
Articulating Information Needs in XML Query
Languages

JAAP KAMPS, MAARTEN MARX, MAARTEN DE RIJKE,
and BÖRKUR SIGURBJÖRNSSON

University of Amsterdam

Document-centric XML is a mixture of text and structure. With the increased availability of

document-centric XML documents comes a need for query facilities in which both structural con-

straints and constraints on the content of the documents can be expressed. How does the expressive-

ness of languages for querying XML documents help users to express their information needs? We

address this question from both an experimental and a theoretical point of view. Our experimental

analysis compares a structure-ignorant with a structure-aware retrieval approach using the test

suite of the INEX XML Retrieval Evaluation Initiative. Theoretically, we create two mathematical

models of users’ knowledge of a set of documents and define query languages which exactly fit these

models. One of these languages corresponds to an XML version of fielded search, the other to the

INEX query language.

Our main experimental findings are: First, while structure is used in varying degrees of com-

plexity, two-thirds of the queries can be expressed in a fielded-search-like format which does not use

the hierarchical structure of the documents. Second, three-quarters of the queries use constraints

on the context of the elements to be returned; these contextual constraints cannot be captured by

ordinary keyword queries. Third, structure is used as a search hint, and not as a strict require-

ment, when judged against the underlying information need. Fourth, the use of structure in queries

functions as a precision enhancing device.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—Query lan-
guages; H.3.1 [Information Storage and Retrieval]: Content Analysis and Indexing; H.3.3

[Information Storage and Retrieval]: Information Search and Retrieval; H.3.4 [Information
Storage and Retrieval]: Systems and Software; H.3.7 [Information Storage and Retrieval]:
Digital Libraries

General Terms: Measurement, Performance, Experimentation

Additional Key Words and Phrases: Full-text XML querying, XPath, XML retrieval

This research was supported by the Netherlands Organization for Scientific Research (NWO) un-

der project numbers 017.001.190, 220-80-001, 264-70-050, 354-20-005, 612-13-001, 612.000.106,

612.000.207, 612.066.302, 612.066.513, 612.069.006, 639.072.601, 640.001.501, and 640.002.501

and by the EU’s 6th FP for RTD (project multiMATCH contract IST-033104).

Authors’ addresses: J. Kamps, Archives and Information Studies, Faculty of Humanities, University

of Amsterdam, Turfdraagsterpad 9, 1012 XT Amsterdam, the Netherlands; email: kamps@science.

uva.nl; M. Marx, M. de Rijke, B. Sigurbjörnsson, ISLA, Faculty of Science, University of Amsterdam,

Kruislaan 403, 1098 SJ Amsterdam, the Netherlands; email: {marx,mdr,borkur}@science.uva.nl.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that the copies are not made or distributed for profit or direct

commercial advantage, and that copies show this notice on the first page or initial screen of a

display along with the full citation. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, or

to post on servers, to redistribute to lists, or to use any component of this work in other works

requires prior specific permission and/or a fee. Permission may be requested from Publications

Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax: +1 (212) 869-0481,

or permissions@acm.org.
C© 2006 ACM 1046-8188/06/1000-0407 $5.00

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006, Pages 407–436.

408 • J. Kamps et al.

1. INTRODUCTION

There is an ever-growing availability of semistructured information on the web
and in digital libraries. Increasingly, users, both expert and nonexpert, have ac-
cess to text documents equipped with additional semantic information through
XML markup. Based on their content, XML documents may be categorized
into two groups: data-centric and document-centric. The former contain highly
structured data marked up with XML tags, an example being geographic data
in XML [May 1999]. The latter are loosely structured documents (often text)
marked up with XML, with electronic journals in XML providing important
examples. Whereas emerging standards for querying XML, such as XPath and
XQuery, can be very effective for querying data-centric XML, another approach
seems to be needed for querying document-centric XML. This task is a natural
meeting point of two disciplines: The hierarchical nature of XML markup calls
for methods from the database field for querying structure, and the textual
nature of the documents calls for approaches from the field of IR (see Vianu
[2001], Section 5). It is interesting to contrast the two subtasks. As to querying
structure, XML query languages such as XPath have a definite semantics. Judg-
ing whether an element satisfies an XPath query can be done by a computer
(XPath processor), based on the pattern appearing in the XML document, using
an exact match approach. It is clearly defined which elements match a given
query. An XPath processor will return precisely these elements with no inher-
ent ranking of results. In contrast, for querying text, IR uses free-text queries.
These can be keywords or full sentences describing an information need. An IR
system uses a best match approach: It attempts to rank results by their topical
relevance to the user’s query.

At INEX, the INitiative for the Evaluation of XML Retrieval [2006], the focus
is on a combined approach to XML retrieval, featuring aspects of exact match
and best match retrieval. Free-text search functionality is added to XPath in
the form of a new about function. With the same (standard) syntax as the stan-
dard contains function, the about function has two main features: It allows
the user to (1) express information needs with a mixture of content and struc-
ture requirements; and (2) use best match querying of document-centric XML.
Although the about function has the same syntax as contains, its semantics
is not strictly defined, but left to relevance judgments by human assessors.
But how to interpret the structural part of these hybrid content-and-structure
(CAS) queries? At INEX 2002 and 2003, structural constraints on the target
element—the tag name of the XML element returned to the user—were strictly
enforced. A more direct IR approach, adopted at INEX 2004 and 2005, is to view
the whole query as an inexact statement of the underlying information need. In
this case, there is no distinction with standard keyword queries in terms of the
ground truth used to evaluate retrieval effectiveness. A user may decide either
to articulate her information need using a keyword query or use a hybrid CAS
query. Which will be more effective for retrieving XML elements satisfying her
information need?

This brings us to the main research problem of this article: How does the ex-
pressiveness of languages for querying XML documents help users to articulate

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 409

their information needs? Intuitively, CAS queries are more expressive and this
should lead to more effective retrieval. In practice, however, experimental re-
sults are mixed at best. To a large extent, this article is motivated by our own
frustration with earlier experiments that gave contradictory evidence for meth-
ods that take the structural constraints of a CAS query seriously, with some
successes for shallow heuristics, but without leading to a thorough understand-
ing of the task. Hence, in this article, we opt for a broader, more reflective ap-
proach, in which we: (i) analyze in great detail a set of actual CAS queries and
corresponding relevance judgments; (ii) conduct a set of comparative retrieval
experiments; and (iii) relate the expressiveness of the CAS queries to a theoreti-
cal model based on the user’s knowledge of the document structure. Specifically,
we address the following questions:

(1) How do users exploit the additional expressive power of structural con-
straints in their queries, what queries do users formulate, and what is the
meaning of these queries?

(2) What is the effect on retrieval performance of adding structural constraints
to queries?

(3) What is the appropriate query language for XML retrieval?

We will answer the first two questions by an analysis of the INEX data. For the
third, such an analysis has been carried out by O’Keefe and Trotman [2004],
resulting in a proposal for a query language based on their findings. We give a
mathematical model of users’ knowledge of an XML collection and link this to
the appropriate expressive power of query languages. Our main results are:

(1) Structural constraints are mainly used as search hints, not as strict re-
quirements.
—The hierarchical nature of the documents is used in one-third of the ex-

amined queries; while
—three-quarters of the queries put constraints on the context of the element

to retrieve.

(2) Adding structural constraints has a positive effect on early precision and a
negative effect on overall recall.

(3) Towards an answer to the third question, we provide
—a typology of the different uses of content and structure queries; and
—intuitive mathematical models of users’ knowledge of a set of XML doc-

uments and the formulation of query languages which exactly fit this
knowledge.

The rest of this article is organized as follows. Section 2 describes the INEX
dataset, topic format, and query language. In Section 3 we discuss the retrieval
task at INEX and analyze the queries used. In Section 4 we report on ex-
periments comparing the retrieval effectiveness of structured versus ordinary
queries. Section 5 contains a typology of different content and structure queries.
In Section 6 we describe content-oriented flavors of XPath and provide semantic
characterizations of their expressive power. We conclude in Section 7.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

410 • J. Kamps et al.

2. THE DATA: INEX 2003, 2004, AND 2005

This section describes the data used: the INEX document collection, topic for-
mat, and query language for the content and structure queries.

2.1 The INEX XML Document Collection

The queries we study are run against the XML collection that is made available
by the INitiative for the Evaluation of XML Retrieval [INEX 2006]. It contains
over 12,000 articles from 21 IEEE Computer Society journals, marked up with
XML tags. Most of the markup refers to layout instructions (as in a LATEX doc-
ument). Several additional “semantic tags” are used as well (such as 〈au〉 to
indicate names of authors). The DTD of the INEX XML document collection is
rather complex. There are 192 different content types, including 11 different
tag names for representing paragraphs; about 170 tag names are actually used
in the collection, including articles 〈article〉, sections 〈sec〉, author names 〈au〉,
affiliations 〈aff〉, etc. On average, an article contains 1,532 elements and the
average element depth is 6.9.

The INEX setup is such that we should think of the INEX document collection
as a forest of articles. These are XML documents whose roots have the tag name
article. Because the actual storage of documents may differ, most queries start
with the prefix //article.1 This is only an artifact of the representation and
we will treat the tag name article as referring to the root of a document.

2.2 The INEX Topic Format

At INEX, two types of topic are used: content-only (CO) and content-and-
structure (CAS). All topics contain the same three fields as traditional IR top-
ics [Harman 1993]: title, description, and narrative. The title is the actual query
submitted to the retrieval system. The description and narrative describe the
information need in natural language. The described information need is used to
judge the relevancy of the retrieved answers to queries. The difference between
CO and CAS topics lies in the topic title. In the case of CO topics, the title de-
scribes the information need as a small list of keywords. In the case of CAS top-
ics, the title describes the information need using XPath 1.0 extended with the
about function discussed next. At INEX 2003, full XPath was allowed, whereas
at INEX 2004 and 2005 a restricted version of XPath was used [Sigurbjörnsson
and Trotman 2003; Trotman and Sigurbjörnsson 2005]. In this article we ana-
lyze the title part of CAS topics, which we simply call queries from now on.

2.3 The NEXI Query Language

The specific instructions for topic development at INEX 2004 [Sigurbjörnsson
et al. 2004c] stated that CAS queries:

—should use only descendant axis (i.e., //);

—should use only Boolean and and or in filter expressions;

1For example, only three CAS queries out of the 34 used at INEX 2004 do not start with this prefix.

However, these queries are prefixed with either 〈sec〉 or 〈abs〉 tags that in any case only occur in

the context of an 〈article〉 tag.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 411

—should contain at least one about statement; and

—the rightmost filter should be an about statement.

The resulting language is called NEXI (narrowed extended XPath I) [Trotman
and Sigurbjörnsson 2005].

The about function is the IR counterpart of the familiar XPath contains
function. Recall that if P is an XPath expression denoting a set of nodes, the
query contains(P,’phrase’) returns true when evaluated at a node n if there
exists a node m reachable from n via the path P and the text value of m con-
tains phrase. Because of its strict, Boolean character, contains is not suitable
for expressing the kind of information needs we meet at INEX. The seman-
tics of about(P,’phrase’) is intentionally not specified formally in the INEX
guidelines. As an example, consider the following query:

Find sections explaining the vector space model.

In the NEXI query language, this is naturally stated as

//sec[about(.,’vector space model’)].

This query uses //sec to ask for sections. The query restricts these sections
by the about(.,’vector space model’) function in the filter expression. The
dot indicates that the query should return only those sections which are about
’vector space model’. The latter part is to be interpreted as saying that the
section is relevant to the information need expressed by the phrase ’vector
space model’. In the spirit of IR, the ultimate decision of relevancy is in the
hands of a human assessor, who may bring lots of context and world knowledge
to her judgment. For example, a human assessor is likely to judge a section
about the ‘SMART system’ to be relevant to the information need expressed
previously. The next information need extends the example (in fact, this is CAS
topic 151 from INEX 2004):

In articles discussing web searching find sections explaining the vec-
tor space model.

//article[about(.,’web search engine’)]//sec[about(.,’vector
space model’)].

The resulting query now has two content-based restrictions. A first restriction
is on the requested elements (i.e., the XML elements returned to the user), which
targets sections explaining the vector space model, just as the earlier query. A
second restriction is on the context surrounding the requested elements (i.e., on
particular elements outside the requested element): The article should be about
web search engines. The two restrictions are linked by a structural constraint,
which here simply states that the section is indeed part of the article.

In this article, we will not assume that the structural parts of a NEXI query
(neither the tag names nor the way they are nested) are strictly enforced.
Rather, we are interested in how the NEXI queries written by users relate
to the perceived relevance of retrieved elements.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

412 • J. Kamps et al.

2.4 INEX CAS Queries

There has been a task using structured queries at every edition of INEX so far.
However, we do not consider the queries from the INEX 2002 CAS task, since
a very different and ambiguous query language was used [Fuhr et al. 2003].

As mentioned previously, in the INEX 2003 CAS task, full XPath queries
were allowed, with the about function replacing the contains predicate. There
is a straightforward mapping from the INEX 2003 CAS queries into the NEXI
format [Trotman and Sigurbjörnsson 2005]. The main change is to replace child
steps (“/”), which are no longer allowed in NEXI, with corresponding descendant
(“//”) steps. We use the resulting set of 30 CAS queries (version 1.4.7) with query
numbers 61–90 [Fuhr et al. 2004].

The NEXI query language was officially introduced at INEX 2004. We use
the set of 34 CAS queries (version 2004-7) with query numbers 127–147, and
149–161; for details, see Fuhr et al. [2005].

From INEX 2005, we use both the set of CO+S topics having an optional
CAS title field (hence the name CO plus structure) and the set of CAS topics
[Fuhr et al. 2006]. There are 40 CO+S topics (version 2005-003), numbered
202–241. We focus on the 28 topics with a CAS title field, numbered 202–205,
207–208, 210–212, 216, 219–220, 222–226, 228–234, 236, and 238–240. There
are 17 CAS topics (version 2005-003), numbered 244, 247, 250, 253, 256–258,
260, 261, 264, 265, 269, 270, 275, 280, 284, and 288.

3. THE MEANING OF CONTENT-AND-STRUCTURE

In this section we start to answer our first research question from the introduc-
tion. We examine how users express their information needs in the NEXI query
language. Given that information needs are notoriously hard to investigate, and
that we do not have access to a real user base of an operational system, we look
for evidence that will at least approximate users and information needs. At
INEX, all participants are involved in topic creation and assessment, giving us
access to NEXI queries formulated by a large group of people, together with
their relevance judgments. We proceed in two steps. First, we discuss the CAS
queries for 2003 and 2004. Because of its different assessment procedure and
task setup, we discuss the INEX 2005 data separately, although the findings
for 2005 closely mirror the analysis of the INEX 2003 and 2004 data.

We find that the elements requested in queries should be viewed as retrieval
hints, not as strict requirements on the results: Over half of the relevant ele-
ments have a different tag name from the one specified in the query.

3.1 What is Asked For and What is Returned

Requested Elements. One of the main advantages of CAS queries is that they al-
low the user to specify the types of elements that should be returned as answers.
Table I lists which kind of elements were requested in the 64 CAS queries stud-
ied across the two years. We see that sections (sec) and articles (article) are the
most popular elements asked for. Interestingly, article targets were the most
popular requested element in 2003, but lost their appeal in 2004—much in the
spirit of XML element retrieval.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 413

Table I. Frequency of Requested Elements in the 30 CAS Queries

of INEX 2003 and 34 CAS Queries of INEX 2004

Element 2003 2004 Total

sec (section) 10 (33.3%) 16 (47.1%) 26 (40.6%)

article 12 (40.0%) 5 (14.7%) 17 (26.6%)

p (paragraph) 1 (3.3%) 4 (11.8%) 5 (7.8%)

* (wildcard) 2 (6.7%) 2 (5.9%) 4 (6.3%)

abs (abstract) 2 (6.7%) 2 (5.9%) 4 (6.3%)

bb (bibliography entry) 1 (3.3%) 1 (2.9%) 2 (3.1%)

vt (vita) 1 (3.3%) 1 (2.9%) 2 (3.1%)

bdy (body) — 1 (2.9%) 1 (1.6%)

bib (bibliography) — 1 (2.9%) 1 (1.6%)

fig (figure) — 1 (2.9%) 1 (1.6%)

fm (front matter) 1 (3.3%) — 1 (1.6%)

We view a CAS query as a means to locate relevant information, rather than
an end in itself. At INEX, the requested element is not strictly enforced, but
merely regarded as a retrieval hint [Kazai et al. 2004, p. 237]:

CAS queries are topic statements, which contain explicit references
to the XML structure, and explicitly specify the contexts of the user’s
interest (e.g., target elements) and/or the contexts of certain search
concepts (e.g., containment conditions). [. . .] Although users may
think they have a clear idea of the structural properties of the collec-
tion, there are likely to be aspects to which they are unaware. The
idea behind the VCAS sub-task is to allow the evaluation of XML
retrieval systems that aim to implement approaches, where not only
the content conditions within a user query are treated with uncer-
tainty but also the expressed structural conditions. [. . .] The path
specifications should therefore be considered hints as to where to
look.

Hence, the CAS query is treated just like ordinary CO queries, as an imprecise
statement of an information need. The narrative describing the underlying
information need is authoritative for the relevance assessments. In the example
query that follows,

//article[about(.,’web search engine’)]//sec[about(.,’vector
space model’)],

the narrative field reads:

I’m writing a thesis about matching methods used in web search
engines and web agents. For this purpose I’m looking for information
about the vector space model. Relevant sections discuss the vector
space model, preferably at length. The sections must be in articles
that are about some aspect of web search engines or agents.

Looking at the relevance judgments based on this narrative will reveal, for
example, how we should interpret the //sec in the CAS query. Does this mean
literally <sec> and nothing else? If this is essential to the information need of

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

414 • J. Kamps et al.

Table II. Frequency of Elements Judged Relevant for All

Assessed CAS Queries at INEX 2003 and 2004

Element 2003 2004 Total

p+ 370 (23.45%) 854 (31.41%) 1224 (28.48%)

sec+ 580 (36.78%) 262 (9.64%) 842 (19.60%)

vt 41 (2.60%) 747 (27.47%) 788 (18.34%)

article 188 (11.92%) 73 (2.68%) 261 (6.08%)

bb 94 (5.96%) 104 (3.82%) 198 (4.61%)

bdy 145 (9.19%) 36 (1.32%) 181 (4.21%)

au 0 (0.00%) 110 (4.05%) 110 (2.56%)

fnm 0 (0.00%) 104 (3.82%) 104 (2.42%)

st 14 (0.89%) 90 (3.31%) 104 (2.42%)

fig 8 (0.51%) 53 (1.95%) 61 (1.42%)

abs 27 (1.71%) 13 (0.48%) 40 (0.93%)

it 2 (0.13%) 37 (1.36%) 39 (0.91%)

ref 0 (0.00%) 34 (1.25%) 34 (0.79%)

scp 0 (0.00%) 32 (1.18%) 32 (0.74%)

atl 5 (0.32%) 23 (0.85%) 28 (0.65%)

app 17 (1.08%) 9 (0.33%) 26 (0.61%)

fm 14 (0.89%) 11 (0.40%) 25 (0.58%)

li 14 (0.89%) 9 (0.33%) 23 (0.54%)

bm 11 (0.70%) 9 (0.33%) 20 (0.47%)

list 12 (0.76%) 2 (0.07%) 14 (0.33%)

item 11 (0.70%) 1 (0.04%) 12 (0.28%)

b 1 (0.06%) 10 (0.37%) 11 (0.26%)

We only show tag names that occur at least 10 times over both years.

the topic creator, the relevance judgments based on the narrative of the topic
of request will reflect this. But perhaps it merely means something section-
ish, like a section, subsection, or paragraph? Or is it a hint that the sought
information is likely to occur in a section? Or something else?2

Elements Judged Relevant. We use version 2.5 of the assessments for INEX
2003, in the vague CAS (or VCAS) version that is not postfiltered for requested
elements. There are judgments for all 30 queries numbered 61–90. In INEX,
assessors make relevance judgments on a graded, two-dimensional scale. To be
able to look at the distribution of relevant elements, we use a quantization that
results in Boolean relevance judgments. Specifically, we focus on elements rated
as highly exhaustive and highly specific—also called strict or (3,3) assessments.
For the two queries numbered 61 and 73, there are no elements judged as highly
exhaustive and highly specific. We also use version 3.0 of the assessments for
INEX 2004, containing judgments for the 26 queries numbered 127–137, 139–
145, 149–153, and 155–157. For the four queries numbered 133, 140, 143, and
144, there are no elements judged as highly exhaustive and highly specific.

Table II lists the frequencies of element types judged relevant for the re-
maining CAS queries. We collapse equivalent tags for sections and paragraphs,

2For readers interested in the particular example topic: As it turns out, of the elements that are

judged relevant by the topic author, two tags stand out; 36% are sections (or subsections) but 41%

are paragraphs.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 415

Table III. Frequency of Relevant Elements for Queries Asking for

Elements with Tag Name

2003 article sec+ p+ abs vt Other

article (10) 24.4% 26.0% 19.8% 0.2% 0.8% 10.2%

sec (10) 7.3% 50.1% 27.2% 1.8% — 4.9%

p (1) 6.5% 18.5% 50.0% 5.4% — 9.8%

abs (2) 7.5% 47.3% 22.6% 8.6% — 6.5%

vt (1) — — — — 97.4% 2.6%

2004 article sec+ p+ abs vt Other

article (2) 10.8% 1.3% 1.6% — — 82.3%

sec (10) 3.3% 27.7% 24.7% 0.9% 0.4% 43.0%

p (4) 4.0% 26.0% 48.0% — — 22.0%

abs (2) 16.0% — 24.0% 24.0% — 36.0%

vt (1) — — 44.0% — 52.0% 4.0%

Total article sec+ p+ abs vt Other

article (12) 18.5% 15.2% 11.8% 0.1% 0.5% 42.2%

sec (20) 5.2% 38.6% 25.9% 1.4% 0.2% 16.6%

p (5) 5.6% 21.1% 49.3% 3.5% — 9.9%

abs (4) 9.3% 37.3% 22.8% 11.9% — 8.5%

vt (2) — — 42.9% — 53.1% 4.0%

Frequency of relevant elements are in columns; elements with tag names are in

rows. The number of aggregated queries is indicated between brackets.

as defined by Sigurbjörnsson et al. [2004c], and we use sec+ and p+ to denote
the equivalence classes of sections and paragraphs, respectively. We see that
the most popular elements are paragraphs (p+) and sections (sec+).

Requested versus Relevant Elements. Next, we investigate how often the
element that is judged relevant actually has the tag name specified by the
query. Consider Table III; the rows show the tag names of requested elements
as stated in the query and the columns show tag names of elements judged
relevant.

For example, if we look at the assessments of all topics requesting sections
(sec), we see that 38.6% of the relevant elements are sections (sec+), 25.9%
are paragraphs (p+), and 5.2% are articles. If we look at the diagonals of the
tables, we see that the assessors frequently felt that their information needs
were also satisfied by elements not respecting the target constraints.3 Still, in
most cases, elements satisfying the target constraints are the largest category.
We conclude that the element names as requested in the query can indeed only
be considered as a retrieval hint, and not as a strict constraint on the output
of a query. While not strictly enforced, however, there seems to be a preference
for XML elements of the type requested. For example, if users ask for sections,
they are more likely to judge sections as relevant than any other kind of tag.

3The surprising numbers for article topics are due to strange assessments of one of the article topics

in 2004, which is most likely due to a misinterpretation of the assessment guidelines.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

416 • J. Kamps et al.

Table IV. Frequency of Requested Elements in the 28

CO+S Queries and 17 CAS Queries of INEX 2005

Element CO+S CAS Total

sec (section) 14 (50.0%) 12 (70.6%) 26 (57.8%)

article 6 (21.4%) 2 (11.8%) 8 (17.8%)

* (wildcard) 7 (25.0%) 1 (5.9%) 8 (17.8%)

p (paragraph) — 2 (11.8%) 2 (4.4%)

bdy (body) 1 (3.6%) — 1 (2.2%)

3.2 CO+S and CAS at INEX 2005

We now repeat the analysis that we just carried, but now for the INEX 2005
CAS queries, instead of INEX 2003 and 2004 queries. As mentioned previously,
at INEX 2005, there was both an optional CAS query for the CO+S task, and
a separate CAS task [Fuhr et al. 2006]. For the CAS task, we use judgments
based on the narrative field (which corresponds to the VVCAS subtask, where
all structural constraints are interpreted as vague). All CAS queries at INEX
2005 are in the NEXI query language; Table IV shows the requested elements.
The resulting distribution is very similar to what we observed in earlier years.

There were some radical changes in the assessment procedure, resulting in
qrels that contain information on the fraction of text highlighted by the assessor
as relevant, as well as exhaustiveness judgments on a slightly modified scale.
We follow the strict quantization, and treat as relevant those elements that
are completely highlighted, and highly exhaustive [Kazai and Lalmas 2006].
We use version 7 of the INEX 2005 ad hoc assessments for CO+S and CAS.
There are judgments for 19 CO+S topics 202, 203, 205, 207, 208, 210, 212, 216,
219, 222, 223, 228–230, 232–234, 236, and 239; for the two topics 205 and 228
there are no strictly relevant elements. There are also judgments for 10 VVCAS
topics, numbered 253, 256, 257, 260, 261, 264, 265, 270, 275, and 284; with the
exception that for topic 257, there is no strictly relevant element.

Table V shows the distribution of elements judged relevant for any of the
17 CO+S queries and 9 CAS queries. The distribution is somewhat different
from earlier years, with almost three-quarters of the relevant elements being
paragraphs or sections. This concentration may be a result of deriving the speci-
ficity judgments from highlighted text. For example, it is not very intuitive to
highlight an article element in its entirety.

In Table VI, we contrast the requested elements with those judged relevant.
Here we see the effect of focusing on sections and, especially, paragraphs. For
paragraphs, the requested and relevant element types are a close match. As
for sections as request elements, sections are the second most frequent element
type after paragraphs. For article requests, an article element is hardly ever
judged relevant. Again, the rationale for this is likely related to the unnatu-
ralness of highlighting a large chunk of text, such as a complete article, in its
entirety.

4. THE EFFECT OF STRUCTURE ON RETRIEVAL EFFECTIVENESS

In this section we answer the second question from the introduction: What is
the effect on retrieval performance of adding structural constraints to queries?

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 417

Table V. Frequency of Elements Judged Relevant for

All Assessed CO+S and CAS Queries at INEX 2005

CO+S VVCAS Total

p+ 404 (43.6%) 558 (57.3%) 962 (50.6%)

sec+ 176 (19.0%) 278 (28.5%) 454 (23.9%)

it 72 (7.8%) 1 (0.1%) 73 (3.8%)

item 54 (5.8%) 12 (1.2%) 66 (3.5%)

tt 31 (3.3%) 0 (0.0%) 31 (1.6%)

fig 20 (2.2%) 6 (0.6%) 26 (1.4%)

ariel 23 (2.5%) 0 (0.0%) 23 (1.2%)

li 5 (0.5%) 18 (1.8%) 23 (1.2%)

abs 7 (0.8%) 15 (1.5%) 22 (1.2%)

list 2 (0.2%) 20 (2.1%) 22 (1.2%)

st 13 (1.4%) 7 (0.7%) 20 (1.1%)

ref 18 (1.9%) 0 (0.0%) 18 (0.9%)

art 13 (1.4%) 3 (0.3%) 16 (0.8%)

fgc 6 (0.6%) 6 (0.6%) 12 (0.6%)

url 12 (1.3%) 0 (0.0%) 12 (0.6%)

b 11 (1.2%) 0 (0.0%) 11 (0.6%)

la 1 (0.1%) 10 (1.0%) 11 (0.6%)

label 11 (1.2%) 0 (0.0%) 11 (0.6%)

lit 10 (1.1%) 1 (0.1%) 11 (0.6%)

We show only tag names that occur at least 10 times in total.

Table VI. Frequency of Relevant Elements for Queries Asking for

Elements With Tag Name

CO+S article sec+ p+ abs vt Other

article (6) — 18.4% 70.4% 1.0% — 10.6%

sec (9) — 32.7% 38.8% 2.8% — 25.7%

* (2) — 45.1% 23.3% — — 31.6%

VVCAS article sec+ p+ abs vt Other

article (2) 1.3% 35.3% 52.3% 1.8% — 9.3%

sec (5) — 13.9% 74.5% 0.1% — 11.5%

p (1) — 10.5% 71.1% 2.6% — 15.8%

* (1) — 54.5% 45.5% — — —

Frequency of relevant elements are in columns; elements with tag names are

in rows. The number of aggregated queries is indicated between brackets.

The experimental evidence given in this section indicates that structural con-
straints function as a precision enhancing device: useful for promoting the pre-
cision of initially retrieved documents, possibly reducing fall-out, but also re-
ducing recall.

When querying a collection of structured documents, users can express their
information needs in a more precise way using a hybrid content-and-structure
query—one that combines natural language with structural elements. The hy-
pothesis is that such a statement of the information need, being more precise,
will lead to improved retrieval effectiveness compared to traditional keyword
queries. We test this hypothesis using the following experimental analysis.
From the CAS topics, we create three sets of queries: (1) the original NEXI

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

418 • J. Kamps et al.

queries, (2) NEXI queries where the only structural constraints are on the tar-
gets, and (3) ordinary keyword search queries consisting of all keywords in a
NEXI query. For example, let’s look at the structured query:

//article[about(.//abs, sorting)]//sec[about(., heap sort)].

We turn this into a target-only query by merging all the about constraints
into a single about function:

//article//sec[about(., sorting heap sort)].

We remove all structural constraints and turn it into a content-only query by
replacing the target constraint with a *:

//*[about(., sorting heap sort)].

We create three runs using the exact same setup, one for each set of queries.
The only difference between runs is the used query, making the results directly
comparable on equal grounds. We compare the results using several standard
IR measures.4

4.1 Experimental Setup

We base our experimental evidence on the INEX 2003 and 2004 CAS content-
and-structure task, in combination with vague CAS qrels [Fuhr et al. 2005]. To
allow for a direct comparison with the earlier analysis of queries and judgments,
we treat only highly specific and highly exhaustive elements as relevant (i.e.,
the so-called strict assessments). The strict quantization caters to systems that
attempt to retrieve very high-quality results, both in terms of exhaustivity and
specificity. Over the two years (2003 and 2004), there are 50 topics with at
least one relevant element according to strict assessment. The mean number
of strict assessments per topic is 85.9 and the median is 28.5. We evaluate our
system using two evaluation programs: trec eval and EvalJ. We do not penalize
overlap to allow for direct comparison with the earlier analysis of whole sets
of queries and judgments (where pruning the set of relevant elements would
be unnatural). This caters to systems that estimate the relevance of arbitrary
elements as input for a particular interface or for further processing. As a case
in point, in related work we have seen evidence that overlap can be useful if
handled appropriately by the result presentation interface [Kamps et al. 2006].

We create three runs using the aforementioned queries: one based on the
content-only query, one on the target-only query, and one based on the struc-
tured query. The runs differ in amount of structure, ranging from no structured
constraints used to all structured constraints used.

4A similar experiment based on official runs submitted to INEX 2004 is reported in Kamps et al.

[2005].

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 419

4.2 Processing Content-Oriented XPath

We process the queries using the three-step strategy proposed for processing
content-oriented XPath queries in Sigurbjörnsson et al. [2004b]:

(1) Decomposition. First, the NEXI query is decomposed into a sequence of
pairs of the form (location path, content description), one for each about
function. In the case of the preceding heap sorting example, this yields:
(//article//abs, ’sorting’) (//article//sec, ’heap sort’)

(2) Retrieval. For each (location path, content description) pair, we score
XML elements satisfying the location path using a language model retrieval
approach. For the heap sorting example, the two different result sets for
each outcome is about function in the query.

(3) Mixture. Now we put things together. For each element satisfying the target
constraints, we consider other elements satisfying the tree pattern of the
query. In case of the heap sorting example, this would lead to only consid-
ering the corresponding abstract (〈abs〉) elements for a particular section
element. We take the maximal scoring element for each of the about func-
tions. The resulting score for the element satisfying the target constraints
is simply the sum of scores of about functions in the query. For the heap
sorting example, the final score of a section would be the sum of the section’s
score and corresponding abstract’s score.

We refer to Sigurbjörnsson et al. [2004b] for more details on the approach. In
principle, we use the same approach for all three versions of our queries. But,
of course, in the case of content-only and target-only queries, the decomposition
and mixture steps are trivial, since for these queries there is only one about
function.

4.3 Retrieval Model

For the Retrieve step, we use a multinomial language model [Hiemstra 2001].
We assume query terms to be independent, and rank elements according to:

P (e|q) ∝ P (e) ·
k∏

i=1

P (ti|e), (1)

where q is a query made out of the terms t1, . . . , tk . We estimate the element
language model by taking a linear interpolation of two language models:

P (ti|e) = λ · Pmle(ti|e) + (1 − λ) · Pmle(ti), (2)

where Pmle(·|e) is a language model for element e, and Pmle(·) is a language
model of the collection. The parameter λ is an interpolation factor (smoothing
parameter). Finally, we assign a prior probability to an element e relative to its
length in the following manner:

P (e) ∝ |e|β (3)

where |e| is the size of an element e. For a more detailed description of our
retrieval approach, we refer to Sigurbjörnsson et al. [2004a]. In all our experi-
ments we use the value 0.15 for the smoothing parameter λ. We use different

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

420 • J. Kamps et al.

Table VII. Effectiveness of Our Runs in Terms of Mean Average

Precision (MAP using trec eval) and Mean Average

Effort-Precision (MAep using EvalJ)

Content-Only Target-Only Structured

MAP 0.0988 0.0724 (−26.7%) 0.0835 (−15.5%)

MAep 0.0992 0.0724 (−27.0%) 0.0835 (−15.8%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Recall

P
re

ci
si

o
n

Content-only

Target-only

Full-structure

Fig. 1. Interpolated precision at standard recall levels (using trec eval).

values for the length prior, depending on whether we are ranking target or con-
text elements. We set β = 1.5 when we rank target elements, and set β = 0.0
when we rank context elements.

4.4 Results

Mean Average Precision. We first consider the results in terms of mean average
precision (MAP) and mean average effort-precision (MAep). Table VII shows
the respective scores. The content-only run is clearly superior. This is, indeed,
a disappointing result because the poorer scoring XPath-oriented runs use a
more articulate query. However, the difference is not significant in terms of
MAP nor in terms of MAep. To obtain a better understanding, we zoom in
on the performance at different recall levels. Figure 1 shows the interpolated
precision at the 11 standard recall levels. We see an interesting phenomenon.
While the content-only run clearly outperforms XPath-oriented runs on higher
recall levels, XPath-oriented runs outperform the content-oriented run on lower
recall levels.

Early Precision. We zoom in further and look explicitly at the performance
on initially retrieved elements. Table VIII shows the mean precision and cumu-
lative gain at ranks 5, 10, 20, and 30. Here, we see a complete reversal from the
picture in Table VII: Now, the XPath-oriented runs are superior. For P@5, both
XPath-oriented runs are significantly better than the content-only run (t-test,
p < 0.05). For P@10, the run using full structure significantly outperforms the
content-only run (t-test, p < 0.05). We zoom in even further and look solely at
the first relevant element retrieved. Table IX shows the mean reciprocal rank
(MRR) of the first found relevant element. The outcome confirms early precision

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 421

Table VIII. Mean Precision (trec eval) and Cumulative Gain

(EvalJ) at Ranks 5, 10, 20, and 30

Precision Content-Only Target-Only Full-Structure

P@5 0.2000 0.2840 (+42.0%) 0.3265 (+63.3%)

P@10 0.1820 0.2460 (+35.2%) 0.2531 (+39.1%)

P@20 0.1700 0.1880 (+10.6%) 0.1796 (+5.6%)

P@30 0.1527 0.1653 (+8.3%) 0.1531 (+0.3%)

nxCG@5 0.2220 0.2840 (+27.9%) 0.3265 (+47.1%)

nxCG@10 0.2217 0.2536 (+14.4%) 0.2633 (+18.8%)

nxCG@20 0.2358 0.2122 (−10.0%) 0.2025 (−14.1%)

nxCG@30 0.2391 0.1978 (−17.3%) 0.1842 (−23.0%)

Table IX. Mean Reciprocal Rank Scores (trec eval)

Content-Only Target-Only Structured

MRR 0.3491 0.4403 (+26.1%) 0.5085 (+45.7%)

results: XPath-oriented runs are superior to the content-oriented run. In terms
of mean reciprocal rank, the run using full structure is significantly better than
the content-only run (t-test, p < 0.05).

Conclusion. Our results show that structured queries do not lead to im-
proved mean average precision scores; in fact, we see a substantial, albeit not
significant, drop in mean average precision. However, this can be attributed
completely to poor scoring at higher recall levels. If we zoom in on the ini-
tially retrieved elements or on the first found relevant element, the outcome
is reversed: Structured queries lead to significantly superior early precision
scores. The experimental evidence indicates that structural constraints func-
tion as a precision enhancing device; useful for promoting the precision of
initially retrieved documents, possibly reducing fall-out, but also reducing
recall.

These results are consistent with experiments which we ran as part of
INEX 2005 using INEX 2005 CO+S queries and various EvalJ measures [Sig-
urbjörnsson et al. 2006]. We have also looked at generalized evaluation mea-
sures. The results in terms of early precision depend on the used quantization
function. We see the same behavior as that shown in Table VIII for the default
generalized measure using the quantization “sog2” (which prioritizes specificity
over exhaustivity). However, for a quantization such as “gen,” the content-only
run is also superior at early ranks. The results in term of mean average effort-
precision, as shown in Table VII, hold for both these generalized quantizations:
The content-only query outperforms structured queries.

5. EXPRESSING INFORMATION NEEDS WITH CONTENT-AND-STRUCTURE

We have now seen that searchers use the additional expressive power of struc-
tural constraints offered by the NEXI query language as search hints, rather
than strict requirements (Section 3). Also, the usage of NEXI’s structural con-
straints has a positive effect on early precision and a negative effect on overall
recall (Section 4). This brings us back to the first research question from the

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

422 • J. Kamps et al.

introduction: What, then, are the typical sorts of content-and-structure queries
that users formulate in the NEXI query language?

In this section we zoom in on the way structure is used in queries. On the
one hand, we find that three-quarters of the queries have constraints on the
context surrounding requested elements, hence, could not have been phrased
as ordinary free-text queries. On the other hand, structure is not exploited
much: Two-thirds of the queries do not use the hierarchical structure of the
documents. They simply require that certain keywords occur in elements with
a certain tag name.

5.1 A Typology of Content-and-Structure Queries

To see how users use structure in their queries, we break down the set of queries
by increasing complexity. We use the two following dimensions.

(1) Hierarchy: whether the query uses hierarchical information about the doc-
uments.

(2) Context: whether the query puts content constraints on text occurring out-
side of the element to be returned.

The first dimension, hierarchy, corresponds to the unique tree structure of an
XML document. Standard fielded search allows for restricting search to par-
ticular fields (think of a library catalogue (OPAC), where fields like “author”
or “title” can be used to restrict search). The hierarchical structure of XML al-
lows for contextual selections (think of distinguishing author elements in the
bibliography from the author element in the frontmatter of an article).

The second dimension, context, corresponds to a unique property of struc-
tured queries that cannot be captured by ordinary keyword queries. CAS
queries can put constraints on particular elements that occur in the context
of elements to be returned. That is, they may make content restrictions on text
that is not returned to the user. For example, a user may want to retrieve sec-
tions, while the query also refers to the article’s abstract, which is on a disjoint
path in the article’s XML tree.

The two dimensions result in four categories, which are graphically depicted
in Figure 2. The resulting categories are:

— (a) Restricted search. This category has queries in which structure is only used
as a constraint on returned elements. The query is an ordinary content-only
query, but the search is restricted to particular XML elements. A typical
example of such a query is to restrict the search to sections:

//sec[about(.,’xxx’)].
In general, such queries have the form //tag[P], where P is a positive
Boolean combination of functions about(.,’xxx’).

— (b) Contextual content information. This category is similar to the restricted
search category, but additionally, we may put content restrictions on the en-
vironment in which the requested element occurs. A typical example looks
like:

//sec[about(.,’yyy’) and about(//abs,’xxx’)].

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 423

Fig. 2. Four categories of queries.

This query asks for sections about yyy in documents which contain an ab-
stract (abs) about xxx. In general, such queries have the form //tag[P],
where P is a positive Boolean combination of functions about(.,’xxx’) and
about(//tag,’xxx’). Note that about(//abs, ’xxx’) expresses that some-
where below the root of the document, there is an abstract (abs) which is
about xxx.

— (c) Search hints. This category is again similar to the restricted search cat-
egory, but additionally, we may put content restrictions on subelements of
the requested element, and we may use the hierarchical nature of the doc-
uments. These extra restrictions can be viewed as search hints or retrieval
cues to the system. A typical example is a query which asks for sections
about xxx containing a theorem about yyy:

//sec[about(.,’xxx’) and about(.//thm,’yyy’)].
The general form of such queries is path[P], where P is a positive Boolean
combination of functions about(.,’xxx’) and about(.path ,’xxx’), and
path is a location path sequence of the form //tag1//. . . //tagn.

— (d) Search hints in context. This category combines the search hints and
contextual context information categories. An example is a query which
asks for sections about xxx containing a theorem about yyy in documents
which contain an abstract (abs) about zzz:

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

424 • J. Kamps et al.

//sec[about(.,’xxx’) and about(.//thm,’yyy’) and
about(//abs,’zzz’)].

The general form of queries of this category is path[P], where P is a pos-
itive Boolean combination of about(.,’xxx’), about(.path,’xxx’), and
about(path,’xxx’) and path is a location path sequence of the form
//tag1//. . . //tagn.

XML Fragments. To help situate the query categories just introduced, we
recall the XML fragments proposed by Carmel et al. [2002; 2003] as a simple
alternative to XPath for content and structure queries. XML fragments are
queries that are structured like the desired documents. For example, consider
the query CAS topic 131 from INEX 2004:

//article[about(.//au,"Jiawei Han") AND about(.//abs,"data mining")];

it is translated to the following XML fragment query

<article>

<au>"Jiawei Han"</au>

<abs>"data mining"</abs>

</article>.

Using the intuitive query-by-example underlying XML fragments, only the
restricted search and search hint categories can be expressed. For capturing
queries in the other categories, a syntactic device for marking the requested
element is introduced [Carmel et al. 2003]. Our approach differs from XML
fragments in that our focus is on the descendant axis instead of the child axis,
and our distinction between users having varying degrees of knowledge about
valid tag nesting. For example, contextual content information can only be cor-
rectly specified in XML fragments using additional knowledge of the DTD.

5.2 How Structure is Used

Returning to the CAS queries of INEX 2003 and 2004, we provide a classifica-
tion in terms of our four categories in Table X. We based this classification not
on the actual syntactic shape of the queries, but on whether they could equiva-
lently be expressed in the query format of the category. The contextual content
information category is the most popular with 41%, followed by the search hints
in context category with 36%. No less than 55% of the 64 CAS queries do not
use the hierarchical structure of the documents (categories restricted search
and search hints combined). However, we also see that no less than 77% of the
queries use content constraints on particular elements occur in the context of
elements to be returned (categories contextual content information and search
hints in context combined).

We repeat the classification over the four query categories for the INEX
2005 queries in Table XI. We see that almost one-third of the CO+S queries
are of the restricted search category; CAS queries are more complex. Over all
INEX 2005 CAS queries, no less than 82% of the 45 queries do not use the
hierarchical structure of the documents (restricted search and search hints).

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 425

Table X. Classification of the INEX 2003 and 2004 CAS Queries

Fraction

Category 2003 2004 Total Query Numbers

(a) Restricted search 13% 15% 14% 78, 79, 84, 86, 127, 136, 142, 143, 152

(b) Contextual content 33% 47% 41% 61, 62, 63, 64, 68, 73, 74, 75, 77, 90,

information 128, 129, 130, 131, 132,134, 135, 137,

138,141, 144, 145, 151, 158, 159, 160

(c) Search hints 13% 6% 9% 67, 69, 80, 83, 147, 153

(d) Search hints 40% 32% 36% 65, 66, 70, 71, 72, 76, 81, 82, 85, 87, 88, 89

in context 133, 139, 140, 146, 149, 150, 154, 155,

156, 157, 161

Table XI. Classification of the INEX 2005 CO+S and CAS Topics

Fraction

Category CO+S CAS Total Query Numbers

(a) Restricted search 32% 12% 24% 203, 207, 208, 210, 212, 219, 230,

231, 236, 257, 270

(b) Contextual content 50% 71% 58% 202, 204, 220, 222, 223, 224, 225, 226,

content information 228, 229, 232, 233, 234, 238, 244, 247,

253, 256, 258, 261, 264, 269, 275, 280,

284, 288

(c) Search hints 11% 12% 11% 205, 211, 216, 250, 260

(d) Search hints 7% 6% 7% 239, 240, 265

in context

On the other hand, 65% of the queries do constrain the content of elements
outside the requested element (contextual content information and search hints
in context).

As to the first research question in the introduction (How do users exploit
the additional expressive power of structural constraints in their queries?), we
have two main findings. On the one hand, we see that two-thirds of the CAS
queries do not use the hierarchical structure of the documents or equivalently,
the hierarchical nature of the documents is used in one-third of the queries we
examined. Specifically, this is the case for 66% of all 109 CAS queries. On the
other hand, we also see that almost three-quarters of the queries use content
constraints on particular elements occurring in the context of elements to be
returned. This is the case for 72% of all 109 CAS queries. These contextual
constraints cannot be captured by ordinary keyword queries.

6. QUERY LANGUAGES FOR CONTENT AND STRUCTURE QUERIES

We have now seen that searchers often do not use all of the additional expressive
power of structural constraints offered by the NEXI query language. A natural
question arises at this point: Is the NEXI query language the most appropriate
way of providing these features?

The NEXI query language is an extension of a subset of XPath (see
Section 2.3). The motivation for restricting XPath is that users find it hard
to state their information need in XPath and tend to make semantic mistakes
in their query formulations. In this section we analyze why users make such

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

426 • J. Kamps et al.

mistakes and build a corresponding user profile. Then, we show that the NEXI
query language is a perfect fit for this user profile: On the one hand, users
cannot make the same semantic mistakes because the language is restricted
(the language is safe); on the other, they can express every information need
belonging to this user profile (the language is complete).

6.1 Less Power is Better

At INEX, the focus is on retrieving sets of elements from document-centric XML
documents using information about the content of elements and their location
in the documents. For this reason, it was decided to restrict the query language
to the navigational part of XPath 1.0; in Gottlob et al. [2005], this language
is defined as Core XPath. The only objects which are manipulated in this lan-
guage are sets of nodes (i.e., there are no arithmetical or string operations).
Besides these restrictions, the full power of location paths is supported (except
for namespace and attribute axis), including filter expressions being closed
under the Boolean operators. At INEX 2003, Core XPath expanded with the
about function was used as a query language. The results were disappointing:
Many queries did not match the information need as described in the narrative
and description parts; often, the information need was much broader than the
XPath expression [O’Keefe and Trotman 2004]. A typical mistake was the use
of / (child axis) where // (descendant) was intended. These semantic mistakes
can likely be attributed to the fact that users have no, or at best, incomplete,
knowledge of the structure of documents, that is, of the DTD. To reduce the
chances of making such semantic mistakes, O’Keefe and Trotman [2004] ar-
gued that apart from the descendant axis, no other axis relations should be
used in queries. This recommendation was implemented in the INEX 2004
NEXI query language (described in Section 2.3). In this section, we provide a
theoretical basis for this recommendation by giving a mathematical model of a
user’s knowledge of a document collection and by relating the expressive power
of the NEXI query language to this model.

6.2 Modeling Users’ Knowledge of a Document Collection

How can we give a mathematically precise and yet intuitive model of a user’s
knowledge of a document collection? The starting point is that we want to model
users that have incomplete knowledge of the structure of documents. For such
users, certain structural changes made to a document will not be discernible:
The user considers the two documents to be the same. For instance, most INEX
users will not distinguish between the two documents in Figure 3 on the sole
basis of the tag structure. The idea is that the less knowledge a user has, the
more structural differences will remain unnoticed, hence the more documents
will be considered the same. For a user, two indiscernible documents are the
same, and a query should return the same answers from both documents. But
there are XPath queries which return different answers on the documents in
Figure 3 (e.g., //paragraph[1], which returns the first paragraph in document
order). This is the reason for considering weaker fragments of XPath, those for
which indiscernible documents yield identical answers.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 427

<root>
<paragraph>

Here is some text.
Here is some more text.

</paragraph>
</root>

root

paragraph

<root>
<paragraph>

Here is some text.
</paragraph>
<paragraph>

Here is some more text.
</paragraph>

</root>

root

paragraph paragraph

Fig. 3. Two XML documents and their corresponding structure trees.

To summarize, a user’s knowledge about a set of XML documents can be for-
malized in terms of an indiscernibility relation between documents. Given such
an indiscernibility relation, we are looking for a corresponding query language.
Now, there are two competing forces at work on the desired language: safety,
which reduces expressive power, and completeness, which asks for as much ex-
pressivity as possible. In a safe query language, users cannot write queries that
return different answers from documents these users consider to be the same.
A safe language is designed to avoid making semantic mistakes by forbidding
the user to pose such queries. We will shortly see that the NEXI language is an
example of a safe and complete query language.

6.3 User Profiles

Next, we define two user profiles in terms of indiscernibility relations, both
capturing users with limited knowledge of the DTD of the document collec-
tion. First, we consider what we call structure-unaware users who only know
the tag names. Second, we consider hierarchy-aware users, who know the
tag names and have some clue about the hierarchical structure of the ele-
ments, without knowing full details. For both profiles, we design fragments
that are safe and complete. The analysis here covers only the structure of
the documents and abstracts away from the content. So, we remove the about
function from the query language and concentrate solely on its navigational
aspects.

6.3.1 Structure-Unaware Users. Users formulating queries at INEX did
not have a clear idea of the DTD of the collection [O’Keefe and Trotman 2004].
Typically, they browsed the documents and picked up some knowledge about
the available tags in this manner. Their queries can be viewed as an XML ver-
sion of fielded search. Recall that standard fielded search allows for restricting
search to particular fields (think of a library catalogue (OPAC) where fields like
“author” or “title” can be used to restrict search). For users who know a subset
of the tag names, but do not (want to) know the structure of the documents, an
XPath fragment which exactly fits their knowledge can be created. The typi-
cal queries of a structure-unaware user are the restricted search and contex-
tual content information queries from Section 5. Figure 4 shows an example of

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

428 • J. Kamps et al.

<root>

<section>

<theorem>

</theorem>

</section>

</root>

<root>

<section>

</section>

<theorem>

</theorem>

</root>

Fig. 4. Example of two indiscernible documents for structure-unaware users.

documents that are indiscernible for structure-unaware users. For this user
profile, a query like Give me theorems below sections would not be safe because
it would return different answers from both documents. In the query language
fitting the structure-unaware user profile, a user can only express safe queries
like Give me theorems (e.g., //theorem).

The following syntax, which we call structure-unaware XPath, allows us to
pose these queries. A query is of the form //tag[P], where tag is either the
wild card * or a tag name, and P is a predicate created using ‘and,’ ‘or,’ and
‘not’ from location paths self::tag and queries of the form //tag[P]. Note
that when //tag[P] is used in a filter, it means “there exists a descendant of
the root labeled tag at which the predicate P evaluates to true.” In other words,
//tag[P] simply says that somewhere in the document there is a tag element
making P true. Moreover, self::tag expresses that the current node is labeled
by tag.

We turn to a semantic characterization of this fragment. In social network
theory [Wasserman and Faust 1994], several indiscernibility relations have
been proposed, including the useful and robust notion of “regular equivalence.”
This notion is more commonly known as bisimulation, an equivalent notion in-
troduced by modal logicians [van Benthem 1983]. We need the following special
“structurally unaware” version.

Definition 6.1. Let D, D′ be documents and B a binary relation between
the elements of D and D′ connecting the roots. We call B a structure-unaware
bisimulation if

(1) for all x ∈ D and for all x ′ ∈ D′, if xBx ′, then x and x ′ have the same tag
name;

(2) for each x ∈ D there exists a x ′ ∈ D′ such that xBx ′; and

(3) for each x ′ ∈ D′ there exists an x ∈ D such that xBx ′.

Let φ(x) be a first-order formula (in one free variable) in a suitable vocabulary;
φ(x) is invariant under bisimulations whenever the following holds: For all
documents D, D′, elements d , d ′, and bisimulations B ⊆ D × D′, if d Bd ′, then
φ(d) is true if and only if φ(d ′) is true.

A few comments. First, the relation which connects the roots and paragraph
elements in the two trees in Figure 3 is a structure-unaware bisimulation.
Also, there exists such a bisimulation between the document trees in Figure 7.
Secondly, first-order formulas in one free variable can be seen as an alternative
stronger query language than XPath (for the relative expressive power of
the two; see Marx and de Rijke [2005]). Thirdly, in the usual definition of

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 429

bisimulation, the clauses in items (2) and (3) are more complicated (as in item (2)
in Definition 6.3 to follow), and say that the structure of D should be preserved
in D′; but our imagined user is not aware of the structure, hence we omitted
these conditions. In effect, two document trees can be related by a bisimulation
if there is no tag name l which labels an element in one tree, but not in the
other.

THEOREM 6.2. (Safety). Let D, D′ be documents, B a structure-unaware
bisimulation, and P a structure-unaware XPath expression. Then X ⊆ D
is the answer set of P on D if and only if {d ′ ∈ D′ | ∃d ∈ X : d Bd ′} is the
answer set of P on D′.

(Completeness). For every first-order formula that is invariant under
structure-unaware bisimulations, there exists an equivalent structure-
unaware XPath expression.

We can conclude that structure-unaware XPath is a perfect fit for the user
profile sketched: The first part of the theorem states that it is safe, the second
that it is complete.

Before we give a formal proof of Theorem 6.2, we provide the intuition for
the (easy) safety part (this is formally proved by an induction on the structure
of the query). Consider the query //section[//abstract]. Suppose that this
returns an element d on document D, and that B is a bisimulation between
D and D′ that connects d and d ′. Safety says that the query should then also
return d ′ when evaluated on D′. We can prove this as follows. The label of
d is section. Because d Bd ′ holds, the label of d ′ is also section. Because the
predicate //abstract returns true at d , there must be an element c ∈ D labeled
abstract. By the bisimulation condition, then, there is a c′ ∈ D′ such that cBc′.
But then c′ is also labeled abstract. Thus //abstract also returns true at d ′

and d ′ is returned as an answer to //section[//abstract].

PROOF. Theorem 6.2 is a reformulation of Van Benthem’s characterization
theorem for the modal logic of universal modality [Blackburn et al. 2001, The-
orem 2.68]. The language of this logic is propositional with an extra unary
operator �. This language is interpreted on sets (of worlds) W , equipped with
a valuation of the propositional variables. Each formula denotes a subset of W .
The Boolean connectives are interpreted by their corresponding set theoretic
operations. The modal formula �φ denotes the empty set if φ denotes the empty
set, and W otherwise.

With this interpretation of the modality �, the modal language is just a
syntactic variant of the predicates of structure-unaware XPath. Consider the
following translations:

p f = self :: p
(·) f commutes with the booleans

(�φ) f = // ∗ [φ f]

(self :: p)b = p
(self :: ∗)b = �
(·)b commutes with the booleans
(//tag[P])b = �(tag ∧ Pb)
(// ∗ [P])b = �Pb

By a straightforward induction, we can prove that for each model

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

430 • J. Kamps et al.

<root>

<section>

<subsection>

</subsection>

<paragraph>

</paragraph>

</section>

</root>

<root>

<section>

<subsection>

<paragraph>

</paragraph>

</subsection>

</section>

</root>

Fig. 5. Example of two documents that are indiscernible for hierarchy-aware users with respect

to section/paragraph nesting.

(1) the denotation of φ is X if and only if X is the answer set of //*[φ f]; and

(2) X is the answer set of //p[P] if and only if the denotation of p ∧ Pb is X .

Item (1) is used to prove completeness. Let F (x) be a first-order formula that
is invariant under structure-unaware bisimulations. Then, by Van Benthem’s
theorem, there exists a modal formula φ such that for every model, for each
element d , F (d) holds if and only if d is in the denotation of φ. However, then
by item (1), //*[φ f] is the XPath expression equivalent to F (x). With item (2)
we prove safety. Let B be a bisimulation between D and D′, and let d ∈ D.
By definition, there must be a d ′ such that d Bd ′. By the safety part of Van
Benthem’s theorem, d and d ′ make the same modal formulas true. But then by
item (2), d is in the answer set of any XPath expression //p[P] if and only if d ′

is.

6.3.2 Hierarchy-Aware Users. Hierarchy-aware users have some clue
about the hierarchical structure of the documents. For example, they know
that paragraphs are below sections, but need not know that there may be ele-
ments in between [O’Keefe and Trotman 2004]. Figure 5 shows an example of
documents that are indiscernible for hierarchy-aware users with respect to sec-
tion/paragraph nesting. For this user profile, a query like Give me paragraphs
directly below sections would not be safe because it would return different an-
swers from both documents. In the query language that fits the structure-
unaware user profile, a user can only express safe queries like Give para-
graphs below sections (e.g., //section//paragraph). For this reason, O’Keefe
and Trotman [2004] proposed positive descendant XPath: the fragment of XPath
in which only the descendant and self axis relations may be used and the
Booleans in the predicates are restricted to “and” and “or.” Note that all types
of queries discussed in Section 3 can be formulated in this fragment.

As this XPath fragment does not contain negation, bisimulation is too strong
a notion [Kurtonina and de Rijke 1999]. As a general fact, positive fragments
correspond to simulations, which are bisimulations from which one of the direc-
tions is dropped. We use < to denote the descendant relation between elements;
that is, x < y means that y is a descendant of x.

Definition 6.3. Let D, D′ be documents and B a binary relation between
the elements of D and D′ connecting the roots. We call B a vertical simulation
from D to D′ if for all x ∈ D and for all x ′ ∈ D′, whenever xBx ′ holds, then

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 431

section

paragraph

section

subsection

paragraph

section

subsection

paragraph

section

subsection

paragraph paragraph

Fig. 6. Two examples of simulations, but not bisimulations.

(1) x and x ′ have the same tag names;

(2) for all y ∈ D such that x < y , there exists a y ′ ∈ D′ such that x ′ < y ′ and
y B y ′; and

(3) similarly when y < x.

Let φ(x) be a first-order formula (in one free variable) in a suitable vocabulary;
φ(x) is preserved under vertical simulations whenever the following holds: For
all documents D, D′, elements d , d ′, and vertical simulations B ⊆ D × D′, if
d Bd ′, then φ(d) implies φ(d ′).

Vertical simulations capture users that know the element hierarchy: Note that
elements both below and above have to be simulated.

Figure 6 contains two examples in which we have simulations from the doc-
ument on the lefthand-side to that on the righthand-side, but not conversely.
In the example at the top, we cannot simulate the subsection under the sec-
tion. In the example at the bottom, we cannot simulate the paragraph without
a subsection ancestor. The next theorem is an analogue of Theorem 6.2 for
positive descendant XPath: It is both safe and complete for hierarchy-aware
users.

THEOREM 6.4. (Safety). For each positive descendant XPath query P, if B
is a vertical simulation from D to D′ connecting d and d ′, and P returns d
on D, then P also returns d ′ on D′.

(Completeness). Let φ(x) be a first-order formula which is preserved under
vertical simulations. Then, there exists a union of positive descendant XPath
formulas which on every document returns exactly those elements d for which
φ(d) holds.

PROOF. In the proof of safety we see that all clauses in the definition of a
simulation are needed. We prove this by a double induction on the structure of
the query.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

432 • J. Kamps et al.

CLAIM 1. Let B be a simulation from D to D′ such that d Bd ′. Then for any
positive descendant XPath predicate P, if P is true at d, then it is true at d ′.

PROOF. By induction on the structure of P. If P=self::tag, then the claim
holds because d Bd ′ implies that d and d ′ have the same label. Boolean com-
binations are taken care of by the inductive hypothesis. If P=.//tag[Q] and P
holds at d , then there exists an e such that d < e and e’s label is tag and Q is true
at e. However, then there exists an e′ such that d ′ < e′ and eBe′. By inductive
hypothesis, then, the label of e′ is tag and Q is true at e′. Thus .//tag[Q] is true
at d ′.

If P=//tag[Q], we use the fact that the roots are connected by the simulation
and apply the previous argument.

CLAIM 2. Let B be a simulation from D to D′ such that d Bd ′. Then, for any
positive descendant XPath query //t1[P1]//. . . //tn[Pn], if it returns d on D,
then it returns d ′ on D′.

PROOF. By induction on the number of //. For the base case, the query is of
the form //t1[P1] and we can use Claim (1). Thus suppose the query is of the
form //t1[P1]//. . . //tn[Pn]//tn+1[Pn+1] and it returns d on D. Then there
is a c ∈ D such that c < d and //t1[P1]//. . . //tn[Pn] returns c on D. By
definition of the simulation, there must be a c′ ∈ D′ such that c′ < d ′ and cBc′.
By inductive hypothesis, then, //t1[P1]//. . . //tn[Pn] returns c′ on D′. Now d ’s
label is tn+1 and this makes Pn+1 true. By Claim (1), d Bd ′ implies that the same
holds for d ′. But then //t1[P1]//. . . //tn[Pn]//tn+1[Pn+1] returns d ′ on D.

This concludes the proof for safety. The proof for completeness uses ideas
from modal logic [Blackburn et al. 2001, Theorem 2.78], together with ideas
from Benedikt et al. [2003, Theorem 3.2]. This essentially involves two steps.
First, we show that the following two query languages define exactly the same
sets of elements:

(a) unions of positive descendant XPath formulas;

(b) formulas of the form //*[P], where P is a positive ancestor and descendant
XPath formula.

The formalism under language (b) is a syntactic variant of positive temporal
logic, very much like in the proof of Theorem 6.2. The second step in the proof
is now easy: The appropriate version of Van Benthem’s theorem now provides
the completeness result.

That language (b) is at least as strong as language (a) is rather easy and
shown in Marx and de Rijke [2005]. The main step in the proof of the other
direction is to show that unions of positive descendant XPath formulas are
closed under intersections in the sense of Benedikt et al. [2003]. This can be
done using the technique from the proof of their Theorem 3.2.

Descendant or Descendant-or-Self?. Positive descendant XPath has great
syntactic appeal because the only operator is //. It is a natural fragment be-
cause it corresponds exactly to hierarchy-aware users. Still, we could argue
that this is too expressive for these users. Consider the two document trees in

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 433

root

section

section

theorem

root

section

theorem

Fig. 7. Document trees that do not bisimulate.

Figure 7. There are no vertical simulations between these two, but, according
to the data and arguments by O’Keefe and Trotman [2004], INEX users con-
sider them to be the same. We can easily adjust our notion of simulation to
cater to this: Instead of simulating the descendant relation <, we only simulate
the descendant-or-self relation ≤. Then, these two documents even vertically
bisimulate. Unfortunately, there is no appealing abbreviated syntax for the
corresponding query language (“positive descendant-or-self XPath”).

7. DISCUSSION AND CONCLUSIONS

Our findings are based on an unconditional IR approach to XML retrieval. In
other words, we view queries as inexact statements of an underlying infor-
mation need, and the ground-truth for evaluation is based on the usefulness
of retrieved elements with respect to the information need, rather than on
a literal match with the query. This approach seems a close fit to searching
document-centric XML on the web, where expert and nonexpert users with
varying degrees of knowledge of the DTD may still want to exploit particular
markup to focus their search. In many other scenarios (think of searching data-
centric XML), other approaches may be more natural. Although we looked at a
prototypical specimen of document-centric XML, full text scientific articles in
predominantly layout markup, there would be obvious value in repeating the
type of analysis in this article for other XML collections.

Our study provides a range of evidence to support the view that the structure
in queries functions as a precision device for XML retrieval: It is a search hint
rather than a search requirement. Vague structural matching has a long history.
The pioneering work on XIRQL had vague structural matching as one of its key
points [Fuhr and Großjohann 2001; 2004]. Also, in XML fragments [Carmel
et al. 2002; 2003], documents that are a partial match to the structure can still
be retrieved. The CAS task at INEX has gradually embraced vague structural
matching, and taken it further to a pure IR approach in which there is, from
the point of view of evaluation, no difference between keyword and structured
topics. A useful overview of the various CAS tasks is provided in Trotman and
Lalmas [2006]; their conclusions strongly support our pure IR approach.

We can identify a number of important lessons for future work in information
retrieval from document-centric XML collections. Simply combining powerful

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

434 • J. Kamps et al.

XML query languages with IR-style retrieval and ranking the results does not
work. The addition of structure to queries is not a simple recipe for improving
results. This is in line with earlier work: The use of structure in queries has been
studied extensively; prominent examples include Booleans, as well as proxim-
ity and phrase operators. In early publications, the usage of phrases and prox-
imity operators—in addition to a careful usage of Boolean operators—showed
improved retrieval results, but rarely anything substantial [Fagan 1987]. As
retrieval models became more advanced, the usage of query operators was ques-
tioned. For example, Mitra et al. [1997] conclude that when using a good ranking
algorithm, phrases have no effect on high-precision retrieval (and sometimes
a negative effect due to topic drift). Rasolofo and Savoy [2003] combine term-
proximity heuristics with an Okapi model, obtaining 3%–8% improvements for
Precision@5, 10, and 20, with hardly observable impact on the MAP scores.

For XML retrieval, we draw the following conclusions. First, as observed by
O’Keefe and Trotman [2004], less expressivity is better in that this reduces the
chance of making semantic mistakes. We have shown that the proposed NEXI
query language [O’Keefe and Trotman 2004] is not ad hoc, but has a precise
mathematical characterization in terms of an intuitive user profile. Second,
users tend not to use hierarchical structure in their queries. Two-thirds of the
queries can be expressed in the very restrictive structure-unaware XPath frag-
ment. This language allows searchers to express fielded queries in which the
user can provide both the field names and what they should contain (more
precisely, what they should be about). Third, three-quarters of the queries use
constraints on the context of the elements to be returned; these contextual con-
straints cannot be captured by ordinary keyword queries. Fourth, we found
that structure is used as a search hint, and not as a strict search requirement,
when judged against the underlying information need. As a consequence, we
hypothesized that the use of structure in queries functions as a precision en-
hancing device. To test this hypothesis, we conducted a set of experiments.
The outcomes confirm that structured queries function as a precision enhanc-
ing devices: useful for promoting the precision of initially retrieved documents,
possibly reducing fall-out, but also reducing recall. Structured queries can be
a powerful tool, catering to the typical web searcher who is interested solely
in the precision of the first handful of results—importantly, the INEX Interac-
tive Track revealed that users rarely look beyond the first handful of returned
elements [Tombros et al. 2005].

ACKNOWLEDGMENTS

We thank the participants of the Topic Format Working Groups at INEX 2002,
2003, and 2004. We gratefully acknowledge the reviewers for their comments
that helped shape this article.

REFERENCES

BENEDIKT, M., FAN, W., AND KUPER, G. 2003. Structural properties of XPath fragments. Theor. Com-
put. Sci. 336, 1, 3–31.

BLACKBURN, P., DE RIJKE, M., AND VENEMA, Y. 2001. Modal Logic. Cambridge University Press, New

York.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

Articulating Information Needs in XML Query Languages • 435

CARMEL, D., MAAREK, Y. S., MANDELBROD, M., MASS, Y., AND SOFFER, A. 2003. Searching XML docu-

ments via XML fragments. In Proceedings of the Special Interest Group in Information Retrieval
(SIGIR) Conference. 151–158.

CARMEL, D., MAAREK, Y. S., MASS, Y., EFRATY, N., AND LANDAU, G. M. 2002. An extension of the vector

space model for querying XML documents via XML fragments. In Proceedings of the Special
Interest Group in Information Retrieval (SIGIR) Workshop on XML and Information Retrieval.
14–25.

FAGAN, J. 1987. Experiments in automatic phrase indexing for document retrieval: A comparison

of syntactic and non-syntactic methods. Tech. Rep., Cornell University, Ithaca, NY.

FUHR, N., GÖVERT, N., KAZAI, G., AND LALMAS, M., EDS. 2003. Proceedings of the 1st Workshop of the
INitiative for the Evaluation of XML Retrieval (INEX 2002).

FUHR, N. AND GROßJOHANN, K. 2001. XIRQL: A query language for information retrieval in XML

documents. In Proceedings of the 24th Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, D. H. Kraft et al., eds. ACM, New York.

172–180.

FUHR, N. AND GROßJOHANN, K. 2004. XIRQL: An XML query language based on information re-

trieval concepts. ACM Trans. Inf. Syst. 22, 313–356.

FUHR, N., LALMAS, M., AND MALIK, S., eds. 2004. INEX 2003 Workshop Proceedings.

FUHR, N., LALMAS, M., MALIK, S., AND KAZAI, G., EDS. 2006. Advances in XML Information Retrieval
and Evaluation: 4th Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2005).
Lecture Notes in Computer Science vol. 3977. Springer-Verlag.

FUHR, N., LALMAS, M., MALIK, S., AND SZLÁVIK, S., EDS. 2005. Advances in XML Information Re-
trieval: 3rd Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2004). Lecture

Notes in Computer Science vol. 3493. Springer-Verlag.

GOTTLOB, G., KOCH, C., AND PICHLER, R. 2005. Efficient algorithms for processing XPath queries.

ACM Trans. Database Syst. 30, 2, 444–491.

HARMAN, D. 1993. Overview of the first Text REtrieval conference (TREC-1). In Proceedings of
the (TREC-1) Text Retrieval Conference.

HIEMSTRA, D. 2001. Using language models for information retrieval. Ph.D. thesis, University of

Twente.

INEX. 2006. INitiative for the Evaluation of XML Retrieval. http://inex.is.informatik.

uni-duisburg.de/.

KAMPS, J. AND SIGURBJÖRNSSON, B. 2006. What do users think of an XML element retrieval system?

In Proceedings of the Advances in XML Information Retrieval and Evaluation: 4th Workshop of
the INitiative for the Evaluation of XML Retrieval (INEX 2005). Lecture Notes in Computer

Science vol. 3977. Springer-Verlag.

KAMPS, J., MARX, M., DE RIJKE, M., AND SIGURBJÖRNSSON, B. 2005. Structured queries in XML re-

trieval. In Proceedings of the CIKM Conference. ACM, New York. 2–11.

KAZAI, G. AND LALMAS, M. 2006. INEX 2005 evaluation measures. In Proceedings of the Advances
in XML Information Retrieval and Evaluation: 4th Workshop of the INitiative for the Evalu-
ation of XML Retrieval (INEX 2005). Lecture Notes in Computer Science vol. 3977. Springer-

Verlag.

KAZAI, G., LALMAS, M., AND PIWOWARSKI, B. 2004. INEX 2004 relevance assessment guide. In INEX
Workshop Pre-Proceedings, N. Fuhr et al., eds. 241–248.

KURTONINA, N. AND DE RIJKE, M. 1999. Expressiveness of concept expressions in first-order de-

scription logics. Artif. Intell. 107, 2, 303–333.

MARX, M. AND DE RIJKE, M. 2005. Semantic characterizations of navigational XPath. ACM SIG-
MOD Record 34, 2, 41–46.

MAY, W. 1999. Information extraction and integration with FLORID: The MONDIAL case study. Tech.

Rep., Universität Freiburg, Institut für Informatik.

MITRA, M., BUCKLEY, C., SINGHAL, A., AND CARDIE, C. 1997. An analysis of statistical and syntac-

tic phrases. In Proceedings of the RIAO 5th International Conference Recherche d’Information
Assistee par Ordinateur.

O’KEEFE, R. A. AND TROTMAN, A. 2004. The simplest query language that could possibly work. In

Proceedings of the INEX Workshop. 167–174.

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

436 • J. Kamps et al.

RASOLOFO, Y. AND SAVOY, J. 2003. Term proximity scoring for keyword-based retrieval systems. In

Proceedings of the Advances in Information Retrieval 25th European Conference on IR Research.

Pisa, Italy. 207–218.

SIGURBJÖRNSSON, B., KAMPS, J., AND DE RIJKE, M. 2004a. An element-based approach to XML re-

trieval. In Proceedings of the INEX Workshop. 19–26.

SIGURBJÖRNSSON, B., KAMPS, J., AND DE RIJKE, M. 2004b. Processing content-oriented XPath queries.

In Proceedings of the CIKM Conference. ACM, New York. 371–380.

SIGURBJÖRNSSON, B. AND KAMPS, J. 2006. The effect of structured queries and selective indexing on

XML retrieval. In Proceedings of the Advances in XML Information Retrieval and Evaluation:
4th Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2005). Lecture Notes

in Computer Science vol. 3977. Springer-Verlag.

SIGURBJÖRNSSON, B., LARSEN, B., LALMAS, M., AND MAALIK, S. 2004c. INEX04 guidelines for topic

development. In INEX 2004 Workshop Pre-Proceedings, N. Fuhr et al., eds. 219–236.

SIGURBJÖRNSSON, B. AND TROTMAN, A. 2003. Queries, INEX 2003 working group report. In Proceed-
ings of the 1st Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2002).

TOMBROS, A., LARSEN, B., AND MALIK, S. 2005. The interactive track at INEX 2004. In Proceedings
of the Advances in XML Information Retrieval: 3rd Workshop of the INitiative for the Evaluation
of XML Retrieval (INEX 2004). Lecture Notes in Computer Science vol. 3493. Springer-Verlag.

410–423.

TROTMAN, A. AND LALMAS, M. 2006. The interpretation of CAS. In Proceedings of the Advances in
XML Information Retrieval and Evaluation: 4th Workshop of the INitiative for the Evaluation of
XML Retrieval (INEX 2005). Lecture Notes in Computer Science vol. 3977. Springer-Verlag.

TROTMAN, A. AND SIGURBJÖRNSSON, B. 2005. Narrowed Extended XPath I (NEXI). In Proceedings
of the Advances in XML Information Retrieval and Evaluation: 3rd Workshop of the INitiative
for the Evaluation of XML Retrieval (INEX 2004). Lecture Notes in Computer Science vol. 3493.

Springer-Verlag. 16–40.

VAN BENTHEM, J. 1983. Modal Logic and Classical Logic. Bibliopolis, Napoli.

VIANU, V. 2001. A Web odyssey: from Codd to XML. In Proceedings of the PODS Conference. ACM,

New York. 1–15.

WASSERMAN, S. AND FAUST, K. 1994. Social Network Analysis. Cambridge University Press.

Received September 2005; revised March 2006; accepted May 2006

ACM Transactions on Information Systems, Vol. 24, No. 4, October 2006.

