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Abstract: We describe our participation in the
TREC 2003 Question Answering, Robust, and
Web tracks. We provide a detailed account of
the ideas underlying our approaches to these
tasks, report on our results, and give a summary
of our findings so far.

1 Introduction

At TREC 2003 we took part in the Question Answering,
Robust and Web tracks. Our aim for the Question An-
swering track was to experiment with a new multi-stream
architecture, in which we implemented 6 separate sub-
systems that each try answer questions in different ways.
Within the Question Answering track we also wanted to
experiment with a dedicated biography question module
that is currently in development. Our aim for the Ro-
bust track was to investigate the impact of blind feedback
and stemming on poorly performing topics. Our aim for
the Web track was to experiment with different document
representations and retrieval models for the home/named
page finding and topic distillation tasks.

For all three tracks, our experiments exploited the
home-grownFlexIR document retrieval system [10]. The
main goal underlyingFlexIR’s design is to facilitate flexi-
ble experimentation with a wide variety of retrieval com-
ponents and techniques.FlexIR is implemented in Perl,
and supports many types of pre-processing, scoring, in-
dexing, and term-weighting methods. In particular, we
usedFlexIR’s implementations of theLnu.ltc weighting
scheme, various language models, as well as the Okapi
scheme; see the detailed descriptions of our efforts for

each of the tracks below for the exact settings.
The rest of this paper is organized as follows. In three

(largely self-contained) sections we describe our work for
the Question Answering, Robust, and Web tracks. Finally,
we summarize our findings in a concluding section.

2 Question Answering Track

Current Question Answering (QA) systems, as reflected
by the ones taking part in the TREC QA track, can
roughly be divided into two categories:knowledge-
intensivesystems, that make use of various linguistic
tools for the question answering process, andredundancy-
basedsystems, that rely on very high volumes of data (in
many cases, the Web) and take a more shallow approach
to text analysis.

Until last year, the University of Amsterdam was fo-
cused on the first approach, concentrating its QA ef-
forts exclusively onTequesta[11, 12], a linguistically in-
formed QA system. This approach may be successful for
some types of questions, but for others more shallow ap-
proaches seem more beneficial, and therefore this year we
have expanded our QA work and implemented amulti-
streamapproach. While maintaining Tequesta as one pos-
sible QA method, we have developed other parallel sys-
tems that compete which each other to find the correct
answer. These systems, or “streams,” employ a range of
redundancy-based and knowledge-intensive techniques.

This year we took part in the main QA task and in the
passage QA task. For our participation in the main task
we employed our new multi-stream architecture; for the
passage task we relied on the Tequesta stream only.
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2.1 The Main Question Answering Task

We now describe the approach we adopted for the main
QA task; we devote separate subsections to factoid ques-
tions on the one hand, and list questions and definition
questions on the other.

System Description

A general overview of our system is given in Figure 1.
The system consists of 6 separate QA streams and a fi-
nal answer selection module that combines the results of
all streams and produces the final answers. An important
practical benefit of this architecture is easy modification,
maintenance, and testing of the different subsystems as
well as easy integration of multiple source of information.
Evaluation of the contribution of each approach to the en-
tire QA process becomes a relatively simple task too. We
now give a brief description of the different streams.

Table Lookup. This stream uses specialized knowledge
bases constructed by preprocessing the collection. The
stream exploits the fact that certain types of information
(such as country capitals, abbreviations, and names of po-
litical leaders) tend to occur in a small number of fixed
patterns. When a question type indicates that the question
might potentially have an answer in these tables, a lookup
is performed in the appropriate knowledge base and an-
swers found there are assigned high confidence.

We hand-crafted a small number of regular expres-
sions for extracting information about the categories listed
in Table 1. For instance, the “Location” category con-
cerns geographic information of the following type “Amu
Darya, river, Turkmenistan, XIE19990811.0277,” where
the first field indicates a location, the second its type, the
third a country or region in which it is located, and the
fourth the identifier for the document from which it was
extracted. “Geography” contains similar information, but
without the type; “Leaders” has information of the fol-
lowing kind “Dutch, Foreign Minister, Jozias van Aart-
sen, XIE19991027.0270”, and “Roles” generalizes this to
also include other roles besides government-related ones.
We used a number of external resources such as WordNet
at various stages of the extraction process, for instance, to
find professions or different manners of death.

Table 1: Facts extracted from the AQUAINT corpus.
Category # Facts Category # Facts
Abbreviations 31737 Birthdates 9156
Capitals 1273 Currencies 231
Dates 9331 Deathdates 1510
Geography 70363 Height 15603
Inhabitants 2025 Languages 853
Leaders 18073 Locations 1348
Manners of death 857 Organizations 98758
Roles 396558

When a question is classified as possibly having an an-
swer in a table, we first identify the question keywords
that will be used in the table search. Next, a line matching
all of the words in the order they appeared in the question
is searched; if no line matches, we look again for a line
containing all words, this time in any word order. If there
is still no match, we start removing words from the list of
words to match; the order of removal is based on the fre-
quency of words in the language (i.e., common words are
removed first) and part-of-speech tags (e.g., superlatives
like fastest, largest are removed last). We do this until
some threshold is reached (percentage of lookup words
out of total keywords in the question). When a matching
line is found, we return the text in the column that is de-
clared to contain the information required as the answer.

Pattern Matching. This stream exploits the fact that
in some cases, the contextual format of an answer to
a question can be back-generated from the question it-
self. For example, an answer to a question such as2257.
What is the richest country in the world?will possibly
match the pattern<Capitalized-Words>(,| is) the
richest country in the world. In these cases, the
position of the answer within the context is also known
when generating the context pattern; in the given exam-
ple, it would be the capitalized word or words (and indeed,
in document XIE19980302.0146, this pattern matches
against “. . . Although the United States is the richest coun-
try in the world, 20 percent of its population . . . ”).

The Pattern Matching stream consists of three stages:
Generation, Document Prefetchand Matching. In the
Generation stage, the question is analyzed and possi-
ble answer patterns are generated. For questions like
2347. Where is Mount Olympus?the question type
and focus (both provided by the question classifier) are
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Figure 1: Quartz-e System Overview.

sufficient for generating a number of answer patterns.
For other questions (e.g.,2375. What date did Thomas
Jefferson die?) we also use a set of manually cre-
ated rules based on part-of-speech tags of the ques-
tion words and a dictionary of word forms, in order to
rewrite the question into declarative forms (e.g.,Thomas
Jefferson (died|dies) (on|in) <answer>). In the
Prefetch stage, for each generated pattern a query contain-
ing words from it is formed, and documents are retrieved
from the collection using the query. In the final stage, the
patterns are matched against the retrieved documents, and
answers are extracted from the matches.

Two variations of this stream were implemented,Web
Pattern MatchingandCollection Pattern Matching. For
the first variation the text collection was the Web, and for
the second, the local AQUAINT corpus. For the prefetch
stage we used the top-ranking documents from Google
(for the Web variation) and all matching documents re-
trieved using a boolean query to our document retrieval
engineFlexIR [10] against from the AQUAINT corpus.

Ngram Mining. This stream, similar in spirit to [3],
constructs a weighted list of queries for each question us-
ing a shallow reformulation process, similar to the Pattern
Match stream. The queries are then sent to a large docu-

ment collection; we implemented two variations for this
stream,Web Ngram MiningandCollection Ngram Min-
ing, using the Web and the local AQUAINT corpus, re-
spectively. For Web searches, we used Google, and for lo-
cal searchesFlexIR, with theLnu.ltc weighting scheme.
Then, we looked at word ngrams in the relevant retrieved
document paragraphs (for the Web we used the snippets
provided by Google, and for the collection we used a win-
dow of 200 bytes around the query). The ngrams were
ranked according to the weight of the query that generated
them, their frequency in the paragraphs, their NE type, the
proximity to the query keywords and more parameters,
and the top-ranking ngrams were considered answer can-
didates. To find justification for the answer in the local
corpus, we constructed a query with keywords from the
question and the answer, and considered the top-ranking
document for this query to be the justification, this time
using an Okapi model as this tends to do well on early
high precision in our experience.

Tequesta. As mentioned before, this is a stream that im-
plements a linguistically informed approach to QA. We
defer a discussion of this stream to Subsection 2.2 where
we describe our strategy for the passage task.



Many components are shared by all streams, including a
locally developed named entity tagger and the following:

Question Classifier. An incoming question is first an-
alyzed for its type (e.g.,date-of-birth), expected an-
swer type (e.g.,location) and focus (thecore of the
question, used e.g., for answer pattern generation). Cur-
rently our system recognizes 37 question types. The ques-
tion analysis is based on manually created surface and
part-of-speech patterns. We also use the hierarchical re-
lations in WordNet to identify semantic classes of ques-
tion focus words (e.g., this allows us to assign the type
person-ident to the question1943. What is the name of
Ling Ling’s mate?).

Web Ranking. The different candidates produced by
the streams have different confidence levels, according to
stream-specific internal parameters and different measur-
ing methods. To compare these different levels, a uni-
form way of ranking the candidates was required. For this
reranking we implemented a search engine hit count mod-
ule, similar to [8].

Answer Selection. Each of the six streams produces a
pool of answer candidates, with confidence scores nor-
malized using hit counts. After filtering the candidates
to remove obvious noise, we create a joint pool of an-
swers, adjusting each candidate’s score by a factor that
reflects the past performance of its stream on questions
of the same type. We tried different ways of assigning
these stream/question-type weights: manually (i.e., based
on human intuition about how good different streams per-
form on different questions) and automatic (using Ma-
chine Learning to find weights that optimize the perfor-
mance of the system on a training set of questions). See
below for a discussion of our findings. Then, in the joint
pool of answer candidates we identify identical or similar
(small edit distance) answers, merge and add their confi-
dence scores. Finally, a candidate with the highest score
is returned.

List and Definition Questions

Because of time constraints, we were unable to imple-
ment a proper module for handling list questions. All list

questions were automatically rewritten into factoids us-
ing rule-based transformations (e.g.,2097. Which coun-
tries were visited by first lady Hillary Clinton?was trans-
formed toWhich country was visited by first lady Hillary
Clinton?) and fed to our multi-stream QA system. The
topN candidate answers to this factoid question were sub-
mitted as answers to the original list question. We ex-
perimented with different values ofN (10 and 20 in our
official runs) and with different numbers of retrieved doc-
uments used during answer selection (both for collection-
and web-based QA streams).

In contrast to list questions, we did invest a serious ef-
fort in developing a component for handling definition
questions. More precisely, we piggybacked on ongo-
ing inhouse activities aimed at developing a QA system
for handling “biography oriented” definitions on the web.
The main steps in our handling of definition questions are
Question Analysis (very similar to the analysis carried
out for factoids), Answer Retrieval (always from exter-
nal resources), Answer Filtering, and Answer Justification
(very similar to the justification performed for externally
found answers to factoid questions).

For concept definition questions we followed a
WordNet-based strategy suggested in the literature by
teams handling concept definition questions in earlier edi-
tions of TREC [13]. Given a question that asks for a def-
inition of a concept, we simply consult WordNet. As our
primary strategy for handling person definition questions,
we also consulted an external resource. The main re-
source used isbiography.com. However, in many cases
no biography could be found in this resource. In such
cases we backed off to using Google, with queries ob-
tained by combining the name of the person in question
with varying subsets of a predefined set of hand-crafted
features (including “born”, “graduated”, “suffered”, etc.)
For questions asking for definitions of organizations the
latter was the strategy used (with a set of “organization
features”).

As a final fallback option for each type of defini-
tion question, if the use of the strategies mentioned ear-
lier returned no satisfactory results, we simply submitted
<question term> is a to Google and mined the snip-
pets returned. This method worked surprisingly well for
questions like2385. What is the Kama Sutra?.

Given a set of candidate answer snippets, we performed
two more steps before carrying out the final answer jus-



tification step: we separated junk snippets from valuable
snippets and we identified snippets whose content is very
similar. We addressed the first step by analyzing the dis-
tances between query terms submitted to the search en-
gine and the sets of features, and by means of shallow
syntactic aspects of the different features such as sentence
boundaries. To address the second step we developed
a snippet similarity metric based on edit distance, stem-
ming, stopword removal, and keyword overlap.

Runs

We submitted 3 runs. These runs used the exact same
strategies and settings for definition questions. They
did differ in their settings for factoids and list questions.
Here’s a brief description:

UAmsT03M1For factoids, the answer selection module
used automatically learned stream/question weights;
answers coming only from external sources (streams
based on Web) were justified against the AQUAINT
collection using the Okapi model. For each list ques-
tion the top 10 answers to its factoid counterpart
were submitted.

UAmsT03M2For factoids, the weights for answer selec-
tion were learned automatically; external answers
were discarded. For list questions the number of col-
lection and web documents used for answer mining
was increased, and the top 20 answers were submit-
ted for each question.

UAmsT03M3Manually assigned weights were used for
answer selection; external answers were discarded.
The number of documents for answering list ques-
tions was as inUAmsT03M2, but only top 10 answers
were submitted.

Our three runs allowed us to compare the impact of jus-
tification, and the impact of using manually assigned ver-
sus learned weights for our answer selection. For the list
questions we wanted to evaluate the effect ofusing more
dataand ofgiving more answerson the final performance.

Results

Table 2 gives the detailed results of our system for the 413
factoid questions: accuracy and the number of correct (R),

unsupported (U), inexact (X) and wrong (W) answers.

Table 2: Results for the QA track (factoid questions).
Run identifier Accuracy R U X W
UAmsT03M1 0.136 56 22 32 303
UAmsT03M2 0.145 60 20 26 307
UAmsT03M3 0.128 53 24 30 306

The results for the factoids are disappointing. Our prelim-
inary error analysis reveals that out of 413 factoids only
192 (46%) had a correct answer among answer candidates
extracted by the system, which means that either at re-
trieval or at candidate extraction stage we already miss
too many answers. Moreover, only for half of the ques-
tions where the right answer was among the candidates
(98 out of 192) it was actually selected as the final an-
swer, indicating serious problems with candidate scoring.
Yet more, for our best run out of 110 “not wrong” (i.e.,
correct + unsupported + inexact) answers only 60 (55%)
were judged “correct.”

A few more remarks are worth making. First, al-
though the run with the automatically learned weights
for answer selection from multiple streams (UAmsT03M2)
outperformed the run with manually assigned weights
(UAmsT03M3), our subsequent experiments revealed that
whereas a small difference exists, it is not statistically sig-
nificant. On the other hand, both run improve significantly
over a baseline system with equal weights to all streams.

We also evaluated the contribution of different streams
to the performance of the system on the factoids (using
unofficial answer patterns). Table 3 gives the results (the
number of “correct” answers, i.e. those that match the
patterns) for the whole system, for separate streams and
for the system with one of the streams turned off.

As expected, each of the six streams answered some
questions correctly and more interestingly, each stream
contributed to the overall performance of the system. The
two “worst” performing streams (predictably, collection-
based pattern matching and ngram mining) brought one
more answer each either at the top rank or in the top 5.
Surprisingly, the “winner” among the streams is equivo-
cal: while Table Lookupallows the system to answer 15
questions more,Web Ngramsaccounts for more (35 vs.
19) unique correct answer candidates in the top 5.

Table 4 gives the combined results for the 3 QA tasks
(accuracy for factoids, F score for list and definition ques-



Table 3: Contribution of different streams.
Configuration # correct # correct in top 5
All streams 98 165
Collection ngrams 39 42
Without collection ngrams 98 164
Web ngrams 65 115
Without Web ngrams 89 130
Collection patterns 39 39
Without collection patterns 97 165
Web patterns 51 59
Without Web patterns 94 163
Table lookup 71 77
Without table lookup 83 146
Tequesta 63 102
Without Tequesta 91 140

tions) and the final scores of our runs.

Table 4: Results for the QA track.
Run identifier A (Fact) F (List) F (Def) Overall
UAmsT03M1 0.136 0.054 0.315 0.160
UAmsT03M2 0.145 0.042 0.308 0.160
UAmsT03M3 0.128 0.035 0.292 0.146

The results for the list questions suggest that using more
retrieved documents for answer extraction and submitting
more answer candidates hurts performance: the increase
in recall does not compensate for the drop in precision.

Turning to definition questions now, recall that there
is no difference between the three runs listed in Table 4
as far as definition questions are concerned, despite the
different scores in the table. The differences are due to
inconsistencies in the judgments provided by NIST. Ta-
ble 5 provides a breakdown of the scores for the different
types of definition questions; the highest scores are ob-
tained for person definitions, which reflects the fact that
those are the type of definition questions in which we put
most work.

Table 5: Breakdown of F scores for definition questions.
Run identifier Concept Person Org. Overall
UAmsT03M1 0.150 0.392 0.268 0.315

As an aside, in our submission we foundno answer
for 19 of the 50 definition questions. If we compute the
F score not over all 50 question but only over questions
with a positive F score, we obtain an average of 0.527. In

post-submission experiments we changed the subsets of
features we use in the queries sent to Google as well as
the number of queries/subsets we use. This resulted in a
reduction of unanswered definition questions to 6 instead
of 19. Using our own (unofficial) assessment, this yielded
an F score of 0.688.

Conclusions

Our general conclusion on answering factoid questions is
that our new multi-stream approach helped answer con-
siderably more questions than our “old” single-stream
Tequesta system. This year’s questions seemmuchharder
than those of previous years. A preliminary error anal-
ysis shows that retrieval, named entity recognition, and
answer selection all require further attention. Our main
conclusion on answering definition questions is that ex-
ternal dictionary-like resources are crucial for this type of
questions, but a feature-based approach offers an effective
strategy in case such resources are absent or too sparse.

2.2 The Passage Task

The aim of the passage task was to return an excerpt
from a document rather than an exact answer. Excerpts
had to be unmodified snippets from a document in the
AQUAINT collection, and were not allowed to be longer
than 250 characters. For the passage task only the fac-
toid questions from the main task were used, i.e., list and
definition questions were not included.

System

For the passage task, we used a modification of the
Tequesta question answering system. Tequesta, both as
it was used this year as one of the streams of the Quartz-e
question answering system as it has been used at previ-
ous TREC QA tracks, see [11, 12], returns an exact an-
swer, but for the passage task, we dropped this constraint,
and included some of the context surrounding the answer
identified by Tequesta.

The Tequesta system itself has remained largely un-
changed since last year’s TREC; see [12] for a more de-
tailed description. This year, we added the use of minimal
span weighting for identifying documents that are likely



to contain an answer to a given question. We used mini-
mal matching spans as the textual units in which the exact
answer is to be found.

Minimal span weighting takes the positions of match-
ing terms into account, but does so in a more flexible way
than passage-based retrieval; see [9] for a more detailed
discussion and evaluation of minimal span weighting. In-
tuitively, a minimal matching span is the smallest text ex-
cerpt from a document that contains all terms which occur
in the query and the document. More formally:

Definition 1 (Matching span) Given a queryq and a
documentd, where the function termat posd(p) returns
the term occurring at positionp in d. A matching span
(ms) is a set of positions that contains at least one posi-
tion of each matching term, i.e.

S
p∈msterm at posd(p) =

q∩d.

Definition 2 (Minimal matching span) Given a match-
ing span ms, letbd (the beginning of the excerpt) be the
minimal value in ms, i.e.,bd = min(ms), and ed (the
end of the excerpt) be the maximal value in ms, i.e.,
ed = max(ms). A matching span ms is aminimal match-
ing span(mms) if there is no other matching span ms′

with b′d = min(ms′), e′d = max(ms′), such thatbd 6= b′d
or ed 6= e′d, andbd ≤ b′d ≤ e′d ≤ ed.

The next step is to use minimal matching spans to com-
pute the similarity between a query and a document. Min-
imal span weighting depends on three factors.

1. document similarity: The document similarity is
computed using the Lnu.ltc weighting scheme, see
Buckley et al. [1], for the whole document; i.e., posi-
tional information is not taken into account. Similar-
ity scores are normalized with respect to the maximal
similarity score for a query.

2. span size ratio: The span size ratio is the number
of unique matching terms in the span over the total
number of tokens in the span.

3. matching term ratio: The matching term ratio is the
number of unique matching terms over the number of
unique terms in the query, after stop word removal.

The msw score is the sum of two weighted components:
the normalized original retrieval status value (RSV),

which measuresglobal similarity and the spanning fac-
tor which measureslocal similarity. Given a queryq, the
original retrieval status values are normalized with respect
to the highest retrieval status value for that query:

RSVn(q,d) =
RSV(q,d)

maxdRSV(q,d)

The spanning factor itself is the product of two compo-
nents: the span size ratio, which is weighted byα, and the
matching term ratio, which is weighted byβ. Global and
local similarity are weighted byλ. The optimal values
of the three variablesλ, α, andβ were determined em-
pirically, leading to the following instantiations:λ = 0.4,
α = 1/8, andβ = 1. Parameter estimation was done using
the TREC-9 data collection only, but it turned out to be
the best parameter setting for all collections.

The final retrieval status value (RSV’) based on mini-
mal span weighting is defined as follows, where| · | is the
number of elements in a set:

Definition 3 (Minimal span weighting) If |q ∩ d| > 1
(that is, if the document and the query have more than
one term in common), then

RSV’(q,d) = λ ·RSVn(q,d)+

(1−λ) ·
(

|q∩d|
1+max(mms)−min(mms)

)α
·
(
|q∩d|
|q|

)β
.

If |q∩d| = 1 then RSV’(q,d) = RSVn(q,d).

At this point it may be helpful to illustrate the formal
definitions by considering question1395. Who is Tom
Cruise married to?After stop word removal and apply-
ing morphological normalization, the queryq={cruise,
marri, tom}. Assume that there is a documentd with
terms matching at the following positions: posd(cruise)
= {20, 35, 70}, posd(marri) = {38, 80}, and posd(tom)
= /0. Then, the minimal matching span (mms) ={35,
38}, the span size ratio is 2/(1+38−35) = 0.5, and the
matching term ratio is 2/3. Taking the latter two and the
proper instantiations ofα and β, the spanning factor is
0.51/8 ·2/3 = 0.611. If the global (normalized) similarity
betweenq andd is n (0< n≤ 1), for instancen= 0.8, and
λ = 0.4, the final msw-score forq andd (RSV’(q,d)) is
0.4·0.8+0.6·0.611= 0.6866.



Given a minimal matching span, the document analysis
component of Tequesta tries to identify a phrase which is
of the appropriate type. All phrases that are of the ap-
propriate type are considered candidate answers. Within
Tequesta, answer selection is accomplished by consider-
ing the frequency of a candidate answer. Most of the pro-
cedures that identify candidate answers rely on linking a
candidate to the question by proximity. Hence, all can-
didate answers are weighted equally. But there is one ex-
ceptions. If the question is of typewhat-np, candidate an-
swers that are in a WordNet hypernym relationship with
the question focus receive a higher weight than candidate
answers that are identified by means of the fallback strat-
egy. In the second case, the weight of the candidate an-
swer is actually not based on the confidence with which
it is linked to the question, but on the confidence that this
phrase is indeed an instance of the question focus.

Once an answer has been selected, the corresponding
minimal matching span from which the answer has been
extracted is returned as the answer passage. If the passage
is longer than 250 characters, it is trimmed down to the
appropriate length.

Results

We submitted one run to the passage task, run id
UAmsT03P1. The results are shown in Table 6.

Table 6: Results for the QA passage track
Run identifier Accuracy R U W
UAmsT03P1 0.111 46 6 361

(R) stands for passages that contained a correct and exact
answer, (U) for passages that contained the correct an-
swer, but were not supported by the corresponding doc-
ument, and (W) stands for wrong answers. The passage
track does not make a distinction between exact and in-
exact (X) answers, as in the main task. Here, an inexact
answer is simply judged wrong (W).

Conclusions

The results were quite disappointing. At this point we are
not sure what caused this rather bad performance. Before
submitting this year’s run to the passage track, we con-
ducted some experiments on the question sets from pre-
vious TRECs, and these results were substantially better.

Therefore, one explanation could be that this year’s ques-
tion set was much harder than the previous ones, but a
more detailed error analysis remains to be done.

3 Robust Track

In this section, we will discuss our official runs for the
Robust Track. After describing the experimental setup for
this track, we discuss our runs investigating the impact of
blind feedback and stemming on the poorly performing
topics.

System Description

All robust track runs use the home-grownFlexIR informa-
tion retrieval system. We employ a number of techniques:

Tokenization We remove punctuation marks, apply case-
folding, and map marked characters into the un-
marked tokens. We either index the words or stems
of the words. We use the Snowball stemming algo-
rithm [16]. Snowball is a small string processing lan-
guage designed for creating stemming algorithms for
use in information retrieval

Retrieval model We use a language model [5]. For all
the robust track runs, we use a uniform query term
importance weight of 0.15.

Blind feedback Term weights are recomputed by using
the standard Rocchio method [15], where we con-
sider the top 10 documents to be relevant and doc-
uments ranked 501–1000 to be non-relevant. We
allow at most 20 terms to be added to the original
query.

We use the Title and Description fields of the topics, and
investigate whether

1. Snowball stemming; or

2. Rocchio blind feedback; or

3. both stemming and blind feedback,

help retrieval for the lowest performing topics.



Runs

We submitted the following five official runs:

UAmsT03RDesc Language model run on a word-based
index, using only the description-field of the topics.
This is our mandatory description-only run.

UAmsT03RLanguage Model run on a word-based index.
This runs serves as the baseline for our stemming and
feedback experiments.

UAmsT03RFb Language model run on a word-based in-
dex, using Rocchio blind feedback.

UAmsT03RSt Language model run on the Snowball
stemmed index.

UAmsT03RStFb Language model run on the Snowball
stemmed index, using Rocchio blind feedback.

Results

Table 7 gives the results of the five official runs over all
100 robust topics (best scores in boldface). The second

Table 7: Results for the robust track.
Run identifier MAP Prec.10 no Top10 MAP(X)
UAmsT03RDesc 0.2065 0.3530 15.0% 0.0076
UAmsT03R 0.2324 0.4050 9.0% 0.0216
UAmsT03RFb 0.2452 0.4110 13.0% 0.0210
UAmsT03RSt 0.2450 0.4150 6.0% 0.0256
UAmsT03RStFb 0.2373 0.4040 14.0% 0.0273

column shows the mean average precision, the third col-
umn the precision at 10 documents, the fourth column
the percentage of topics with no relevant document in the
top 10; the fifth column shows the area underneath the
MAP(X) versus X curve for the worst 25 topics.

The results of blind feedback are mixed. On the one
hand feedback helps precision at 10 and gives the best
score for mean average precision. On the other hand feed-
back hurts the performance on the worst scoring topics.

The results for Snowball stemming are positive overall.
Stemming helps both the overall performance, with a best
score for precision at 10, as well as the performance of
the worst scoring topics, with a best score for the percent-
age of topics with a top 10 relevant document. The use
of both stemming and feedback gives the best score for

the area under the MAP(X) curve, but does not promote
performance on the other measures.

We also break down the score over the 50 old topics (in
Table 8) and the 50 new topics (in Table 9). Note that

Table 8: Results for the old topics.
Run identifier MAP Prec.10 no Top10 MAP(X)
UAmsT03RDesc 0.1066 0.2640 14.0% 0.0064
UAmsT03R 0.1349 0.3180 12.0% 0.0142
UAmsT03RFb 0.1377 0.3200 16.0% 0.0143
UAmsT03RSt 0.1327 0.3300 6.0% 0.0185
UAmsT03RStFb 0.1361 0.3300 16.0% 0.0204

Table 9: Results for the new topics.
Run identifier MAP Prec.10 no Top10 MAP(X)
UAmsT03RDesc 0.3064 0.4420 16.0% 0.0142
UAmsT03R 0.3300 0.4920 6.0% 0.0433
UAmsT03RFb 0.3528 0.5020 10.0% 0.0368
UAmsT03RSt 0.3572 0.5000 6.0% 0.0551
UAmsT03RStFb 0.3386 0.4780 12.0% 0.0478

the area underneath MAP(X) versus X curve (in the last
column) is now calculated for the worst 12 topics. For
both the old and new topics, the effectiveness of feedback
and stemming is comparable to the effectiveness on all
topics. There is, however, a striking difference in the per-
formance between the two types of topics: the new topics
give a much higher mean average precision score. This
is an obvious consequence of the way the old topics were
selected for inclusion in this year’s robust track. As a re-
sult, the worst topic measures are dominated by the old
topics.

Conclusions

Our general conclusion is twofold: although feedback
helps overall performance, it does not help improve the
score of the lowest scoring topics, but stemming turns out
to be an effective strategy for improving the worst scoring
topics.

4 Web Track

In this section, we discuss our official runs for the Web
Track. We investigate the impact of various document



representations and retrieval models for web retrieval. Af-
ter describing our experimental setup for this track, we
discuss our runs for the home/named page finding task
(known-item search), followed by the runs for the topic
distillation task (key resource search).

System Description

All web track runs use the home-grownFlexIR informa-
tion retrieval system. We employ a number of techniques:

Document representation We create indexes for (1) the
full documents, (2) the text in the title tags, (3) the
anchor texts pointing towards the document. For the
anchor texts index, we unfold relative links and nor-
malize URLs, and do not index repeated occurrences
of the same anchor text [12].

Tokenization We remove HTML-tags, punctuation
marks, apply case-folding, and map marked char-
acters into the unmarked tokens. We either index
the free-text without further processing, or use the
Snowball stemming algorithm [16].

Retrieval model We use three retrieval models. First, a
statistical language model [5] with a uniform query
term importance weight of either 0.35 or 0.70. Sec-
ond, the Okapi weighting scheme [14] with tuning
parametersk = 1.5 andb = 0.8. Third, theLnu.ltc
weighting scheme [1] withslopeat 0.1 or 0.2; the
pivot was set to the average number of unique words
per document.

Combination We use the standard combination methods
such as CombSUM and CombMAX [4], or weighted
fusion [17]. We combine either full length runs, or
limit the combination to the topn results. Unless
indicated otherwise, we normalize the scores before
combining them.

Minimal span weighting We calculate a minimally
matching span for each document, as detailed in Sec-
tion 2.2; see also [2].

In two separate sections, we will now address our runs
and results for the home/named page finding task, and the
topic distillation task.

4.1 Home/Named Page Finding Task

Runs

We submitted the following five official runs for the
home/named page finding task:

UAmsT03WnOWSCombSUM of top 1000 of Okapi on
word-based and stemmed full document indexes.

UAmsT03WnLMLanguage model run (λ = 0.70) on
word-based full document index.

UAmsT03WnLn3CombMAX on the top 25 ofLnu.ltc
runs (slope= 0.2) on the three stemmed indexes:
full documents, titles, and anchor texts.

UAmsT03WnLM3Weighted fusion of language model
runs (λ = 0.70) on the three word-based indexes: 0.7
full documents, 0.2 titles, and 0.1 anchor texts.

UAmsT03WnMSWMinimal span weighting based on the
Lnu.ltc run (slope= 0.1) on the stemmed full doc-
ument index.

Results

The results of the official runs for the home/named page
finding task are shown in Table 10 (best scores in bold-
face). The second column gives the mean reciprocal rank,

Table 10: Results for home/named page finding.
Run identifier MRR Top 10 not found

UAmsT03WnOWS 0.3833 178 (59.3%) 70 (23.3%)
UAmsT03WnLM 0.3592 170 (56.7%) 81 (27.0%)
UAmsT03WnLn3 0.4982 218 (72.7%) 38 (12.7%)
UAmsT03WnLM3 0.5185 214 (71.3%) 46 (15.3%)
UAmsT03WnMSW 0.4073 189 (63.0%) 64 (21.3%)

the third column the number and percentage of topics with
a relevant document in the top 10, the fourth column the
number and percentage of topics for which no relevant
document is found (in the top 50). The language model
run combining the non-stemmed documents, titles, and
anchors scores best with an average reciprocal rank of
0.5185. TheLnu.ltc weighted combination of the three
stemmed indexes scores second best.

Table 11 shows the mean average precision of the base
runs used in combinations for our official runs. All



Table 11: MRR for home/named page finding base runs.
Index type Lnu.ltc Okapi LM

Documents Words 0.3750 0.3795 0.3604
Stems 0.3697 0.3833 0.3616

Titles Words 0.2339 0.3421 0.3536
Stems 0.3655 0.3334 0.3487

Anchors Words 0.3068 0.3593 0.4436
Stems 0.2934 0.3379 0.4278

Lnu.ltc runs use a slope of 0.2, and all language model
runs use a uniform term weight of 0.70. Here, we re-
trieve up to 1,000 documents per topic, leading to slightly
higher MRRs than the official runs using a maximum of
50 documents. We see an interesting difference between
the three retrieval models: where theLnu.ltc and Okapi
models score best on the full document representation, the
language model runs on the anchor text index score more
than 20% better than the runs on the full document index.
In fact, our best score on a single index is on the language
model run on the non-stemmed anchor text index. There
is no clear benefit of the use of a stemming algorithm on
the mean reciprocal ranks: stemming improves the score
for four out of the nine comparative runs.

The Okapi combination of document stems and words,
UAmsT03WnOWS, does not improve over document stems
run. The combination of the three stemmedLnu.ltc
runs, runUAmsT03WnLn3, does improve 34.8% over the
best scoring stemmed runs. The combination of the three
non-stemmed language model runs,UAmsT03WnLM3, im-
proves 16.9% over the best scoring base runs. Finally, the
run using the matching-span weighting uses aLnu.ltc
full document base run with a different slope of 0.1 scor-
ing a MRR of 0.2742. The resulting run,UAmsT03WnMSW,
improves no less than 48.5% over the underlying base run.

Table 12: Results for home page topics.
Run identifier MRR Top 10 not found

UAmsT03WnOWS 0.2567 67 (44.7%) 55 (36.7%)
UAmsT03WnLM 0.2462 64 (42.7%) 60 (40.0%)
UAmsT03WnLn3 0.4105 97 (64.7%) 26 (17.3%)
UAmsT03WnLM3 0.4402 101(67.3%) 33 (22.0%)
UAmsT03WnMSW 0.2708 73 (48.7%) 53 (35.3%)

We also break down the score over the 150 home page
topics (in Table 12) and the 150 named page topics (in
Table 13). Here we see a much better performance on the
named page topics. This is perhaps unexpected because

Table 13: Results for named page topics.
Run identifier MRR Top 10 not found

UAmsT03WnOWS 0.5098 111 (74.0%) 15 (10.0%)
UAmsT03WnLM 0.4721 106 (70.7%) 21 (14.0%)
UAmsT03WnLn3 0.5859 121 (80.7%) 12 (8.0%)
UAmsT03WnLM3 0.5969 113 (75.3%) 13 (8.7%)
UAmsT03WnMSW 0.5438 116 (77.3%) 11 (7.3%)

named page finding is conceived to be a more difficult
task than home page finding. The simple explanation is
that we decided not to apply special home page finding
strategies. Although techniques like slash-counts or URL
priors are effective for home page finding [7], they seem
to hurt the named page topics considerably. Even without
a particular home page bias, home pages can be retrieved
with reasonable effectiveness, as is witnessed by our re-
sults for the home page topics in Table 12.

Conclusions

Our general conclusion on the home/named page finding
task is that the compact document representations such
as the title and anchor text indexes can outperform the
massive full document index for known-item searching.

4.2 Topic Distillation Task

Runs

We submitted the following five official runs for the topic
distillation task:

UAmsT03WtOk3 Weighted fusion of Okapi runs on the
three stemmed indexes: 0.7 full documents, 0.2 ti-
tles; and 0.1 anchor texts.

UAmsT03WtLM3Weighted fusion of language model
runs on the three stemmed indexes: 0.7 full docu-
ments (λ = 0.35), 0.2 titles (λ = 0.7), and 0.1 anchor
texts (λ = 0.7). We combine the probabilities with-
out normalization.

UAmsT03WtOkI Weighted fusion of 0.9 Okapi run on
the stemmed full document index with 0.1 of a link
topology measure. We applied the realized indegree
on the top 10 documents [12]. This is similar to
HITS [6], where we consider the fraction of inlinks



that is in the local set—roughly atf.idf measure
for link topology.

UAmsT03WtLMI Weighted fusion of 0.9 language
model run (λ = 0.35) on the stemmed full document
index with 0.1 of the realized indegree of the top 10
documents.

UAmsT03WtOkCWeighted fusion of 0.8 Okapi run on
the stemmed full document index with 0.2 of a URL-
based reranking. The reranking was done by cluster-
ing the found pages by their base URLs, and to only
return the page with the lowest slash-count per clus-
ter.

Results

The results of the official runs for the topic distillation
task are shown in Table 14 (best scores in boldface).
The second column shows the mean average precision,

Table 14: Results for topic distillation.
Run identifier MAP Prec. at 10, 20, 30

UAmsT03WtOk3 0.1344 0.0980 0.0810 0.0787
UAmsT03WtLM3 0.1019 0.0840 0.0630 0.0533
UAmsT03WtOkI 0.0862 0.0760 0.0660 0.0567
UAmsT03WtLMI 0.0412 0.0280 0.0260 0.0267
UAmsT03WtOkC 0.1127 0.0860 0.0650 0.0540

the third to fifth columns show the precision at 10, 20,
and 30 documents, respectively. The best score is ob-
tained byUAmsT03WtOk3, the Okapi run on the three
stemmed indexes. The second best score is obtained by
UAmsT03WtOkC, a URL-based clustering of the Okapi full
documents run. Before discussing the results of our ex-
periments, we first have to evaluate the results of the runs
used to create our official runs.

Table 15 shows the results of the base runs used in com-
bination for our official runs. All these runs use the Snow-

Table 15: Results for topic distillation stemmed base runs.
Run type MAP Prec. at 10, 20, 30

Doc. Okapi 0.0901 0.0740 0.05800.0527
Title Okapi 0.0870 0.0780 0.0590 0.0453
Anchor Okapi 0.0971 0.0780 0.0560 0.0493
Doc. LM (0.35) 0.0386 0.0300 0.0320 0.0293
Title LM (0.70) 0.0434 0.0480 0.0360 0.0293
Anchor LM (0.70) 0.1068 0.0860 0.0560 0.0473

ball stemming algorithm [16]. We see a remarkable di-
vergence between the scoring for Okapi and the language
model. The Okapi model performs comparable on all the
three indexes, documents, titles, and anchors. The lan-
guage model performs poorly on the document and title
indexes, but excels for the anchor text index. The combi-
nation of the three Okapi runs,UAmsT03WtOk3, improves
significantly over the best underlying run (MAP +38.4%,
Precision at 10 +25.6%). The combination of language
model runs,UAmsT03WtLM3, uses far from optimal rela-
tive weights and, as a result, does not improve over the
anchor text run. The runs using the hyperlink graph topol-
ogy do not result in significant improvement. The Okapi
run UAmsT03WtOkI slightly improves its precision at 10
over the document run; whereas the language model run
UAmsT03WtLMI slightly decreases its precision at 10 over
the document run. Finally, the Okapi run clustering per
base URL,UAmsT03WtOkC, does improve over the Okapi
document run (MAP +25.1%, Precision at 10 +16.2%).

Conclusions

Our general conclusion for the topic distillation task is
that methods using link topology do not help to improve
retrieval effectiveness, whereas the document represen-
tation using anchor texts is particularly effective for the
topic distillation task.

5 Conclusions

In this paper we have described our participation in
the TREC 2003 Question Answering, Robust, and Web
Tracks.

This year, our work for the question answering track
was largely motivated by our move to a new, multi-stream
architecture. Although a further and more detailed analy-
sis of the performance of the system remains to be done,
our preliminary results show that different approaches to
the QA process do produce answers to different question
types. Our combined use of external resources and hand-
crafted feature sets proved to be a successful approach for
answering definition questions.

For the robust track, we experimented with the impact
of stemming and feedback on the worst scoring topics.
Our results suggest that blind feedback helps overall per-



formance but does not increase the effectiveness on the
lowest scoring topics. Our results also suggest that ap-
plying a stemming algorithm does benefit both the overall
performance, as well as the performance of the worst scor-
ing topics. This result sheds some new light on the role of
morphological normalization in information retrieval.

For the web track, we saw very similar results for both
the home/named page finding task and the topic distil-
lation task. Using the hyperlinks in the collection for
creating an anchor text index turns out to be very effec-
tive. Also, the use of HTML-structure in the documents to
elicit their titles turns out to be effective. Combining these
alternative document representations with a standard doc-
ument index led to our best scores for both tasks.

A further general observation is the effectiveness of
compact document representations, such as indexing only
document titles, or only anchor texts pointing towards
documents. These compact document representations re-
sult in performance that meets or exceeds the performance
of a massive full document text index. This result suggests
that it is feasible to create effective retrieval indexes for
even larger web collections, provided that the appropriate
document representation is chosen.
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