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Abstract. XML retrieval is a departure from standard document retrieval in which each individual XML element,
ranging from italicized words or phrases to full blown articles, is a retrievable unit. The distribution of XML
element lengths is unlike what we usually observe in standard document collections, prompting us to revisit the
issue of document length normalization. We perform a comparative analysis of arbitrary elements versus relevant
elements, and show the importance of element length as a parameter for XML retrieval. Within the language
modeling framework, we investigate a range of techniques that deal with length either directly or indirectly. We
observe a length-bias introduced by the amount of smoothing, and show the importance of extreme length bias
for XML retrieval. We also show that simply removing shorter elements from the index (by introducing a cut-off
value) does not create an appropriate element length normalization. Even after restricting the minimal size of XML
elements occurring in the index, the importance of an extreme explicit length bias remains.
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1. Introduction

The importance of document length normalization is one of the recurring themes in in-
formation retrieval (IR). In the early days of IR, test collections were based on abstracts,
resulting in short documents about a single topic. Here, taking into account parts of the
document not about the topic at hand (negative information) was as important as account-
ing for positive information (Salton and McGill 1983). This motivated techniques like the
standard SMART method of document length normalization using a cosine function.

The advent of TREC in 1992 introduced large-scale test collections with full-text docu-
ments. Documents in these collections were much longer, and had more length variety than
the collections based on abstracts. Full-text documents usually have multiple subtopics, frus-
trating the use of negative information (Buckley et al. 1996). As a result, full-text retrieval
necessitated a revision of document length normalization (Singhal et al. 1996). The introduc-
tion of XML retrieval marks a similar revolution in IR. Although a collection of XML text
documents may contain a similar number of articles as standard TREC-sized collections, the
number of XML elements in the collection takes us to quite a different scale. Even in XML
collections that are moderately sized in terms of the number of documents they contain,
there may be millions of XML elements that may be retrieved as an answer to a query, having
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a great variety in length (ranging from single words or phrases put in italics or in titles, to
full-blown articles). XML retrieval prompts us to revisit the issue of length normalization.

The task on which we focus in this paper is XML element retrieval. Here, each of the
text elements into which XML documents are divided, is an object that can in principle
be returned in response to a query. Thus, XML element retrieval is one of several recent
retrieval tasks that are aimed at pinpointing highly relevant information; other examples
include question answering (Voorhees 2003) and the novelty track (Harman 2003). The
INitiative for the Evaluation of XML retrieval (INEX) was launched in 2002 to assess the
effectiveness of retrieval methods for XML document and element retrieval (INEX 2004).
We focus on so-called content-only (CO) topics, which are traditional IR topics written
in natural language. Length-wise there are several noteworthy aspects of the INEX test
collection. First, the collection has over 12,000 articles, but over 8,000,000 XML elements.
Second, the XML element length distribution is much more skewed than normal document
length distributions. Third, in XML element retrieval the assessors have a strong bias toward
retrieval of long elements (Kamps et al. 2003b). Singhal et al. (1996, p. 620) argued that
“a system that retrieves documents of a certain length with a probability similar to that
of finding a relevant document of that length, will outperform other systems that retrieve
documents with very different probabilities from their probability of relevance.” We believe
that by accounting for these length aspects of XML elements during retrieval, systems can
improve performance.

Although we could have applied the methodology of Singhal et al. (1996) directly to the
problem of XML retrieval, we follow a somewhat different approach. The reasons for this
are twofold. First, we do not want to rely on a particular retrieval system for our analysis,
since there is no consensus yet on what would be default settings for XML retrieval. In fact,
systems using standard settings from ad hoc retrieval do not perform impressively. Second,
we want to address the problem within the language modeling framework, focusing on
those techniques that address length either directly or indirectly. No matter which retrieval
model one uses, main components that affect the importance of a term in a text are the
term frequency, the inverse document frequency, and document length. In the generative
language modeling approach that we adopt in this paper, these three aspects are respectively
captured by the model(s), smoothing procedures, and priors (Miller et al. 1999). Our overall
motivation for our work is to identify effective XML retrieval methods that are highly
portable across XML collections in that they only exploit statistical aspects (both content
and non-content) of XML documents, and do not depend on specific DTDs or tag sets.
Specifically, as we will now explain, we aim to understand how priors and smoothing affect
XML element retrieval performance.

For the priors aspect, we need to bridge the gap between average element length and
average relevant element length. Since we want to balance the “pinpointing” nature of
the XML element retrieval task with the (apparent) importance of long elements, we want
to do something more intelligent than only returning the longest possible elements (i.e.,
articles) in the collection. One of the important contributions of language modeling in IR
is the recognition of parameter estimation as a fundamental issue in IR (Greiff and Morgan
2003). An unbiased estimator need not be the best estimator; for a number of applications
it can be advantageous to accept a certain degree of estimation bias if in return there is a
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reduction in estimation variance. Document priors and smoothing provide a convenient way
of biasing estimates (Berger and Lafferty 1999, Miller et al. 1999). Priors allow one to import
“non-content” features of documents (or elements) into the scoring mechanism. Document
length is a good example of information about a document that is not directly related to its
contents, but might still be related to the possible relevance of the document. Singhal et al.
(1996) showed that for ad hoc document retrieval, there is a correlation between document
length and a priori probability of relevance.

Our other main issue in this paper is smoothing for XML element retrieval. Since doc-
ument (and element) language models may suffer from inaccuracy due to data sparseness,
a core issue in language modeling is smoothing, which refers to adjusting the maximum
likelihood estimator for the document (or element) language model by combining it with
a background language model. Two things are at stake: first, since element scores are
constructed from very short amounts of text, improving the probability estimates is very
important. Second, smoothing facilitates the generation of common terms (a tf idf like func-
tion). Smoothing is known to be task dependent. Language models for ad hoc retrieval, and
other tasks assessed in terms of mean average precision scores, tend to perform better if
much smoothing is done (Kraaij et al. 2000, Hiemstra 2001). In contrast, language models
for high precision tasks such as web retrieval tasks seem to perform better if very little
smoothing is applied (Kraaij and Westerveld 2001). In XML retrieval, smoothing plays
a special role: with smoothing, short elements containing only one or a few of the query
terms will receive a high relevance score. Without smoothing, only elements containing all
query terms will be returned. So within the language modeling framework, the amount of
smoothing is a factor that may affect the length of retrieved elements.

The rest of this paper is organized as follows. We discuss related work in Section 2. In
Section 3 we take a closer look at length features of the INEX 2002 and 2003 test suites.
Section 4 details our retrieval model, and describes our experiments with the effect of length
priors and smoothing on XML element retrieval performance, and in Section 5 we discuss
the results of our experiments. Section 6 concludes the paper.

2. Related work

Related work comes in several kinds; here we discuss language modeling and XML retrieval.

2.1. language modeling

Language modeling approaches to IR provide a promising formal framework for describing
a range of retrieval processes, such as web retrieval (Kraaij and Westerveld 2001) and cross-
lingual retrieval (Hiemstra 2001). They provide a natural setting for modeling structured
documents. The basic idea is to estimate a language model for each document, and then
rank documents by the likelihood of the query according to the estimated model. Since
the document (or element) score is generally a sum of logarithms of the probability of a
word given a document (or element) model, the retrieval performance is generally sensitive
to the smoothing parameters (Zhai and Lafferty 2001). A simple, yet effective smoothing
procedure, which has been successfully used for ad hoc and other retrieval tasks alike (and
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which we also use in this paper) is linear interpolation (Miller et al. 1999, Zhai and Lafferty
2001).

Working in the language modeling setting, Hiemstra and Kraaij (1999) show that docu-
ment length serves as a helpful prior for the ad hoc task at TREC, and others have not found
document priors to make a significant difference for ad hoc tasks (Lafferty and Zhai 2003).
Miller et al. (1999) combined information in their document priors, including document
length. In the setting of web retrieval, Kraaij et al. (2002) used priors based on the depth of
the URL.

2.2. XML retrieval

Early work by Wilkinson on structured documents showed that extracting XML elements
from a ranked list of documents is a poor strategy (Wilkinson 1994); one of the positive
outcomes, however, was that exploiting the structure of documents can lead to improved
document retrieval performance. At INEX 2002 (Fuhr et al. 2003) and 2003 (Fuhr et al.
2004), a broad spectrum of techniques was used to exploit non-content aspects of XML
documents in addressing the XML element retrieval task. For instance, the JuruXML system
by Mass et al. (2003) and Carmel et al. (2003) extends the traditional vector space model
by allowing XML collections to be searched through so-called “XML fragments” which
combine content and structure features. Similarly, Gövert et al. (2003) exploit content and
structure features to identify relevant elements and to redistribute relevancy from elements
to their enclosing elements.

Several teams have used a language modeling approach to XML element retrieval. E.g.,
Ogilvie and Callan (2003, 2004) use a tree-based generative language model for ranking
documents and components. Nodes in the tree correspond to document components, and
at each node in the tree, there is a language model. The language model for a leaf node is
estimated from the component associated with the node; inner nodes are estimated using
a linear interpolation among the children nodes. List and de Vries (2003) use a language
modeling approach where structural properties of documents are mapped to dimensions of
relevance and these dimensions are used for retrieval purposes. Hiemstra (2003) presents
a complex architecture, catering for XPath queries and traditional IR-style statements of
an information need, based on a language modeling component for the IR part; one of his
findings is that “it is beneficial to assign a higher prior probability of relevance to bigger
fragments of XML data than to smaller XML fragments.” For INEX 2003, the University of
Amsterdam’s team (Kamps et al. 2003b, 2004) worked in a generative language modeling
setting to experiment with length bias. Also at INEX 2003, Abolhassani et al. (2004) experi-
mented with adaptations of a language model based on Amati’s divergence from randomness
(Amati and Van Rijsbergen, 2002) to XML element retrieval. Finally, the TIJAH XML-IR
system by List et al. (2004) follows a ‘standard’ layered database architecture in which the
conceptual level is built around a language modeling approach to information retrieval.

3. XML element length

In our experiments we use the INEX 2002 and 2003 XML information retrieval test-suites
(Fuhr et al. 2003, 2004). The INEX document collection contains over 12,000 articles
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(consisting of over 8,000,000 elements) from 21 IEEE Computer Society journals, with
layout marked up with XML tags. The collection contains 176 different tag-names, repre-
senting units as diverse as complete articles 〈article〉, sections 〈sec〉, paragraphs 〈p〉 and
italics font 〈it〉. We calculate our statistics from the viewpoint of the retrieval system. That
is, we use statistics from our index of 6,779,686 text-carrying elements. Due to data cleaning
and stopword removal, these elements are shorter than in the original collection. Similarly,
empty elements are not indexed and thus do not count in our statistics. We calculate length
as the number of term occurrences in the elements.

3.1. Analysis of XML element tags

To get some idea about the kind of elements we are dealing with, it is useful to look at
some of the tag-names in the collection. Table 1 shows the 20 longest elements and the 20
most frequently occurring elements in the collection. The table also gives a description of
the tag-name, the frequency of the tag-name in the collection, and the average length of
elements bearing the tag-name. The total number of different tag-names in the collection is

Table 1. 20 longest elements and 20 most frequent tags in the INEX collection.

Mean Collection Collection Mean
Tag Description length frequency Tag Description frequency length

index journal index 3237.21 117 it italicized text 1,148,636 1.73

article article 3234.15 12,107 p paragraph 743,683 35.39

bdy body 2651.13 12,107 ref reference 391,651 1.33

bm back matter 594.24 10,058 au author 317,709 2.47

dialog dialog 526.44 194 snm surname 311,621 1.05

sec section 459.16 69,728 fnm first-name 297,609 1.35

bib bibliography 372.59 8,543 sub subscript 244,717 1.08

bibl bibliography 372.32 8,551 entry table entry 243,208 1.91

ssl (sub)section 252.02 61,454 ipl paragraph 178,742 34.75

app appendix 242.18 5,856 obi other bib info 165,477 4.24

ss3 (sub)section 189.26 127 ti title 159,574 4.82

ss2 (sub)section 169.73 16,276 pdt publication date 154,984 1.51

dl definition list 91.99 353 yr year 154,948 1.00

fm front matter 89.42 12,107 b boldface text 152,241 2.68

lb list 80.85 54 bb citation 149,167 21.26

tgroup table 80.73 5,805 st section title 138,867 3.66

tbody table body 78.40 5,800 atl article title 134,286 6.04

l4 list 75.22 117 scp small caps 110,018 1.03

edintro editorial intro 69.89 571 pp pages (citation) 108,134 3.07

proof proof 68.33 3,765 li list item 76,400 16.69



636 KAMPS, DE RIJKE AND SIGURBJÖRNSSON

Table 2. The 20 most frequent tag-names in the strict relevance assessments.

2002 assessments 2003 assessments

Tag-name Frequency (%) Tag-name Frequency (%)

p 383 27.47 sec 303 20.89

article 309 22.16 p 303 20.89

sec 291 20.87 article 172 11.86

ssl 115 8.24 bdy 167 11.51

bdy 90 6.45 ssl 146 10.06

ipl 61 4.37 ipl 69 4.75

ss2 25 1.79 ss2 36 2.48

abs 22 1.57 fig 32 2.20

fm 13 0.93 app 20 1.37

st 11 0.78 bb 19 1.31

item 8 0.57 art 18 1.24

app 7 0.50 bm 17 1.17

li 5 0.35 atl 15 1.03

it 5 0.35 fm 14 0.96

kwd 5 0.35 li 14 0.96

b 5 0.35 abs 12 0.82

atl 4 0.28 fgc 11 0.75

bb 4 0.28 st 10 0.68

tbl 3 0.21 tig 9 0.62

fig 3 0.21 bib 8 0.55

176; some more tag names occur in the DTD. From the average lengths listed in Table 1 it is
clear that the most common element types contain very little text. One may argue, therefore,
that it is unlikely that they can satisfy the information need of a topic. Indeed, most of the
20 most frequent tag-names occur rarely, if at all, in the assessments.

So what kind of elements were judged relevant for the INEX CO topics in 2002 and in
2003? Table 2 shows the 20 most frequent tag-names of elements assessed relevant, both
in absolute number over all topics, and as a percentage of all strict assessments. We see
that the assessors seem to prefer the longer tag-types such as articles (〈article〉); bodies
(〈bdy〉); sections (〈sec〉, 〈ssl〉, 〈ss2〉); and paragraphs (〈p〉, 〈ipl〉). Together, those tag-
names covered 91% of the INEX 2002 assessments and 86% of the INEX 2003 assessments.
Some of the short elements were also judged relevant, but less frequently than the longer
elements. These short elements include section titles (〈st〉); article titles (〈atl〉, 〈tig〉);
italicized words (〈it〉); and boldface words (〈b〉). If we compare the assessments for the
two years, we see that the weight of articles in the assessments set has decreased somewhat
between 2002 and 2003. The weight of the other longer elements (bodies, sections, and
paragraphs) has increased.
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Table 3. Prior probability of relevance.

2002 assessments 2003 assessments

Tag-name Frequency Prob.Rel Tag-name Frequency Prob.Rel

article 309 0.02552242 article 172 0.01420665

bdy 90 0.00743371 bdy 167 0.01379367

fn 1 0.00613496 index 1 0.00854700

sec 291 0.00417294 sec 303 0.00434502

abs 22 0.00298872 app 20 0.00341122

ssl 115 0.00187016 ssl 146 0.00237429

ss2 25 0.00153487 ss2 36 0.00221021

kwd 5 0.00132625 bm 17 0.00168902

brief 1 0.00123304 abs 12 0.00163021

app 7 0.00119392 fm 14 0.00115635

fm 13 0.00107375 bib 8 0.00093643

bq 2 0.00099850 bibl 8 0.00093556

p 383 0.00050247 kwd 3 0.00079575

ipl 61 0.00033216 tig 9 0.00074331

tbl 3 0.00023547 1c 5 0.00045150

bibl 2 0.00023389 fig 32 0.00041599

bm 2 0.00019870 p 303 0.00039752

lc 2 0.00018060 ipl 69 0.00037572

tgroup 1 0.00017176 hdr 4 0.00033038

tbody 1 0.00017176 hdrl 4 0.00033038

When we combine the collection frequencies in Table 1 with the assessments frequency
in Table 2, we can estimate the prior probability of relevance of each of the tags. We do
this by simply dividing the assessments’ frequency by the collection frequency for each of
the tag names. Table 3 shows the 20 tag-names with the highest probability of relevance
(for any of the INEX CO topics). The longer XML elements, such as articles, bodies, and
sections, do not occur frequently in the collection, but have the highest frequencies in the
assessments. As a result, the prior probability of relevance of the longer elements is much
higher than that of the frequently occurring shorter elements. Even within the long elements,
the probability of relevance reflects their lengths. The longest elements, 〈article〉, have
the highest prior, followed by the second longest elements, 〈bdy〉, then followed by 〈sec〉.

3.2. Analysis of XML element length

In our analysis above, we looked at the distribution of XML tags, that is, the distribution
of names of the XML elements in the collection. We now analyze the distribution of XML
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Table 4. Exponential-sized bins.

Bin 1 2 3 4 5 6 7 8 9 10

Log max length 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50

Max length 1 3 6 10 18 32 56 100 178 316

Bin 11 12 13 14 15 16 17 18 19 20

Log max length 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00

Max length 562 1000 1778 3162 5623 10000 17783 31623 56234 100000

elements over length regardless of their tag-name, and compare the length of arbitrary XML
elements versus the length of relevant XML elements. We do this by ordering the elements
in the INEX collection by length, and grouping them into several “bins” (Singhal et al.,
1996). As before, we calculate length as the number of term occurrences in an element.
Following (Kraaij et al. 2002), we use exponential-sized bins. Specifically, we use 20 bins
on an exponential scale ranging from 100 (=1) to 105 (=100,000). Table 4 gives the length
of the longest element for each of the bins. Note that these bins do not depend on the
collection at hand, allowing us to investigate the distribution of elements over length, and
make comparisons over different collections.

Figure 1(a) shows the number of XML elements for each of the bins. The distribution
of elements is heavily skewed toward short elements, such as italics. The average XML
element is short, with a length of 29, while the median length is only 2. We also investigate
the length of relevant XML elements, by using the strict assessments of INEX 2002 and
2003 CO topics. Figure 1(b) shows the number of relevant XML elements over all INEX
2002 and 2003 CO topics. Apart from the shortest elements, say containing fewer than 10
terms, the distribution of elements is fairly even over the bins. There is a radical difference
between the length distributions of relevant XML elements and of all XML elements in the
collection. The average length of a relevant element is 1,469 (1,100) and the median length
is 220 (226) for the 2002 (2003) topics.

We can further investigate the observed difference by estimating the prior probability
of relevance of XML elements in each of the bins. For each bin, figure 1(c) shows the
probability that an XML element in that bin is relevant for any of the INEX CO topics. The
distribution is heavily skewed toward long elements, such as full articles. The difference
between the probability of relevance curve in figure 1(c) and the XML element length curve
in figure 1(a) could hardly be more striking. If we do XML retrieval that is unbiased with
respect to length, our retrieved elements will be distributed like the collection in figure 1(a).
Given the prior probability of relevance, this is far from optimal. This clearly shows that
XML element length is a crucial parameter for XML retrieval.

For comparison, we conduct a similar analysis for ad hoc document retrieval using
TREC-style collections. We use the combined collection consisting of the documents from
the Financial Times, the Federal Register 1994, the LA Times, and the FBIS (i.e., TREC
disks 4 and 5 without the Congressional Record). There are 528,155 documents in total,
with an average length of 319 terms, and a median length of 231. We use the assessments
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Figure 1. Length distribution of XML elements (INEX IEEE Computer Society Collection).
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of TREC 6 ad hoc task (topics 301–350), the TREC 7 ad hoc task (topics 351–400), and
the TREC 8 ad hoc task (topics 401–450). For the TREC 8 ad hoc topics, there are 4,728
relevant documents, with a mean length of 730 and a median length of 318 terms.

Figure 2(a) shows the number of documents for each of the bins. The documents have a
normal distribution around the mean document length. The number of relevant documents
per bin, shown in figure 2(b), exhibits a very similar distribution as the total number of
documents. Figure 2(c) shows, again, the prior probability of relevance per bin. The prior
probability of relevance per bin is heavily skewed toward long documents. The probability
of relevance of figure 1(c) and that of figure 2(c) show a similar distribution. This suggests
that, despite the different retrieval task, assessors in INEX and TREC make comparable
relevance judgments relative to the length of the retrieval unit. The main difference between
XML retrieval and TREC-style document retrieval, then, is the heavily skewed distribution
of XML elements.

4. Experiments

We explore the importance of length normalization for XML retrieval. In Section 3 we have
seen that the INEX collection of XML elements is quite different from the TREC collections,
with respect to the length of retrievable units. An analysis of the INEX assessments shows
that a bias is needed toward retrieving relatively long elements. We focus on three aspects
of our retrieval model which affect this bias:

1. smoothing of language models,
2. priors based on element length, and
3. by introducing a minimal length for elements being indexed (an index cut-off value).

Retrieval effectiveness depends on the settings of smoothing parameters (Zhai and Lafferty
2001), and for XML retrieval the smoothing parameter has proved to indirectly introduce
a length bias by decreasing the importance of the presence of query terms (Kamps et al.
2003a). The length prior directly introduces a preference for longer elements, which has
proved important for XML retrieval (Kamps et al. 2003b). The index cut-off introduces a
bias toward retrieval of long elements by leaving the many very short elements out of the
index (Sigurbjörnsson et al. 2004). In our experiments we aim to investigate these aspects
in more detail, and explore how they affect and complement each other.

4.1. Assessments and evaluation metrics

In the INEX initiative, relevance is assessed at the element level. Elements are assessed on
a two dimensional graded relevance scale, one for topic relevance (or exhaustiveness) and
another for element coverage (or specificity) see Fuhr et al. (2003, p. 184 or 2004, p. 204)
for details. We evaluate our method on a strict scale, considering an element relevant if,
and only if, it is judged highly relevant (highly exhaustive) with exact coverage (highly
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Figure 2. Length distribution of documents (TREC Disks 4 and 5 minus the Congressional Record).
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specific). We use version 1.8 of the INEX 2002 relevance assessments and version 2.4 of
the INEX 2003 assessments. Evaluation is done using the trec eval program.1 For the
task we are evaluating the trec eval program implements the same metrics and produces
the same results as the strict inex eval program provided by the INEX initiative (Fuhr
et al. 2003, 2004). We choose to use trec eval since it has been thoroughly tested and
since it allows us to use our previously developed tools for result analysis and significance
testing. All our evaluations are based on the 1000 most relevant elements returned by our
system.

4.2. Retrieval framework

Since individual XML elements are the unit of retrieval, we treat each element as a separate
indexing unit. For each element we index all the text that is contained within it, including
the text nested within its descendants. Hence we create an overlapping index, since the text
nested at depth n in the XML tree is indexed as part of n different indexing units. We do
not apply any stemming algorithm, but lowercase all text and remove stopwords.2

Our retrieval model is a multinomial language model with Jelinek-Mercer smoothing
(Hiemstra 2001). In addition, we have a tunable length prior. We estimate a language model
for each element and for a given query we rank the elements with respect to the likelihood
that they generate the query. This can be viewed as estimating the probability P(e, q),

P(e, q) = P(e) · P(q | e), (1)

where e is an element and q is the query. We divide the task into two steps: estimating the
prior probability of the element, P(e), and estimating the probability of the query, given
an element, P(q | e). For the probability of the query, we use a linear interpolation of the
probabilities of a query term using a language model of an element and the term probability
using a language model of the collection. The probability of a query t1,. . . , tn is estimated
as:

P(t1, . . . , tn | e) =
n∏

i=1

(λ · Pmle(ti | e) + (1 − λ) · Pmle(ti )), (2)

where Pmle denotes probabilities estimated using maximum likelihood estimation: Pmle(ti |e)
is the probability of observing term ti in element e, and Pmle(ti ) is the probability of observing
term ti in the collection. The smoothing parameter λ determines how much emphasis is put
on the appearance of a query term in the element. For the prior probability, we explore several
estimation methods, all based on estimating the connection between an element’s length
and its prior probability. We introduce a parameter β and estimate the prior probability of
an element e as:

P(e) =
( ∑

t tf (t, e)
)β

∑
d

( ∑
t tf (t, e)

)β
(3)
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where tf(t, e) is the frequency of term t in element e. For β = 0 this results in a uniform
distribution over length or using no length prior; for β = 1 this results in a normal length
prior (the prior probability is proportional to the length); for β = 2 a squared length prior
(the prior is proportional to the square of its length), for β = 3 a cubic length prior, etcetera.

The calculation of the probabilities can be reduced, in the standard way, to the scoring
formula for an element e and query t1,. . . , tn:

s(e, t1 . . . , tn) = β · log

( ∑
t

tf (t, e)

)

+
n∑

i=1

log

(
1 + λ · tf (ti , e) · ( ∑

t df (t)
)

(1 − λ) · df (ti ) · ( ∑
t tf (t, e)

)
)

, (4)

where df (t) is the count of elements in which term t occurs, and λ is the weight given to
the element language model when smoothing with the collection model. The first line of
the sum represents the length prior and the second one the relevance of the element to the
query. Our introduction of the parameter β serves as a handy knob to turn when trying to
bridge the length gap between an average element and an average relevant element. The
effect of the parameter β depends on the length of the query and the appropriate value must
be determined empirically.

Another way to try to bridge the gap between average elements and average relevant
elements is to restrict the view of the index to the elements that are the most likely to
be relevant to a query. Two approaches to this aim have been proposed. One is to index
only elements whose tag names are from a predefined list of tag names. The list can be
compiled after careful analysis of tag name semantics (Gövert et al. 2003) or by using
existing relevance assessments (Mass and Mandelbrod 2004). The other way is to restrict
the view to elements that pass a certain length threshold, or cut-off N . We will explore the
latter option since we want to explore retrieval methods that are independent of specific
DTDs or tag sets. We apply the index cut-off N after building the index, but also prune the
statistics accordingly, making it equivalent to having only indexed elements of size at least
N .

4.3. Runs

Our runs are made using only the title and description fields of the topics. The topics are
processed in the same manner as the collection: the text is lower-cased and stop-words are
removed.

The three aspects introduced above (smoothing, length prior, and cut-off) affect length in
different ways. The smoothing parameter, λ, indirectly introduces a length bias by increasing
the importance of the presence of query terms in the retrieved element. The length prior’s
parameter, β, explicitly introduces a length bias proportional to the element length. The
index-cut off indirectly favors the longer elements by removing the shortest elements from
the index. These differences motivate us to investigate each aspect both in isolation and
combined.
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To determine the effect of smoothing we experiment with a range of values for the
smoothing parameter λ from the interval [0,1].3 To determine the importance of the length
prior, β, we experiment with values ranging from 0.0 to 5.0. To examine the interplay
between the smoothing parameter and the length prior we run experiments on the two-
dimensional search space determined by λ and β.

As we want to compare the effect of the length prior and the effect of index cut-off, we
carry out similar experiments for different index cutoff values as we do for different length
prior values. Hence, we explore the two-dimensional search space determined by λ and N ,
where the index cut-off values N range from 0 to 60.

The length prior and the index cut-off have the same aim: moving the attention away
from the very many, very short elements in the collection, to the fewer, longer elements
appreciated by assessors. To find out whether these two methods complement each other
we explore the search space determined by β and N . Here, we will limit our explorations
to certain key values of the length prior and the cut-off parameters.

5. Results and discussion

As our baseline we choose a retrieval run with parameter settings that are considered tradi-
tional for ad hoc retrieval. That is, we use a low value for the smoothing parameter (λ = 0.2)
and we use a normal length prior (β = 1.0). To determine statistical significance we use the
bootstrapping method, a non-parametric inference test (Efron 1979, Efron and Tibshirani,
1993). The method has previously been applied to retrieval evaluation by, e.g., (Wilbur
1994) and (Savoy 1997). We take 100,000 re-samples and look for improvements (one-
tailed) at significance levels 0.95 (∗); 0.99 (∗∗); and 0.999 (∗∗∗). Because of its bewildering
size, the parameter space has not been fully explored to find the optimal parameter for each
method.

5.1. Smoothing for length Bias

Retrieval performance is generally sensitive to the value given to smoothing parameters.
Smoothing is applied to account for data-sparseness and is therefore considered more useful
for short text units than longer ones. The data-sparseness problem is particularly evident in
a collection of very short texts, such as our collection of XML elements. This leads us to
investigate the relation between smoothing settings, retrieval settings and element length.
Figure 3 shows the mean average precision scores for different values of the smoothing
parameter. The two lines are scores with and without using the normal language model
length prior, i.e., using β = 1.0 and β = 0.0 respectively. Table 5 summarizes results for
optimal smoothing. We see that, for both topic sets, the optimal value of the smoothing
parameter λ is in the higher end, which means that little smoothing is required. This is
surprising since these are settings normally applied for high-precision retrieval tasks. The
XML retrieval task, in contrast, is an ad hoc retrieval task evaluated with mean average
precision. The explanation of this outcome lies in the relationship between smoothing
parameter and length of retrieved elements. A closer look at the retrieved elements shows
that, on average, longer elements are returned when a higher value is given to the smoothing
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Table 5. Comparison between different retrieval methods and topic sets.

λ β N MAP Change

Normal ad hoc settings (2002) 0.2 1.0 0 0.0409 (baseline)

Optimal smoothing (2002) 0.9 1.0 0 0.0598 +46%∗∗∗

Normal ad hoc settings (2003) 0.2 1.0 0 0.0832 (baseline)

Optimal smoothing (2003) 0.6 1.0 0 0.0916 +10%
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Figure 3. Mean average precision for different values of the smoothing parameter λ. The lines show scores with
and without using the traditional length prior.

parameter λ. The average length of retrieved elements can be seen in figure 4. The figure
shows the runs for the 2002 topic set; the plot for the 2003 topic set is nearly identical. A
high value of λ means that the presence of a query term in an element is rewarded (we are
approaching coordination level matching (Hiemstra 2001)). Since long elements are more
likely to contain many of the query terms, high values of λ have a length bias effect. Recall
from Section 3 that assessors favor the somewhat longer elements of the collection. Little
smoothing, i.e., a high value of the smoothing parameter, serves those users well. Choosing
a low value for the smoothing parameter, however, leads to retrieval of shorter, and perhaps,
unwanted elements.

Comparing the 2002 and 2003 topic sets we see that the optimal value for the smoothing
parameter λ is slightly different. The optimal value is 0.9 for the 2002 collection but 0.6 for
the 2003 collection. This can be explained by the fact that the 2003 assessments seem to
have slightly less bias toward long elements than the 2002 assessments do (see figure 1 and
Table 2). By increasing the smoothing parameter we get an improvement of +46% (∗∗∗)
and +10% over the standard ad hoc settings, respectively, for the 2002 and 2003 topic sets.

5.2. Length prior

Although the smoothing parameter can be used to control the length of retrieved elements,
this function seems to be better suited for the length prior parameter. To determine the effect
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Figure 4. Average length of retrieved elements, with and without the normal length prior, plotted against the
smoothing parameter λ. (Using 2002 topics.)

of the length prior we look at the curves for β = 2.0 and β = 3.0 in figure 5. In the remainder
of this paper, we will refer to either of these values of the length prior parameter as extreme
length prior. Experiments with β > 3.0 resulted in a decrease in retrieval performance,
and are not shown in detail. Table 6 summarizes the results for the optimal settings for the
extreme length prior. For both topic sets, the score improves significantly over the normal
length prior settings. Also, the optimal value for the smoothing parameter A moves to the
lower portion of the search space. The optimal value for the smoothing parameter is now in
line with other tasks evaluated using mean average precision. This is because the smoothing
parameter no longer works as a length bias. That role is taken over by the extreme length
prior. This can be more clearly seen in figure 6, which shows the average length of retrieved
elements for different values of the smoothing parameter and length prior. We see that the
length prior lifts the curve up to desired levels.

Comparing the 2002 and 2003 topic sets, we see that the optimal value for the length
prior parameter β is different. While the runs using the 2002 topic set peak at β = 3.0, the

Table 6. Comparison between different retrieval methods and topic sets.

λ β N MAP Change

Normal ad hoc settings (2002) 0.2 1.0 0 0.0409 (baseline)

Extreme length prior (2002) 0.2 2.0 0 0.0682 +67%∗∗∗

0.2 3.0 0 0.0839 +105%∗∗∗

Normal ad hoc settings (2003) 0.2 1.0 0 0.0832 (baseline)

Extreme length prior (2003) 0.2 2.0 0 0.1457 +75%∗∗∗

0.2 3.0 0 0.1329 +60%*
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Figure 5. Mean average precision for extreme length prior β, plotted against the smoothing parameter λ. Scores
for the runs with and without the normal length prior are shown for comparison.
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Figure 6. Average length of retrieved elements, for different values of the length prior parameter β, plotted
against the smoothing parameter λ. (Using 2002 topics.)

runs using the 2003 topic set peak at β = 2.0. The fact that a less extreme length prior is
needed for the 2003 topic set is, again, in line with the observations on length-biases for the
INEX topics in Section 3.

Increasing the length prior β up to 3.0 gives us an improvement of +105% (∗∗∗) over the
baseline for the 2002 topic set and +60% (∗) for the 2003 topic set. Although we are not
using the optimal value for the 2003 topic set, we still get a statistically significant result.
If we look at the optimal value for the 2003 topic set, β = 2.0, the improvement is +67%
(∗∗∗) for the 2002 topic set and +75% (∗∗∗) for the 2003 topic set.

The optimal value for the length prior changes between topic sets. However, for both
topic sets we get quite remarkable and statistically significant improvements, even when
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we use the sub-optimal length prior learned from experiments on the other topic set. This
tells us that length must be taken seriously when retrieving XML elements, and an extreme
length prior is of great importance.

Finally, we have seen that the smoothing parameter is dependent on the length prior. In
the absence of a length prior, the smoothing parameter implicitly introduces a length bias.
However, when we do use an extreme length prior, the smoothing parameter can go back
to do what it does best, namely smoothing.

5.3. Element length cut-offs

The length prior has a dual effect: on the one hand it makes it effectively impossible
to retrieve short elements, and on the other it influences the relative ranking of longer
elements. Next, we investigate the relative importance of these two effects, by restricting
the minimal length of XML elements in our index. That is, we explore the effect of different
values for the index cut-off, N , using no length prior (β = 0.0), but different values for the
smoothing parameter λ. Remember that using an index cut-off N is equivalent to using an
index where we only index elements containing Nor more terms. Figure 7 shows the effect
of a few cut-off settings on both the INEX 2002 and INEX 2003 topic sets. Using cut-offs
does indeed improve scoring. Table 7 summarizes the results for the optimal settings for
the index cut-off. There is not much difference in performance between different cut-off

Table 7. Comparison between different retrieval methods and topic sets.

λ β N MAP Change

Normal ad hoc settings (2002) 0.2 0.0 0 0.0409 (baseline)

Index cut-off (2002) 0.9 0.0 40 0.0551 +35%∗∗

Normal ad hoc settings (2003) 0.2 0.0 0 0.0832 (baseline)

Index cut-off (2003) 0.6 0.0 20 0.0915 +10%
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Figure 7. Mean average precision for different cut-off values N , plotted against the smoothing parameter λ.
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Figure 8. Average length of retrieved elements, for different cut-off values N , plotted against the smoothing
parameter λ. (Using 2002 topics.)

values in the interval from 20 to 50. At cut-off values greater than 50, the performance starts
to drop, since we are simply leaving out too many relevant elements from our index (see
figure 1).

For both topic sets, the cut-off improves scoring by far less than the extreme length prior.
Cut-off does help to get rid of the very many very short elements, but we still need an explicit
length bias to distinguish between the longer and shorter elements remaining in our index.
Figure 8 shows the average length of retrieved elements for different cut-off values. It is
interesting to note that the curves for the cut-off are very similar to the curve for the normal
length prior in figure 4. It is plausible that the reason why the normal length prior does
not perform good enough is that its only effect might be to downplay the very many, very
short elements, but it does not introduce enough bias toward the relatively long elements
considered meaningful by assessors.

5.4. Length prior plus cut-off value

We have seen that although an extreme length prior and a cut-off can both lead to improved
scoring, the two methods do not behave in the same way. While the extreme length prior
introduces a bias toward longer elements within an index, the cut-off merely keeps the
very short elements outside of the index. Furthermore, the extreme length prior leads to
far greater improvements than the cut-off. Therefore, it is interesting to see whether the
extreme length prior runs can improve further when applied on a cut-off index.

To demonstrate this effect we choose to apply the extreme length prior together with
an index cut-off N = 40. This cut-off value is chosen based on experiments on the topic
sets. There is, however, hardly any difference in performance between choosing different
cut-off values in the interval from 20 to 50. Table 8 shows the results of applying an
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Table 8. Comparison between different retrieval methods and topic sets.

λ β N MAP Change

Normal ad hoc settings (2002) 0.2 1.0 0 0.0409 (baseline)

Cut-off + length prior (2002) 0.2 2.0 40 0.0781 +91%∗∗∗

0.2 3.0 40 0.0883 +115%∗∗∗

Normal ad hoc settings (2003) 0.2 1.0 0 0.0832 (baseline)

Cut-off + length prior (2003) 0.2 2.0 40 0.1530 +84%∗∗

0.2 3.0 40 0.1364 +64%*

extreme length prior together with a cut-off. Combining a value of 3.0 for the length prior
β and a value of 40 for cut-off N does indeed give us further improvements. For the 2002
topic set the improvement is +115% (∗∗∗) over the normal baseline and we get +5.2%
(∗) improvement over the extreme length prior (β = 3.0) alone; both improvements are
statistically significant. For the 2003 topic set the improvement is +64% (∗) over the normal
baseline and +2.6% (−) over the extreme length prior alone; here, only the improvement
over the baseline is statistically significant. Using β = 2.0 for the length prior and N = 40
for the cut-off also improves the results. For the 2002 topic set the improvement is +91%
(∗∗∗) over the normal baseline and and +15% (∗∗) over the extreme length prior (β = 2.0)
alone. For the 2003 topic set the improvement is +84% (∗∗) over the normal baseline and
+5% (−) over the extreme length prior alone.

The improvement effect of index cut-off is not as clear as the effect of the extreme length
prior. Alone, it is by far inferior to the extreme length prior. Combining an extreme length
prior and a cut-off does improve over the use of an extreme length prior alone, but the
improvement is statistically significant only for one of the two topic sets.

5.5. Tags returned

We have seen that the use of optimal smoothing settings, extreme length priors and ap-
propriate cut-off settings result in significantly better retrieval results. That is, when we
retrieve longer elements, there is a boost in retrieval effectiveness. The claim that longer
elements are better than shorter ones does not necessarily mean that long articles are better
than short articles or long sections better than short sections. The argument is rather that
articles or sections are better than italicized phrases or article titles. We explore this effect
by investigating the most frequent tag-names of elements retrieved using different settings.

Table 9 shows the 10 most frequent element types returned for both normal settings
and optimal smoothing settings. The baseline using normal settings returns a considerable
amount of short elements, such as titles (〈atl〉 and 〈ti〉) and italicized text (〈it〉). However,
the most frequent element types are paragraphs (〈p〉 and 〈ip1〉) and sections (〈sec〉 and
〈ssl〉). When the smoothing parameter is tuned we see an increasing weight of the longer
elements such as articles (〈article〉) and bodies (〈bdy〉). Note that the optimal smoothing
value for the two test sets is different. The 2002 assessment set was more strongly dominated
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Table 9. Tag-names of elements retrieved using the baseline settings and optimized smoothing settings for
both the INEX 2002 and 2003 collections.

2002 collection 2003 collection

Baseline Optimal smoothing(%) Baseline Optimal Smoothing(%)

p 24.32% article 22.15 p 22.98% p 19.69

sec 11.88% bdy 17.01 sec 10.27% sec 13.85

atl 7.14% sec 16.95 ti 8.08% article 10.19

article 6.35% p 11.87 atl 7.67% bdy 8.84

ipl 5.86% ss1 5.36 ss1 5.16% ss1 6.03

ss1 5.61% bm 3.88 ipl 5.05% ti 4.77

bdy 5.49% atl 2.99 article 5.01% atl 4.74

bb 3.73% ipl 2.91 bdy 4.57% ipl 4.47

ti 2.91% bibl 1.61 bb 4.37% bb 3.61

it 2.21% bib 1.61 it 2.77% bm 2.66

by articles than the 2003 assessment set, and thus gained from less smoothing. This is
reflected in the elements returned. For the 2002 test set, when optimizing smoothing, the
articles and bodies replace the paragraphs and sections at the top of the table. For the 2003
collection paragraphs and sections stay on top, but articles and bodies replace the two types
of title elements.

Table 10 show the 10 most frequent element types returned by the runs using the extreme
length prior. Results are shown for runs both with and without index cut-off. We see that
using the extreme length prior, we get retrieval runs that are dominated by articles. The
domination is less for the 2003 test set. Note that for each test set we report the more
successful length prior settings, β = 3.0 for the 2002 set and β = 2.0 for the 2003 set. As

Table 10. Tag-names of elements retrieved using extreme length prior, with and without cut-off.

2002 collection 2003 collection

Extreme prior cut-off + ext. prior Extreme prior cut-off + ext. prior

article 37.80% article 39.29% article 16.94% article 21.47%

bdy 25.79% bdy 26.56% p 15.65% sec 17.91%

sec 12.97% sec 13.91% sec 14.10% bdy 16.77%

p 5.46% p 4.44% bdy 13.42% p 14.10%

ss1 3.85% ss1 4.16% ss1 5.60% ss1 7.25%

bm 3.04% bm 3.29% atl 4.16% bm 4.51%

ip1 1.30% bibl 1.36% ip1 3.56% ip1 3.27%

bibl 1.18% bib 1.36% bb 3.12% bibl 2.71%

bib 1.18% ip1 1.11% bm 3.10% bib 2.71%

atl 0.85% app 0.86% ti 1.95% app 1.35%
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to whether to not to use the index cut-off, we see that the difference is not large; however,
we get rid of the very short title elements when we use a cut-off.

6. Conclusion

This paper revisited document length normalization in the context of an XML element
retrieval task. We performed a comparative analysis of the length of arbitrary elements
versus that of relevant elements, and highlighted the importance of length as a parameter
for XML retrieval. Earlier, Singhal et al. (1996) observed that, in TREC collections, “the
likelihood of a document being judged relevant by a user increases with the document
length.” Our analysis of data from INEX (figure 1) and TREC (figure 2) shows that the prior
probability of relevance over length is comparable between document retrieval and XML
retrieval. The main difference between XML retrieval and TREC-style document retrieval
is the heavily skewed distribution of elements over length.

Within the language modeling framework, we investigated techniques that deal with
length either directly or indirectly: length prior, index cut-off, and the amount of smooth-
ing. We observed an implicit length bias introduced by the amount of smoothing, and
showed the importance of an extreme length prior for XML retrieval. When used with an
extreme length prior, the smoothing parameter regains its normal function of controlling
term importance. Furthermore, we showed that simply removing shorter elements from
the index (by introducing a cut-off value) does not create an appropriate element length
normalization. After restricting the minimal size of XML elements occurring in the index,
the importance of an extreme length prior remains. The combination of an extreme length
prior with an index cut-off does lead to a slight further improvement.

Although we find convincing evidence for our findings on the INEX collection, the usual
disclaimers apply. As with any experimental result, there is no guarantee that these results
will carry over to each and every other collection. XML collections can have great variety
in structure, potentially very different from that in full-text digital libraries like the IEEE
Computer Society. Furthermore, the INEX test-suite is based on peer-assessments by one
judge per topic (leading to considerable variety in judgments, especially between topics)
and facilitated by a particular interface (potentially creating some biases, e.g., elements are
presented within the context of the full article). By the same token, it is also clear that the
observed length effects are not unique for XML retrieval. Similar effects may be observed
in every collection where the distribution of lengths of documents is very skewed. Arguably,
some of these effects, such as the length-bias introduced through smoothing, play a role
with every collection, be it to a lesser extent than in the case of XML retrieval.
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Notes

1. Available from the TREC web site http://trec.nist.gov for registered participants.
2. Following standard practice, we remove stopwords and lower-case before indexing. As an aside, some recent

studies have explored sophisticated ways to include morphological variants in the document ranking process
rather than as a preprocessing step (Kraaij 2004); none succeeded in improving over the straightforward
’normalization as preprocessing’ method.

3. We restrict our attention, in practice, to values in the range [0.1, 0.9]. This is, in general, the interesting range
for the smoothing parameter. We do not show results for λ = 0 because it will rank document to the query-
independent prior resulting in a very low score. We also do not show results for λ = 1 for it is not defined in
the our scoring formula 4 (although it is defined for Eq. (1)).

References

Abolhassani M, Fuhr N and Malik S (2004) HyREX at INEX 2003. In: Fuhr N, Lalmas M and Malik S, Eds.,
INEX 2003 Workshop Proceedings, pp. 27–32.

Aniati G and Van Rijsbergen CJ (2002) Probabilistic models of information retrieval based on measuring the
divergence from randomness. ACM Transactions on Information Systems, 20:357–389.

Berger A and Lafferty J (1999) Information retrieval as statistical translation. In: Proceedings of the 22nd Annual
International AGM-SIGIR Conference on Research and Development in Information Retrieval, ACM Press,
pp. 222–229.

Buckley C, Singhal A and Mitra M (1996) New Retrieval Approaches Using SMART: TREC 4. In: Harman DK,
Ed., The Fourth Text REtrieval Conference (TREC-4), pp. 25–48.

Carmel D, Maarek Y, Mandelbrod M, Mass Y and Soffer A (2003) Searching XML documents via XML frag-
ments. In: Clarke C, Cormack G, Callan J, Hawking D and Smeaton A, Eds., Proceedings of the 26th Annual
International AGM-SIGIR Conference on Research and Development in Information Retrieval, pp. 151–158.

Efron B (1979) Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7:1–26.
Efron B and Tibshirani RJ (1993) An Introduction to the Bootstrap. Chapman and Hall, New York.
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Kamps J, Marx M, de Rijke M and Sigurbjornsson B (2003b) XML Retrieval: What to Retrieve?. In: Clarke
C, Cormack G, Callan J, Hawking D and Smeaton A, Eds., Proceedings of the 26th Annual International
ACM-SIGIR Conference on Research and Development in Information Retrieval, pp. 409–410.

Kraaij W (2004) Variations on Language Modeling for Information Retrieval. Ph.D. thesis, University of Twente.
Kraaij W, Pohlmann R and Hiemstra D (2000) Twenty-One at TREC-8: Using language technology for information

retrieval. In: Voorhees E and Harman D, Eds., The Eighth Text REtrieval Conference (TREC-8), pp. 285–300.
Kraaij W and Westerveld T (2001) Twenty-UT at TREC-9: How different are web documents?. In: Voorhees E

and Harman D, Eds. The Ninth Text REtrieval Conference (TREC-9), pp. 665–672.
Kraaij W, Westerveld T and Hiemstra D (2002) The importance of prior probabilities for entry page search.

In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in
information retrieval, pp. 27–34.

Lafferty J and Zhai C (2003) Probabilistic relevance models based on document and query generation. In: Croft
W and Lafferty J, Eds., Language Modeling for Information Retrieval. Kluwer Academic Publishers, pp. 1–10.

List J and de Vries A (2003) CWI at INEX 2002. In: Fuhr N, Gövert N, Kazai G and Lalmas M, Eds., Proceedings
of the First Workshop of the INitiative for the Evaluation of XML Retrieval (INEX 2002). ERCIM., pp. 133–140.

List J, Mihajlovic V, Vries AD, Ramirez G and Hiemstra D (2004) The TIJAH XML-IR system at INEX 2003.
In: Fuhr N, Lalmas M and Malik S, Eds., INEX 2003 Workshop Proceedings, pp. 102–109.

Mass Y and Mandelbrod M (2004) Retrieving the most relevant XML components. In: Fuhr N, Lalmas M and
Malik S, Eds., INEX 2003 Workshop Proceedings, pp. 53–58.

Mass Y, Mandelbrod M, Amitay E, Carmel D, Maarek Y and Soffer A (2003) JuruXML—an XML retrieval
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