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Abstract

We describe the official runs of our team for the CLEF 2005 question answering track.
We took part in the monolingual Dutch task, and focused most of our efforts on
refining our existing multi-stream architecture, and porting parts of it to an XML-
based platform.
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Management]: Languages—Query Languages
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1 Introduction

In previous participations in question answering tracks at both CLEF and TREC we developed a
multi-stream question answering architecture which implements multiple ways of identifying candi-
date answers, complemented with elaborate filtering mechanisms to weed out incorrect candidate
answers [1, 2, 8, 9]. Part of our efforts for the 2005 edition of the QA@CLEF track were aimed at
improving this architecture, in particular the so-called table stream (see Subsection 2.2). Also, to
accommodate the new questions with temporal restrictions, a dedicated module was developed.
The bulk of our efforts, however, was aimed at porting one of the streams to a “pure” QA-as-XML-
retrieval setting, where the target collection is automatically annotated with linguistic information
at indexing time, incoming questions are converted to semistructured queries, and evaluation of
these queries gives a ranked list of candidate answers.

Our main findings this year are the following. While our system provides wrong answers for less
than 40% of the test questions, we identified some obvious areas for improvement. First, we should
work on definition extraction so that both questions asking for definitions and questions requiring
resolving definitions can be answered in a better way. Second, we should examine inheritance
of document links in the answer tiling process to make sure that the associated module does not
cause unnecessary unsupported answers. And third, and most importantly, we should improve our
answer filtering module to make sure that the semantic class of the generated answer corresponds
with the class required by the question.
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Figure 1: Quartz-2005: the University of Amsterdam’s Dutch Question Answering System.

The paper is organized as follows. In Section 2, we describe the architecture of our QA system.
In Section 3, we describe the new XQuesta stream, i.e., the stream that implements QA-as-XML-
retrieval. In Section 4, we detail our official runs. In Section 5, we discuss the results we have
obtained and give a preliminary analysis of the performance of different components of the system.
We conclude in Section 6.

2 System Overview

2.1 Architecture

Many QA systems share the following pipeline architecture. A question is first associated with
a question type, from a predefined set such as Date-of-birth or Currency. Then, a query
is formulated based on the question, and an information retrieval engine is used to identify a
list of documents that are likely to contain the answer. Those documents are sent to an answer
extraction module, which identifies candidate answers, ranks them, and selects the final answer.
On top of this basic architecture, numerous add-ons have been devised, ranging from logic-based
methods [12] to ones that rely heavily on the redundancy of information available on the World
Wide Web [4].

Essentially, our system architecture implements multiple copies of the standard architecture,
each of which is a complete standalone QA system that produces ranked answers, though not nec-
essarily for all types of questions. The overall system’s answer is then selected from the combined
pool of candidates through a combination of merging and filtering techniques. For a reasonably
detailed discussion of our QA system architecture we refer to [2]. A general overview of the system
is given in Figure 1.

Question Processing. The first stage of processing, question processing, is common to all the
streams. Each of the 200 questions is tagged, parsed, and assigned a question class based on our
question classification module. Finally, the expected answer type is determined. See Section 3.2
for more details about question processing for the XQuesta stream, in particular.

There are seven streams in our system this year, four of which use the CLEF corpus to answer
questions and three of which use external sources of information. We now provide a brief descrip-
tion of these seven streams. Note that except for the table stream and XQuesta, which we discuss
in Sections 2.2 and 3 respectively, these streams remain unchanged from our system for last year’s
evaluation [2].

Streams that consult the Dutch CLEF corpus. Four streams generate candidate answers
from the Dutch CLEF corpus: Table Lookup, Pattern Match, Ngrams, and XQuesta. The XQuesta
stream, which is based on the idea of QA-as-XML-retrieval, is completely new for this year’s
system; for more details about it, see Section 3.

The Table Lookup stream uses specialized knowledge bases constructed by preprocessing the
collection, exploiting the fact that certain types of information (such as country capitals, abbrevi-



ations, and names of political leaders) tend to occur in the document collection in a small number
of fixed patterns. When a question type indicates that the question might potentially have an
answer in these tables, a lookup is performed in the appropriate knowledge base and answers
which are found there are assigned high confidence. For a detailed overview of this stream, see [7];
for information about improvements made to this stream for this year, see Section 2.2.

In the Pattern Match stream, zero or more regular expressions are generated for each question
according to its type and structure. These patterns, which indicate strings that are highly likely
to contain the answer, are then matched against the entire document collection.

The Ngram stream, similar in spirit to [5], constructs a weighted list of queries for each question
using a shallow reformulation process, similar to the Pattern Match stream. These queries are fed
to a retrieval engine (we use the open-source Lucene, with a standard vector-space model [11]),
and the top retrieved documents are used for harvesting word n-grams. The n-grams are ranked
according to the weight of the query that generated them, their frequency, NE type, the proximity
to the query keywords and more parameters; the top-ranking n-grams are considered candidate
answers.

Streams that consult the Web. Quartz has two streams that attempt to locate answers
on the web: Ngram mining and Pattern Match. For Web searches, we use Google, and n-grams
are harvested from the returned snippets. Pattern matching, by contrast, is done against full
documents returned by Google.

Wikipedia stream. This stream also uses an external corpus—the Dutch Wikipedia (http:
//nl.wikipedia.org), an open-content encyclopedia in Dutch (and other languages). However,
since this corpus is much cleaner than news paper text, the stream operates in a different manner.
First, the focus of the question is identified; this is usually the main named entity in the question.
Then, this entity’s encyclopedia entry is looked up; since Wikipedia is standardized to a large
extent, this information has a template-like nature. Finally, using knowledge about the templates
used in Wikipedia, information such as Date-of-death and First-name can easily be extracted.

After the streams have produced candidate answers, these answers must be processed in order to
choose a single answer to return. Also, for those streams that do not extract answers directly from
documents in the CLEF collection, documents in the corpus that support or justify their answers
must be found. The modules that perform these tasks are described next.

Answer Justification. As some of our streams obtain candidate answers outside the Dutch
CLEF corpus, and as answers need to be supported, or justified, by a document in the Dutch
CLEF corpus, we need to find justification for externally found candidate answers. To this end we
construct a query with keywords from a given question and candidate answer, and consider the
top-ranking document for this query to be the justification, using an Okapi model, as this tends
to do well on early high precision in our experience. Additionally, we use some retrieval heuristics
such as marking the answer terms in the query as boolean (requiring them to appear in retrieved
documents). Note: in addition to answers from the three streams that use outside data sources,
answers from the corpus-based Ngram stream also need to be justified, since these answers are
selected by the stream on the basis of support from multiple documents.

Filtering, Tiling, and Type Checking. We use a final answer selection module (similar
to that described in [6]) with heuristic candidate answer filtering and merging, and with stream
voting. To compensate for named entity errors made during answer extraction, our type checking
module (see [14] for details) uses several geographical knowledge bases to remove candidates of
incorrect type for location questions. Furthermore, we take advantage of the temporally restricted
questions in this year’s evaluation to re-rank candidate answers for such questions using temporal
information; see Section 2.3 for more details.

2.2 Improvements to table stream

To the tables used in 2004, we added a table which contained definitions extracted (offline) with two
rules: one to extract definitions from appositions and another to create definitions by combining
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proper nouns with preceding common nouns. This table was used in parallel with the existing
roles table, which contained definitions only for people. The new table contained more than three
times as many entries (611,077) as the existing one.

In contrast to earlier versions of the table module, all tables are now stored in SQL format and
made available in a MySQL database. The type of an incoming question is converted to sets of
tuples containing three elements: table, source field and target field. The table code will search
in the source field of the specified table for a pattern and, in cases where a match is found, keep
the contents of corresponding target field as a candidate answer. Ideally the search pattern would
be computed by the question analysis module but currently we use separate code for this task.

The table fields only contain noun phrases that are present in the text. This means that they
can be used for answering questions such as:

(1) Wie is de president van Servië?
Who is the President of Serbia?

because the phrase president van Servië can normally be found in the text. However, in general,
this stream cannot be used for answering questions such as:

(2) Wie was de president van Servië in 1999?
Who was the President of Serbia in 1999?

because the modifier in 1999 does not necessarily always follow the profession.
The table code contains backoff strategies (case insensitive vs. case sensitive, exact vs. inexact

match) in case a search returns no matches.

2.3 Temporal restrictions

Twenty-six questions in this year’s QA track are tagged as temporally restricted. As the name
implies, such questions ask for information relevant to a particular time; the time in question may
be given explicitly by a temporal expression (or timex ), as in:

(3) Q0094: Welke voetballer ontving “De Gouden Bal” in 1995?
Which footballer won the European Footballer of the Year award in 1995?

or it may be given implicitly, with respect to another event, as in:

(4) Q0160: Hoe oud was Nick Leeson toen hij tot gevangenisstraf werd veroordeeld?
How old was Nick Leeson when he was sentenced to prison?

Furthermore, the temporal restriction may not be to a point in time but to a temporal interval,
as in:

(5) Q0156: Hoeveel medicinale produkten met tijgeringredienten gingen er tussen 1990 en
1992 over de toonbank?
How many medicinal products containing tiger ingredients were sold between 1990 and
1992?

(6) Q0008: Wie speelde de rol van Superman voordat hij verlamd werd?
Who played the role of Superman before he was paralyzed?

In our runs this year, we took advantage of these temporal restrictions to re-rank candidate
answers for temporally restricted questions. Because we had already built a module to identify
and normalize timexes (see Section 3.1), we limited ourselves to explicit temporal restrictions
(i.e., those signalled by timexes). Handling event-based restrictions would require identifying (and
possibly temporally locating) events, which is a much more difficult problem.

For each temporally restricted question, the temporal re-ranker tries to identify the temporal
restriction by looking for temporal prepositions (such as in, op, tijdens, voor, na) and timexes



in the question. If it succeeds in identifying an explicit temporal restriction, it proceeds with
re-ranking the candidate answers.

For each candidate answer, the justification document is retrieved, and sentences containing
the answer and, if there is one, the question focus are extracted from it. If there are any timexes
in these sentences, the re-ranker checks whether these timexes are compatible with the restriction.
For each compatible timex, the score for the candidate answer is boosted; for each incompatible
timex, the score is lowered. The timestamp of the document is also checked for compatibility with
the restriction, and the score is adjusted accordingly. The logic involved in checking compatibility
of a timex with a temporal restriction is relatively straightforward; the only complications come
in handling times of differing granularities.

3 XQuesta

The XQuesta stream implements a QA-as-XML-retrieval approach [10, 13]. The target collection
is automatically annotated with linguistic information offline. Then, incoming questions are con-
verted to semistructured queries, and evaluation of these queries gives a ranked list of candidate
answers. We describe the three stages in detail.

3.1 Offline annotation

We automatically processed the Dutch QA collection, identifying sentences and annotating them
syntactically and semantically. For processing time reasons, we switched from the full parses used
in 2004 to a Dutch part-of-speech tagger and a text chunker. Both were trained on the CGN
corpus [15] in the same way as the tagger and chunker described in [17] but using the TnT tagger
[3] rather than a general machine learner. Two extra layers of annotation were added: named
entities, by the TnT tagger trained on CoNLL-2002 data [16], and extra temporal expressions,
by a hand-coded rule-based system, because these were not included in the previously mentioned
training data. The temporal expression annotation system not only identified temporal expressions
but also, where possible, normalized them to a standard format (ISO 8601).

Here are some examples of the annotations. Example 7 shows a tokenized sentence in which
each token has received an abbreviated Dutch part-of-speech tag.

(7) <LID>de</LID> <ADJ>machtige</ADJ> <N>burgemeester</N> <VZ>van</VZ>
<N>Moskou</N> <LET>,</LET> <N>Joeri</N> <N>Loezjkov</N> <LET>,</LET>
<WW>veroordeelt</WW> <VNW>dat</VNW>
the powerful mayor of Moscow , Joeri Loezjkov , condemns that

In Example 8, the sentence is divided into syntactic chunks. The three most frequently occurring
chunk types are noun phrases (NP), verb phrases (VP) and prepositional phrases (PP). Some
tokens, nearly always the punctuation signs, are not part of a chunk. By definition, chunks cannot
be embedded.

(8) <NP>de machtige burgemeester</NP> <PP>van</PP> <NP>Moskou</NP> ,
<NP>Joeri Loezjkov</NP> , <VP>veroordeelt</VP> <NP>dat</NP>

Example 9 shows the named entities in the text. These are similar to text chunks: they can contain
sequences of words and cannot be embedded. Four different named entity types may be identified:
persons (PER), organizations (ORG), locations (LOC) and miscellaneous entities (MISC).

(9) de machtige burgemeester van <NE type="LOC">Moskou</NE> ,
<NE type="PER">Joeri Loezjkov</NE> , veroordeelt dat

The next two examples show temporal expressions which have been both identified and normalized
to ISO 8601 format. In Example 10, normalization is straightforward: the ISO 8601 value of the
year 1947 is simply “1947.”



(10) Luc Jouret werd in <TIMEX val="1947">1947</TIMEX> geboren
Luc Jouret was born in 1947

Normalization is more complicated in Example 11; in order to determine that donderdagmorgen
refers to 1994-10-06, the system uses the document timestamp (in this case, 1994-10-08) and some
simple heuristics to compute the reference.

(11) Ekeus verliet Irak <TIMEX val="1994-10-06">donderdagmorgen</TIMEX>
Ekeus left Iraq Thursday morning

The four annotation layers of the collection were converted to an XML format and stored in
separate XML files, to simplify maintenance. Whenever the XQuesta stream requested a document
from the collection, all annotation were automatically merged to a single XML document providing
full access to the extracted information. In order to produce well-formed XML mark-up after
merging, we used a mix of inline and stand-off (with character offsets to refer to original collection
text) annotation schemes.

3.2 Question analysis

The current question analysis module consists of two parts. The first part determines possible
question classes, such as location for the question shown in Example (12).

(12) Q0065: Uit welk land komt Diego Maradona?
What country does Diego Maradona come from?

We use 31 different question types, some of which belong to a more general class: for example,
date birth and date death describe dates of birth and death and are subtypes of the class
date. The assignment of the classes is based on manually compiled patterns.

The second part of our question analysis module is new. Depending on the predicted question
class, an expected answer type is assigned. Our new system design allows us to search for struc-
tural and semantic information. The expected answer types describe syntactic, lexical or surface
requirements which have to be met by the possible answers. The restrictions are formulated in
XPath queries which are used to extract specific information from our preprocessed documents.
For instance, possible answers to questions such as Example (13) and (14) require a named entity
as an answer (person and timex, respectively). Besides the named entity information, the answer
to the question in Example (14) has to start with a number. The corresponding XPath queries
are NE[@type="PER"] and TIMEX[@val=~/^\d/] respectively.

(13) Q0149: Wie is de burgemeester van Moskou in 1994?
Who was the mayor of Moskow in 1994?

(14) Q0014: Wanneer is Luc Jouret geboren?
When was Luc Jouret born?

Table 1 displays the rules for mapping the question classes to the expected answer types which
were manually developed.

3.3 Extracting and ranking answers

As described in Section 3.2, incoming questions are automatically mapped to retrieval queries
(simply question texts) and XPath expressions corresponding to types of expected answers.

Retrieval queries are used to locate relevant passages in the collection. For retrieval, we use
nonoverlapping passages of at least 400 characters starting and ending at paragraph boundaries.
Then, the question’s XPath queries are evaluated on the top 20 retrieved passages, giving lists of
XML elements corresponding to candidate answers. For example, for the question in Example 14
above, with the generated XPath query “TIMEX[@val=~/^\d/]”, the value “1947” is extracted
from the annotated text in Example 10.



Question class Restrictions on the type of answer
abbreviation word in capital letters
age numeric value, possible word: jarige
cause reason sentence
city capital LOC
color adjective
date death, date birth, date TIMEX, digital number
definition person sentence
definition noun phrase or sentence
distance numeric value
distinction noun phrase or a sentence
expansion MISC or ORG, noun phrase
height numeric value
language MISC
length numeric value
location LOC
manner sentence
monetary unit MISC
name named entity
number people numeric value, noun phrase
number numeric value
organization ORG
person PER
score, size, speed, sum of money numeric value
synonym name PER
temperature, time period numeric value

Table 1: Overview of the mapping rules from question classes to answer types

The score of each candidate is calculated as the sum of retrieval scores of all passages containing
the candidate. Furthermore, the scores are normalized using web hit counts, producing the final
ranked list of XQuesta’s answer candidates.

4 Runs

We submitted two Dutch monolingual runs. The run uams051nlnl used the full system with all
streams and final answer selection. The run uams052nlnl, on top of this, used an additional stream:
the XQuesta stream with paraphrased questions. As a simple way of paraphrasing questions, we
double-translated questions (from Dutch to English and then back to Dutch) using Systran, an
automatic MT system. Question paraphrases were only used for query formulation at the retrieval
step; question analysis (identification of question types, expected answer types and corresponding
XPath queries) was performed on the original questions. Our idea was to see whether simple
paraphrasing of retrieval queries would help to find different relevant passages and lead to more
correctly answered questions.

5 Results and analysis

Our question classifier assigned a question type to 187 questions. All classified questions also
received an expected answer type. Eleven of the unclassified questions are What/Which NP
questions, such as Example 15. The remaining two unclassified questions are of the form Name
an NP.

(15) Q0024: Welke ziekte kregen veel Amerikaanse soldaten na de Golfoorlog?
Which disease did many American soldiers contract after the Gulf War?

Table 2 lists the assessment counts for the two University of Amsterdam question answering runs
for CLEF-2005 monolingual Dutch (NLNL) task. The two runs had 13 different answers, but the
assessors evaluated only two pairs differently. We were surprised about the large number of inexact
answers. When we examined the inexact answers of the first run, we found that a disproportional
number of these were generated for definition questions: 85% (only 30% of the questions ask



Run Right Unsupp. Inexact Wrong
uams051nlnl 88 5 28 79
uams052nlnl 88 5 29 78

Table 2: Assessment counts for the 200 answers in the two Amsterdam runs submitted for Dutch
monolingual Question Answering (NLNL) in CLEF-2005. Thirteen answers of the two runs were
different but only two of these were assessed differently.

for definitions). Almost half of the errors (13 out of 28) were caused by the same information
extraction problem: determining where a noun phrase starts. Here is an example:

(16) Q0094: Wat is Eyal?
A: leider van de extreem-rechtse groep

Here the answer extreme right group would be correct as an answer to the question What is Eyal?.
Unfortunately the system generated the answer leader of the extreme right group. This extraction
problem also affected the answers for questions that provided a definition and asked for a name. We
expect that this problem can be solved by a check of the semantic class of the question focus word
and head noun of the answer, both in the answer extraction process and in answer postprocessing.
Such a check would also have prevented seven of the 15 other incorrect answers of this group.

When we examined the assessments of the answers to the three different question types, we
noticed that the proportion of correct answers was the same for definition questions (45%) and
factoid questions (47%) but that temporally restricted questions seemed to cause problems (27%
correct). Of the 18 incorrect answers in the latter group, four involved an answer which would have
been correct in another time period (questions Q0078, Q0084, Q0092 and Q0195). If these ques-
tions had been answered correctly, the score for this category would have raised to an acceptable
46% (including the incorrectly assessed answer to question Q0149).

The temporal re-ranking module described in Section 2 did make a positive contribution,
however. For the following two temporally restricted questions:

(17) Q0007: Welke voetballer ontving “De Gouden Bal” in 1995?
Which footballer won the European Footballer of the Year award in 1995?

(18) Q0159: Wie won de Nobelprijs voor medicijnen in 1994?
Who won the Nobel Prize for medicine in 1994?

the highest ranking candidate answer before the temporal re-ranking module was applied was
incorrect (Ruud Gullit and Martin Luther King), but the application of the temporal re-ranking
module boosted the correct answer (Weah and Martin Rodbell) to the top position. Additionally,
the temporal re-ranking module never demoted a correct answer from the top position.

The answers to the temporally restricted questions also indicate the overall problems of the
system. Of the remaining 14 incorrect answers, only five were of the expected answer category
while nine were of a different category. In the 62 answers of factoid and definition questions which
were judged to be wrong, the majority (58%) had an incorrect answer class. An extra answer
postprocessing filter which compares the semantic category of the answer and the one expected
by the question would prevent such mismatches.

Our system produced five answers which were judged to be unsupported. One of these was
wrong and another was right. A third answer was probably combined from different answers and
a link to a document containing a part rather than the whole answer was kept. The remaining
two errors were probably also caused by a document link which should not have been kept but
the reason for this is unknown.

This error analysis suggests three ways to improve our QA system. First, we should work
on definition extraction so that both questions asking for definitions and questions requiring the
resolution of definitions can be answered in a better way. Second, we should examine inheritance



of document links in the answer tiling process to make sure that the associated module does not
cause unnecessary unsupported answers. And third, and most importantly, we should improve
answer filtering to make sure that the semantic class of the generated answer corresponds with
the class required by the question.

6 Conclusions

The bulk of our efforts for the 2005 edition of the QA@CLEF track was aimed at implementing a
“pure” QA-as-XML-retrieval stream, as part of our multi-stream question answering architecture;
here, the target collection is automatically annotated with linguistic information at indexing time,
incoming questions are converted to semistructured queries, and evaluation of these queries gives
a ranked list of candidate answers. The overall system provides wrong answers for less than 40%
of the questions. Our ongoing work is aimed at addressing the main sources of error discovered:
definition extraction, inheritance of document links in answer tiling, and semantically informed
answer filtering.
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