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ABSTRACT
Recent advances in conversational systems have changed the search
paradigm. Traditionally, a user poses a query to a search engine
that returns an answer based on its index, possibly leveraging
external knowledge bases and conditioning the response on earlier
interactions in the search session. In a natural conversation, there is
an additional source of information to take into account: utterances
produced earlier in a conversation can also be referred to and a
conversational IR system has to keep track of information conveyed
by the user during the conversation, even if it is implicit.

We argue that the process of building a representation of the
conversation can be framed as a machine reading task, where an
automated system is presented with a number of statements about
which it should answer questions. The questions should be an-
swered solely by referring to the statements provided, without
consulting external knowledge. The time is right for the informa-
tion retrieval community to embrace this task, both as a stand-alone
task and integrated in a broader conversational search setting.

In this paper, we focus on machine reading as a stand-alone task
and present the Attentive Memory Network (AMN), an end-to-end
trainable machine reading algorithm. Its key contribution is in effi-
ciency, achieved by having an hierarchical input encoder, iterating
over the input only once. Speed is an important requirement in the
setting of conversational search, as gaps between conversational
turns have a detrimental effect on naturalness. On 20 datasets com-
monly used for evaluating machine reading algorithms we show
that the AMN achieves performance comparable to the state-of-the-
art models, while using considerably fewer computations.
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1 INTRODUCTION
Recent advances in conversational systems [18, 19] have changed
the search paradigm. In a classic setting, a search engine answers
a query based on an index, possibly enriching it with information
from an external knowledge base [25]. Additionally, previous in-
teractions in the same session can be leveraged [6]. In addition
to these sources, in natural language conversations, information
contained in previous utterances can be referred to, even implicitly.
Suppose a conversational system has to answer the queryWhere
are my keys? based on a previous statement I was home before I
went to work, which is where I found out I didn’t have my keys with
me. The statement conveys a lot of information, including the likely
possibility that the keys are still at the speaker’s house. As is clear
from this example, indices or external knowledge bases are of no
avail in this setting. It is crucial for a conversational system to
maintain an internal state, representing the dialogue with the user
so far. To address this issue, substantial work has been done in
goal-oriented dialogues, tailored to specific settings such as restau-
rant reservations [3] and the tourist domain [13]. We argue that a
generic conversational agent should be able to maintain a dialogue
state without being constrained to a particular task with prede-
termined slots to be filled. The time has come for the Information
Retrieval (IR) community to address the task of machine reading
for conversational search [18].

As an important step towards generic conversational IR [15],
we frame the task of conversational search as a general machine
reading task [10, 11], where a number of statements is provided to
an automated agent that answers questions about it. This scenario is
different from the traditional question answering setting, in which
questions are typically factoid in nature, and answers are based
on background knowledge or external sources of knowledge. In
the machine reading task, much as in a natural conversation, a
number of statements is provided, and the conversational agent
should be able to answer questions based on its understanding of
these statements alone. In [11], for example, a single Wikipedia
page is provided to a machine algorithm which has to answer
questions about it. In [26] the machine reads stories abouts persons
and objects and has to keep track of their whereabouts.

Memory networks have proven to be an effective architecture in
machine reading tasks [22, 27]. Their key component is a memory
module in which the model stores intermediate representations
of input, that can be seen as multiple views on the input so far,
from which a final output is computed. Speed is an important
constraint in the context of conversational agents, since long pauses
between turns hamper the naturalness of a conversation. We strive
for an efficient architecture, and propose to use a hierarchical input
encoder. Input can be large, hundreds of words, and we hypothesize
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that first processing the input to get a smaller set of higher-level
input representations can benefit a network in two ways: (1) the
higher-level representations provide a distilled representation of the
input; (2) as there are fewer higher-level representations it should
be (computationally) easier for the network to focus on the relevant
parts of the input. In short, in this paper we present the Attentive
Memory Network (AMN), an end-to-end trainable memory network,
with hierarchical input encoder. To test its general applicability we
use 20 machine reading datasets specifically designed to highlight
different aspects of natural language understanding. We show that
the AMN achieves performance comparable to the state-of-the-art
models, while using considerably fewer computations.

2 RELATEDWORK
Machine reading is a much-studied domain [4, 10, 11]. It is related to
question answering, the difference being that in question answering,
external domain or world knowledge is typically needed to answer
questions [7, 17, 29], while in machine reading answers should be
inferred from a given text.

Hierarchical encoders are employed in a dialogue setting in [20]
and for query suggestion in [21]. In both works, the hierarchical
encoder is also trained, for every input sentence, to predict every
next input sentence, a setting we did not experiment with.

We build on previous work on memory networks [22, 23, 27],
in particular on dynamic memory networks [16, 28]. Memory net-
works are an extension of standard sequence-to-sequence archi-
tectures; their distinguishing feature is a memory module added
between the encoder and decoder. As they are typically applied
in question answering settings, there are two encoders, one for a
question and one for a document the question is about. The decoder
does not have access to the input but only to the memory module,
which distills relevant information from the input, conditioned on
the question. The key difference between the Attentive Memory
Network we propose and the work in [16, 28], is in the defining
component, the memory module. In [16, 28], to obtain every next
memory, a Gated Recurrent Unit (GRU) cell iterates over the input
sequence. This leads to a memory intensive and computationally
expensive architecture, since multiple cells are repeatedly being
unrolled over the input sequence. The number of steps an Recurrent
Neural Network (RNN) is unrolled for, i.e., the number of input rep-
resentations it reads, together with the hidden state size, is the main
determining factor regarding computational complexity. Therefore,
we propose to obtain memories by an RNN that, rather than iterat-
ing over the entire input, only applies attention over it, which is a
much cheaper operation (see §3).

In [22] an attention-based memory network is presented, where
the input is represented as a sequence of embeddings on which
attention is computed (i.e., there is no input reader). Our Attentive
Memory Network differs from this work in that we do use an input
reader, a hierarchical RNN. As a consequence, our memory module
has far fewer hidden states to attend over. At the output side, we
use GRUs to decode answers, which is different from the softmax
over a dot product between the sum of attention-weighted input
and question employed in [22].

To sum up, we propose a memory network that shares its overall
architecture with previous models, and that differs in how all key

components are constructed, with a view to improve efficiency and,
thereby, enable its usage in conversational search scenarios.

3 ATTENTIVE MEMORY NETWORKS
To facilitate the presentation of our Attentive Memory Networks,
we first briefly recapitulate standard sequence-to-sequence models.

Recurrent cells
An input sequence is processed one unit per time step, where the
recurrent cell computes a new state ht as a function of an input
representation x and a hidden state ht−1 as:

ht = f (x, ht−1;θ ), (1)

based on internal parameters θ . The function f itself can be imple-
mented in many ways, for example as an Long Short-Term Mem-
ory (LSTM) [12] or Gated Recurrent Unit (GRU) cell [5]. The initial
hidden state h0 is usually a 0-vector. For a given input Xenc =

[xenc1 , xenc2 , . . . , xencn ]—e.g., embeddings representing words in a
sentence—an encoder repeatedly applies this function, which yields
ann×denc matrixHenc = [henc1 , henc2 , . . . , hencn ] ofn hidden states
of dimension denc .

A decoder generates output according to Equation 1, where the
initial hidden state is the last hidden state of the encoder hencn . The
predicted output at time step t , ôt , is typically generated from the
hidden state of the decoder, hdect , by calculating a softmax over the
vocabulary V :

ô = argmax
v∈V

eh
dec
t ·v∑

v′∈V e
hdect ·v′

. (2)

Here V is a matrix of vector representations v , representing words
in the output vocabulary. At training time, the embedding of the
correct word—the word that should have been returned—is usually
given as input to the recurrent cell at time step t + 1.

Attention
An attention mechanism was proposed in [2], which gives the
decoder access to the hidden states of an encoder. Instead of using
Equation 1 to produce a new hidden state dependent only on the
input, the computation now also depends on Hatt , the states to
attend over, typically the states of the encoder. Following, e.g., [24],
we have:

hdect = д(xdec ,Hatt , hdect−1 )

=Wproj · dt | |ĥdect ,
(3)

where | | is the concatenation operator, ĥdect = f (xdec , hdect−1 ;θ
dec )

from Equation 1 and dt is calculated from Hatt by:

dt =
n∑
i=1

at,i hatti

at = softmax(ut )

ut,i = vT tanh(W1hatti +W2hdect ),

where hatti is the i-th state in Hatt and W1 and W2 are extra
parameters learned during training. From the hidden state produced
this way, output can be generated by applying Equation 2 as usual.
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Figure 1: Attentive Memory Network. Connected blocks sharing color represent RNNs. Attention is depicted by dashed lines.

3.1 Attentive Memory Network architecture
We now present the Attentive Memory Network (AMN) architec-
ture. AMNs, like traditional sequence-to-sequence networks, are
composed of recurrent neural networks. Their key part is a memory
module, which is a recurrent network itself. It stores memories by
attending over the input document, conditioned on the question. As
can be seen from Equation 3, the computational complexity of the
attention mechanism is primarily dependent on the size of Hatt ,
the states to attend over. To keep this matrix small, a hierarchical
approach is taken, where the input is first read by a word-level
document encoder, which reads word embeddings—also trained by
the model—per sentence to compute sentence representations. A
sentence-level encoder iterates over these sentence embeddings
to get a final document encoding. The memory module only has
access to the sentence embeddings produced by the sentence-level
encoder. For example, if the input consists of 20 sentences of 12
words each, the memory module of the AMN attends over 20 sen-
tence representations, rather than over 240 representations, had a
non-hierarchical word-level approach been taken.

Figure 1 shows a graphical overview of the network layout. There
are two input encoders, a question encoder and a word-level doc-
ument encoder. The memory module, the green block in Figure 1,
attends over the sentence embeddings to extract relevant parts of
the input, conditioned on the question. Lastly, the answer decoder
attends over the memory states, to produce the final output. Let us
turn to the details.

Question encoder. For encoding the question we use a single
Recurrent Neural Network (RNN). For a question Q ∈ {q1, q2, . . . ,
q |Q |} it produces a final state hque

|Q |
, a vector of dimension dque ,

that is used as a distributed representation of the question.

Document encoder. To encode the document we use a hierarchi-
cal approach. First, a word-level RNN is used to encode sentences.
The word-level encoder is applied for every sentence individually.
The unroll length is the maximum sentence length in words. For
sentences S ∈ {s1, s2, . . . , s |S |} the word-level encoder yieldsHwrd ,
an |S | × dwrd matrix.

The sentence representations in Hwrd are read as a sequence by
a sentence-level encoder. Following, e.g., [28], we use a bidirectional
RNN for the sentence-level encoder, which for |S | sentences and a
hidden state size dsen yields Hsen , an |S | × dsen matrix. The final
state of the question encoder, hque

|Q |
, is used as initial value of the

hidden states of the sentence-level encoder.

Memory module. The memory module consists of a single recur-
rent cell that producesM, a matrix ofm memory representations
of dimension dmem . The i-th memory mi is computed conditioned
on the question representation and the sentence representations,
analogous to Equation 3, as:

mi = д
(
hque
|Q |
,Hsen ,mi−1

)
. (4)

That is, the final representation of the question encoder hque
|Q |

is
repeatedly provided as input to a recurrent cell, whose hidden state
is computed from the memory it produced previously, mi−1, while
attending over the hidden states of the sentence-level encoderHsen .

The final representation of the sentence-level document encoder
hsen
|S | is used to initialize the hidden state of the memory cell, m0.

Answer decoder. Finally, the decoder produces an answer using
Equation 2, where hdect is computed by attending over the memory
states:

hdect = д(xdect ,M, hdect−1 ).
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3.2 Efficiency
As can be seen from Equation 4, the memory module is a recur-
rent cell itself. In previous memory networks, the memory module
passes over the input multiple times, updating memory after each
pass [16, 28]. The key difference in our approach is that AMNs
iterate over the input only once, but attend over it multiple times.
This is more efficient, as the attention mechanism (Equation 3) has
far less paramaters than an LSTM or GRU recurrent cell, which
update multiple gates and an internal state at every time step. The
attention mechanism calculates a softmax over the input encodings,
the number of which in our case is reduced to number of input
sentences, rather than words, by the hierarchical encoder.

Additionally, the AMN needs relatively few iterations to learn.
Details per evaluation set are provided in §5.2.

4 EXPERIMENTAL SETUP
To the best of our knowledge, there is currently no conversational
search data set (consisting of sequences of utterances plus questions
about these utterances) on which we could evaluate AMN. Instead
we evaluate AMN on a broad collection of more traditional machine
reading datasets. Specifically, we evaluate AMN on the 20 datasets
provided by the bAbi tasks [26], of which we use the 10k sets,
version 1.2. The sets consist of stories, 2 to over 100 sentences in
length, and questions about these stories. The 20 sets are designed
to highlight different aspects of natural language understanding like
counting, deduction, induction and spatial reasoning. As argued by
Kumar et al. [16], while showing the ability to solve one of the bAbi
tasks is not sufficient to conclude a model would succeed at the
same task on real world text data —such as conversational search
data— it is a necessary condition.

Every dataset in the bAbi collection comes as a training set of
10,000 examples and a test set of 1,000 examples. We split the 10,000
training examples of each dataset into a training set—the first 9,000
examples—and a validation set—the remaining 1,000 examples—on
which we tune the hyperparameters. All text is lowercased.

We use GRU cells [5] for all recurrent cells. To restrict the number
of hyperparameters to tune, the same value is used for all embed-
ding sizes, and for the state sizes of all recurrent cells. I.e., for an
embedding size e , we have e = dque = dwrd = dsen = dmem ,
which is either 32 or 64. The weights of the question encoder and
document word-level encoder are tied. GRU cells can be stacked
and we experiment with 1 to 3 level deep encoder, memory, and
decoder cells, the depths of which always match (i.e., if, for example,
3-level encoder cells are used, 3-level decoder cells are used). We use
a single embedding matrix for the words in the question, document
and answer. The number of memories to generate, m, is chosen
from {1, 2, 3}. Dropout is applied at every recurrent cell, the dropout
probability being either 0.0 (no dropout), 0.1 or 0.2. We optimize
cross entropy loss between actual and predicted answers, using
Adam [14] as optimization algorithm and set the initial learning
rate to one of {0.1, 0.5, 1.0}. We measure performance every 1000
training examples. If the loss does not improve or performance
on the validation set decreases for three times in a row, the learn-
ing rate is annealed by dividing it by 2. The maximum norm for
gradients is either 1 or 5. The batch size is set to 50.

Table 1: Results in terms of error rate on the bAbi 10k tasks.
For comparison, results of previous work are copied from
[22, MemN2N], [8, DNC], [28, DMN+], and [9, EntNet].

Dataset MemN2N DNC DMN+ EntNet AMN

single supporting fact 0.0 0.0 0.0 0.0 0.0
two supporting facts 0.3 0.4 0.3 0.1 4.1
three supporting facts 2.1 1.8 1.1 4.1 29.1
two arg relations 0.0 0.0 0.0 0.0 0.0
three arg relations 0.8 0.8 0.5 0.3 0.7
yes-no questions 0.1 0.0 0.0 0.2 0.2
counting 2.0 0.6 2.4 0.0 3.1
lists sets 0.9 0.3 0.0 0.5 0.3
simple negation 0.3 0.2 0.0 0.1 0.0
indefinite knowledge 0.0 0.2 0.0 0.6 0.1
basic coreference 0.1 0.0 0.0 0.3 0.0
conjunction 0.0 0.0 0.0 0.0 0.0
compound coreference 0.0 0.1 0.0 1.3 0.0
time reasoning 0.1 0.4 0.2 0.0 3.6
basic deduction 0.0 0.0 0.0 0.0 0.0
basic induction 51.8 55.1 45.3 0.2 45.4
positional reasoning 18.6 12.0 4.2 0.5 1.6
size reasoning 5.3 0.8 2.1 0.3 0.9
path finding 2.3 3.9 0.0 2.3 0.3
agents motivations 0.0 0.0 0.0 0.0 0.0

number of tasks solved 18 18 19 20 18

Table 2: Hyperparameter values for the minimal AMNs that
were fastest in achieving best performance on the validation
set. The size refers to both size of embeddings and hidden
states. The last column lists the number of batches needed.

Dataset size # layers #mem # batches

single supporting fact 32 1 1 1,000
two supporting facts 64 2 3 12,200
three supporting facts 64 2 3 14,000
two arg relations 32 1 1 1,200
three arg relations 32 1 2 3,000
yes-no questions 32 1 1 3,800
counting 32 1 3 5,000
lists sets 32 1 1 4,400
simple negation 32 1 2 3,200
indefinite knowledge 32 1 1 3,800
basic coreference 32 1 2 1,400
conjunction 32 1 1 1,200
comp coreference 32 1 1 10,000
time reasoning 64 2 1 6,000
basic deduction 32 1 1 2,200
basic induction 64 1 2 10,200
positional reasoning 32 1 3 6,200
size reasoning 32 1 3 2,400
path finding 64 1 1 13,000
agents motivations 32 1 3 3,600

We implemented the AMN in Tensorflow [1]. The implementa-
tion is released under an open source license and is available at https:
//bitbucket.org/TomKenter/attentive-memory-networks-code.

https://bitbucket.org/TomKenter/attentive-memory-networks-code
https://bitbucket.org/TomKenter/attentive-memory-networks-code
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5 RESULTS AND ANALYSIS
We present the results of the experiments described in §4 and pro-
vide an analysis of the results.

5.1 Main results
Table 1 lists the results of our Attentive Memory Network (AMN)
on the 20 bAbi 10k datasets, together with results of previous ap-
proaches. Following [26], we consider a dataset solved if the error
rate is less than 5%.

As can be seen from the Table 1, AMN solves 18 of the 20 datasets.
This is particularly noteworthy given the fact that it is a general
framework, not catered towards tracking entities (as in [9]). More-
over, the AMN needs an order of magnitude fewer computation
steps than previous memory network architectures used for these
tasks [16, 28] as it only reads the input once.

There are two tasks the AMN does not solve. The basic induc-
tion set proves to be hard for the AMN, as it does for most other
networks. More interestingly, the three supporting facts sets is prob-
lematic as well. This dataset has the longest documents, sometimes
over 100 sentences long. Analysis of the results, see below for ex-
amples, shows that the probability mass of the attention vectors
of the memory module is much more spread out across sentences
then it is in other sets. That is, the network struggles to keep its
attention focused.

The results in Table 1 show that the AMN can solve a wide
variety of machine reading tasks and that it behaves different from
other memory networks.

5.2 Analysis
We analyze the hyperparameter settings used to produce the re-
sults in Table 1 and provide examples of the inner workings of the
attention mechanism of the memory module.

Hyperparameters and speed of convergence. Table 2 lists the hy-
perparameter values for the smallest AMNs that achieve the best
performance on the validation set, with fewest training examples.
Here, smallest network refers to the size of the network in terms
of embedding size and number of memories. The last column lists
the number of batches needed. As can be seen from Table 2, AMNs
can learn fast. As an example, it needs only 5 epochs to solve the
first dataset: there are 10k examples—1,000 batches of 50 examples
= 50k examples = 5 epochs. This is in contrast to the 100 epochs
reported in [22] and 256 epochs listed as a maximum in [16].

Interestingly, adding depth to a network by stacking GRU cells
was helpful in only 3 out of 20 cases.

Result analysis. Figure 2 shows a visualization of the attention
vectors of the memory module. The attention is visualized per
memory step. Although some stories in the dataset are over 100
sentences in length, short examples were picked here, for reasons
of brevity. Every column represents a memory step, and the values
per memory step add up to 1 (barring rounding errors).

Figure 2a shows an example where one memory step is used. The
attention focuses on the last time Daniel, the person the question
is about, is mentioned. Interestingly, the second sentence also gets
some attention, presumably because the bedroom, which features
in the question, is being referred to. A particularly striking detail

is that—correctly—nearly no attention is paid to the fifth sentence,
although it is almost identical to the question.

In Figure 2b, attention is highest for sentences in which the per-
son being asked about is referred to. This is especially noteworthy,
as the reference is only by a personal pronoun, which moreover
refers to two people.

For the size reasoning dataset, three memory steps were needed
(see Table 2). An example is shown in Figure 2c. The first mem-
ory step mistakenly focuses on the sixth sentence about the chest.
Gradually, however, the memory module recovers from this error,
and attention shifts to the fourth sentence about the suitcase.

Figure 2d shows the ability of the network to focus only on
relevant parts. Although the seventh and tenth sentence are nearly
identical, it is the last sentence that matters, and it is this sentence
the network attends to almost solely. Curiously, the two memory
steps attend to the same sentences, which is consistently the case
for this dataset. This might indicate that a single memory step
could suffice too. Indeed, experiments show that on some datasets
networks with fewer memory steps achieve the same or nearly the
same performance as bigger networks, but take longer to reach it.
The extra memory steps might serve as extra training material.

The last two cases, Figure 2e and 2f, are from the three support-
ing facts dataset that the model could not solve. What stands out
immediately is the fact that the attention is much more spread out
than in other cases. This is the case throughout the entire dataset. It
shows that the model is confused and fails to learn what is relevant.
In Figure 2e just reading the last five sentences would have been
enough. The model does seem to capture that John picked up the
apple, but only very weakly so. The crucial sentence, third form
the end, is the sentence the model pays least attention to. Figure 2e
shows the model being even more confused. It starts out by attend-
ing mostly to Mary, who has nothing to do with the story. The
sentences that do matter, again, get very little attention.

Overall, these examples indicate that, when the AMN learns to
solve a task, its memory module is very decisive in paying attention
to the relevant parts of the input and ignoring the rest.

6 CONCLUSION
As search becomes more conversational, the machine reading task,
where a system is able to answer questions against prior utterances
in a conversation, becomes a highly relevant task for Information
Retrieval (IR). We introduced Attentive Memory Networks (AMNs),
efficient end-to-end trainable memory networks with a hierarchical
input encoder. AMNs perform nearly as well as existing machine
reading algorithms, with less computation. Analysis shows they
typically need only a few epochs to achieve optimal performance,
making them ideally suited for IR’s high efficiency settings. Our
findings indicate that a straightforward architecture like the AMN
is sufficient for solving a wide variety of machine reading tasks.

The bAbi datasets provide an ideal test bed for machine reading
algorithms as the tasks and evaluation are well-defined. However,
it would also be interesting to test the performance of AMNs on
bigger datasets, with more varied and noisier problems, especially
ones that are directly derived from conversational search scenarios.
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.000 mary got the milk there

.073 john moved to the bedroom

.000 mary discarded the milk

.000 john went to the garden

.004 daniel moved to the bedroom

.193 daniel went to the garden

.727 daniel travelled to the bathroom

.002 sandra travelled to the bedroom

.000 mary took the football there

.000 sandra grabbed the milk there

(a) Dataset: yes-no questions, question: ‘is
daniel in the bedroom?’, prediction: ‘no’,
ground truth: ‘no’.

.000 mary and daniel travelled to the bedroom

.000 then they journeyed to the hallway

.002 daniel and sandra went back to the garden

.384 following that they journeyed to the bathroom

.002 sandra and john went back to the bedroom

.000 then they journeyed to the garden

.000 john and daniel moved to the office

.025 after that they went back to the hallway

.001 sandra and daniel travelled to the bedroom

.587 after that they travelled to the hallway

(b) Dataset: compound coreference, ques-
tion: ‘where is daniel?’, prediction: ‘hallway’,
ground truth: ‘hallway’.

.001 .004 .005 the box is bigger than the chocolate

.036 .090 .105 the chocolate fits inside the suitcase

.024 .066 .080 the box is bigger than the box of chocolates

.216 .272 .296 the box of chocolates fits inside the suitcase

.052 .076 .080 the box is bigger than the box of chocolates

.458 .316 .275 the chocolate fits inside the chest

.120 .098 .090 the chocolate fits inside the box

.091 .075 .067 the box of chocolates fits inside the box

.001 .000 .000 the suitcase is bigger than the chest

.001 .002 .002 the suitcase is bigger than the chocolate

(c) Dataset: size reasoning, question: ‘is the
suitcase bigger than the chocolate?’, predic-
tion: ‘yes’, ground truth: ‘yes’.

.000 .000 bill moved to the bedroom

.000 .000 fred went to the hallway

.000 .000 jeff went to the garden

.000 .000 fred travelled to the office

.000 .000 mary took the apple there

.000 .000 mary passed the apple to bill

.000 .000 bill gave the apple to mary

.053 .045 mary passed the apple to bill

.000 .000 fred travelled to the bathroom

.940 .950 bill passed the apple to mary

.002 .002 bill went back to the office

.004 .003 mary dropped the apple

(d) Dataset: three arg relations, question:
‘what did bill give to mary?’, prediction: ‘ap-
ple’, ground truth: ‘apple’.

.. .. .. ...

.042 .043 .041 mary grabbed the apple

.032 .031 .030 john travelled to the hallway

.031 .029 .029 mary went back to the hallway

.040 .039 .038 sandra went back to the bedroom

.038 .036 .035 mary left the apple

.038 .035 .034 john dropped the milk

.049 .052 .051 john got the apple

.041 .041 .041 john dropped the apple

.. .. .. ...

.045 .039 .040 john picked up the apple

.018 .014 .015 sandra went back to the garden

.006 .006 .007 john went back to the bedroom

.002 .002 .003 john went back to the bathroom

.002 .002 .002 mary moved to the garden

(e) Dataset: three supporting facts, ques-
tion: ‘where was the apple before the bath-
room?’, prediction: ‘garden’, ground truth:
‘bedroom’.

.. .. .. ...

.074 .045 .048 daniel travelled to the hallway

.121 .067 .075 mary travelled to the hallway

.070 .047 .049 mary went to the office

.050 .033 .033 sandra journeyed to the bathroom

.057 .037 .037 daniel took the milk

.054 .033 .036 daniel travelled to the kitchen

.018 .013 .015 mary moved to the bedroom

.025 .019 .021 daniel picked up the football there

.010 .011 .011 daniel journeyed to the office

.009 .010 .010 daniel left the milk there

.013 .015 .015 mary took the apple there

.006 .005 .006 sandra journeyed to the garden

.008 .008 .008 mary dropped the apple

.008 .009 .008 mary travelled to the kitchen

(f) Dataset: three supporting facts, question:
‘where was the milk before the office?’, pre-
diction: ‘hallway’, ground truth: ‘kitchen’.

Figure 2: Attention visualizations. The attention is visualized per memory step. Every column represents a memory step, and
adds up to 1 (allowing for rounding errors), except in the last two examples where some (irrelevant) sentences were left out.
Although some stories in the dataset are over 100 sentences in length, short examples were picked here, for brevity.

Memory networks have also been applied in settings where
external knowledge is available, in particular in the form of key-
value pairs [17]. Although this setting is different from the machine
reading setting, it would be interesting to see how AMNs could be
applied here. Finally, in a conversational setting involving multiple
actors, it would be challenging for the memory module to attend to
the utterances of the right actor at the right time. A richer attention-
like mechanism seems to be needed. One that allows a decoder
to attend to specific parts of the input, including the utterances
produced by the system itself, conditioned on whose utterances are
being referred to.
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