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Abstract

Distributional reinforcement learning (RL) has
proven useful in multiple benchmarks as it enables
approximating the full distribution of returns and ex-
tracts rich feedback from environment samples. The
commonly used quantile regression approach to dis-
tributional RL – based on asymmetric 𝐿1 losses –
provides a flexible and effective way of learning
arbitrary return distributions. In practice, it is often
improved by using a more efficient, asymmetric
hybrid 𝐿1-𝐿2 Huber loss for quantile regression.
However, by doing so, distributional estimation
guarantees vanish, and we empirically observe that
the estimated distribution rapidly collapses to its
mean. Indeed, asymmetric 𝐿2 losses, correspond-
ing to expectile regression, cannot be readily used
for distributional temporal difference learning.
Motivated by the efficiency of 𝐿2-based learning,
we propose to jointly learn expectiles and quantiles
of the return distribution in a way that allows effi-
cient learning while keeping an estimate of the full
distribution of returns. We prove that our proposed
operator converges to the distributional Bellman
operator in the limit of infinite estimated quantile
and expectile fractions, and we benchmark a prac-
tical implementation on a toy example and at scale.
On the Atari benchmark, our approach matches the
performance of the Huber-based IQN-1 baseline af-
ter 200M training frames but avoids distributional
collapse and keeps estimates of the full distribu-
tion of returns. Code: https://github.com/
samijullien/ieqn

*Both authors contributed equally to the paper.

1 INTRODUCTION

Distributional reinforcement learning (RL) [Bellemare et al.,
2023] aims to maintain an estimate of the full distribution
of expected returns rather than only the mean. Compared to
a mean-based approach, it can be used to better capture the
uncertainty in the transition matrix of the environment [Belle-
mare et al., 2017], as well as the stochasticity of the policy
being evaluated, which may enable faster and more stable
training by making better use of the data samples [Mavrin
et al., 2019].

Non-parametric approximations of the return distribution
learned by quantile regression have proven to be very effec-
tive in several domains [Dabney et al., 2018a,b, Yang et al.,
2019], when combined with deep RL agents such as deep
Q-networks (DQN) [Mnih et al., 2013] or soft actor-critic
(SAC) [Haarnoja et al., 2018]. They come with the major
advantage of providing guarantees for the convergence of
distributional policy estimation [Dabney et al., 2018b], and
in certain cases, of convergence to the optimal policy [Row-
land et al., 2023], all while requiring few assumptions on the
shape of the return distribution and demonstrating strong em-
pirical performance [Dabney et al., 2018a, Yang et al., 2019].
However, the best-performing quantile-based agents are of-
ten obtained by replacing the original quantile regression
loss function, i.e., an asymmetric 𝐿1 loss, by an asymmetric
Huber loss, i.e., a hybrid 𝐿1-𝐿2 loss. By doing so, distribu-
tional guarantees vanish, as the proofs proposed in previous
work relied on the 𝐿1-based quantile regression [Bellemare
et al., 2023, Dabney et al., 2018b]. Critically, we show in
Section 5.2.4 that the estimated distributions collapse to their
mean in practice. In this paper, we propose a different ap-
proach, based on both quantile and expectile regression, that
matches the performance of Huber-based agents while pre-
serving distributional estimation guarantees and avoiding
distributional collapse in practice.

We are not the first to note that asymmetric 𝐿2 losses, i.e.,
that regress expectiles of the target distribution, tend to yield
degenerate estimated distributions when training agents with
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temporal difference learning. Rowland et al. [2019] note that
expectiles of a distribution cannot be interpreted as samples
from this distribution, and therefore expectiles other than the
mean cannot be directly used to compute the target values
in distributional temporal difference learning. Instead, they
propose to generate samples from expectiles of the distribu-
tion by adding an imputation step, that requires solving a
costly root-finding problem. While theoretically justified, we
found this approach to be extremely slow in practice, prevent-
ing widespread use at scale. In contrast, our dual approach
tackles this problem through learning, and only requires an
additional two-layer neural network with the computation
of a quantile loss function on top of the expectile loss func-
tion. This approach therefore adds close to no computational
overheads when training Atari agents on modern GPUs.

Our contributions can be summarized as follows:

• We propose a novel dual expectile-quantile approach
to distributional dynamic programming that provably
converges to the true value distribution in the limit of
infinite estimated quantile and expectile fractions.

• We release implicit expectile-quantile networks
(IEQN),* a practical implementation of our dual
approach based on implicit quantile networks [Dabney
et al., 2018a].

• We show both on a toy example and at scale on the
Atari-5 benchmark that IEQN (i) avoids distributional
collapse, and (ii) matches the performance of the Hu-
ber-based IQN-1 approach.

2 BACKGROUND

2.1 DISTRIBUTIONAL REINFORCEMENT
LEARNING

We consider an environment modeled by a Markov decision
process (MDP) (S,A, 𝑅, 𝑇, 𝛾), where S and A are a state
and action space, respectively, 𝑅(𝑠, 𝑎) denotes the stochastic
reward obtained by taking action 𝑎 in state 𝑠, 𝑇 (· | 𝑠, 𝑎) is
the probability distribution over possible next states after
taking 𝑎 in 𝑠, and 𝛾 is a discount factor. Furthermore, we
write 𝜋(· | 𝑠) for a (potentially stochastic) policy selecting
the action depending on the current state.

We consider the problem of finding a policy maximizing the
average discounted return, i.e.,

𝜋∗ = arg max
𝜋
E

[ ∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]
,

where 𝑎𝑡 ∼ 𝜋(· | 𝑠𝑡 ) and 𝑠𝑡+1 ∼ 𝑇 (· | 𝑠𝑡 , 𝑎𝑡 ). We can
define the action-value random variable for policy 𝜋 as
𝑍 𝜋 : (𝑠, 𝑎) ↦→ ∑∞

𝑡=0 𝛾
𝑡𝑅(𝑠𝑡 , 𝑎𝑡 ), with 𝑠0 = 𝑠, 𝑎0 = 𝑎. We

*Available at https://github.com/samijullien/
ieqn.

will refer to action-value variables and their estimators as
𝑍-functions in the remainder. Note that the 𝑄-function, as
usually defined in RL [Sutton and Barto, 2018], is given
by 𝑄 𝜋 (𝑠, 𝑎) = E [𝑍 𝜋 (𝑠, 𝑎)]. In this work, we consider ap-
proaches that evaluate policies through distributional dy-
namic programming, i.e., by repeatedly applying the distri-
butional Bellman operator T 𝜋 to a candidate 𝑍-function:

T 𝜋𝑍 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛾E𝜋
[
𝑍 (𝑠𝜋𝑡+1, 𝑎

𝜋
𝑡+1)

]
. (1)

This operator has been shown to be a contraction in the 𝑝-
Wasserstein distance and therefore admits a unique fixed
point 𝑍 𝜋 [Bellemare et al., 2017]. A major challenge of dis-
tributional RL resides in the choice of representation for the
action-value distribution, as well as the empirical implemen-
tation of the distributional Bellman operator. For simplicity,
in the remainder and in line with previous work, we only
consider empirical distributions [Bellemare et al., 2023, Def-
inition 5.5] (i.e., whose representation can fit in finite mem-
ory), and refer to the empirical representation distributional
Bellman operator [Bellemare et al., 2023, Algorithm 5.1] as
T 𝜋 .

2.2 QUANTILE AND EXPECTILE REGRESSION

Let 𝑍 be a real-valued probability distribution. The 𝛼-
quantile 𝑞𝛼 of 𝑍 is defined as a value splitting the probability
mass of 𝑍 in two parts of weights 𝛼 and 1 − 𝛼, respectively:

𝑃(𝑧 ≤ 𝑞𝛼) = 𝛼.

Therefore, the quantile function 𝑄𝑍 : 𝛼 ↦→ 𝑞𝛼 is the inverse
cumulative distribution function: 𝑄𝑍 = 𝐹−1

𝑍
. Alternatively,

quantiles are given by the minimizer of an asymmetric 𝐿1
loss:

𝑞𝛼 = arg min
𝑞
E𝑧∼𝑍

[ (
𝛼1𝑧>𝑞 + (1 − 𝛼)1𝑧≤𝑞

)
|𝑧 − 𝑞 |

]
. (2)

Expectiles and the expectile function 𝐸𝑍 : 𝜏 ↦→ 𝑒𝜏 are
defined analogously, as the 𝜏-expectile 𝑒𝜏 minimizes the
asymmetric 𝐿2 loss:

𝑒𝜏 =arg min
𝑒
E𝑧∼𝑍

[
(𝜏1𝑧>𝑒 + (1 − 𝜏)1𝑧≤𝑒) (𝑧 − 𝑒)2

]
. (3)

2.3 QUANTILES AND EXPECTILES IN
DISTRIBUTIONAL RL

Quantile regression has been used for distributional RL in
many previous studies [see, e.g., Dabney et al., 2018a,b,
Yang et al., 2019] where a parameterized quantile function
𝑄 𝜃
𝑍
(𝑠, 𝑎, 𝛼) is trained using a quantile temporal difference

loss function derived from Eq. (2), i.e., for 𝑁 estimated
quantiles:

L𝑄
(
𝑄 𝜃𝑍 (𝑠, 𝑎, ·), z

)
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑙𝑄 (𝑞𝑖 , 𝑧 𝑗 ), (4)
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with 𝑙𝑄 (𝑞𝑖 , 𝑧 𝑗 )= (𝛼𝑖1𝑧 𝑗>𝑞𝑖 + (1−𝛼𝑖)1𝑧 𝑗≤𝑞𝑖 ) |𝑧 𝑗 −𝑞𝑖 |, where
the trainable quantile values 𝑞𝑖 = 𝑄 𝜃𝑍 (𝑠, 𝑎, 𝛼𝑖) are obtained
by querying the quantile function at various quantile fractions
𝛼𝑖 , which can be either fixed by the designer [Dabney et al.,
2018b], sampled from a distribution [Dabney et al., 2018a],
or learned during training [Yang et al., 2019]. In quantile-
based temporal difference (QTD) learning, the target samples
𝑧 𝑗 can be obtained by querying the estimated quantile func-
tion at the next state-action pair: 𝑧 𝑗 = 𝑟 + 𝛾𝑄 𝜃𝑍 (𝑠′, 𝑎′, 𝛼 𝑗 ).*
Indeed, because the true quantile function is the inverse CDF
of the action-value distribution, Dabney et al. [2018b] and
Bellemare et al. [2023] showed that, among 𝑁-atoms repre-
sentations, quantiles at equidistant fractions minimize the
1-Wasserstein distance with the action-value distribution and
that the resulting projected Bellman operator is a contraction
mapping in such a distance. Rowland et al. [2023] extended
these results to prove the convergence of QTD learning un-
der mild assumptions. We refer to these studies for a more
detailed convergence analysis.

In contrast, expectile-based temporal difference (ETD) learn-
ing does not allow the same training loss as the one given
by Eq. (4). We first write the generic ETD loss derived from
Eq. (3):

L𝐸
(
𝐸 𝜃𝑍 (𝑠, 𝑎, ·), z

)
=

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑙𝐸 (𝑒𝑖 , 𝑧 𝑗 ), (5)

with 𝑙𝐸 (𝑒𝑖 , 𝑧 𝑗 )= (𝜏𝑖1𝑧 𝑗>𝑒𝑖 + (1 − 𝜏𝑖)1𝑧 𝑗≤𝑒𝑖 ) (𝑧 𝑗 − 𝑒𝑖)2, and
𝑒𝑖 = 𝐸

𝜃
𝑍
(𝑠, 𝑎, 𝜏𝑖). Here, choosing 𝑧 𝑗 = 𝑟 + 𝛾𝐸 𝜃𝑍 (𝑠′, 𝑎′, 𝜏𝑗 ),

analogously to QTD learning and non-distributional TD
learning, would cause the update to approximate a differ-
ent distribution because the expectile function is in general
not the inverse CDF of the return distribution, meaning that
expectiles cannot be considered as samples from the dis-
tribution. Rowland et al. [2019] formalized this idea using
the concept of Bellman-closedness, i.e., that the projected
Bellman operator yields the same statistics whether it is ap-
plied to the target distribution or to the implicit distribution
given by statistics of the target distribution (i.e., in our case a
uniform mixture of diracs with locations given by quantiles
or expectiles).

3 RELATED WORK

3.1 DISTRIBUTIONAL REINFORCEMENT
LEARNING

Distributional reinforcement learning has been shown to
result in several benefits over a mean-based approach – by
ascribing randomness to the value of a state-action pair, an

*We can have 𝑎′ ∼ 𝜋(· | 𝑠′), as in actor-critic algorithms,
or 𝑎′ = arg max𝑎 Q 𝜃𝑍 (𝑠

′, 𝑎, 𝛼 𝑗 ) as in Q-learning. This section is
agnostic to that choice but we refer to [Bellemare et al., 2023] for
convergence analysis in the latter case.

algorithm can learn more efficiently for close states and
actions [Mavrin et al., 2019], as well as capture possible
stochasticity in the environment [Martin et al., 2020]. Some
works also use distributional RL for risk-sensitive control [Fei
et al., 2021, Lim and Malik, 2022, Greenberg et al., 2022].
Multiple families of approaches have emerged.

Estimating a parameterized distribution is a straightforward
approach, and has been explored from both Bayesian [Strens,
2000, Vlassis et al., 2012] and frequentist [Jullien et al.,
2023] perspectives. However, this usually requires an expen-
sive likelihood computation, as well as making a restrictive
assumption on the shape of the return distribution 𝑍 . For
instance, assuming a normal distribution when the actual
distribution is heavy-tailed can yield disappointing results.

Thus, approaches based on non-parametric estimation are
also used to approximate the distribution. C51 [Bellemare
et al., 2017] quantizes the domain where 𝑍 has non-zero
density (usually in 51 atoms, hence the name), and performs
weighted classification on the atoms, by computing the cross-
entropy between 𝑍 and T 𝜋𝑍 . While C51 increases perfor-
mance over non-distributional RL, it requires the user to
manually set the return bounds and is not guaranteed to
minimize any 𝑝-Wasserstein metric with the target return
distribution.

Another important non-parametric approach to the estima-
tion of a distribution is quantile regression. Quantile regres-
sion relies on the minimization of an asymmetric 𝐿1 loss.
Estimating quantiles allows one to approximate the action-
value distribution without relying on a shape assumption.
QR-DQN [Dabney et al., 2018b] introduced quantile regres-
sion as a way to minimize the 1-Wasserstein metric between
𝑍 and T 𝜋𝑍 . ER-DQN [Rowland et al., 2019] traded the es-
timation of quantiles for expectiles, at the cost of a potential
distribution collapse, which they prevent via a root-finding
procedure. Further, implicit quantile networks (IQN) [Dab-
ney et al., 2018a] sample and embed quantile fractions, in-
stead of keeping them fixed, thereby improving performance.
Fully parameterized quantile functions (FQF) [Yang et al.,
2019] add another network generating quantiles fractions to
be estimated. We build on IQN and its expectile counterpart
to propose a well-performing, non-collapsing agent.

3.2 EXPECTILE REGRESSION

Expectiles were originally introduced as a family of esti-
mators of location parameters for a given distribution, to
palliate possible heteroskedasticity of the error terms in re-
gression [Newey and Powell, 1987, Philipps, 2021a].

Expectiles can be seen as mean estimators under missing
data [Philipps, 2021b]. Unlike quantiles, they span the entire
convex hull of the distribution’s support, and on this ensem-
ble, the expectile function is strictly increasing: an expectile
fraction is always associated to a unique value. Expectiles



have been used in reinforcement learning successfully be-
fore [Rowland et al., 2019], but in a way that requires a slow
optimization step to achieve satisfactory performance. More-
over, expectile regression is subject to the same crossing
issue as quantiles, albeit empirically less so [Waltrup et al.,
2015]. Expectiles have also been used in offline reinforce-
ment learning to compute a soft maximum over potential
outcomes seen in the offline data [Kostrikov et al., 2022].

Importantly for our work, it has been shown that under mild
assumptions expectile regression is the best linear unbiased
estimator of any location parameter within the range of the
distribution, which includes any quantile of the distribu-
tion [Philipps, 2021a]. In particular, expectile regression
has lower variance than quantile regression for estimating
quantiles of the distribution. This theoretical property has
been confirmed empirically by Waltrup et al. [2015]. These
observations encourage us to use expectile regression as a
way to estimate quantiles of the value distribution, which we
describe in the next section. In contrast to prior works that
proposed numerical solutions to the problem of mapping an
estimated expectile to its corresponding quantile [Rowland
et al., 2019, Waltrup et al., 2015], we propose a learning-
based approach to this problem.

4 METHOD

4.1 DUAL TRAINING OF QUANTILES AND
EXPECTILES

Expectiles have been suggested to be more efficient than
quantiles for function approximation [Newey and Powell,
1987, Waltrup et al., 2015], but unlike quantiles, they cannot
be directly used to generate proper samples of the estimated
return distribution (𝑧 𝑗 in Eq. (5)), which are required in dis-
tributional dynamic programming. Rowland et al. [2019]
propose an imputation strategy, i.e., a way to generate sam-
ples of a distribution that matches the current set of estimated
expectiles, by solving a convex optimisation problem. In our
experiments, we found that applying this imputation strategy
tends to drastically increase the runtime (around 25 times
slower in our setup), making experimentation with such
methods close to impossible for researchers with modest
computing resources. In this paper, we propose to learn a
functional mapping between expectiles and quantiles and
use the predicted quantiles to generate samples.

We learn a single 𝑍-function using expectile regres-
sion. Therefore, we have ∀(𝑠, 𝑎) ∈ S × A, 𝜏 ∈
[0, 1], 𝑍𝜃 (𝑠, 𝑎, 𝜏) =̂ 𝐸𝑍 (𝑠,𝑎) (𝜏), where 𝑍 is the true 𝑍-
function we wish to estimate. Then, we note that for non-
deterministic 𝑍 (𝑠, 𝑎), the expectile function at a given state-
action pair 𝐸𝑍 (𝑠,𝑎) ∈ R[0,1] is a strictly increasing and con-
tinuous function that spans the entire convex hull of the distri-
bution’s support [Holzmann and Klar, 2016]. Meanwhile, the
quantile function 𝑄𝑍 (𝑠,𝑎) ∈ R[0,1] spans the distribution’s

support. As a consequence, every quantile is a single expec-
tile, i.e., there exists a functional mapping from quantile frac-
tions to expectile fractions. In this work, we propose to learn
such a mapper 𝑚𝜙 (𝑠, 𝑎, 𝜏) =̂ 𝐸−1

𝑍 (𝑠,𝑎) ◦ 𝐹
−1
𝑍 (𝑠,𝑎) (𝜏) using

the quantile regression loss function from Eq. (4). We then
have ∀(𝑠, 𝑎) ∈ S × A, 𝜏 ∈ [0, 1], 𝑍𝜃 (𝑠, 𝑎, 𝑚𝜙 (𝑠, 𝑎, 𝜏)) =̂
𝑄𝑍 (𝑠,𝑎) (𝜏). We can then simply query our estimator of quan-
tiles at the next state-action pair to yield a sound imputation
step, while the parameters of the 𝑍-function are learned
through expectile regression.

For any tuple (𝑠, 𝑎, 𝑠′, 𝑎′), our proposed update step can be
described as follows:

1. Sample fractions 𝜏 ∼ U(0, 1).
2. Generate approximate samples of the target distribution

using the quantile representation:

𝑧 = 𝑅(𝑠, 𝑎) + 𝛾𝑍𝜃 (𝑠′, 𝑎′, 𝑚𝜙 (𝑠′, 𝑎′, 𝜏)).

3. Use expectile regression to learn the 𝑍-function:

𝑍𝜃 (𝑠, 𝑎, 𝜏) ← min
𝜃
L𝐸 (𝑍𝜃 (𝑠, 𝑎, 𝜏), 𝑧) .

4. Use quantile regression to learn the mapper:

𝑚𝜙 (𝑠, 𝑎, 𝜏) ← min
𝜙
L𝑄

(
𝑍𝜃 (𝑠, 𝑎, 𝑚𝜙 (𝑠, 𝑎, 𝜏)), 𝑧

)
.

The state-action embeddings of the mapper are copied form
those of the 𝑍-function. This way, the parameters of the 𝑍-
function (in our experiments below this includes the large
image embedding networks and the overall scale of the re-
wards) are learned using expectile regression, while only the
residual shape difference between the quantile and expectile
function is learned by the mapper, using quantile regression.

The update step described above can be formalized as a dis-
tributional operator, which we define in Section 4.2. We
prove that our proposed update operator converges to the
distributional Bellman operator in the limit of infinite esti-
mated quantile/expectile fractions. Then, in Section 4.3, we
detail a practical implementation of dual expectile-quantile
RL based on implicit quantile networks that we name IEQN.

4.2 CONVERGENCE OF THE DUAL
EXPECTILE-QUANTILE OPERATOR

In this section, we prove that our proposed update operator
converges to the distributional dynamic programming oper-
ator from Eq. (1) as the number of quantiles and expectiles
kept in memory grows infinitely large, i.e., that the error
incurred by our dual expectile-quantile operator vanishes in
the limit of an infinite number of statistics to be evaluated.
This result relies on several properties of the expectile func-
tion, including its absolute continuity that we establish in
the following lemma:



Algorithm 1 Implicit expectile-quantile networks (IEQN) update
Require: 𝑍-function 𝑍𝜃 , mapper 𝑚𝜙 , fractions (𝜏𝑖)𝑖=1,...,𝑁 ∼ U([0, 1]), learning rate 𝜆.

Collect experience (𝑠, 𝑎, 𝑟, 𝑠′)
for 𝑖 = 1, . . . , 𝑁 do

Compute expectile values 𝑒𝑖 ← 𝑍𝜃 (𝑠, 𝑎, 𝜏𝑖) and quantile values 𝑞𝑖 ← 𝑍𝜃 (𝑠, 𝑎, 𝑚𝜙 (𝜏𝑖))
Compute the greedy next-action:

𝑎′ ← max
𝑏∈A

1
𝑁

𝑁∑︁
𝑖=1

𝑍𝜃 (𝑠′, 𝑏, 𝑚𝜙 (𝜏𝑖))

Compute target samples:
𝑧𝑖 ← 𝑟 + 𝛾 · stop grad(𝑍𝜃 (𝑠′, 𝑎′, 𝑚𝜙 (𝜏𝑖)))

end for
Compute the expectile loss:

L𝐸 ←
1
𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝜏𝑖1𝑧 𝑗>𝑒𝑖 + (1 − 𝜏𝑖)1𝑧 𝑗≤𝑒𝑖

) (
𝑧 𝑗 − 𝑒𝑖

)2

Compute the quantile loss:

L𝑄 ←
1
𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(
𝜏𝑖1𝑧 𝑗>𝑞𝑖 + (1 − 𝜏𝑖)1𝑧 𝑗≤𝑞𝑖

) ��𝑧 𝑗 − 𝑞𝑖 ��
Update expectile function parameters: 𝜃 ← 𝜃 − 𝜆∇𝜃L𝐸
Update mapper parameters: 𝜙← 𝜙 − 𝜆∇𝜙L𝑄

Lemma 1. Let 𝑍 be a random variable taking values in
[𝑎, 𝑏] with finite second moment and whose CDF admits
finitely many discontinuities. Then, the expectile function
𝐸𝑍 : 𝜏 ↦→ arg min𝑒 E𝑧∼𝑍 [(𝜏1𝑧>𝑒 + (1 − 𝜏)1𝑧≤𝑒) (𝑧 − 𝑒)2]
is absolutely continuous on [0, 1].

The proofs for this lemma and all results below are included
in the appendix. We are now able to prove our main result,
Theorem 2, i.e., that our dual regression projection operator
approximates the target distribution well in the limit of an
infinite number of quantile/expectile fractions:

Theorem 2. Let 𝜏𝑘 = 2𝑘−1
2𝐾 , for 𝑘 = 1, . . . , 𝐾 , and let 𝛱𝐾

M :
P (R) →P (R) be the dual regression projection operator
defined as:

∀𝜂 ∈P (R),

𝛱𝐾
M (𝜂) =

1
𝐾

𝐾∑︁
𝑘=1

𝛿𝐸𝜂 (floor𝐾 (𝐸−1
𝜂 (𝐹−1

𝜂 (𝜏𝑘 )))

=
1
𝐾

𝐾∑︁
𝑘=1

𝛿
𝐸𝜂

(
2⌊𝐾M(𝜏𝑘 )+1/2⌋−1

2𝐾

) ,
where 𝐸𝜂 : [0, 1] → R is the expectile function of 𝜂, 𝐹−1

𝜂 :
[0, 1] → R is the inverse CDF – i.e., the quantile function –
of 𝜂, and floor𝐾 (𝑥) = 𝜏⌊𝐾𝑥+ 1

2 ⌋ . Let 𝜂 ∈P (R) be a bounded-
support probability distribution with finite second moment
and whose CDF admits finitely many discontinuities, and let

𝑊1 be the 1-Wasserstein distance. Then:

lim
𝐾→∞

𝑊1 (𝛱𝐾
M𝜂, 𝜂) = 0 .

Reusing the notation from the theorem, we can formally
define our dual expectile-quantile operator. Let 𝜋 ∈P (A)S
be a policy, we have:

T 𝜋M𝐾 = 𝛱𝐾
MT

𝜋 ,

where T 𝜋 : 𝑍 (𝑠𝑡 , 𝑎𝑡 ) = 𝑅(𝑠𝑡 , 𝑎𝑡 ) + 𝛾E𝜋
[
𝑍 (𝑠𝜋

𝑡+1, 𝑎
𝜋
𝑡+1)

]
is

the distributional Bellman operator (see Section 2.1). We can
now derive a key corollary in the context of distributional
RL training:

Corollary 3. On Markov decision processes with bounded
rewards and 𝛾 < 1, the dual expectile-quantile operator
converges pointwise to the distributional Bellman operator:

lim
𝐾→∞

T 𝜋M𝐾 = T 𝜋 pointwise.

This result comes in contrast to the failure of the naive expec-
tile operator [Rowland et al., 2019] to match the distributional
Bellman operator. We now present a practical implementa-
tion of an agent using our dual approach.

4.3 A PRACTICAL IMPLEMENTATION: IEQN

We use the principle described in Section 4.1 to implement
IEQN (Algorithm 1), a new distributional RL agent based on
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(a) Approximating a distribution with separate and dual training.
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(b) Tabular distributional RL with separate and dual training.
Figure 1: (a) Approximating a bimodal distribution with quantile and expectile regression. Quantile regression approximates
the inverse CDF, albeit with high variance, especially on extreme values (left, blue curves). Expectiles converge very quickly
to the expectile function (left, red curves). When training a mapper to generate quantiles from expectiles, quantile estimation
becomes much more efficient (right). (b) Distributional RL with function approximation in a chain MDP with 4 states, and a
bimodal reward distribution at the last state. The expectile function collapses as the temporal difference error propagates to
previous states (left, red curves) while the quantile function is a poor approximation of the inverse CDF (left, blue curves).
Our dual method solves both problems (right).

implicit quantile networks (IQN) [Dabney et al., 2018a]. The
𝑍-function is modeled as a neural network inputting a state
and a fraction 𝜏 ∼ U(0, 1), and outputting 𝜏-expectile values
for all actions. Its parameters are learned via an asymmet-
ric 𝐿2 loss, i.e., expectile regression. We also use a neural
network to implement the mapper between quantile frac-
tions and expectile fractions, and learn its parameters via an
asymmetric 𝐿1 loss, i.e., quantile regression.

5 EXPERIMENTS

We first demonstrate on a toy MDP the benefits of learning
quantiles and expectiles together. We then describe our ex-
perimental setup and results on the Atari Arcade Learning
Environment (ALE).

5.1 CHAIN MDP: A TOY EXAMPLE

We start by observing the effect of our proposed operator
in a toy environment. The MDP comprises 4 states, each
pointing to the next through a unique action and without



accumulating any reward, until the last state 𝑠4, where the
episode terminates and the agent obtains a reward sampled
from a bimodal distribution 𝑟 ∼ ( 1

2N(−2, 1) + 1
2N(+2, 1))

(see the Appendix for a visual description).

Figure 1a highlights the advantageous properties of expec-
tile regression that were introduced in prior work [Philipps,
2021a,b, Waltrup et al., 2015]. When trying to approximate
the distribution of terminal rewards directly from samples
(left), we can see that expectile regression yields more ac-
curate estimates than quantile regression in the low-data
regime (recall that the quantile function is the inverse CDF
while the expectile function is in general not). Interestingly,
coupling expectile regression with our mapper (right) allows
us to recover the quantile function much more efficiently
than quantile regression itself. We can therefore confirm the
findings from prior work [Philipps, 2021a, Waltrup et al.,
2015] and conclude that our learning-based procedure for
mapping estimated expectiles to their corresponding quantile
fraction is effective.

In Figure 1b, we instantiate the problem in a typical dy-
namic programming setting, to illustrate the deficiencies
of regular quantile and expectile dynamic programming.
We can observe (left) that quantile function learning is
sample-inefficient and fails to approximate the distribution
within the given evaluation budget.* However, the distribu-
tion information is propagated correctly through temporal
difference updates, since the quantile functions estimated
at each state coincide. In contrast, the expectile function
collapses to the mean as the error propagates from 𝑠4 to
𝑠1. This is due to the fact that expectile values at the next
state-action pair cannot be used as pseudo-samples of the
return distribution 𝑍 (𝑠𝑡+1) [Rowland et al., 2019]. Finally,
Figure 1b (right) shows that our dual training method, where
the pseudo-samples of 𝑍 (𝑠′, 𝑎′) are the estimated quantiles
𝑍𝜃 (𝑠𝑡+1, 𝑚𝜙 (𝜏)), solves both issues: the expectile function
does not collapse anymore and the quantile function approx-
imation is an accurate estimation of the inverse CDF.

5.2 EXPERIMENTS ON THE ATARI ARCADE
LEARNING ENVIRONMENT

5.2.1 Baselines

We experimented with the following baselines to evaluate
our approach:

IQN-0, IQN-1 We approximate quantiles using the general
approach described in IQN [Dabney et al., 2018a], re-
spectively without and with a Huber loss.

IEN-Naive We use a similar approach as for IQN, but
*In this figure, we learn quantile and expectile functions param-

eterized by neural networks, as opposed to Figure 1a where each
statistic is learned independently from others. This explains why
the quantile function’s appearance is smoother in this figure.

trained with an expectile loss and a naive imputation
step as described in [Rowland et al., 2019], i.e., expec-
tile values are used as target for the temporal difference
loss. The solver-based implementation described by the
authors was too slow on our setup, as it was approxi-
mately 25 times slower than the other baselines.

5.2.2 Environments

We opted to conduct our experiments with the Atari Learn-
ing Environment (ALE) [Bellemare et al., 2013], following
the setup of Machado et al. [2018], notably including a 25%
chance to perform a sticky action at each step, i.e., repeating
the latest action instead of using the action predicted by the
agent. This creates stochasticity in the environment, which
should be captured by distributional RL agents. In order
to accommodate for limited computing resources, we con-
strained ourselves to the Atari-5 subbenchmark [Aitchison
et al., 2023], yet using 5 seeds to reduce the uncertainty in our
results. We perform 25 validation episodes every 1M steps to
generate our performance curves. As is common with ALE,
we report human-normalized scores, rather than raw game
scores, and we aggregate them using the interquartile mean
(IQM), as it is a better indicator of overall performance
(compared to sample median) [Agarwal et al., 2021], due
to its robustness to scale across tasks and to outliers. It is
especially needed, as the presence of sticky actions increases
the number of outlier seeds.

5.2.3 Implementation details

We base all baselines and our method on the same underly-
ing neural network, implemented in JAX [Bradbury et al.,
2018]. Its architecture follows the structure detailed by Dab-
ney et al. [2018a]. We used the training loop composition
of CleanRL [Huang et al., 2022]. Hyperparameters can be
found in the appendix. We implemented the 𝑍-function for
all agents as a feed-forward neural network with layer nor-
malization. We did not use the fraction proposal network
introduced with FQF [Yang et al., 2019], as our method can
be seen as complementary to it, and we focus on the effect
of the choice of statistics. Finally, we found that using layer
normalization increased performance for both our method
and baselines.

As described in Algorithm 1, we only use the expectile loss to
update the 𝑍-function for our agent, while we use the quantile
loss to update our mapper. The mapper is implemented as
a two layer, residual fully-connected neural network with
ReLU and Tanh activations. Since it is queried to obtain both
the candidate and target values, we use a mapper-specific
target network updated less frequently than the live network,
using Polyak averaging [Polyak and Juditsky, 1992] with a
weight of 0.5. We share the parameters across all states, to
simplify its architecture. We detail the implications of this
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choice in the appendix.

5.2.4 Results

In this section, we verify that our dual approach also provides
benefits at scale, on a classic benchmark.

We first present, in Figure 2, the aggregated results over 5
seeds on the Atari-5 benchmark. We can see that despite
a slower start, IEQN ends up matching the performance
of IQN-1. To get statistically stronger results, we also per-
formed a bootstrap hypothesis test on the difference of IQMs
at the end of training (we average scores from the last 5
validation epochs to be robust to instabilities). We found that
our method surpasses the performance of both the quantile
approach (achieved significance level 0.0117), and naive
expectile approach (achieved significance level 0), thereby
demonstrating the benefits of dual regression over single
regression of either quantiles or expectiles on the final per-
formance.

Furthermore, we verify in Table 1 that IEQN avoids distribu-
tional collapse in practice. In fact, while IQN-1’s estimated
distribution is much narrower than IQN-0’s – a confirmation
that the Huber loss causes distributional collapse, despite
its better efficiency – IEQN’s quantile spread is much larger
than IQN-1’s. Moreover, the expectile spread of IEQN is
much larger and more stable than that of IEN-Naive, sug-
gesting that expectile distributional RL yields degenerate
distributions, as noted by Rowland et al. [2019], but that dual
expectile-quantile distributional RL avoids this collapse.

Table 1: Average and standard deviation of the distance be-
tween quantile (respectively expectile) 0.1 and 0.9, relatively
to the scale of the Q-function, at the end of training.

Quantiles spread Expectiles spread

IQN-0 1.25 ± 0.198 -
IQN-1 0.144 ± 0.072 -
IEN-Naive - 0.174 ± 0.195
IEQN 0.721 ± 0.142 0.465 ± 0.086

6 CONCLUSION

We have proposed a statistics-based approach to distribu-
tional reinforcement learning that uses the simultaneous
estimation of quantiles and expectiles of the action-value
distribution. Previous work only estimated quantiles or ex-
pectiles separately. Our new approach presents the advantage
of leveraging the efficiency of the expectile-based loss for
both expectile and quantile estimation while solving the
theoretical shortcomings of expectile-based distributional
reinforcement learning, which often lead to a collapse of the
expectile function in practice.

We have shown on a toy environment how the dual optimiza-
tion affects the statistics recovered in distributional RL: in
short, the quantile function is estimated more accurately than
with vanilla quantile regression and the expectile function
remains consistent after several steps of temporal difference
training. We have also benchmarked our approach at scale,
on the Atari-5 benchmark. Our model, IEQN, matches the
performance of the Huber-based IQN-1 and surpasses that
of both expectile and quantile-based agents, demonstrating
its effectiveness in practical scenarios.

We open possibilities for future research to use a distribu-
tional approach that performs well and does not collapse. For
future work, we plan to investigate how the dual approach
can be used in risk-aware decision-making problems, and
how it performs when the goal is to optimize risk metrics
such as (conditional) value-at-risk. Moreover, we plan to
gather insights into what type of behavior is favored by the
quantile and expectile loss, respectively.
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APPENDIX

This appendix has the following sections:

A Hyperparameters, code and implementation details

B Sharing the mapper’s parameters

C Toy Markov decision process

D Proof of Lemma 1

E Proof of Theorem 2

F Proof of Corollary 3

F Analysis of the estimated variance

A HYPERPARAMETERS, CODE AND
IMPLEMENTATION DETAILS

A.1 HYPERPARAMETERS

We use JAX [Bradbury et al., 2018] to train our models. A
full training procedure of 200M training frames and corre-
sponding validation epochs takes approximately 50 hours in
our setup.

Table 2: 𝑍-function hyperparameters.

Key Value

Discount factor 0.99
Batch size 32
Fraction distribution U([0, 1])
Learning rate 1e−4

Random frames before training 200000
Size of convolutional layers [32, 64, 64]
Size of fully-connected layer 512
Critic updates per sample 2
Buffer size 1e6
Frames between target network updates 35000
Target network update rate 1.0

Table 3: Mapper hyperparameters.

Key Value

Layer size 64
Learning rate 7e−5

Target network update rate 0.5

A.2 CODE

Our training and evaluation loop is based on CleanRL [Huang
et al., 2022]. The code base is available on https://
github.com/samijullien/ieqn.

B SHARING THE MAPPER’S
PARAMETERS

Sharing the mapper’s parameters across states and actions
allows us to lighten the computational burden, which is part
of the goal of this paper. We found this technique to work
well in practice on the Atari-5 benchmark, although it re-
quires additional assumptions in theory. We review these
assumptions in this section.

Yao and Tong [1996] show that there exists such a shared
mapping between quantiles and expectiles when the regres-
sion follows a location-scale model, i.e., for random variables
𝑋 and 𝑌 :

𝑌 = 𝜇(𝑋) + 𝜎(𝑋)𝜀,

where 𝜇 and 𝜎 are continuous functions, 𝜀 is centered and
finite-variance, and 𝜀, 𝑋 are independent. When the return
distribution follows this model, 𝑋 being the state-action
variable in this context, sharing the mapper’s parameters is
theoretically valid. While this may seem limiting, it does
not require all state-action pairs to be allocated the same
distributions, only that they share a common shape. Moreover,
the location-scale family is quite broad, as it includes, e.g.,
Normal, Student, Cauchy, GEV distributions, and more [Wei,
2014].

In many distributional reinforcement learning scenarios, the
assumption may be satisfied. For instance, when the envi-
ronmental stochasticity emerges from small, independent
perturbations, i.e., normally-distributed errors, the return
distribution at every state will still be normally distributed
as convolutions of Gaussian distributions are also Gaus-
sian. On the other hand, this assumption can fail under high-
frequency transition distributions, i.e., branching behaviors,
where the same state-action pair can yield drastically dif-
ferent outcomes and the reward-next-state distribution has
non-continuous support. We leave for future work the in-
vestigation of when sharing the mapper’s parameters across
state-action pairs fails in practice.

C TOY MARKOV DECISION PROCESS

s1 s2 s3 s4

R1 R2 R3 R4

Figure 3: Toy Markov decision process.
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D PROOF OF LEMMA 1
Our proof of Theorem 2 requires the absolute continuity of the expectile function. Therefore, we first prove the following
lemma:
Lemma 1. Let 𝑍 be a random variable taking values in [𝑎, 𝑏] with finite second moment and whose CDF admits finitely
many discontinuities. Then, the expectile function 𝐸𝑍 : 𝜏 ↦→ arg min𝑒 E𝑧∼𝑍 [(𝜏1𝑧>𝑒 + (1 − 𝜏)1𝑧≤𝑒) (𝑧 − 𝑒)2] is absolutely
continuous on [0, 1].

Proof. Our proof relies on the Banach-Zarecki theorem [Zaretsky, 1925], which states that any real-valued function 𝑓 defined
on a real bounded closed interval is absolutely continuous if and only if on this interval:

(i) 𝑓 is continuous;
(ii) 𝑓 has bounded variation; and

(iii) 𝑓 follows the Luzin N property [Luzin, 1915], i.e., the image by 𝑓 of a set with null Lebesgue measure also has null
Lebesgue measure.

It is well-known that the expectile function is continuous on [0, 1] [Holzmann and Klar, 2016, Philipps, 2021b]. Therefore,
(i) is satisfied.
𝐸𝑍 is monotonically increasing and takes values in the finite support of 𝑍 . Therefore it has bounded variation and (ii) is
satisfied.
In order to prove (iii), we first note that any function that is differentiable on a co-countable set has the Luzin N property [Luzin,
1915]. We therefore use our assumption that 𝑍 admits a finite number of discontinuities in the following.
Let 𝐹𝑍 be the CDF of 𝑍 and 𝐷 = {𝑧 ∈ [𝑎, 𝑏] : lim𝑥→𝑧 𝐹𝑍 (𝑥) ≠ 𝐹𝑍 (𝑧)} be the finite set of points at which 𝐹𝑍 is not
continuous. 𝐷 is a finite set within a metric space and therefore closed. As a consequence, its complement𝐶[𝑎,𝑏] = [𝑎, 𝑏] \𝐷
is open in [𝑎, 𝑏], i.e., ∀𝑧 ∈ 𝐶[𝑎,𝑏] , ∃𝜀 > 0 such that ∀𝑥 ∈ [𝑎, 𝑏]𝑑 (𝑥, 𝑧) < 𝜀 ⇒ 𝑥 ∈ 𝐶[𝑎,𝑏] . In other words, if 𝐹𝑍 is
continuous at a point within [𝑎, 𝑏], it is also continuous in a neighborhood of that point within [𝑎, 𝑏]. By assumption, the set
𝐶N[𝑎,𝑏] =

{
𝑧 ∈ [𝑎, 𝑏] : ∃𝜀 > 0,∀𝑥 ∈ [𝑎, 𝑏], 𝑑 (𝑥, 𝑧) < 𝜀 ⇒ 𝑥 ∈ 𝐶[𝑎,𝑏]

}
of points where 𝐹𝑍 is continuous in a neighborhood

of said point is therefore co-finite.
It has been shown that the expectile function 𝐸𝑍 is continuously differentiable at any point 𝜏 ∈ [0, 1] such that 𝐹𝑍 is
continuous in a neighborhood of 𝐸𝑍 (𝜏) [Holzmann and Klar, 2016, Newey and Powell, 1987]. The expectile function is
bijective [Philipps, 2021b] so the set of points where 𝐸𝑍 is differentiable D𝐸𝑍

[𝑎,𝑏] = 𝐸
−1
𝑍

(
𝐶N[𝑎,𝑏]

)
is also a co-finite set.

The expectile function is differentiable on a co-finite (and thus co-countable) set, i.e., it has the Luzin N property [Luzin,
1915], which yields (iii).
We can finally apply the Banach-Zarecki theorem and conclude that the expectile function 𝐸𝑍 is absolutely continuous on
[0, 1].



E PROOF OF THEOREM 2
We can now use the absolute continuity of the expectile function under our assumptions to prove the following theorem:
Theorem 2. Let 𝜏𝑘 = 2𝑘−1

2𝐾 , for 𝑘 = 1, . . . , 𝐾, and let 𝛱𝐾
M : P (R) → P (R) be the dual regression projection operator

defined as:
∀𝜂 ∈P (R),

𝛱𝐾
M (𝜂) =

1
𝐾

𝐾∑︁
𝑘=1

𝛿𝐸𝜂 (floor𝐾 (𝐸−1
𝜂 (𝐹−1

𝜂 (𝜏𝑘 )))

=
1
𝐾

𝐾∑︁
𝑘=1

𝛿
𝐸𝜂

(
2⌊𝐾M(𝜏𝑘 )+1/2⌋−1

2𝐾

) ,
where 𝐸𝜂 : [0, 1] → R is the expectile function of 𝜂, 𝐹−1

𝜂 : [0, 1] → R is the inverse CDF – i.e., the quantile function – of
𝜂, and floor𝐾 (𝑥) = 𝜏⌊𝐾𝑥+ 1

2 ⌋ . Let 𝜂 ∈P (R) be a bounded-support probability distribution with finite second moment and
whose CDF admits finitely many discontinuities, and let𝑊1 be the 1-Wasserstein distance. Then:

lim
𝐾→∞

𝑊1 (𝛱𝐾
M𝜂, 𝜂) = 0 .

Proof. Thanks to the triangle inequality, we have :

𝑊1 (𝛱𝐾
M𝜂, 𝜂) ⩽ 𝑊1 (𝛱𝐾

M𝜂, 𝛱
𝐾
𝑄 𝜂) +𝑊1 (𝛱𝐾

𝑄 𝜂, 𝜂) ,

where 𝛱𝐾
𝑄

is the projected quantile regression estimator defined as:

∀𝜂 ∈P (R), 𝛱𝐾
𝑄 (𝜂) =

1
𝐾

𝐾∑︁
𝑘=1

𝛿𝐹−1
𝜂 (𝜏𝑘 ) .

Rowland et al. [2019, Lemma 3.2] showed that𝑊1 (𝛱𝐾
𝑄
𝜂, 𝜂) = O

(
1
𝐾

)
. We now turn to the first term:

𝑊1 (𝛱𝐾
M𝜂, 𝛱𝑄𝜂) =

𝐾−1∑︁
𝑖=0

1
𝐾

����𝐸𝜂 (
floor𝐾

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

))))
− 𝐹−1

𝜂

(
2𝑖 + 1

2𝐾

)����
=

𝐾−1∑︁
𝑖=0

1
𝐾

����𝐸𝜂 (
floor𝐾

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

))))
− 𝐸𝜂

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

)))����
⩽
𝐾−1∑︁
𝑖=0

1
𝐾

����𝐸𝜂 (
floor𝐾

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

))))
− 𝐸𝜂

(
floor𝐾

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

)))
+ 1
𝐾

)���� ,
where the last inequality is obtained thanks to the monotonicity of the expectile function. By absolute continuity of the
expectile function under our assumptions (proven in Lemma 1), we have:

lim
𝐾→∞

����𝐸𝜂 (
floor𝐾

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

))))
− 𝐸𝜂

(
floor𝐾

(
𝐸−1
𝜂

(
𝐹−1
𝜂

(
2𝑖 + 1

2𝐾

)))
+ 1
𝐾

)���� = 0,

from which we can deduce lim𝐾→∞𝑊1 (𝛱𝐾
M𝜂, 𝛱𝑄𝜂) = 0 and finally lim𝐾→∞𝑊1 (𝛱𝐾

M𝜂, 𝜂) = 0.



F PROOF OF COROLLARY 3
Finally, we can derive our main result for the use of distributional dynamic programming with both quantiles and expectiles:
Corollary 3. On Markov decision processes with bounded rewards and 𝛾 < 1, the dual expectile-quantile operator converges
pointwise to the distributional Bellman operator:

lim
𝐾→∞

T 𝜋M𝐾 = T 𝜋 pointwise.

Proof. We have T 𝜋M𝐾 = 𝛱𝐾
MT

𝜋 . Bellemare et al. [2023] have shown that the set of empirical distributions F𝐸 is closed
under the operator T 𝜋 (Proposition 5.7). Thus, for any empirical return distribution 𝜂 ∈ F𝐸 , T 𝜋𝜂 is also empirical and
its CDF admits finitely many discontinuities. Moreover, it has bounded support. Indeed, if, without loss of generality, we
consider that the reward distribution take values in [0, 𝑅max], we have that every possible return distribution 𝜂 takes values in
[0, 𝑅max

1−𝛾 ], and therefore T 𝜋𝜂 takes values in [0, 𝑅𝑚𝑎𝑥 + 𝛾 𝑅max
1−𝛾 ] = [0,

𝑅max
1−𝛾 ].

We can now apply Theorem 2:
∀𝜂 ∈ F𝐸 , lim

𝐾→∞
𝑊1 (𝛱𝐾

MT
𝜋𝜂,T 𝜋𝜂) = 0,

and the result immediately follows.

G ANALYSIS OF THE ESTIMATED VARIANCE
In this section, we perform an additional experiment to better assess the quality of the value distribution on the Atari task.
The distribution learned in our method as well as all baselines estimates the optimal Z-function, i.e., the return distribution
of the optimal policy, which we cannot have ground truth for on large-scale tasks. We may however assume that the greedy
policy gets closer to the optimal policy towards the end of training. If we do so, then we can compare the learned Z-function
with the return distribution obtained by unfolding our agent’s policy. Below, we show the variance of the learned Z-function
(Figure 4a), and the average deviation between this prediction and the observed squared differences when rolling out the
policy (Figure 4b), throughout the first 50M steps of training on Battlezone.

(a) Predicted variance on Battlezone during training. (b) Error on variance on Battlezone during training.
Figure 4: Comparison of estimated variance against observed variance of unfolding the greedy policy.

We can see that (i) IQN-1 predicts a very low variance compared to IEQN, and (ii) using the approximation that the current
policy is close to the optimal policy, IEQN’s prediction gets closer to the observed variance than IQN-1’s, as training
progresses.
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