
The University of Amsterdam at INEX 2003

Jaap Kamps Maarten de Rijke Börkur Sigurbjörnsson

Language & Inference Technology Group, University of Amsterdam
Nieuwe Achtergracht 166, 1018 WV Amsterdam, The Netherlands

E-mail: {kamps, mdr, borkur}@science.uva.nl

ABSTRACT
This paper describes the INEX 2003 participation of the Language
& Inference Technology group of the University of Amsterdam.
We participated in all three of the tasks, content-only, strict content-
and-structure and vague content-and-structure.

1. INTRODUCTION
One of the recurring issues in XML retrieval is finding the appropri-
ate unit of retrieval. For the content-only (CO) task at INEX 2002,
we only submitted runs in which whole articles were the unit of re-
trieval [3]. Much to our surprise, retrieving articles turned out to be
a competitive strategy. In [5] we experimented with going below
the article level and returning elements. Our experiments showed
that a successful element retrieval approach should be biased to-
ward retrieving large elements. For the content-only task this year
our aim was to experiment further with this size bias, in order to try
to determine what is the appropriate unit of retrieval.

For the strict content-and-structure (SCAS) task the unit of retrieval
is usually explicitly mentioned in the query. Our research question
for the content-only task does therefore not carry over to the strict
content-and-structure task. At INEX 2002, we experimented with
assigning an RSV score to elements satisfying an XPath expression.
This year we experiment further with the same idea, although our
scoring methods are quite different from those of last year.

The vague content-and-structure (VCAS) task is a new task and we
could not base our experiments on previous experience. Since the
definition of the task was underspecified, our aim for this task was
to try to find out what sort of task this was. We experimented with
a content-only approach, strict content-and-structure approach and
article retrieval approach.

All of our runs were created using theFlexIR retrieval system de-
veloped by the Language and Inference Technology group. We use
a multinomial language model for the scoring of retrieval results.

The structure of the remainder of this paper is as follows. In Sec-
tion 2 we describe the setup used in our experiments. In Section 3

we explain the submitted runs for each of the three tasks, CO in 3.1,
SCAS in 3.2 and VCAS in 3.3. Results are presented and discussed
in Section 4 and in Section 5 we draw initial conclusions from our
experiments.

2. EXPERIMENTAL SETUP
2.1 Index
We adopt an IR based approach to XML retrieval. We created our
runs using two types of inverted indexes, one for XML articles only
and another for all XML elements.

Article index
For the article index, the indexing unit is a whole XML document
containing all the terms appearing at any nesting level within the
〈article〉 tag. This is thus a traditional inverted index as used for
standard document retrieval.

Element index
For the element index, the indexing unit can be any XML element
(including 〈article〉). For each element, all text nested inside it
is indexed. Hence the indexing units overlap (see Figure 1). Text
appearing in a particular nested XML element is not only indexed
as part of that element, but also as part of all its ancestor elements.

The article index can be viewed as a restricted version of the el-
ement index, where only elements with tag-name〈article〉 are
indexed.

Both indexes were word-based, no stemming was applied to the
documents, but the text was lower-cased and stop-words were re-
moved using the stop-word list that comes with the English version
on the Snowball stemmer [8]. Despite the positive effect of mor-
phological normalization reported in [3], we decided to go for a
word-based approach. Some of our experiments have indicated that
high precision settings are desirable for XML element retrieval [4].
Word-based approaches have proved very suitable for achieving
high precision.

2.2 Query processing
Two different topic formats are used, see Figure 2 for one of the CO
topics, and Figure 3 for one of the CAS topics. Our queries were
created using only the terms in the〈title〉 and〈description〉
parts of the topics. Terms in the〈keywords〉 part of the topics
have proved to significantly improve retrieval effectiveness [4]. The
keywords, which are used to assist during the assessment stage, are
often based on human inspection of relevant documents during the
topic creation. Using them would have meant a violation of the

Champagne for my real friends
Real pain for my sham friends

Tom Waits

simple.xml /article[1]

Tom Waits

simple.xml /article[1]/au[1]

Champagne for my real friends

simple.xml /article[1]/sec[1]

Real pain for my sham friends

simple.xml /article[1]/sec[2]

<article>
<au>Tom Waits</au>
<sec>Champagne for my real friends</sec>
<sec>Real pain for my sham friends</sec>

</article>

simple.xml

Figure 1: Simplified figure of how XML documents are split up into overlapping indexing units

assumptions underlying a fully automatic run, so we decided not to
use them. Our system does not support +, - or phrases in queries.
Words and phrases bound by a minus were removed, together with
the minus-sign. Plus-signs and quotes were simply removed.

Like the index, the queries were word-based, no stemming was ap-
plied but the text was lower-cased and stopwords were removed.

For some of our runs we used queries expanded by blind feedback.
We considered it safer to perform the blind feedback against the ar-
ticle index since we do not know how the overlapping nature of the
element index affects the statistics used in the feedback procedure.
We used a variant of Rocchio feedback [6], where the top 10 docu-
ments were considered relevant; the top 501-1000 were considered
non-relevant; and up to 20 terms were added to the initial topic.
Terms appearing in more that 450 documents were not considered
as feedback terms. An example of an expanded query can be seen
in Figure 2c.

Task specific query handling will be further described as part of the
run descriptions in the following section.

2.3 Retrieval model
All our runs use a multinomial language model with Jelinek-Mercer
smoothing [2]. We estimate a language model for each of the el-
ements. The elements are then ranked according to the likelihood
of the query, given the estimated language model for the element.
To account for data sparseness we estimate the element language
model by a linear interpolation of two language models, one for the
element and another for the collection:

P(E|Q) = P(E) ·
k

∏
i=1

(λ ·Pmle(ti |E)+(1−λ) ·Pmle(ti |C)) , (1)

whereQ is a query made out of the termst1, . . . , tk; E is a language
model of an element;C is a language model of the collection; andλ
is the interpolation factor (smoothing parameter). We estimate the
language models,Pmle(·|·) using maximum likelihood estimation.
For the collection model we use element frequencies. Assuming
a uniform prior probability of elements being relevant, our basic
scoring formula for an elementE and a queryQ = (t1, . . . , tk) is
therefore

s(E,Q) =
k

∑
i=1

log

(
1+

λ · tf(ti ,E) · (∑t df(t))
(1−λ) ·df(ti) · (∑t tf(t,E))

)
, (2)

where tf(t,E) is the frequency of termt in elementE, df(t) is the
element frequency of termt andλ is the smoothing parameter. In

most cases we base the probabilityP(E) on the element length.
That is, we add a length prior to the score:

lp(E) = log

(
∑
t

tf(t,E)
)

. (3)

For an exact description of how we apply this length prior, see in-
dividual run descriptions in Section 3.

The smoothing parameterλ played a crucial role in our submis-
sions. In [4] we reported on the effect of smoothing on the unit
of retrieval. The results obtained there suggested that there was a
correlation between the value of the smoothing parameter and the
size of the retrieved elements. The average size of retrieved ele-
ments increases dramatically as less smoothing (a higher value for
the smoothing parameterλ) was applied. Further descriptions on
how we tried to exploit this size-smoothing relation are provided in
the individual run descriptions.

Smoothing is not the only method applicable to eliminate the small
elements from the retrieval set. One can also simply discard the
small elements when building the index. Elements containing text
that is shorter than a certain cut-off value can be ignored when the
index is built. In some of our runs we imitated such index build-
ing by restricting our view of the element index to a such a cut-off
version. Further details will be provided in the description of indi-
vidual runs in the next section.

3. RUNS
3.1 Content-Only task
In [5] we tried to answer the question of what is the appropriate unit
of retrieval for XML information retrieval. A general conclusion
was that users have a bias toward large elements. With our runs for
the content-only task we pursued this issue further.

We create a language model for each XML-element. As described
in the previous section, since small elements do not provide a large
sample space, we get very sparse statistics. We therefore smooth
our statistics by combining the element language model with a lan-
guage model for the whole collection. Zhai and Lafferty [10] argue
that bigger documents require less smoothing than smaller docu-
ments. A similar effect was witnessed in [4], where less smooth
language models retrieved larger elements than more smooth lan-
guage models.

Increasing the value ofλ in the language model causes an occur-
rence of a term to have an increasingly bigger impact. As a result,

the elements with more matching terms are favored over elements
with fewer matching terms. In the case of our overlapping element
index, a high lambda gives us an article biased run, whereas a low
lambda introduces a bias toward smaller elements (such as sections
and paragraphs).

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="103" query_type="CO" ct_no="50">
<title>UML formal logic</title>
<description>Find information on the use of formal logics
to model or reason about UML diagrams.</description>

<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

.i 103
uml formal logic find information use formal logics model
reason uml diagrams

(b) Cleaned query (TD)

.i 103
uml formal logic find information use formal logics model
reason uml diagrams booch longman rumbaugh itu jacobson
wiley guards ocl notations omg statecharts formalism
mappings verlag sdl documenting stereotyped semantically
sons saddle

(c) Expanded query (TD+blind feedback)

Figure 2: CO Topic 103

In our runs we scored elements by combining evidence from the
element itself,s(e), and evidence from the surrounding articles(d),
using the scoring formula

scomb(e) = lp(e)+α ·s(d)+(1−α) ·s(e) (4)

wheres(·) is the score function from Equation 2 and lp(·) is the
length prior from Equation 3.

We submitted the following runs for the CO task. Since we wanted
to experiment with the element size bias, we wanted to compare
two runs, one with considerable smoothing (λ = 0.2) and another
with considerably less smoothing (λ = 0.9).

UAmsI03-CO-lambda=0.9
In this run we set the smoothing parameterλ to 0.9. This value ofλ
means that little smoothing was performed, which resulted in a run
with a bias toward retrieving large elements such as whole articles.

UAmsI03-CO-lambda=0.2
In this run we set the smoothing parameterλ to 0.2 which means
that a considerable amount of smoothing is performed. This re-
sulted in a run with a bias toward retrieving elements such as sec-
tions and paragraphs.

UAmsI03-CO-lambda=0.5
Here we went somewhere in between the two extremes above by
settingλ = 0.5. Furthermore, we required elements to be either
articles, bodies or nested within the body.

All runs used the same combination valueα = 0.4 in the scoring
formula (4), a value chosen after experimenting with the INEX

2002 collection. Only elements longer than 20 terms were consid-
ered. Very short pieces of text are themselves not likely to be very
informative. One straightforward way to make sure those short el-
ements are not retrieved, is to remove them from the index. The
value for the size threshold was justified by experiments on the
INEX 2002 collection.

As described previously, queries were created using the terms from
the title and description; they were not stemmed but stop-words
were removed (See Figure 2b). The queries were expanded using
blind feedback (See Figure 2c). The parameters for the feedback
were based on experiments with the INEX 2002 collection. In our
score calculations we used the overlapping element index as a basis
for the collection language model. In our combinations of article
and element scores we did not do any normalization of scores.

3.2 Strict Content-And-Structure task
For the Strict Content-and-structure (SCAS) task the unit of re-
trieval is usually coded inside the topics. Our research question
for the CO task does therefore not carry directly over to the SCAS
task.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE inex_topic SYSTEM "topic.dtd">
<inex_topic topic_id="76" query_type="CAS" ct_no="81">
<title>//article[(./fm//yr=’2000’ OR
./fm//yr=’1999’) AND about(.,’"intelligent
transportation system"’)]//sec[about(.,
’automation +vehicle’)]</title>

<description>Automated vehicle applications
in articles from 1999 or 2000 about intelligent
transportation systems.</description>

<narrative>...</narrative>
<keywords>...</keywords>

</inex_topic>
(a) Original topic

.i 76
intelligent transportation system automation
vehicle automated vehicle applications in
articles from 1999 or 2000 about intelligent
transportation systems

(b) Full content query (TD)

.i 76a article
intelligent transportation system
.i 76b sec
automation vehicle

(c) Partial content queries(T)

//article[about(., "76a")]//sec[about(.,"76b")]

(d) Fuzzy structure (T)

//article[./fm//yr=’2000’ or ./fm//yr=’1999’]//sec

(e) Strict structure (T)

Figure 3: CAS Topic 76

The CAS topics have a considerably more complex format than the
CO topics (see Figure 3a for an example). The description part is
the same, but the title has a different format. The CAS title is writ-
ten in a language which is an extension of a subset of XPath [9].
We can view the title part of the CAS topic as a mixture of path
expressions and filters. Our aim with our SCAS runs was to try
to cast light on how these expressions and filters could be used to

assign scores to elements. All our runs treat the filters in quite a
strict fashion; the larger number the number of filters that are satis-
fied, the higher the ranking of an element. The difference between
our three runs lies in the way we decide the ranking of results that
satisfy the same number of filters.

More precisely, we consider the topic title of CAS topics to be split
into path expressions and filters as follows.

rootPath[Fr ∪Cr ∪Sr]targetPath[Fe∪Ce∪Se], (5)

whererootPath andtargetPath are path expressions andFr , Cr ,
Sr , Fe, Ce, Se are sets of filters (to be explained below). The filters
in the actual topics were connected with a boolean formula. We
ignore this formula and only look at sets of filters. We distinguish
between three types of filters.

Element filters (F) F is a set of filters that put content constraints
on the current element, as identified by preceding path ex-
pression (rootPath or targetPath). Element filters have
the formatabout(.,’whatever’)

Nested filters (C) C is a set of filters that put content constraints on
elements that are nested within the current element. Nested
filters have the formatabout(./path, ’whatever’)

Strict filters (S) S is a set of filters of the formatpath op value,
whereop is a comparison operator such as= or >=; and value
is a number or a string.

As an example, the title part of Topic 76 in Figure 3a can be broken
up into path expressions and filters such as:

rootPath = //article

Fr = {about(.,‘"intelligent transportation system"’)}
Cr = /0
Sr = {./fm//yr=‘2000’,./fm//yr=‘1999’}
targetPath = //sec

Fe = {about(.,‘automation +vehicle’)

Ce = /0
Se = /0

We calculate the retrieval scores by combining 3 base runs. The
base runs consist of anarticle run, a ranked list of articles answer-
ing the full content query (Figure 3b); an element run, a ranked
list of target elements answering the full content query (Figure 3b);
and afilter run, a ranked list of elements answering each of the par-
tial content queries (Figure 3c). More precisely the base runs were
created as follows.

Article run
We created an article run from the element index by filtering away
all elements not having the tag-name〈article〉. We used a value
λ = 0.15 for the smoothing parameter. This is the traditional pa-
rameter settings for document retrieval. We used the full content
query (Figure 3b), expanded using blind feedback. For each query
we retrieved a ranked list of 2000 most relevant articles.

Element run
We created an element run in a similar fashion as for the CO task.
Additionally, we filtered away all elements that did not have the

same tag-name as the target tag-name (the rightmost part of the
targetPath). For topics where the target was a ‘*’ we consid-
ered only elements containing at least 20 terms. We did moderate
smoothing by choosing a value of 0.5 for λ. We used the full con-
tent queries (Figure 3b), expanded using blind feedback. For each
query we retrieved an exhaustive ranked list of relevant elements.

Filter run
We created an element run in a similar fashion as for the CO task,
but using the partial content queries (Figure 3c). No blind feedback
was applied to the queries. We filtered away all elements that did
not have the same tag-name as the target tag-name of each filter.
For filters where the target was a ‘*’ we considered only elements
containing at least 20 terms. We did minor smoothing by choosing
the value 0.7 forλ. For each query we retrieved an exhaustive
ranked list of relevant elements.

For all the base runs the length prior from equation 3 is added to
the score.

From the base runs we created three runs which we submitted: one
where scores are based on the element run; another where scores
are based on the article run; and a third which uses a mixture of the
element run, article run and filter run.

UAmsI03-SCAS-ElementScore
The articles appearing in the article run were parsed and their ele-
ments that matched any of the element- or nested-filters were kept
aside as candidates for the final retrieval set. In other words, we
kept aside all elements that matched the title XPath expression,
where the about predicate returns the valuetrue for precisely the
elements that appear in the filter run. The candidate elements were
then assigned a score according to the element run. Additionally,
results that match all filters got 100 extra points. Elements that
match only the target filters got 50 extra points. The values 100
and 50 were just arbitrary numbers used to guarantee that the ele-
ments matching all the filters were ranked before the elements only
matching a strict subset of the filters. This can be viewed as a co-
ordination level matching for the filter matching.

UAmsI03-SCAS-DocumentScore
This run is almost identical to the previous run. The only difference
was that the candidate elements were assigned scores according to
the article run instead of according to the element run.

UAmsI03-SCAS-MixedScore
The articles appearing in the article run are parsed in the same way
as for the two previous cases. The candidate elements are assigned
a score which is calculated by combining the RSV scores of the
three base runs. Hence, the score of an element is a mixture of its
own score, the score of the article containing it, and the scores of
all elements that contribute to the XPath expression being matched.
More precisely, the element score was calculated using the formula

RSV(e) = α ·

(
s(r)+ ∑

f∈Fr

s(f)+ ∑
c∈Cr

maxs(c)

)

+(1−α) ·

(
s(e)+ ∑

f∈Fe

s(f)+ ∑
c∈Ce

maxs(c)

)
, (6)

whereFr , Cr , Fe andCe represent sets of elements passing the re-
spective filter mentioned in Equation 5;s(r) is the score of the ar-
ticle from the article run;s(f) ands(c) are scores from the filter

MAP p@5 p@10 p@20
λ = 0.9 0.1091 0.3308 0.2769 0.2250
λ = 0.2 0.1214 0.3231 0.2923 0.2423
λ = 0.5 0.1143 0.3462 0.2923 0.2346

Table 1: Results of the CO task

run; ands(e) is the score from the element run. In all cases we set
α = 0.5. We did not have any training data to estimate an optimal
value for this parameter. We did not apply any normalization to the
RSVs before combining them.

For all the SCAS runs, the elements are also filtered using the
strict filters (Figure 3e). Any filtering using tag-names used the tag
equivalence relations defined in the topic development guidelines.

3.3 Vague Content-And-Structure task
Since the definition of the task was a bit underspecified, we did not
have a clear idea about what this task was about. With our runs
we tried to cast light on whether this task is actually a content-only
task, a content-and-structure task or a traditional article retrieval
task.

UAmsI03-VCAS-NoStructure
This is a run that is similar to our CO runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. We only considered elements
containing at least 20 terms.

UAmsI03-VCAS-TargetFilter
This run is more similar to our SCAS runs. We chose a value
λ = 0.5 for the smoothing parameter. We used the full content
queries, expanded by blind feedback. Furthermore, we only re-
turned elements having the same tag-name as the rightmost part of
targetPath. Where the target element was not explicitly stated (*-
targets), we only considered elements containing at least 20 terms.

UAmsI03-VCAS-Article
This run is a combination of two article runs using unweighted
combSUM [7]. The two runs differ in the way that one is aimed
at recall but the other at high precision. The one that aims at recall
usedλ = 0.15 and the full content queries, expanded by blind feed-
back. The high precision run usedλ = 0.70 and as queries only the
text appearing in the filters of the topic title. The RSV values of the
runs were normalized before they were combined.

For all the VCAS runs, the length prior from equation 3 was added
to the score.

4. RESULTS
Our runs were evaluated using version 2003.004 of the evaluation
software provided by the INEX 2003 organizers. We used version
2.3 of the assessments. All runs were evaluated using the strict
quantization; i.e., an element is considered relevant if and only if it
is highly exhaustive and highly specific.

4.1 Content-Only task
Table 1 shows the results of the CO runs. Figure 4 shows the
precision-recall plots. The CO runs at INEX 2003 were evaluated
using inex eval, the standard precision-recall measure for INEX.

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

lambda=0.90
lambda=0.20
lambda=0.50

Figure 4: Precision-recall curves for our CO submissions, using
the strict evaluation measure

MAP p@5 p@10 p@20
ElementScore 0.2650 0.4273 0.3455 0.2432
DocumentScore 0.2289 0.2909 0.2636 0.2136
MixedScore 0.2815 0.4000 0.3318 0.2773

Table 2: Results of the SCAS task

Furthermore, two other measures were developed,inex eval ng(s),
a precision recall measure that takes size of retrieved components
into account; andinex eval ng(o), which considers both size and
overlap of retrieved components [1]. At the time when this report
is written, a working version of the latter two measures had not
been released. We will therefore only report on our results using
the inexeval measure.

It looks like our runs are very similar. There is not much differ-
ence in scoring and the graphs look the same. It seems that index
size cut-off reduces the effect of the smoothing parameter reported
in [4], where the absence of smoothing provided bias toward larger
elements. Here the cut-off already eliminates the smallest elements
and there is less need for extreme size bias.

According to the inexeval measure, the run usingλ = 0.2 has over
all highest MAP score. The run usingλ = 0.5 and filter out ele-
ments outside the〈bdy〉 tag, gives slightly higher precision when
5 elements were retrieved. The run usingλ = 0.2 does however
catch up quite quickly. The runs seem to be so similar that any
differences are unlikely to be statistically significant.

4.2 Strict Content-And-Structure task
Table 2 shows the results of the SCAS runs. Figure 5 shows the
precision-recall plots. The run using the combination of element-
, document- and filter-RSVs has higher MAP than the other two
runs. The run based on element scores has slightly lower MAP
than the combination run. The run based on document scores has
the lowest MAP.

The run based on element scores outperforms the other two at low
recall levels. We can see from the table that the element based run
has the highest precision after only 5 or 10 documents have been
retrieved. The combination run catches up with the element score
based run once 20 documents have been retrieved. This indicates

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

Element Score
Document Score

Mixed Score

Figure 5: Precision-recall curves for our SCAS submissions,
using the strict evaluation

MAP p@5 p@10 p@20
NoStructure 0.1270 0.2880 0.2520 0.1980
TargetFilter 0.0647 0.2880 0.2640 0.1960
Article 0.0627 0.2080 0.1800 0.1300

Table 3: Results of the VCAS task

that the coordination level matching for the filter matching, works
well for initial precision, but is not as useful at higher recall levels.

4.3 Vague Content-And-Structure task
Table 3 shows the results of the VCAS runs. Figure 6 shows the
precision-recall plots. Treating the VCAS task as a CO task, re-
sults in a higher MAP than either treating it as an SCAS task or
an article retrieval task. The main difference lies in the recall. By
limiting the set of returned elements, by considering the structure
or retrieving articles, we discard elements that have a big potential
of being relevant to the user. Hence we can never obtain maximal
recall.

Looking at the precision at low recall levels, the difference between

0

0.2

0.4

0.6

0.8

1

0 0.5 1

P
re

ci
si

on

Recall

No Structure
Target Filter

Article

Figure 6: Precision-recall curves for our VCAS submissions,
using the strict evaluation

the two element retrieval runs is not so great. If we look at precision
after 5, 10 and 20 elements have been retrieved, we see that treating
the VCAS task as an SCAS task performs comparable to treating it
as a CO task. The strict implementation of the task can even help
early precision.

5. CONCLUSIONS
This paper described our official runs for the INEX 2003 evaluation
campaign. Our main research question was to further investigate
the appropriate unit of retrieval. Although this problem is most vis-
ible for INEX’s CO task, it also plays a role in the element and filter
base runs for the CAS topics. With default adhoc retrieval settings,
small XML elements dominate the ranks of retrieved elements. We
conducted experiments with a number of approaches that aim to
retrieve XML elements similar to those receiving relevance in the
eyes of the human assessors. First, we experimented with a uni-
form length prior, ensuring the retrieval of larger sized XML ele-
ments [5]. Second, we experimented with Rocchio blind feedback,
resulting in longer expanded queries that turn out to favor larger
XML elements than the original queries. Third, we experimented
with size cut-off, only indexing the element that contain at least 20
words. Fourth, we experimented with an element filter, ignoring
elements occurring in the front and back matter of articles. Fifth,
we experimented with smoothing settings, where the increase of
the term importance weight leads to the retrieval of larger elements
[4]. Finally, we combined approaches in various ways to obtain the
official run submission. We plan to give an overview of the relative
impact of these approaches in the final proceedings of INEX.

Our future research focuses on the question of what is the appro-
priate statistical model for XML retrieval. In principle, we could
estimate language models from the statistics of the article index
similar to standard document retrieval. An alternative is to estimate
them from the statistics of the element index, or from a particu-
lar subset of the full element index. In particular, we smooth our
element language model with collection statistics from the over-
lapping element index. Arguably, this may introduce biases in the
word frequency and document frequency statistics. Each term ap-
pearing in an article usually creates several entries in the index. The
overall collection statistics from the index may not best estimator
for the language models. In our current research we investigate the
various statistics from which the language models can be estimated.

6. REFERENCES
[1] N. Gövert, G. Kazai, N. Fuhr, and M. Lalmas. Evaluating the

effectiveness of content-oriented XML retrieval. Technical
report, University of Dortmund, Computer Science 6, 2003.

[2] D. Hiemstra.Using Language Models for Information
Retrieval. PhD thesis, University of Twente, 2001.

[3] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. The
Importance of Morphological Normalization for XML
Retrieval. In N. Fuhr, N. G̈overt, G. Kazai, and M. Lalmas,
editors,Proceedings of the First Workshop of the Initiaitve
for the Evaluation of XML Retrieval (INEX), pages 41–48.
ERCIM Publications, 2003.

[4] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson.
Topic Field Selection and Smoothing for XML Retrieval. In
A. P. de Vries, editor,Proceedings of the 4th Dutch-Belgian
Information Retrieval Workshop, pages 69–75. Institute for
Logic, Language and Computation, 2003.

[5] J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson.
XML Retrieval: What to Retrieve? In C. Clarke,
G. Cormack, J. Callan, D. Hawking, and A. Smeaton,
editors,Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
informaion retrieval, pages 409–410. ACM Press, 2003.

[6] J. Rocchio. Relevance feedback in information retrieval. In
G. Salton, editor,The SMART Retrieval System —
Experiments in Automatic Document Processing. Prentice
Hall, 1971.

[7] Joseph A. Shaw and Edward A. Fox. Combination of
multiple searches. In D.K. Harman, editor,Proceedings
TREC-2, pages 243–249. NIST, 1994.

[8] Snowball. The snowball string processing language, 2003.
http://snowball.tartarus.org/.

[9] XPath. Xml path language, 1999.
http://www.w3.org/TR/xpath.

[10] C. Zhai and J. Lafferty. A study of smoothing methods for
language models applied to ad hoc information retrieval. In
Proceedings of the 24th annual international ACM SIGIR
conference on Research and development in information
retrieval, pages 334–342. ACM Press, 2001.

http://snowball.tartarus.org/
http://www.w3.org/TR/xpath

	1 Introduction
	2 Experimental setup
	2.1 Index
	2.2 Query processing
	2.3 Retrieval model

	3 Runs
	3.1 Content-Only task
	3.2 Strict Content-And-Structure task
	3.3 Vague Content-And-Structure task

	4 Results
	4.1 Content-Only task
	4.2 Strict Content-And-Structure task
	4.3 Vague Content-And-Structure task

	5 Conclusions
	6 REFERENCES

