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Abstract
Click models are a well-established for modeling user interac-
tions with web interfaces. Previous work has mainly focused
on traditional single-list web search settings; this includes ex-
isting surveys that introduced categorizations based on the
first generation of probabilistic graphical model (PGM) click
models that have become standard. However, these categoriza-
tions have become outdated, as their conceptualizations are
unable to meaningfully compare PGM with neural network
(NN) click models nor generalize to newer interfaces, such as
carousel interfaces. We argue that this outdated view fails to
adequately explain the fundamentals of click model designs,
thus hindering the development of novel click models.

This work reconsiders what should be the fundamental con-
cepts in click model design, grounding them - unlike previous
approaches - in their mathematical properties. We propose
three fundamental key-design choices that explain what sta-
tistical patterns a click model can capture, and thus indirectly,
what user behaviors they can capture. Based on these choices,
we create a novel click model taxonomy that allows a mean-
ingful comparison of all existing click models; this is the first
taxonomy of single-list, grid and carousel click models that
includes PGMs and NNs. Finally, we show how our conceptual-
ization provides a foundation for future click model design by
an example derivation of a novel design for carousel interfaces.

CCS Concepts
• Human-centered computing → User models; • Infor-
mation systems→ Search interfaces.
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1 Introduction
Click models. Click models are probabilistic frameworks
that are used to interpret user interactions, helping to infer
relevance signals from real clicks [2, 7, 10, 13, 22, 33, 46, 47].
During the past decade, numerous click models have been de-
veloped, primarily using probabilistic graphical models (PGMs)
[7, 11, 13, 18, 39, 44, 53] or neural networks (NNs) [5, 6]. How-
ever, like most research in information retrieval, previous stud-
ies on click models have mostly focused on traditional web
search with single-list layouts, implicitly assuming user inter-
actions are limited to a single list and ignoring the context and
more complex layout of the system the user is currently using.
Carousel interfaces. In recent years, with the rise of mod-
ern streaming media services such as Netflix and Spotify, the
way recommendations are presented has changed significantly
[3, 16, 49]. Recommendations are no longer only presented as
single vertical lists, but instead multiple horizontally scrollable
(also known as swipeable) lists are simultaneously displayed
to the user in a vertical arrangement , e.g., as shown in Fig-
ure 1 . In these so-called carousel interfaces [14, 32, 36], each
list has a title (or topic) that represents its content, such as a
specific type of movie or music, or a personalized category
like Made for You or Recently Played. Carousel interfaces have
become increasingly popular for several reasons, in particular,
their ability to support diverse user needs by presenting mul-
tiple collections of recommendations. The few existing user
studies into carousel interfaces have shown that carousels
may increase perceived diversity and novelty of items when
compared to single lists and grids [20, 41, 42] and choice satis-
faction [41]. Furthermore, simulation experiments have shown
that carousels are more efficient than ranked lists when scan-
ning for items [37].
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Grid interfaces. Another search and recommendation inter-
face that is different from the traditional single-list interface is
the grid interface, where items are displayed along the columns
and rows of a grid layout [23, 24, 59]. The salient difference
with carousel interfaces is that the rows in grid interfaces are
not grouped or titled. Accordingly, grid interfaces are most
commonly used to display sets of items without further group-
ing, e.g., images in image-search or videos in social media
video-recommendation.
Challenges. The main existing survey on click models by
Chuklin et al. [10] presents a conceptual framework for click
models based on PGMs, where different click model cate-
gories rely on distinct assumptions about user behaviors by
pre-defining latent variables and hand-crafted dependencies.
However, this framework cannot naturally adapt to NN-based
click models, which use multi-layered NNs to model user be-
havior instead of hand-crafted graphical network structures.
As a result, NN click models do not have a place in the frame-
work of Chuklin et al. [10], later work that categorizes both
PGM and NN click models place them in completely separate
taxonomies [28]. However, there are many similarities and
differences between PGM and NN click models that go beyond
the machine learning techniques they apply, but it appears that
the field currently lacks a conceptualization of click models
that enables such comparisons.

The lack of adaptability of the current conceptualization
becomes even more apparent in the context of carousel inter-
faces, where user behavior differs significantly from traditional
single-list interfaces. Despite the many advantages of carousel
interfaces, understanding user behavior on carousel interfaces
remains a difficult challenge. The presence of multiple lists
(a.k.a. carousels) along with the ability to swipe to see more
greatly increases the number of possible browsing actions.
Users can switch between horizontal exploration (within a
carousel) and vertical exploration (between carousels), which
may be heavily influenced by topic preferences. Additionally,
the visual content presented by the carousel interface is much
richer than the ten blue links of traditional web search, further
encouraging users to explore. However, this increase in pre-
sented information, along with the greater number of possible
interactions with carousel interfaces, makes it much more diffi-
cult to model the decision-making process of the user. Despite
a recent attempt to propose a carousel click model [37], there
is no precedent for systematic carousel click model design,
and the design possibilities seem innumerable.

In response, our goal in this paper is to re-establish a theo-
retical foundation and conceptualization for click models that
properly captures both PGM and NN click models for single-
list, grid and carousel interfaces. Our work is guided by the
following three research questions:

• What mathematical concepts and properties should be used as
the fundamental basis of the categorization of click models?

• What taxonomy does our theory-based approach produce for
single-list, grid and carousel click models?

Figure 1: Example of media recommendations by Netflix
presented in a carousel interface.

• How can our new approach to categorization guide future
carousel click model design?

Contributions.We make the following contributions:

A novel position that argues the categorization of click models
should mainly concern the relations between observed variables.
When categorizing click models, we propose that the primary
focus should be on observed variables that influence clicks,
rather than rely on assumptions about user behaviors or latent
variables. This contrasts with the existing categorization of
clickmodels [10], where PGMs are characterized by their latent
variables and the specific user behavior they aim to model. See
Section 4 for more details.

An identification of three key design choices regarding their
mathematical properties. We find that the design of any click
model requires decisions on three key design choices, explic-
itly or implicitly: global dependencies, sequentiality and
factorization. Following the above principle, we argue that
click model designs should use these choices as their starting
point. See Section 5 for more details.

A generalized taxonomy of click models. Finally, following
three key design choices, we propose a taxonomy that cate-
gorizes any - existing or future - single-list, grid or carousel
interface click models into non-overlapping categories. Be-
cause our taxonomy relies solely on the relations between
observed variables, and makes no further assumptions about
user behavior and latent variables, it is guaranteed to be appli-
cable to any click model, i.e., any PGM or NN-based model, or
any other future model. See Section 6 for more details.

An example of carousel click model design. Building on the
taxonomy proposed above, we then introduce a specific carousel
click model following three design choices to serve as a start-
ing point for further research in this area.

We believe that these contributions build a theoretical foun-
dation for the conceptualization, categorization and design of
click models and inspire future research in the underexplored
field of designing click models for carousel interfaces.

2 Related Work
2.1 Click models for single-list layouts
Click models have been extensively studied in single-list web
search, where search results are displayed in a top-to-bottom



Theory-Based Categorization and Design of Click Models ICTIR ’25, July 18, 2025, Padua, Italy

format. These models serve a dual purpose: estimating doc-
ument relevance from real click data via counterfactual esti-
mation [2, 22, 33, 46, 47] or maximum likelihood estimation
[7, 10, 13], and predicting click probabilities to further sim-
ulate user clicks on search engine results page (SERP) [10].
Traditional click models primarily rely on the PGM framework,
which assumes various hypotheses about user behavior over
unobserved latent variables (such as examination and satisfac-
tion) and requires manual setting of the dependencies among
these variables. Based on this framework, somemodels assume
a sequential examination hypothesis in which users examine
results from top to bottom; prominent models that rely on this
assumption include the cascade model (CM) [11], user brows-
ing model (UBM) [13], dependent click model (DCM) [18], and
dynamic bayesian network model (DBN) [7]. Some models
avoid this assumption to account for non-sequential exam-
ination hypothesis, such as revisiting previously examined
results. Examples include the temporal hidden click model
(THCM) [53] and partially sequential click model (PSCM) [44].

Although PGMs are the most prominent basis for existing
click models, with recent advances in deep learning [25], NN-
based click models have also emerged. Unlike PGM-based
methods that apply hand-crafted models, these neural ap-
proaches learn variable dependencies from data, representing
behavior by a sequence of non-linear transformations. Ex-
amples include the neural click model (NCM) [5] and click
sequence model (CSM) [6], both of which aim to reduce the
need for explicit assumptions about user examination patterns.

Liu et al. [28] propose a taxonomy of PGM-based click
models that categorizes them based on assumptions about
user examination. They divide (web search) click models into
position-based models that assume that users examine the SERP
sequentially from top to bottom and temporal click models that
consider actual click orders observed in user interactions, and
thus allow for non-sequential behaviors such as revisiting.
Additionally, Liu et al. introduce a separate taxonomy for NN
click models, thereby implicitly indicating that conceptually
PGM and NN click models should not be compared directly.

2.2 Click models beyond single-list layouts
Compared to the single-list layout that is common in web
search, research has paid considerably less attention to car-
ousels or grid layouts. Nevertheless, carousel interfaces have
become the de facto standard for modern streaming services
[3, 16, 31, 49]. Carousel layouts have multiple lists, each with
a topic or theme displayed as a header that defines and groups
the items in that carousel/list [14, 32, 36]. Although grid lay-
outs also distribute items horizontally and vertically, they
do not group items into multiple lists, but just a single col-
lection, and thus do not present clusters of items or item
themes [23, 24, 59]. Moreover, carousel interfaces allow for
horizontal scrolling of each list (swiping) while grids do not.

There is very little research on carousel interfaces [3, 15,
31, 32], especially related to click models. To the best of our

knowledge, there are only two published papers on interac-
tion/click models for carousel interfaces: Rahdari et al. [38]
assume that users keep browsing topics until they find the
desired one, and then browse only the items within that topic
until they find the desired item. Based on this assumption,
they propose the carousel click model (CCM) [37], which can
be seen as a variant of the cascade model in which users may
leave unsatisfied if they do not find an attractive topic or item.
Compared with the wide variety of click models for web search
interfaces [10], the proposed carousel click model appears sim-
plistic [37], despite the fact that carousel interfaces allow for
more complex user behavior. Thus, click modeling for carousel
interfaces remains a barely explored open research area.

Click models for grid layouts have received more atten-
tion [9, 19, 50–52, 59, 63]. Xie et al. [51] study the user ex-
amination behavior in grid-based image search and found a
middle position bias instead of the traditional “F-shaped” pat-
tern. Based on this finding, the grid-based user browsingmodel
(GUBM) was proposed as an interactive behavior model for
web image search [52]. Zhuang et al. [63] use neural networks
to build a click model that avoids restrictive assumptions about
the user interface or user behavior; and thereby, it is able to
capture a variety of user behavior patterns in grid layouts.

3 Preliminaries
In this section we introduce our notation and define key con-
cepts that are used in the remainder of this paper.

Carousel interfaces display items in multiple horizontal
lists; each has a title that represents their theme or topic. We
use the tuple𝑇 to represent the topics of the𝑀 displayed lists;
for brevity, we also refer to themes as topics:

𝑇 = (𝑇1,𝑇2, . . . ,𝑇𝑀 ). (1)

Thus, 𝑇1 refers to the topic of the first displayed list.
For ease of notation, we assume that every list consists of

𝑁 items. To denote the displayed items and their locations, we
use the tuple 𝑌 with two indices per item:

𝑌 = (𝑌1,1, 𝑌1,2, . . . 𝑌1,𝑁 , 𝑌2,1, 𝑌2,2, . . . , 𝑌𝑀,𝑁 ) . (2)

Equivalently, 𝑌 can be treated as an𝑀 × 𝑁 matrix containing
item-ids. In either case, 𝑌𝑖, 𝑗 indicates the 𝑗-th item in the 𝑖-
th list (corresponding to topic 𝑇𝑖 ). Furthermore, clicks are
denoted in a similar manner to match the position of their
corresponding items:

𝐶 = (𝐶1,1,𝐶1,2, . . .𝐶1,𝑁 ,𝐶2,1,𝐶2,2, . . . ,𝐶𝑀,𝑁 ) . (3)

Thus, 𝐶𝑖, 𝑗 = 1 indicates a click on item 𝑌𝑖, 𝑗 displayed under
topic 𝑇𝑖 . For many of our equations, we need to denote a
dependency between all variables in 𝐶 except a single click
variable 𝐶𝑖, 𝑗 . To keep our notation brief, we introduce the
following variable for this purpose:

𝐶′ = 𝐶 \𝐶𝑖, 𝑗 , (4)

where 𝑖 and 𝑗 should be clear from the surrounding context.
Finally, our discussion also needs notation to discuss single-

list and grid interfaces. For simplicity and brevity, our notation
treats single-list interfaces as carousel interfaces with a single
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list and the first indices and topic are ignored. In other words,
if 𝑌 represents a single list of 𝑁 items then 𝑌𝑖 is the 𝑖-th item
in the list, the same goes for clicks 𝐶 . Similarly, we treat grid
interfaces as carousel interfaces by ignoring topic variables.

We note that scrolling actions of users (vertical or horizon-
tal) can be logged in some applications, and thus, could also
be used by click models. However, as these actions are not
ubiquitously recorded and traditionally not included in click
models, we leave their inclusion for future work.

4 Click Model Taxonomies Should Firstly
Concern Models, Not Behaviors

The main goal of this work is to reconsider what mathematical
properties should be the fundamental concepts in click model
design. More specifically, we aim to provide an overview of
all possible click model designs, by providing a taxonomy for
the categorization of click models. In order for this taxonomy
to be relevant and applicable to the click models of past and
future work, we have three principle desiderata:
• Comprehensiveness: The taxonomy should be comprehen-
sive such that it is applicable to all possible click models.

• Exclusivity: The taxonomy should be exclusive such that
each click model falls into a single category without overlaps.

• Stability: The taxonomy should be stable such that it avoids
future structural changes as new click models emerge.

As a result, we arrive at the following position:
Click model taxonomies should primarily categorize based on
the modeled relationships between observed variables; assumed
user behavior or latent variables should not be a main concern.

We believe our position constitutes a new perspective in click
model categorization, as existing work has taken the opposite
approach: i.e., PGM click models have been categorized based
on their underlying assumed user behaviors [10, 28]; and gen-
erally, NN click models have been characterized by their net-
work structure, which are their latent variables [5, 8, 28, 40, 63].

To be clear, we are not arguing that user behavior assump-
tions or latent variables are of no importance. Instead, we
argue that a future-proof taxonomy of click models should
first-and-foremost be based on how they model the relation-
ships between observed variables. Our position equally ap-
plies to all single-list, grid and carousel click models. The
remainder of this section builds the case for our position by
showing that it follows as a reasonable conclusion from our
three desiderata.

4.1 The case against user behavior
assumptions as a taxonomy basis

The earliest click models were designed as PGMs (or can be
reformulated as such). As a result, their designs were empirical
and thoughtfully hand-crafted [10]. The introduction of new
models was often inspired by the inability of previous models
to capture certain user behaviors. Consequently, most PGM
click models are designed for specific user behavior and are
categorized accordingly in previous work [10, 28]. This trend

has changed with the introduction of NN-based click models,
since NNs require little handcrafting, as their expressiveness
enables them to capture almost any arbitrary user behavior.

We argue that using user behavior assumptions as the basis
of our taxonomy goes against all three of our desiderata.

The issue with comprehensiveness is that there appears to
be an endless number of possible assumptions one can make
about user behavior, since one can conceptualize countless
behaviors. For instance, examination can modeled by one bi-
nary variable, but one could also distinguish between careful
(read) and skim examinations [29] through two binary vari-
ables, or two probability variables, etc. It appears impossible
for a taxonomy to account for all possible assumptions, yet,
to be comprehensive, it should know how to categorize them
all. Therefore, user behavior assumptions seem infeasible as a
basis for a comprehensive taxonomy.

The problem with exclusivity and stability is more complex.
Our argument is based on the fact that different user behav-
iors can result in mathematically-equivalent click models. To
illustrate this, we consider two example of user behaviors.
First is the well-known position-based model (PBM) [39] that
factorizes a click probability as a product of an examination
and relevance probabilities:

𝑃 (click | position, item)
= 𝑃 (examination | position) × 𝑃 (relevance | item) . (5)

Second is a click model based on trust bias [21] where all
items are examined equally. Decisions to click are based on
how relevant items are perceived to be, with an additional
trust factor determined by where an item is ranked, i.e., the
user trusts the system and thus highly ranked items are more
likely to be clicked:

𝑃 (click | position, item)
= 𝑃 (trust | position) × 𝑃 (perceived relevance | item). (6)

In terms of user behavior, there is an enormous difference:
(5) captures variability in examination, (6) does not, and (6)
instead differentiates trust and perceived relevance. Thus, if
user behavior assumptions were the basis for categorization,
it is unlikely that these models would belong to the same
category. However, in mathematical terms, these models are
equivalent: both describe a product of a position-factor with
an item-factor. Thus, for modeling click probabilities, these
models can be used interchangeably. With a taxonomy based
on user behavior assumptions, this contrast poses a problem
for exclusivity as mathematically equivalent models could be
categorized differently. Additionally, it also poses a stability
problem: when equivalent models can be proposed that as-
sume substantially different behaviors, new categories become
necessary. As a result, these taxonomies may require continual
expansion rather than remain stable.

Finally, we note that it is not our goal to create a categoriza-
tion of user behavior, but to create a taxonomy of click models.
Whilst there is value in both, these are different aims with
different purposes and should be treated accordingly. Hence,
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we conclude that user behavior assumptions should not form
the fundamental basis of the categorization of click models.

4.2 The case against using latent variables
in click model taxonomies

Apart from trivial baselines, all PGM-based click models use
latent variables. Based on this common usage, previous cate-
gorizations of PGM click models have assumed the presence
of certain latent variables; in particular variables representing
examination, attractiveness, and user satisfaction [10, 28].

We argue that one should avoid using latent variables in
click model taxonomies, in order to meet our three desiderata.

First of all, we point out that latent variables come with im-
plicit assumptions about user behavior. For instance, treating
examination, attractiveness or satisfaction as binary variables
assumes that they are discrete events that cannot be nuanced
beyond one-dimensional probabilities. Although the actual
concepts behind these variables are complex, multifaceted, and
equivocal [10, 29], in order to be useful, models have to sim-
plify the concepts they represent, we argue that a future-proof
taxonomy should not prescribe such conceptualizations. More-
over, this also raises the problems that assumptions about user
behavior pose for our desiderata as discussed in Section 4.1.

Furthermore, it is unclear howNN-based clickmodels should
be treated in categorizations based on latent variables. Whilst
hybrid click models exist that combine PGM and NNs [47]1
and other NN click models have a connection to PGM counter-
parts [63], many NN click models are not intended to model
latent variables that represent user behavior [5, 8, 40]. Techni-
cally speaking, the hidden layers of the NNs could be consid-
ered latent variables. However, we argue that categorizations
using latent variables cannot capture many important similari-
ties between NNs and PGMs, and instead, that categorizations
should use aspects that naturally apply to both model types.

4.3 The case for the relationships between
observed variables as a taxonomy basis

To avoid the aforementioned limitations, we propose that
click model taxonomies should firstly be based the mathe-
matical relations between clicks and the other observable vari-
ables. In our setting, the observed variables are the clicks 𝐶 ,
the displayed items 𝑌 and topics 𝑇 , in other settings, there
may be additional observed variables. The mathematical re-
lations between the observed variables are captured by how
the conditional distribution 𝑃 (𝐶 | 𝑌,𝑇 ) is modeled, for in-
stance, whether some variables are independent (e.g., 𝑖 ≠

𝑗 → 𝑃 (𝐶𝑖 ) ⊥⊥ 𝑃 (𝐶 𝑗 )) or correlated in a certain way (e.g.,
(𝐶𝑖 = 1 ∧ 𝑗 > 𝑖) → 𝑃 (𝐶 𝑗 ) = 0). We argue that a taxonomy
based on the mathematical relations between observed vari-
ables satisfies all three of our desiderata, whereas previous
categorizations do not (as laid out in Section 4.1 and 4.2).

Considering comprehensiveness, a taxonomy based on the re-
lations between observed variables can encompass all possible
1Wang et al. [47] combine PGM and Gradient Boosted Decision Trees (GDBT); a
PGM and NNs version of this click model is provided by Pasumarthi et al. [34].

models. Firstly, consider that every click model must define
a relationship with all observed variables, either implicitly
or explicitly; models that ignore certain observed variables
are actually implicitly modeling an independent relationship
between these variables and clicks (e.g., in the random click
model (RCM) [10] 𝐶𝑖 ⊥⊥ (𝐶′, 𝑌 ,𝑇 )). Therefore, the categoriza-
tion criteria of such taxonomies can be applied to any existing
or future click model. Secondly, these criteria are agnostic
to the inner workings of models and thus apply to any type
of model, i.e., PGM, NN, GDBT, or any potential new types.
Accordingly, we argue that taxonomies should first categorize
on what relations between observed variables a click model
can capture, not on the technical details of how the models
function (cf. the Markov blanket of Pearl [35]).

Another key advantage of this approach is it can easily
guarantee exclusivity between mathematically equivalent click
models. This is the case because criteria regarding mathemati-
cal relationships between observed variables can guarantee
non-overlapping categories with ease, i.e., categories based on
whether a model meets a logical criteria or not. This is in heavy
contrast with categories based on latent variables or assump-
tions about user behaviors, and avoids the situations laid out
in Section 4.1. Therefore, since it is straightforward to choose
non-overlapping categorization criteria in this approach, it
can easily guarantee exclusivity in click model taxonomies.

Finally, we argue that our approach also results in great sta-
bility for resulting taxonomies. We build on the arguments laid
out in the previous paragraphs. Firstly, because our approach
is agnostic to the inner structure of the models, it does not
have to change when a new type of model is introduced. For in-
stance, if a future novel click model is based on a hypothetical
successor to the NN, it can still be categorized by the tax-
onomies of our approach. Secondly, similarly, the introduction
of new observed variables would only require an expansion of
a taxonomy, not a change in structure of the existing part. As
stated before, models that ignore a certain variable are actually
implicitly assuming that clicks are conditionally independent
of that variable; thus, for any new variable 𝑍 introduced, all
existing models assume 𝑃 (𝐶 | 𝑇,𝑌,𝐶′, 𝑍 ) = 𝑃 (𝐶 | 𝑇,𝑌,𝐶′).
One could make a split in the taxonomy between models that
assume independence with the new variable and those that do
not, the existing taxonomy would then fall under the first part
of the split. In fact, this is what our taxonomy does with the
topic variable𝑇 ; if one removes the Topic-Dependent sub-graph,
the remainder of the taxonomy still functions as a standalone
taxonomy of click models for single-list and grid interfaces
(see Section 6 and Figure 2). Therefore, because the introduc-
tion of new model types or new observed variables would not
require an overhaul of an existing taxonomy, we argue that
our approach has stability by providing a taxonomy that one
can expect to remain consistent over time.

In conclusion, we propose that click model taxonomies
should be based firstly on how they model the relationships
between clicks and the other observed variables. This approach
returns to the essence of click modeling, that is, modeling pre-
vious clicks to predict future click probabilities, rather than
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trying to propose a new model for every potential user behav-
ior. Finally, to be clear, we are not arguing that other proper-
ties of click models do not matter, e.g., latent variables can
be important for explainability [10, 11] or propensity estima-
tion [22, 33], and NN-based click models often provide better
predictive performance [5, 6]. However, our position is that
the mathematical relationships between observed variables
should be the first consideration when categorizing, designing
or comparing click models, the consideration of other proper-
ties should be secondary.

5 Three Key Design Choices of Click Models
Traditional click models designs are generally motivated by
specific user behavior to be captured [10], which thus serves
as a starting point for the design process.

In contrast, and in line with our position, we argue that
the relationships between observed variables should be the
first consideration for click model design. More specifically,
we pose that three key design choices must be answered, and
that these will define how observed variables interact with
and influence click events. In order, these three decisions are:
(1) Global dependencies: On what collections of observed

variables are click probabilities conditioned?
(2) Sequentiality: On what subsequences of these collections

are individual click probabilities conditioned?
(3) Factorization: How is the influence of the conditional vari-

ables on individual click probabilities modeled?
Together, these decisions determine how a click model esti-
mates click probabilities conditioned on the observable infor-
mation. Generally, they make a trade-off between the expres-
siveness of the model, i.e., how many patterns it can model,
and its complexity, i.e., the number of parameters and prone-
ness to overfitting of the model. The remainder of this section
details each decision and describes potential options for each.

5.1 Global dependencies
The first decision to make is to select which collections of ob-
servable variables could have a direct influence on click events.
In the case of carousel interfaces, the possible variable tuples
are the topics𝑇 , the items 𝑌 and the other clicks𝐶′ (excluding
self-dependencies). In one extreme case, clicks are indepen-
dent from all variables: 𝑃 (𝐶 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶), or for example,
one can choose to model clicks as independent of each other:
𝑃 (𝐶 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶 | 𝑇,𝑌 ). Therefore, the options for this
choice are any subset of the tuples of observable variables;
formally, in our setting, one must choose a set 𝑋 ⊆ {𝑇,𝑌,𝐶′}
which results in the click model assumption:

𝑃 (𝐶 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶 | 𝑋 ) . (7)

We note that every click model must assume an answer to this
decision, implicitly or explicitly.

5.2 Sequentiality
Global dependencies describe relations between the collections
or tuples of variables𝑇 ,𝑌 and𝐶 . However, these dependencies

may be too broad, that is, one may not want to model every
item in 𝑌 to influence every click in 𝐶 . Instead, many existing
click models only model a dependency between parts of the
tuples, which decreases their complexity.

Accordingly, the second decision is to decide on which
parts of the tuples individual click probabilities should be
conditioned. Naturally, variables excluded by the previous
decision about global dependencies can not be chosen for this
subsequent decision. For example, one can decide that click
probabilities should only be conditioned by aspects of the
clicked item themselves:

𝑃 (𝐶𝑖, 𝑗 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 | 𝑇𝑖 , 𝑌𝑖, 𝑗 ), (8)

or alternatively, in a single-list setting, on all preceding items
and clicks, plus the item itself:

𝑃 (𝐶𝑖 | 𝑌,𝐶′) = 𝑃 (𝐶𝑖 | 𝑌1:𝑖 ,𝐶′
1:𝑖−1). (9)

In order to produce a mathematically valid model from
which predictions can be computed, one should avoid cyclical
dependencies. For example, if in a single-list setting one states
that clicks depend on the preceding click:

𝑖 > 1 → 𝑃 (𝐶𝑖 | 𝑌,𝐶′) = 𝑃 (𝐶𝑖 | 𝐶′
𝑖−1), (10)

but also states that the first click depends on the last click:

𝑃 (𝐶1 | 𝐶′
𝑁 ), (11)

then a cyclical dependency is created where a predicted click
probability indirectly depends on the click itself. One should
avoid such decisions as they can make the computability of
model predictions intractable. Hence, we argue that one should
choose a sequence of (groups of) items that describe a chain
of conditionals in the form of a directed acyclic graph [4].

Importantly, this decision is about the dependencies be-
tween observed variables, it is not (directly) about assuming a
sequence by which a user examines items. Nevertheless, there
is a possible correspondence or correlation between the two,
for instance, if click probabilities are conditioned on preceding
items that may be because one assumes that a user may exam-
ine these items first. But it does not have to be the case that
the conditionals describe which items a users considers when
deciding to click, there may be other reasons that lead to an
observable dependency. Again, our first consideration is the
modeled relations between variables, not what user behaviors
they attempt to describe.

5.3 Factorization
The previous decisions have determined what variables are
used as conditionals for click probabilities in our model, the
final question is how to transform the variable values into a
click probability. In other words, how is the relationship be-
tween a click probability and its conditional variables modeled.
In line with our position, we argue that this decision should be
made without considering latent variables or what modeling
technique is used as a basis (i.e., PGM or NN). Instead, we pro-
pose that the model should be described in terms of functions
on the observed variables and simplified as much as possible.
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This can reveal mathematical equivalence between models
and precisely describe the patterns that they can capture.

For example, the models described in (5) and (6) provide
very different narratives to how clicks come to be, and assume
different latent variables in the click process. Yet, if we were
to describe these models as mathematical functions according
to our factorization decision approach, they reveal the same
product of a position factor and an item factor:

𝑃 (click | position, item) = 𝑓 (position) × 𝑔(item) . (12)

Thereby revealing that they model the same mathematical
relations between clicks and observed variables, and thus, that
they have identical expressiveness.

By considering factorization, we can not only compare mod-
els that use different latent variables or describe different user
behaviors, it also enables us to compare different model types.
For example, the traditional PGM-based PBM [39] and the later
Regression-EM PBM [47] can be factorized in identically, but
whilst the former is purely a PGM, the latter uses regression
by a GDBT to estimate the item factor.

Some NN-based click models are explicitly designed around
factorization in order to disentangle the effect of presentation
biases from user preferences. For instance, two-tower models
explicitly process information about other items and their
positions separately from features of the item itself up until
the final step of the model [55, 58, 63].

Thus with the final decision of factorization, we argue that
the most salient mathematical properties of a click model
are described, to allow for click model categorization and
comparison. The following sections discusses how these three
decisions can be used to create a taxonomy of existing and
future click models and help design new click models.

6 Theory-Based Taxonomy of Click Models
In this section, building on our three key design choices, we
create a taxonomy for single-list, grid, and carousel click mod-
els, grounded in how they model the relationships between
clicks and the other observed variables. Our taxonomy first
categorizes click models based on their decisions on global
dependencies, i.e., on which subset of variable tuples the click
probability conditioned. There are eight possible subsets of ob-
served variable tuples which can be chosen as the conditionals
of click probabilities:

{∅, {𝑇 }, {𝑌 }, {𝐶′}, {𝑇,𝑌 }, {𝑇,𝐶′}, {𝑌,𝐶′}, {𝑇,𝑌,𝐶′}}. (13)

We note that for the single-list and grid interfaces, it does not
make sense to choice sets with the topic𝑇 tuple since these are
not present in those interfaces, leaving four choices of subsets.

Thus, the first design choice results in eight categories,
Figure 2 provides an overview, we briefly describe each here:
• Random. The click probability is constant, independent
of the displayed items, clicks on other items, or the topic.
Applicable to all interfaces.

• Clicks-Only. Click probabilities are conditioned on other
clicks, but not on what items or topics are displayed. Appli-
cable to all interfaces.

• Items-Only. These models capture the effect of the dis-
played items on clicks, e.g., they can model item relevance
or popularity, but ignore topics and assume no dependency
between clicks. Applicable to all interfaces.

• Items-Clicks. Click probabilities are conditioned on dis-
played items and other clicks, but not on topics. These mod-
els can capture item relevance or popularity and cannibal-
ization effects between clicks. Applicable to all interfaces.

• Topics-Only.Modeled click behavior is determined solely
by the displayed topics, ignoring influences from items or
other clicks. This assumes only a carousel’s topic matters for
interactions with it. Only relevant for carousel interfaces.

• Topics-Clicks. These models condition both on the dis-
played topics and other clicks, but not on displayed items.
Thus, they assume clicks occur in interdependent patterns
that depend on topics. Only relevant for carousel interfaces.

• Topics-Items. Click probabilities are conditioned on both
displayed topics and items, but not on other clicks. These
models capture dependencies with topics and items but
assume independence between clicks (once conditioned on
topics and items). Relevant only for carousel interfaces.

• Fully Dependent. These models condition on all three
variable tuples: displayed topics, displayed items, and clicks
on other items. Thereby, this category contains the most
expressive click models but also the ones with the most
complexity. Relevant only for carousel interfaces.

This concludes our description of the categories that follow
from the first design choice concerning global dependencies.
We further categorize click models based on the other two de-
cisions regarding sequentiality, and factorization. However,
as the total number of possible choices for these decisions is
unclear or impractical to enumerate, we do not discuss every
possible combination of choices for all three decisions. Instead,
we provide a categorization of the most prominent existing
click models in Table 1, where we display the choices each
model makes for the design decisions (explicitly or implicitly)
and group models based on these choices.

To the best of our knowledge, this is the first taxonomy
of single-list, grid and carousel click models that includes
PGMs, NNs and GDBTs. Thereby, we provide the first mean-
ingful comparison of existing click models across types and
interfaces, and a framework for comparison with future click
models through a structured theory-based categorization con-
cerning their salient mathematical properties. Additionally,
we hope that our approach lays the groundwork for the future
development of more click models for carousel interfaces.

7 Designing a Carousel Click Model
In this section, we illustrate how to design a carousel click
model using our three key design choices.
Global dependencies. Following the principle of global de-
pendencies, we plan to develop a model that falls under the
category Topic-Items, where a click event is influenced by the
displayed topics and items, but not by other clicks. This gives
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Click Model

Contextual Random

Topic-Dependent Topic-Agnostic

Clicks-OnlyItem-Dependent

Topic-Inclusive Topics-Only

Topics-ClicksTopic-Item-Inclusive

Fully Dependent Topics–Items Items-Clicks Items-Only

Dependencies with observed variables.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1)

No dependencies with any observed variables.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1)

Dependencies with displayed topics.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′)

No dependencies with displayed topics.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′)

No dependencies with displayed items.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝐶′)

Dependencies with displayed items.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝐶′)

Dependencies not only with displayed topics.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇 )

Dependencies only with displayed topics.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇 )

No dependencies with displayed items.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝐶′)

Dependencies with displayed items.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝐶′)

Dependencies with other clicks.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌 )

No dependencies with other clicks.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌 )

Dependencies with other clicks.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′) ≠ 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌 )

No dependencies with other clicks.
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌 )

Random Items-Only Clicks-Only Items-Clicks

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

Topics-Only Topics-Clicks Topics–Items Fully Dependent

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

𝐶𝑖, 𝑗

𝑇
𝑌

𝐶′

Figure 2: Overview of part of our proposed click model taxonomy based on the global dependencies decision. We
further categorize based on sequentiality and factorization; not displayed here to keep the overview brief and simple.

us the general conditional probability:

𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌 ) . (14)

Sequentiality. Furthermore, we assume that a click within the
𝑖-th carousel depends on the preceding and current topics 𝑇1:𝑖
and the preceding displayed items for the same topic 𝑌𝑖,1:𝑗−1
and the item itself 𝑌𝑖, 𝑗 :

𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌 ) = 𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇1:𝑖 , 𝑌𝑖,1:𝑗 ). (15)

Factorization. Finally, we apply factorization to decompose
the overall click probability into several components. One
possible factorization is given by:

𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇1:𝑖 , 𝑌𝑖,1:𝑗 ) = 𝑓 (𝑇1:𝑖 ) · 𝑔(𝑌𝑖,1:𝑗 ), (16)

which separates the effects of topics and displayed items via
𝑓 (·) and 𝑔(·), respectively. This factorization clarifies how the
contribution of each component can be decomposed.

Alternatively, one could also choose a factor 𝑓 ′ (·) for the
item itself with a joint function 𝑔′ (·) to capture the combined
influence of topics and preceding items:

𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇1:𝑖 , 𝑌𝑖,1:𝑗 ) = 𝑓 ′ (𝑌𝑖, 𝑗 ) · 𝑔′ (𝑇1:𝑖 , 𝑌𝑖,1:𝑗−1). (17)

By answering the three key design choices, we have devel-
oped the most salient mathematical properties of our new
carousel click model. Naturally, there are further choices to

be made, e.g., whether to use probabilistic graphical models
(PGMs) or neural networks (NNs) for each of the factors, what
loss function to employ when fitting the model, etc. However,
with our decisions so far, we have already described what
statistical patterns the model can capture and we can thus
compare it with existing click models. Therefore, we argue
our theory-based approach provides a flexible framework that
correctly concerns the mathematical capabilities of models
first-and-foremost.

8 Conclusion
In this paper, we re-established the theoretical foundations and
conceptualization of click models by primarily considering
their mathematical properties. We propose that the catego-
rization of click models should be based on the mathemat-
ical relations between observable variables rather than on
presumed user behavior or latent variables. Building on this
proposition, we introduced three key design choices: global
dependencies, sequentiality, and factorization. We argue that
these choices describe the most salient mathematical proper-
ties of click models, and therefore, should be the first concern
for their categorization, design and comparison.

Our approach results in a taxonomy that covers any - ex-
isting or future - single-list, grid or carousel interface click
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Table 1: The categorization of existing click models following our proposed taxonomy that categorizes based on three
different design choices that describe salient mathematical properties of each model. Uniquely, this categorization
covers PGM, NN and GDBT click models for single-list, grid and carousel interfaces.
Click Models in Category Global Dependencies Sequentiality Factorization

Random click model (RCM) [10] Random
𝑃 (𝐶𝑖 = 1) =

Not Applicable
𝑃 (𝐶𝑖 = 1) =

Constant
𝜁

Rank-based CTR model (RCTR) [10] Random
𝑃 (𝐶𝑖 = 1) =

Not Applicable
𝑃 (𝐶𝑖 = 1) =

Constant per Position
𝑓 (𝑖)

Document-based CTR model (DCTR) [10] Items-Only
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

Chosen Item Only
𝑃 (𝐶𝑖 = 1 | 𝑌𝑖 ) =

Item Factor
𝑓 (𝑌𝑖 )

Position-based model (PBM)
(Standard EM [39], Regression-based EM [34, 47]) Items-Only

𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

Chosen Item Only
𝑃 (𝐶𝑖 = 1 | 𝑌𝑖 ) =

Position Factor
Item Factor
𝑓 (𝑖) · 𝑔(𝑌𝑖 )

TrustPBM [1, 43] Items-Only
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

Chosen Item Only
𝑃 (𝐶𝑖 = 1 | 𝑌𝑖 ) =

Two Position Factors
Item Factor

𝑓 (𝑖) · 𝑔(𝑌𝑖 ) + ℎ(𝑖)

Click sequence model (CSM) [6] Items-Only
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

All Items
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

Items Factor
𝑓 (𝑌 )

Cross-positional attentions (XPA) [63] Items-Only
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

All Items
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

Item Factor
Items and Position Factor

𝑓 (𝑌𝑖 ) · 𝑔(𝑌 \ 𝑌𝑖 , 𝑖)

Rank-biased neural network model (RBNN) [57] Items-Only
𝑃 (𝐶𝑖 = 1 | 𝑌 ) =

Items up to Chosen Item
𝑃 (𝐶𝑖 = 1 | 𝑌1:𝑖 ) =

Items Factor
𝑓 (𝑌1:𝑖 )

Cascade model (CM) [11]
User browsing model (UBM) [13]
Bayesian browsing model (BBM) [27]

Items-Clicks
𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

Chosen Item
Clicks above Chosen Item

𝑃 (𝐶𝑖 = 1 | 𝑌𝑖 ,𝐶′
1:𝑖−1) =

Item Factor
Clicks Factor

𝑓 (𝑌𝑖 ) · 𝑔
(
𝐶′
1:𝑖−1

)
Dependent click model (DCM) [18] Items-Clicks

𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

Chosen Item
Clicks above Chosen Item

𝑃 (𝐶𝑖 = 1 | 𝑌𝑖 ,𝐶′
1:𝑖−1) =

Item Factor
Positions-Clicks Factor
𝑓 (𝑌𝑖 ) · 𝑔

(
1 :𝑖 − 1,𝐶′

1:𝑖−1
)

Click chain model (CCM) [17]
Dynamic bayesian network model (DBN) [7]
Probability click tracking model (PCTM) [56]
Post-click click model (PCC) [60]
General click model (GCM) [62]
Bayesian sequential state model (BSS) [45]

Items-Clicks
𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

Items up to Chosen Item
Clicks above Chosen Item
𝑃 (𝐶𝑖 = 1 | 𝑌1:𝑖 ,𝐶′

1:𝑖−1) =

Item Factor
Items-Clicks Factor

𝑓 (𝑌𝑖 ) · 𝑔
(
𝑌1:𝑖−1,𝐶′

1:𝑖−1
)

Temporal click model (TCM) [54]
Temporal hidden click model (THCM) [53]
Partially sequential click model (PSCM) [44]
Time-aware click model (TACM) [30]

Items-Clicks
𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

Chosen Item
Clicks with Earlier Timestamps

𝑃 (𝐶𝑖 = 1 | 𝑌𝑖 , {𝑐 ∈ 𝐶′ : 𝑡 (𝑐) < 𝑡 (𝐶𝑖 )}) =

Item Factor
Clicks Factor

𝑓 (𝑌𝑖 ) · 𝑔({𝑐 ∈ 𝐶′ : 𝑡 (𝑐) < 𝑡 (𝐶𝑖 )})

Graph-enhanced click model (GraphCM) [26]
Filter-enhanced transformer click model (FE-TCM) [48] Items-Clicks

𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

All Items
All Clicks

𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

Clicks Factor
Items-Clicks Factor
𝑓 (𝐶′) · 𝑔(𝑌,𝐶′)

Neural click model (NCM) [5]
Adversarial imitation click model (AICM) [12] Items-Clicks

𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

Items up to Chosen Item
Clicks above Chosen Item
𝑃 (𝐶𝑖 = 1 | 𝑌1:𝑖 ,𝐶′

1:𝑖−1) =

No Factorization
𝑓
(
𝑌1:𝑖 ,𝐶′

1:𝑖−1
)

Debiased reinforcement learning click model (DRLC) [61] Items-Clicks
𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

All Items
All Clicks

𝑃 (𝐶𝑖 = 1 | 𝑌,𝐶′) =

No Factorization
𝑓 (𝑌,𝐶′)

Grid-based user browsing model (GUBM) [52] Items-Clicks
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌,𝐶′) =

Chosen Item
Clicks with Earlier Timestamps

𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑌𝑖, 𝑗 , {𝑐 ∈ 𝐶′ : 𝑡 (𝑐) < 𝑡 (𝐶𝑖, 𝑗 )}) =

Item Factor
Clicks Factor

𝑓 (𝑌𝑖, 𝑗 ) · 𝑔({𝑐 ∈ 𝐶′ : 𝑡 (𝑐) < 𝑡 (𝐶𝑖, 𝑗 )})

Carousel click model (CCM) [37] Fully Dependent
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇,𝑌,𝐶′) =

Topics up to Chosen Topic
Chosen Item

Clicks before Chosen Item on the Same Topic
𝑃 (𝐶𝑖, 𝑗 = 1 | 𝑇1:𝑖 , 𝑌𝑖, 𝑗 ,𝐶′

𝑖,1:𝑗−1) =

Topics Factor
Item Factor
Clicks Factor

𝑓 (𝑇1:𝑖 ) · 𝑔(𝑌𝑖, 𝑗 ) · ℎ
(
𝐶′
𝑖,1:𝑗−1

)
models based on PGMs, NNs or Gradient Boosted Decision
Treess (GDBTs). Uniquely, our structured categorization can
meaningfully compare click models of different types and
for different interfaces. Lastly, we apply our theory-based ap-
proach to design a novel carousel click model to demonstrate
how our design choices provide a framework for the future
development of new click models.

Our work provides a new perspective on the theory under-
lying click model research, and in doing so, reveals that many
unexplored opportunities for click models remain, especially
for layouts beyond the single list, such as carousel interfaces.
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