore provide focused access and return only the
relevant passages in response to a search query, not
the complete document. To implement this, we di-
vided the manifestos into paragraphs and fed these as
separate documents to the search engine.

Thematic and free search. Based on previous elections
and current hot topics, the contractor provided an isa-
hierarchy of election topics. The hierarchy was 3 levels
deep, with 10 topics at the top level, and contained
179 topics in total. For these topics, the contractor
wanted high recall and precision at five. We obtained
this through query expansion. Section 4.2 describes
how the expansion terms were collected.

Besides this, we offered a familiar search box in which
the user could provide her own search terms.

Figure 1 shows the query interface. The open menus
display a path in the isa-hierarchy.

Comparison of topics between parties. Given a topic,
the system should help the voter in comparing the dif-
ferent parties on their views on that topic. This trans-
lated into an interface in which the user can sort results
by relevance and by party. The user can also restrict
the search to certain parties using checkboxes. In the
case of two parties the relevant results are displayed
next to each other, in two columns, as illustrated in
Figure 2.

http://ilps.science.uva.nl/verkiezingen
http://www.kiesraad.nl
http://www.kiesraad.nl
www.stemwijzer.nl


Figure 1: Query interface showing pop-ups with the thematic search terms (in the grey boxes).

Figure 2: Comparison of two parties on the topic of terrorism.

Figure 3: Trend in the volume of blog posts on the topic of terrorism.

http://ilps.science.uva.nl/verkiezingen/search.php
http://ilps.science.uva.nl/verkiezingen/search.php?hits=100&sort=p&expert=1&src=progs&query=terrorisme&s_cda=on&s_partijvandearbeid=on
http://ilps.science.uva.nl/verkiezingen/search.php?hits=100&sort=p&expert=1&src=blogs&query=terrorisme&show=trend


Multiple sources of information. While the manifestos
are the primary source of information, we also want to
offer integrated access to other independent sources.
We chose for information coming from professionals
and from the general public. For this, we collected
newspaper articles and weblog postings, respectively.
By clicking the corresponding tab in the interface, the
user can switch, keeping his search term, between these
three different sources. See Figure 4. How the data
from these sources was collected is described in Sec-
tion 4.

Figure 4: Tabs for the three sources of information:
partijprogramma’s (manifestos), nieuws (news), and
blogs (indeed: blogs).

Events and trends. To guide the user to interesting events
related to a topic, we provided a trend button. Trends
of a topic are shown measured in the volume of news
and blog postings per day, with peaks indicated in the
graph. Similar displays are used by other blog-tracking
sites, e.g., [2, 4]. To provide meaning to the trend
plots, we offer automatically generated explanations
by finding the corresponding events which probably
lead to the peak; see Figure 3. The details of the peak
explanation method are provided in Section 5.

Requirements from the developer’s perspective
Collecting domain knowledge. Due to time constraints

this had to be done with very little effort on the part of
the domain expert. Section 4.2 describes how the ex-
pansion terms for the predefined topics were collected.

Data preprocessing. Again due to time constraints (the
data is basically available at the exact moment the
system should be working), this had to be simple but
robust and effective. Details are given in the next sec-
tion.

Requirements from the system’s perspective
• Use only open source, off-the-shelf technology: Lucene

for the search engine; MySQL for the database; PHP,
Javascript, CSS for the website; Perl and shell script-
ing for data processing scripts.

• Provide a simple API to the search engine, because it
has to be hooked up to several websites: implemented
using the GET method in forms, so all query variables
are visible in the URL.

• The system has to run in real time with many users.

Architectural design.The design of the main modules of
the system and their interaction is given in Figure 5.

4. DATA PREPROCESSING AND INDEX-
ING

We describe how we processed the three data streams —
manifestos, news articles and blogs— and how we obtained
query expansion terms for the predefined topics from the
domain expert.

4.1 Manifestos
We could collect 16 official and final manifestos. When

printed, these had 670 pages in total. Although most of
them were discussed at the assembly of the members of
the parties, just two of them were available in web-readable
HTML format. Five were only available in Word format,
the rest in PDF. Hyperlinks were almost absent; these texts
were edited as to be read from start to end.

Based on the physical layout, the manifestos were divided
into paragraphs, yielding a corpus of 4618 documents. Ta-
ble 1 contains the breakdown of the number of paragraphs
per party.

Number of
Party paragraphs
Christenunie 749
Partij van de Arbeid 581
SP 481
SGP 444
Partij voor Nederland 381
D66 373
Partij voor de Dieren 316
CDA 291
Groen Links 232
LibDem 172
Een NL 147
VVD 144
Fortuyn 128
Partij voor de Vrijheid 92
VSP 67
Groen Vrij! 20

Table 1: Number of paragraphs in manifestos per
party.

In order to put the paragraphs into context and to boost
recall, we recursively added chapter, section, subsection and
paragraph headers to each individual paragraph. This was
all stored in XML format, which made it easy to produce
uniformly looking HTML versions of all manifestos.

The manifestos were processed by a generic Perl script
which could be fine-tuned for each party. On average half an
hour of manual cleanup was needed for each party program.

4.2 Obtaining domain knowledge
For the predefined topics, our goal was to be able to re-

trieve paragraphs relevant to the topic with good precision
at high rank (in top 5). To achieve this in a simple way we
expanded the topic title with additional query terms which

http://ilps.science.uva.nl/verkiezingen/search.php
http://ilps.science.uva.nl/verkiezingen/search.php


News

RSS
News

scraper

Elections

filter

Blogs

RSS

Raw

party

programs

News

Blogs

Programs
Paragraph

splitter

IR

engine

Trend

analyzer

User

interface

Figure 5: Architecture of the system.

we obtained indirectly from the domain expert as follows.
We used the search engine to find candidate paragraphs for
each topic simply using the title of the topic as search query,
and asked the expert to provide relevance feedback: mark
the returned paragraphs as relevant or not relevant for the
topic. We asked the expert to find at least 5 relevant para-
graphs for each of the 179 topics. For most topics, 5 relevant
paragraphs were found in the top 20 hits, making the task
relatively easy. In total, the domain expert needed just over
two days for the task. (We note that during the task some
topics were dropped because they were not present in the
manifestos at all).

For each topic, using the paragraphs manually annotated
as relevant, we collected the 15 most overused terms as char-
acterizing the topic. Over-usage of terms was determined
using the log-likelihood statistical test [6]. Specifically, for
each topic we compared two text corpora: (1) consisting
of paragraphs marked as relevant, and (2) consisting of all
paragraphs in the collection. Let Oi be the observed fre-
quency of a term in corpus i (i = 1, 2), Ni the size of corpus
i, and Ei = (Ni ·

P
i Oi)/

P
i Ni its expected frequency in

corpus i (where i takes values 1 and 2 for the corpus of rele-
vant paragraphs and the entire corpus, respectively). Then,
the log-likelihood value for a term is calculated according to
this formula:

−2 ln λ = 2
X

i

Oi ln

„
Oi

Ei

«
.

We subsequently performed a manual check of the terms
identified by this method and removed those that would
likely lead to topic drift. This occurred mostly with very
general topics at the top of the IS-A-hierarchy, e.g., “Eu-
rope” or “Rules”.

This semi-automatic method for extracting characteristic
terms showed good results. The terms found were often
unexpected but judged correct by the domain expert (“If
you had asked me directly, I would have never thought of
that term for this topic”.) Table 2 lists the overused words
on the topic “Traffic jams”.

This method can be improved by considering multi-word
compounds like public transport as phrases. The terms re-
moved during the manual check were often part of com-
pounds which were excellent as phrases, but would lead to
topic drift if taken as single words (For Dutch readers: “lik
op stuk” was a nice example showing up in the topic “crim-

inality”). Unlike in English, noun compounds in Dutch are
often written as one word (see the examples in the table)
and therefore did not cause many problems at this stage.

Dutch English translation

vervoer transportation
kilometerheffing “kilometer charge”
mobiliteit mobility
openbaar public
werkverkeer “work related traffic”
forensenforfait commuter allowance
ondertunneling tunnelling
overkappingen coverings
heffing charge
auto car
wegennet road net
snelwegen highways
motorrijtuigenbelasting car tax.

Table 2: Semi-automatically extracted characteris-
tic terms for the topic ”Traffic jams”.

The resulting per-topic lists of characteristic terms were
used straightforwardly in the search interface: when a user
deployed topic-based search, rather than keyword-based, the
list of terms for the chosen topic was used as a query to the
paragraph retrieval engine.

4.3 News
Besides manifestos, our system had news articles and blogs

as information sources. Unlike manifestos, news items have
to be collected, cleaned and converted to a simple format
(header, content, source, date, time, etc.) in real time. The
requirements for the news collection and extraction module
were as follows:

1. Cleanup of news articles should be fast and easy; there
was no time to develop separate scrapers for different
news sites;

2. Only news items somehow relevant to the elections (or,
more generally, politics) should be considered by the
search engine, as opposed, for example, to sport or
entertainment news;



3. Many important news events should be represented
in the corpus and covered from different sides of the
political spectrum.

Because our main interest was events related to the national
elections, we chose nation-wide daily newspapers. The whole
political spectrum is present in this population, and fortu-
nately, all selected newspapers make content easily available
with RSS-feeds. Table 3 lists the newspapers included in our
corpus, along with their political orientations and the aver-
age number of political news articles per day.

Daily newspaper # Political
orientation

Algemeen Dagblad 9.3 Centre
Nederlands Dagblad 5.3 Christian Democrate
NRC Handelsblad 5.5 Centre
Het Parool 2.6 Left-wing
De Spits 2.8 Right-wing
De Telegraaf 12.6 Right-wing
Trouw 13.1 Christian Democrate
Volkskrant 11.6 Left-wing

Table 3: Newspapers included in the search engine.
The middle column contains the avarage number of
election-related articles per day.

The preprocessing of news data consisted of 4 stages:

1. getting RSS feeds and fetch full articles (HTML);

2. extracting the text content of the articles from HTML;

3. filtering news items related to the elections; and

4. storing and indexing the data.

We briefly describe each stage.

Stage 1.Fetching the RSS feeds and the articles in HTML
was done by hourly polling the RSS-feeds of the selected
news sources. For each article, we store URL, publication
date and time, source, headline and the HTML content.

Stage 2.Scraping news articles is notoriously difficult [5, 3]
and due to the high time pressure we had to go for a generic
solution.

One common way of extracting data from web pages such
as news sites is to write a set of rules (usually in the form
of regular expressions) for each site which is scraped. This
gives accurate results, but is not robust, does not scale and
requires regular maintenance.

It turns out there is a class of web pages which have the
content all lumped together with only a few types of HTML
tags in the text: newspaper websites are a prime example
of this. The news content is presented as a single block of
text with menus, search boxes, links to other sections of the
paper, etc. placed around it. This visual layout translates
back to an HTML document structure with the content in
one block.

The HTML tags that appear in the BODY section of an
HTML document can be either inline or block-level [16].
This distinction determines the behaviour in several respects
of the tag, but most important for the task at hand is the

content-model and formatting behaviour: Block-level tags
cause a line-break, whereas inline tags do not (this behaviour
can be changed using CSS, but generally is not). Examples
of block-level tags are BLOCKQUOTE, PRE, and H1, whereas
inline tags are those like EM, FONT, and I. As we are looking
for large single pieces of text, encountering a block-level tag
usually means we have skipped to a next piece of text.

With this model for the structure of our data, we can con-
struct an algorithm to extract plain text from HTML. We
need to look for long blocks of text outside of tags that is
uninterrupted by block-level tags. This algorithm has one
tunable parameter: The minimal length of a segment of text
for it to be accepted, measured in numbers of words/tokens.
We optimized this parameter based on a representative sam-
ple of 25 HTML pages, and found an optimal threshold value
of 20 words. The errors with this threshold were negligible:
3 to 4 superfluous or missing word per article (we do not
consider headings and captions to be part of the article).
Note that this only concerns the words which are indexed;
the user is transferred to the original page, so will not notice
these errors.

This simple technique met the first requirement beyond
our expectation. A complete description plus code is avail-
able [14].

Stage 3. Filtering for election related news.Although
we mainly used focused RSS feeds (internal affairs, political
news, etc) only 20% of the crawled articles were relevant to
the elections. In order to meet the second requirement, we
filtered the stream of articles using a Naive Bayes classifier,
an algorithm that has gained popularity recently for filtering
spam from email[7].

The classifier was trained with a few hundred articles
which were manually categorized (this large number of arti-
cles was necessary as only 20% of the news articles pertain to
the election). To evaluate the operation of the classifier we
picked 100 news articles at random from our corpus and ran
the classifier on them while manually verifying the results
The results are in Table 4.

correctly incorrectly
predicted predicted

predicted as
election-related 13 1
predicted as
not election-related 81 5

Table 4: Evaluation of the classifier on 100 articles

Though a fair number of wrong predictions were made, the
disparity between the numbers of election-related and other
articles means that this filter reduces a stream that contains
only 20% election-related articles to one that consists of over
90% of them. In the process some election-related articles
are lost, but given the overlap in coverage between news
sources this is acceptable for our purposes.

It should be noted that most of the errors occur at the edge
of the “election-related” conceptual area. For instance, the
false positive is an article about the court case of a man who
made threats of violence against several prominent politi-
cians, of whom both the names and parties are given.



Stage 4. Indexing and storing..The text of the news
articles after filtering is indexed for retrieval and stored in
a database, together with the meta-data from the RSS feed
(headline, URL, publication date and time, newspaper sec-
tion, etc.).

4.4 Blogs
We obtained our blog data from ILSE, one of the largest

Dutch weblog hosts (http://www.web-log.nl/). At the mo-
ment of writing the corpus contains 43984 weblogs with an
average of 4179 blog postings per day. Within the measured
time-period there were 7768 active bloggers (having at least
one post a week). Unlike for news articles, we do not perform
election-related filtering on blog posts. Because we obtained
clean data from the blog host, no additional cleanup or any
other preprocessing was needed.

Indexing and storing.Similar to news items, blog posts
are indexed for retrieval and stored in a database, along
with meta-data (blogger, URL, publication date and time,
etc.).

5. TECHNICAL DETAILS
The system allows users to search any of the three re-

sources (election programs, news and blogs) by either typ-
ing keywords or selecting topics from a menu. In addition,
the system provides the trend functionality for news and
blogs: visualization of the volume of blog posts or news
items relevant to a topic or a search query, peak detection
and explanation.

5.1 Searching in programs, news and blogs
For program search, the system responds with a list of

paragraphs extracted from manifestos, ordered either by
party or by the relevance to the topic or query. The user
may optionally select which parties to include in the search
results. For news and blogs, search results can be ordered
by relevance or by publication time. The system is imple-
mented using Lucene [12] for retrieval in programs, news
and blogs, and MySQL database for data storage.

5.2 Trends
The trend functionality guides the user to interesting events

related to a topic. The system shows trends of a topic or
a keyword, measured as the volume of news and blog post-
ings per day, with peaks indentified and highlighted on the
plot (See Figure 3). Peaks are detected by comparing ac-
tual amount of information items on a specific day to the
expected amount estimated from earlier observations (pre-
vious days and previous weeks).

We go one step further and provide explanations for the
identified peaks. For each peak, the system produces a list
of overused words characterising the peak in the context of
the user’s search query. The overused words are extracted
as described in Section 4.2, using the log-likelihood statistics
for comparing a set of relevant items in the peak period to
the entire set of relevant items.

As a different type of peak explanation, the system also
finds and displays news items and blog posts likely to be
related to the “subject” of the peak. These news and blog
items are identified by querying the news and blogs indices,
respectively, with the list of the peak’s overused words as

Query English #
kinderbijslag child allowance 5314
minister-president elected prime-minister 5252

gekozen
kinderopvang kindergarten 4464
Turkije Turkey 3969
ontslagrecht law governing dismissal 3284
bijstand social security 3123
meningsuiting freedom of speech 3069
dieren animals 2754
nationaliteit nationality 2664

Table 5: The frequencies of the 10 most popular
keyword search queries.

the query. Our peak identification method is based on the
method described in [1].

6. RESULTS
An early prototype of the system went online on October

23, 2006. In this section we present some statistics for the
period of five weeks between October 23, 2006 and Novem-
ber 30, 2006.

• 109,954: the number of unique IP hosts accessing the
system; 20,624 unique hosts (19% of the total num-
ber) accessed the system on the day of the elections
(November 22);

• 76,360: the number of unique IP hosts that used the
search facilities of the system;

• 148,026: the total number of searches made in the sys-
tem, in particular:

– 117,132: the number of searches by keywords;

– 28,025: the number of searches by topic;

– 2,788: the number of trend requests by keywords;

– 81: the number of trend requests by topic;

• 6,014: the number of distinct keyword queries;

• 175: the number of distinct topic queries (out of 179
available topics).

The distribution of the actual frequencies of search queries
follow a power law and, moreover, 40 most frequent key-
word queries (1% of all distinct queries) account for 80% of
all keyword searches in the system. It appears that these
topic areas are extremely important in the context of these
particular elections. Table 5 lists frequencies of the most
popular keyword queries for parties’ programs.

7. RELATED WORK
Related work comes in several flavors: multiple-perspective

search, site scraping and wrapper development, morphologi-
cal normalization for Dutch, and log-likelihood-based meth-
ods for trend analysis.

As increasing amounts of complex information are be-
coming available on the web, there is active research into
search engine result presentations that support interaction,
exploration, and assimilation of such information. E.g., Hsu

http://www.web-log.nl/


et al. [10] report on determining and displaying semantic
and spatio-temporal correlations between web pages. And
commerical search engines decorate the familiar ranked re-
sult list with ads, products, questons-and-answers, etc, thus
combining informational with navigational and commercial
perspectives pertinent to a user’s query. Multiple perspec-
tive search is more widespread than one may realize: essen-
tially, the tabs present in the interface of many commerical
search engines each provide a different perspective on the
user’s query—where the difference lies with the data source,
the medium or the type of response (e.g., documents vs.
answers). Finally, multiple-perspective search is related to
faceted retrieval, where the aim is to identify a broad spec-
trum of subtopics of a given topic, and to organize the search
results accordingly; recent applications of the idea can, for
instance, be found in media analysis [11].

Site scraping and wrapper development and induction are
active areas of research, cf. e.g., [5, 3]. Our proposal of
scraping blocks consisting of 20 or more words is much sim-
pler than those reported in the literature, and gave good
results on Dutch newspaper articles. For a discussion of
different ways of morphological normalization of Dutch lan-
guage text, see [9]. Our peak identification method is similar
to the method implemented in MoodViews [1, 13].

8. CONCLUSION
We have described an information retrieval system de-

signed to help users in making complex decisions in the
face of large amounts of poorly structured textual informa-
tion. We demonstrated an application of IR techniques to a
real-world information access problem: facilitating electoral
search. Our system provides an easy and straightforward
access to election programs of Dutch policital parties, en-
abling a user to identify and compare the position of parties
on subjects relevant and important for her, and thus to make
an informed choice. The framework described in the paper
is applicable to likewise situations.

Future work. Since the time of writing we reused the
framework for the Dutch provincial elections of March 7,
2007. This turned out harder than the national elections.
We now had 12 (provinces) times 10–15 manifestos, and had
to make a specialized topic-list for each province. We worked
together with www.kieskompas.nl to obtain the topics: 36
for each province. This was often difficult, resulting in rather
poor precision and recall on the topic queries.

Besides this system for the general public, we created a
similar search engine for the developers of www.kieskompas.
nl. They needed good and fast access to the collection to
1) create topics and theses and 2) score each party on each
thesis (in total 12 × 36 × (> 10) scores for each coder).
Manifestos only become available at the last moment and
they are manually collected (“begging for them by phone”).
They had to be indexed instantaneously. For that, we re-
placed the paragraph splitter by a splitter based on a fixed
400 character length, creating overlapping text tiles as in [8].
Even though the returned paragraphs were just arbitrarily
cut text-snippets the focused retrieval of the search system
turned out indispensable for the creators of Kieskompas.

Actually building a system which is supposed to be off-
the-shelf technology still brings up new research questions.
We list a few: stemming can and must be improved (ouders
and ouderen both stem to ouder, leading to paragraphs on
child-allowance when searching on elderly people); compound-

splitting must be improved (hypotheekrenteaftrek was a hot
election topic, but hardly occurred like that in the man-
ifestos); semi-automatically finding good query expansion
terms for the fixed-topic queries remains difficult: too much
manual intervention was needed for a scalable system.

9. ACKNOWLEDGMENTS
This research was supported by the Netherlands Organi-

zation for Scientific Research (NWO) under project numbers
017.001.190, 220-80-001, 264-70-050, 354-20-005, 600.065.120,
612-13- 001, 612.000.106, 612.066.302, 612.069.006, 640.001.501,
640.002.501, and by the E.U. IST programme of the 6th FP
for RTD under project MultiMATCH contract IST-033104.

10. REFERENCES
[1] K. Balog, G. Mishne, and M. de Rijke. Why Are They

Excited? Identifying and explaining spikes in blog
mood levels. In Proceedings EACL 2006, April 2006.

[2] BlogPulse Trends. was intelliseek, now nielsen
buzzmetrics.
http://www.blogpulse.com/trends.html.

[3] V. Crescenzi, G. Mecca, and P. Merialdo.
RoadRunner: Towards automatic data extraction
from large web sites. In Proceedings VLDB 2001,
pages 109–118, 2001.

[4] Database Group, University of Toronto. BlogScope.
http://www.blogscope.net/.

[5] D. de Castro Reis, P. B. Golgher, A. S. da Silva, and
A. H. F. Laender. Automatic web news extraction
using tree edit distance. In Proceedings WWW 2004,
pages 502–511, 2004.

[6] T. Dunning. Accurate methods for the statistics of
surprise and coincidence. Computational Linguistics,
19(1):61–74, 1993.

[7] P. Graham. A plan for spam.
”http://www.paulgraham.com/spam.html”, 2002.

[8] M. Hearst. TextTiling: segmenting text into
multi-paragraph subtopic passages. Comput. Linguist.,
23(1):33–64, 1997.

[9] V. Hollink, J. Kamps, C. Monz, and M. de Rijke.
Monolingual document retrieval for European
languages. Information Retrieval, 7:33–52, 2004.

[10] Y. W. Hsu, N. Moon, and R. Singh. Designing
interaction paradigms for web-information search and
retrieval. In Proc. ICWI, 2006.

[11] B. Liu, M. Hu, and J. Cheng. Opinion observer:
analyzing and comparing opinions on the web. In
Proceedings WWW ’05, pages 342–351, 2005.

[12] Lucene. The Lucene search engine.
http://lucene.apache.org/.

[13] MoodViews. Tools for blog mood analysis, 2006. URL:
http://moodviews.com.

[14] F. van Waveren. Extracting and classifying
election-related news items from the world wide web.
Master’s thesis, University of Amsterdam, 2006.
http://www.var.cx/ac/election2006/verk.pdf.

[15] I. voor Publiek en Politiek (IPP).
http://www.publiek-politiek.nl/english.

[16] W3C. Html 4.01 specification.
”http://www.w3.org/TR/html4/”, 1999. Edited by
Dave Raggett, Arnaud Le Hors, Ian Jacobs.

www.kieskompas.nl
www.kieskompas.nl
www.kieskompas.nl
http://www.blogpulse.com/trends.html
http://www.blogscope.net/
http://www.paulgraham.com/spam.html
http://lucene.apache.org/
http://moodviews.com
http://www.var.cx/ac/election2006/verk.pdf
http://www.publiek-politiek.nl/english
http://www.w3.org/TR/html4/

	Introduction
	Background
	Functional Requirements and Design
	Data Preprocessing and Indexing
	Manifestos
	Obtaining domain knowledge
	News
	Blogs

	Technical details
	Searching in programs, news and blogs
	Trends

	Results
	Related Work
	Conclusion
	Acknowledgments
	REFERENCES -9pt 

