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Document filtering is a popular task in information retrieval. A stream of documents arriv-
ing over time is filtered for documents relevant to a set of topics. The distinguishing feature
of document filtering is the temporal aspect introduced by the stream of documents.
Document filtering systems, up to now, have been evaluated in terms of traditional metrics
like (micro- or macro-averaged) precision, recall, MAP, nDCG, F1 and utility. We argue that
these metrics do not capture all relevant aspects of the systems being evaluated. In partic-
ular, they lack support for the temporal dimension of the task. We propose a time-sensitive
way of measuring performance of document filtering systems over time by employing
trend estimation. In short, the performance is calculated for batches, a trend line is fitted
to the results, and the estimated performance of systems at the end of the evaluation per-
iod is used to compare systems. We detail the application of our proposed trend estimation
framework and examine the assumptions that need to hold for valid significance testing.
Additionally, we analyze the requirements a document filtering metric has to meet and
show that traditional macro-averaged true-positive-based metrics, like precision, recall
and utility fail to capture essential information when applied in a batch setting. In partic-
ular, false positives returned in a batch for topics that are absent from the ground truth in
that batch go unnoticed. This is a serious flaw as over-generation of a system might be
overlooked this way. We propose a new metric, aptness, that does capture false positives.
We incorporate this metric in an overall score and show that this new score does meet all
requirements. To demonstrate the results of our proposed evaluation methodology, we
analyze the runs submitted to the two most recent editions of a document filtering evalu-
ation campaign. We re-evaluate the runs submitted to the Cumulative Citation
Recommendation task of the 2012 and 2013 editions of the TREC Knowledge Base
Acceleration track, and show that important new insights emerge.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Document filtering is a popular task in information retrieval with many applications (Keiser, 2009; Amigó, Gonzalo, &
Verdejo, 2011; Amigó, Gonzalo, & Verdejo, 2013; Robertson & Soboroff, 2002; Frank, Kleiman-Weiner, et al., 2013; Frank,
Bauer, et al., 2013). A stream of documents arriving over time is filtered for documents relevant to a set of topics. The
distinguishing feature of document filtering, that sets it apart from other document classification tasks, is the temporal
aspect introduced by the stream of documents. Because of this temporal dimension, the performance of a system is
gement
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susceptible to change over time. For example, in a document filtering setting, where topics are being monitored over time,
the topics might evolve. A system filtering the stream should be sensitive to this in order to perform well. As another exam-
ple, a spam classifier should adapt to malignant and cunning adversaries. If it fails to do so effectively, its performance will
likely degrade over time.

Standard evaluation metrics measure performance for all returned documents, for a given information need (i.e., query),
in a single batch (e.g., P@n, recall, nDCG, AP) and they can be averaged over multiple requests (e.g., macro-precision across a
set of queries). Recent studies propose to decompose document streams into sequences (e.g., into slices of equal size) and
measure effectiveness on a given time period (Azzopardi, 2009; Dietz, Dalton, & Balog, 2013; Aslam, Ekstrand-Abueg,
Pavlu, Diaz, & Sakai, 2013). Then, it becomes possible to monitor the changes in system performance over time and to
measure performance as a weighted average of slice-based relevance scores. None of these approaches, however, addresses
the question we are interested in: how system performance changes over time.

In Fig. 1 the performance of three hypothetical systems is plotted over time. The blue dots represent the score of the sys-
tem at a given point in time. The gray dotted line represents the average performance of the systems over the entire time
span. Clearly, all three systems have the same average performance. However, the performance of System A degrades rather
strongly over time, the performance of System B less so, while the performance of system C shows improvement over time.
With the metrics currently available there is no way to express this difference. In this paper we propose to capture this dif-
ference by employing trend analysis. In short, this entails fitting a straight line to the values of any existing performance
metric applied to document filtering systems over time. In Fig. 1 these lines are displayed in orange. The derivative of the
fitted line provides a simple and intuitive measure of the amount of change in performance over time. Ultimately, we can
compare the performance of the three systems as estimated by trend analysis at the end of the evaluation period (the large
orange dots in Fig. 1).

The main contributions of this paper are the following. We analyze the properties and requirements a document filtering
metric should meet. We propose to measure performance in batches and to use trend estimation to measure performance
over time. We show that traditional macro-averaged true-positive-based metrics, like precision, recall and F1 fail to capture
essential information when applied in a batch setting. In particular, documents returned in a batch for topics that are absent
from the ground truth in that batch, false positives, go unnoticed. We propose a new metric, aptness, that does capture false
positives. We incorporate this metric in an overall score, Fpra, and show that this new score does meet all requirements. As an
important aspect of evaluation is testing for significant differences in observations, we detail the tests for statistical signif-
icance for trend estimation and discuss the assumption that need to hold.

We test our method on the runs submitted to the Cumulative Citation Recommendation task of the 2012 and 2013
editions of the TREC Knowledge Base Acceleration track (KBA CCR for short). A re-evaluation of the results in terms of our
proposed method shows a different ordering of teams, also at the top end. Moreover, while there were teams beating the
baseline in 2013 when judged by the official metrics, our tests show that in fact no team did, when our proposed
time-aware evaluation is used.

Additionally, we find that the assumptions needed for valid significance testing hold in a vast majority of cases
considered.

The remainder of the paper is organized as follows. Related research is covered in Section 2. In Section 3 we give an
overview our time-aware document filtering evaluation method and discuss the required properties. Two key components
of our approach, measuring performance per time batches and trend estimation are then presented in Sections 4 and 5,
respectively. In Section 5 we also show how significance testing can be performed. In Section 6 we detail our research
questions and show results of experiments performed on the runs submitted to two years of the TREC KBA CCR evaluation
campaign. We conclude in Section 7.

2. Related work

2.1. Document filtering

Document filtering is the task of identifying relevant items from an incoming stream of content. Different flavors of this
problem have been studied in the past. Common to these is that documents arrive sequentially over time and relevance deci-
sions for each topic must be made as soon as the document is processed. Topics represent long-term information needs
(often referred to as ‘‘profiles’’) and may evolve over time.

Routing was one of the very first tasks studied at the Text REtrieval Conference (TREC) and ran at the first three editions of
TREC (TREC-1-3) (Harman, 1994). Routing systems learn static profiles from training documents, and then rank documents
in the test set according to these profiles. Consequently, performance evaluation relies on ranked-based measures. ‘‘After
TREC-3, a strong argument was made that a more realistic filtering task should be developed in addition to routing.’’
(Soboroff & Robertson, 2003). Early editions of the Filtering track (TREC-4-6) cast the task as a binary classification problem:
to refer the document to the user or not. This necessitates a methodological departure from rank-based evaluation to the use
of set-based measures (Soboroff & Robertson, 2003). Later editions (from TREC-7) further refine filtering into batch filtering
and adaptive filtering tasks. Systems have to process test documents in chronological order and select a subset of them. This
implies the use of thresholding for making the binary decision between selecting or discarding each document. Systems are
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Fig. 1. Performance of three systems over time. Systems A and B degrade, while System C improves over time, but they all have the same average
performance over the entire period. We express the change in system performance using the derivative of the fitted line (in orange) and compare
performance at what we call the ‘‘estimated end-point’’ (the large orange dots). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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evaluated by calculating the Utility and F-beta measure of the unordered output set. The batch filtering task assumes that the
initial profile and threshold remain constant. Adaptive filtering, on the other hand, assumes a scenario where ‘‘[e]ach
selected document is immediately judged for relevance, and this information can be used by the system to adaptively update
the filtering profile and/or adjust the threshold.’’ (Nanas, Uren, De Roeck, & Domingue, 2004). We note that, just as the KBA
CCR task that we use as an exemplary document filtering setting throughout this paper, the adaptive filtering task assumes a
scenario where topics evolve over time. The additional assumption made in adaptive filtering, however, is that explicit
relevance feedback is available to a system immediately after prediction. This assumption is unrealistic in typical production
environments, and it is not made in the KBA CCR setting.

Topic Detection and Tracking (TDT) is a closely related research area that is concerned with online monitoring of news
streams, with a focus on event-based information organization (Allan, 2002). Specific tasks include story segmentation
(identifying topically cohesive sections), topic tracking (monitoring events throughout time), topic detection (organizing
news stories that discuss the same topic), first story detection (detecting new events), and link detection (finding out
whether or not two stories discuss the same topic). All these tasks are cast as a detection problem and measured in terms
of detection cost, which is a weighted sum of miss and false alarm probabilities. Of the above tasks, topic tracking is the most
similar to the filtering scenario studied at TREC, even though there are important differences that can be attributed to the
definition of a ‘‘topic’’; we refer to Ault and Yang (2002) for a detailed comparison between the TREC and TDT tasks. An
important outcome of this comparison is the finding that ‘‘neither T9P [utility] nor Ctrk [detection cost] makes a good, general
metric for information filtering’’ (Ault & Yang, 2002).

The TREC Knowledge Base Acceleration (KBA) track was launched in 2012 to study another instance of the filtering prob-
lem. The task, called cumulative citation recommendation (CCR), assumes a scenario with an editor as the end-user, who is
responsible for maintaining the profile of a given entity, e.g., an article in a knowledge base, such as Wikipedia. In this setting,
topics correspond to entities and ‘‘citation-worthy’’ documents are sought. As before, the corpus is a stream of documents
(here, web documents and microblog posts) that are to be processed in chronological order, in particular, hourly batches.
Evidently, the system must never use information from the ‘‘future’’ in any way. One key aspect of KBA CCR is that target
topics (entities) evolve over time. Therefore, systems can be expected to display changes in performance during test time.
For instance, static non-adaptive systems might degrade, as the entities they monitor evolve while they do not. Another
point worthy of note is that the CCR task removes some of the unrealistic assumptions made in the TREC Filtering track,
namely the assumption of instant feedback and assumption of ‘‘no batching of documents or ranking of small sets’’
(Robertson, 2002).

It is important to emphasize that our evaluation methodology is generic and can be applied to any document filtering
task. Nevertheless, to make things more tangible, we will use CCR as a representative of the class of filtering tasks throughout
this paper; CCR is the most realistic document filtering setting available so far, both in terms of assumptions made about the
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user and the underlying data (i.e., topics that evolve over time). See Frank, Bauer, et al. (2013); Frank, Kleiman-Weiner, et al.
(2013) for further details on TREC KBA CCR.

2.2. Time-aware evaluation

While IR work that assumes a streaming setting is rapidly gaining attention, the topic has been considered for several
decades (see, e.g., Robertson & Soboroff, 2002), with early work going back at least to Luhn (1958). Monitoring IR system
performance over time appears to be a more recent interest (Azzopardi, 2009).

A setting very similar to the one addressed in this paper is discussed in Dietz et al. (2013), in which the authors consider
time-aware evaluation in a document filtering setting. They are primarily concerned with problems associated with bursty
streams (where more documents arrive during bursts). They propose to measure performance in time batches, but rather
than taking the average performance over time across batches, they propose to use a weighted average, where every batch
is weighted by its importance, which is relative to its burstiness. The important difference between their approach and ours
is in this averaging step. By taking an average (whether it is weighted or not) the eventual metric is imperceptive to any
increase or decrease in performance over time.

Trend lines have previously been applied to TREC results; see (Sanderson & Zobel (2005)). However, the focus of that arti-
cle is on different statistical significance tests and on a comparison between them. Samples of various sizes are taken from
past TREC runs and (non-linear) trends are fitted to the performance across sample size. The aim of the trend lines is to
extrapolate to larger sample sizes so as to estimate hypothetical performance on bigger test sets. Performance across time
plays no role in this work.

The metrics used for the recently introduced temporal summarization track of TREC also incorporate time-aware mea-
sures of performance (Aslam et al., 2013). In particular, (mean) expected gain and comprehensiveness are calculated from
the onset of the evaluation period up to a certain number of seconds after it. The integral of each measure with respect
to time is calculated to measure how quickly a system captures relevant information. The main difference with our approach
is that we measure performance for every batch across the entire evaluation period, rather than only the first period.
Additionally, rather than using the integral to measure how a system performed in a single time batch, we propose to
use the derivative of a trend line to measure the change in performance across time.

Evaluation over time of text classification systems is important in the area of spam detection. E.g., in Keiser (2009) online
learning classification algorithms are evaluated. Progressive performance is plotted as a function of the number of messages
covered. As the messages are ordered by time, the coverage axis could be interpreted as a time axis. As such, the setting is
nearly identical to the one we address. However, in Keiser (2009) the graphs plotting progressive performance through time
are displayed for visual inspection only, and no attempt is made to come up with a metric that quantifies the change in per-
formance over time.

2.3. Trend estimation

Trend estimation is commonplace in many scientific disciplines, ranging from econometrics to climate sciences.
Recent years have witnessed a number of papers where ideas from economy and/or econometrics have inspired algorith-

mic development in IR (Azzopardi, 2011; Wang & Zhu, 2009). In Bianchi, Boyle, and Hollingsworth (1999) different trend
estimation methods are applied to economic data; the data used there is more volatile than ours and the focus lies on
how fast a method convergences to a trend and on its ability to pick up turning points. In contrast, we assume that only
one trend is present; this is motivated by the limited time span covered by the test sets we use and by the fact that no expli-
cit feedback is available to the systems. Due to the latter aspect, it is unlikely that a change in direction of performance over
time occurs: unless explicit relevance feedback is available to a system, it is implausible that, e.g., a decrease in performance
is reversed and turned into an improvement.

In climatology data points are typically obtained from natural phenomena. Trends may occur but extreme observations
may obscure them. Therefore, robustness to outliers is an issue. The most common way to fit a straight line to a set of points
is by using least squares (LS). The advantage is that there is a closed form formula for calculating its parameters. However,
‘‘[t]he problem that a single outlying observation may suffice to severely influence the LS regression estimator makes the LS
regression a non-robust method’’ (Muhlbauer, Spichtinger, & Lohmann, 2009). Two alternatives were proposed in Muhlbauer
et al. (2009), the least median of squares estimator and the least trimmed squares estimator. Both take a subset of observa-
tions (the ones closest to the median, and the ones with the smallest residuals, respectively) and estimate regression param-
eters from the subset. Rather then using these alternatives in our tests, we use weighted least squares. We do so for the
following reasons. Firstly, peaks in the data might actually indicate interesting underlying phenomena and should be inves-
tigated, rather than left out or smoothed out (Field, 2013). Secondly, the data sets we use (see Section 6) are sufficiently big,
and the larger the sample the estimates are based on, the smaller the effect of outliers will be. Thirdly, as discussed in
Section 6.3, the weighted least squares estimate, is more robust to outliers. Lastly, as the primary focus of this paper is to
introduce our time-aware evaluation framework; an extensive study of when and how to apply alternative estimation
methods is beyond the scope of this paper. Below, we assume that the data we work with is sufficiently consistent to warrant
common least squares estimation.
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2.4. Significance testing

Tests for comparing measurements over time require special care. Statistical methods for comparing regression coeffi-
cients between models, including the z-test we use (see Section 5.3), are discussed in Clogg, Petkova, and Haritou (1995).
The scenario addressed there differs slightly from ours, as the main focus of the work in Clogg et al. (1995) is on models that
are assumed to be extensions of one another.

Homoscedasticity, or similarity of variance across data points, is an important assumption of least squares regression. If it
is violated by the use of heteroscedastic data, significance tests are not valid anymore, even if the regression parameters still
are unbiased. In Section 5.4 homoscedasticity and its implications on our framework are discussed in more detail. In Hayes
and Cai (2007), Long and Ervin (2000) the use of tests based on the heteroscedasticity-consistent covariance matrix is advo-
cated. The heteroscedasticity-consistent standard error estimators derived from this matrix allow for a more robust method
in dealing with heteroscadistic data when no assumptions about the source of heterogeneity of variance can be made. The
authors introduce four estimators, HC0 up to HC3. They show by extensive tests on synthetic data that hypothesis tests using
HC3 standard error estimators lead to the most robust results. In our tests in Section 6 we show results using HC3 standard
error estimates as they lead to the most conservative estimates.

3. Measuring performance over time with trend estimation

To measure the performance of a document filtering system over time we propose to use trend estimation. The time per-
iod the system is evaluated on is divided into equal-sized batches. We calculate the performance in batches in terms of an
underlying metric, such as macro-F1, and fit a straight line to the outcomes. The derivative of the fitted line, the slope coef-
ficient, indicates the improvement or degradation of the system over time with respect to the underlying measure. In Fig. 1
the blue dots are the outcomes of the underlying metric per batch, and the orange lines are the fitted trend lines. While the
slope coefficient can provide additional insights into system behavior, in itself it is not suitable as a performance metric. A
larger coefficient indicates that one system is improving more over time than another. Yet, it can still fall behind consider-
ably in terms of absolute performance. Therefore, we consider system performance at the end of the evaluation period and
return the value assumed by the fitted trend line at the most recent point in time, as indicated with the solid orange dots in
Fig. 1. The performance at this point in is what we call the estimated end-point performance.

In the remainder of the paper we will refer to the trend analysis based on batch evaluation as trend estimation framework.
The estimated performance at the end of the evaluation period, which we will use to rank document filtering systems by, we
will refer to as time-aware evaluation metric.

How should we assess the time-aware evaluation metric and the trend estimation framework it is built on? We answer
this question in two ways. Below, we discuss the properties that we believe any reasonable document filtering evaluation
metric should have. The trend estimation framework is based on two main components: (i) measuring (overall) system per-
formance for a given period of time (referred to as a time batch) and (ii) computing estimated end-point performance by fit-
ting a trend line. In Section 4 we discuss evaluation per batch along with the requirements on evaluation metrics that such a
setting brings. The trend estimation framework is discussed in Section 5, where we check the properties, the requirements
for per batch evaluation, together with statistical significance testing and the assumptions that need to hold for it.

Let us turn to the properties that we believe any reasonable metric used for evaluating IR systems should be have:
stability, sensitivity, reliability, and unbiasedness. An additional requirement in the case of evaluating document filtering
systems is time-awareness.

By time-awareness we mean the ability of a metric to take changes in performance over time into account. As performance
of systems might evolve over time, consistent changes throughout the evaluation time period should be reflected by a
metric. The metrics currently available perform averaging over the entire evaluation period, and by doing so disregard
the temporal dimension.

Stability and robustness represent the same concept, under different names. ‘‘An evaluation methodology can be said to be
stable with respect to some changing variable, or robust to changes in that variable’’ (Berendsen, de Rijke, Balog, Bogers, &
van den Bosch, 2013). Hence, we will use the terms stability and robustness interchangeably. Stability can be measured by
the extent to which a ranking of systems is affected by changes in the experimental setting, with respect to the evaluation
measure, e.g., by varying the size of the test topic set (Buckley & Voorhees, 2000; Yilmaz & Aslam, 2006). Stability is exam-
ined based on a set of systems, e.g., all runs submitted to a TREC task. Therefore, it is not a property of a given evaluation
metric, in isolation, but of a particular experimental design, including the test topics and the systems that are subject to
comparison.

Sensitivity is the ability to detect changes in the quality of rankings (Hofmann, Whiteson, & de Rijke, 2011). Without sen-
sitive measurement we might reject a small but significant improvement (Radlinski & Craswell, 2010).

Zhou, Lalmas, Sakai, Cummins, and Jose (2013) define reliability as the ‘‘ability of a metric to detect ‘actual’ performance
differences as opposed to those observed by chance.’’ To help improve reliability of a metric, a large enough difference
between scores of systems should be observed before concluding that they are different. In Section 5.3 we discuss what
is needed to interpret the difference between two regression coefficients.
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A sound metric should have no bias, i.e., no preference should come from the metric itself. Unbiasedness of the trend esti-
mation framework means that a sufficiently large set of random scores of the underlying metric randomly distributed over
time should produce a flat score. The chances of an exact zero trend being observed in random data are in fact negligible. For
large sample sizes, however, the trend in random data will on average be statistically indiscernible from a zero trend at high
confidence levels, due to the central limit theorem (Gravetter & Wallnau, 2007).

Our proposed method of measuring performance over time per batch and fitting a trend line to the results can be applied
to any metric. It can be applied, e.g., to precision and recall separately, or to any other metric including click-based ones like
ERR, if click data is available. As we are interested in our experiments in the overall performance of systems over time, we
focus on F-measure in the remainder of this article. However, we note that what follows can be applied to any metric that can
be calculated per batch.

4. Measuring performance per time batch

To capture performance over time we propose to divide the period a system is evaluated on in time batches of equal size.
As discussed below, this introduces some caveats, in particular concerning false positives. We first analyze the requirements
for per-batch evaluation and address measuring false positives afterwards.

4.1. Requirements

Fig. 2 shows a graphical overview of five relevance requirements that a per-batch metric has to meet.
The first three cover the standard cases where having more relevant documents is preferred over having less relevant doc-

uments (1 and 3) and returning irrelevant documents is punished (2), all else being equal. An overall average in terms of
macro-precision and macro-recall, or macro-F1 covers exactly these cases. Cases 2, 4 and 5 all pertain to the Growing
Quality Constraint for document filtering metrics (Amigó et al., 2011) which asserts that ‘‘adding an irrelevant document
to the output [. . .] must decrease the score.’’. Interestingly though, in 4 and 5, precision and recall (and hence F1) will give
identical score (namely 0). If we assume System A to be the ground truth in the fifth case, recall is not even well-defined
(division by 0).

When taking an overall average (with all documents in a single batch) cases 4 and 5 do not constitute a problem, as these
cases will simply never occur (it does not make sense to evaluate a system when there is no ground truth). In a setting with
time batches, however, they do.

4.2. Measuring false positives

In a document filtering setting results may be returned for topics that were not listed in the ground truth for a particular
batch. Also, batches may occur for which the ground truth mentions no relevant documents at all. For example, in a docu-
ment filtering setting like TREC KBA CCR, where entities are being monitored over time, it could happen that during a certain
day or week, no documents were published concerning any of the entities of interest. In these cases precision is not a mean-
ingful measure, and recall and MAP are actually not defined, as the denominators in both cases are zero. Recall, e.g., is defined
as the number of true positives, divided by the sum of true positives and false negatives. If there are no positive instances
defined for a batch, there are neither true positives nor false negatives, so the denominator is 0. Hence recall is undefined.1

Hence, by only looking at recall- and MAP-like metrics (a similar argument can be raised for nDCG, the new metrics introduced
in Amigó et al. (2013), and many others) we cannot measure the performance of a system at times there are no true positives. A
system might, however, keep returning results (false positives), all of which go unnoticed by the evaluation metrics. A metric
should favor systems that return less false positives over ones that return more, even if no positive documents are available in
the ground truth (cases 4 and 5 in Fig. 2). Therefore, false positives should be measured more directly when topic tracking or
entity monitoring systems are being evaluated in batches over time.

We note that this fact was also recognised by the organisers of the TREC filtering track: ‘‘Classical set-based evaluation
measures from information retrieval such as raw precision and recall do not behave gracefully for topics with few or no rel-
evant documents. For example, the precision of a system which returns one non-relevant document is zero. The precision of
a system which returns one thousand non-relevant documents is also zero. However, the former system is doing a far better
job of filtering than the latter.’’ (Hull et al., 1998).

There already are multiple metrics that measure false positives. In the next section we propose yet another way of doing
so. In the remainder of this section we will briefly go over the existing metrics and explain why we do not use them. In what
follows, we use FP to denote false positives, TP for true positives, FN for false negatives and TN for true negatives.

False discovery rate is defined as FP
FPþTP. As can easily be deduced from this formula, the metric does not measure anything

if there are no TPs, as it is always 1 in those cases.
1 This is not the same as having recall (or MAP) score of zero. A zero result represents a (rather bad) result, while in this case we have an absence, a lack of
results. In the tests discussed in Section 6 this is simply handled by leaving out the values for these time batches, which does not affect the least squares fitting
of the line.
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False positive rate is defined as FP
FPþTN. This is not a practical measure when there are no positive documents in a batch, as

the TNs are in fact all documents in the batch that were not returned by the system. The size of the corpora today (the KBA
stream corpus 2013, e.g., contains billions of documents) is such that the number of documents in a batch can easily be sev-
eral orders of magnitude bigger than the number of document returned by a system. Hence, false positive rate will in practice
most often be a very small number. In the case that a very small batch occurs, returning only a couple of FP documents for
this batch will result in a very high false positive rate, whereas returning many more FPs for a larger batch could result in a
much lower false positive rate. This effect is counterintuitive from a user perspective, as the user is oblivious to the size of a
particular batch, but not to the amount of FPs presented by the system.

As noted above, the TREC filtering track also recognised the importance of measuring FPs and hence employed the utility
measure that directly measures FPs. It measures TPs and subtracts the number of FPs, where both the number of TPs and FPs
are multiplied by a factor indicating their respective importance. The score used in the last year the track ran is presented in
Robertson and Soboroff (2002) as T11U ¼ 2TP� FP. To be able to average across topics the score is normalized by its max-
imum value, which is 2TP. This latter step precludes us from using it, as, for true-positive-less batches, the score is undefined.
A similar argument applies for the non-linear utility scores used in an earlier TREC document filtering track (see Hull &
Robertson, 1999).

The evaluation measure used at TDT is Normalized Detection Cost, which is a weighted average of miss and false-alarm
rates. Following Ault and Yang (2002), we refer to this metric as Ctrk:
Please
(2015
Ctrk ¼
Cmiss

FN
TPþFN Pontopic þ Cfa

FP
FPþTN ð1� PontopicÞ

minðCmissPontopic; Cfað1� PontopicÞÞ
;

where Cmiss and Cfa are the costs for misses and false-alarms, respectively, and Pontopic is the a priori probability that a story is
on-topic. The evaluation specification states the actual values; at TDT-3, these are Cmiss ¼ 1:0;Cfa ¼ 0:1 and Pontopic ¼ 0:02.
Overall system performance is the macro-average of the system’s Ctrk scores for the individual topics (events). Note that a
lower Ctrk is better, i.e., a perfect system has a 0 score, while a system that retrieves all documents or zero documents gets
a Ctrk score of 1.

The Ctrk metric cannot be used to measure performance when no TPs occur, because in such an event, no FNs occur either,
and hence the first term in the numerator is undefined (division by 0). We note that if this is solved (e.g., by assuming the
first term is 0 in these cases) Ctrk does satisfy all relevance requirements in Fig. 2. But, as ‘‘false-alarm rate is defined in terms
of the number of non-relevant documents, most of which the user hopefully does not see’’ (Ault & Yang, 2002), it suffers from
the same issue as false positive rate does: it is overly sensitive to small batches, where TN is low.
4.3. Aptness

We propose to measure the aptness of a system by quantifying the number of false positives it returns in the following
way:
aptness ¼ f
fþ FP

: ð1Þ
Here, FP is the number of false positives and f is a sensitivity parameter. When f is set to a low value (e.g., 1), adding a few
false positives already decreases the aptness score considerably. Choosing a higher value for f reduces this effect. In the
results reported in Section 6 we set f to 1.
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The output of the aptness score is in the ð0;1� scale. The larger the number of false positives, the lower the score. Adding
false positives when there are only few has a more drastic effect on the score than adding a few false positives when there
are many already. We argue that this is a desired property of the metric in the scenarios considered in this paper.

The official TREC scoring strategy is to implement macro-averaging as summing scores from all entities and dividing by
the number of entities (Frank, Bauer, et al., 2013). In the case of macro-precision and macro-recall this means averaging over
the number of entities in the ground truth. For aptness this means averaging over the number of (unique) entities in the
ground truth and the system run combined.

4.4. Combining scores

A standard way of combining scores is to weigh their contribution to the final score. For the F-measure, e.g., this can
expressed as
Please
(2015
1
a
P þ 1�a

R

;

where a is a parameter that indicates the relative importance of precision over recall. We propose a similar strategy for an
overall score that incorporates precision, recall and aptness that we call Fpra:
Fpra ¼
1

aP
P þ

aR
R þ

aA
A

: ð2Þ
Here, P stands for precision, R for recall and A for aptness. The am parameter indicates the relative imprtance of measure m.
However, as a measure can be undefined at a particular time, we have:
Fpra ¼
1

1ðPÞ � aP
P þ 1ðRÞ � aR

R þ 1ðAÞ � aA
A

;

where 1ðmÞ ¼ 1 for a measure m if it is defined and 0 otherwise. We assume that 1ðxÞ � ax
x ¼ 0 when x is undefined. We want

that
P

m2½P;R;A�am ¼ 1 and hence choose am ¼ 1P
m2½P;R;A�

1ðmÞ
.

In practice, this means that if all metrics are defined, the score is the harmonic mean of their values. If precision and recall
are not defined, the score reduces to the aptness score, which is always defined. Note that as a result, if there is no ground
truth for a certain batch, and a system produces no output for this batch, it gets a maximum score of 1, which is a desired
effect.

As we can see from Eq. (2), cases 4 and 5 in Fig. 2 are handled correctly by Fpra as adding false positives will always reduce
aptness, and hence Fpra.

For batches for which ground truth documents are available, false positives are taken into account both in the precision
and in the aptness score. Just as precision and recall measure two distinct things about true positives, aptness and precision
measure two distinct things about false positives. Precision, by considering the number of false positives in relation to the
number of true positives, measures how pure results are. Aptness, by only considering false positives, measures how much
noise a system produces. The Fpra score, by calculating the harmonic mean between the three scores, implicitly implements
an underlying user model where the user is interested in three things: how good is the system in finding relevant documents
(precision), how many relevant documents does it miss (recall) and how much noise does the system produce (aptness).

To distinguish between different F-measures, we use Fpr to refer to the batch-based F-measure which considers only pre-
cision and recall, while Fpra is used for the batch-based F-measure that considers precision, recall and aptness, as described
above. The traditional F-measure, averaged over the entire evaluation period, is denoted as F1.

5. Trend estimation

In this section we provide the details of how we propose to employ trend estimation for evaluation.

5.1. Weighted least squares

As performance is measured per batch, the amount of data a metric is calculated from can differ across time batches.
Therefore, rather than using ordinary least squares to fit a line to the measurements in different batches, we should use a
weighted least squares estimator. The weight for a time batch is the amount of data the metric is calculated from in this
batch, as a proportion of the total amount of data available to the metric over the entire time period. If the entire evaluation
period ranges form t ¼ 0 until t ¼ T, the weight w for Fpr or Fpra, for a time batch ranging from ti to tiþ1 would be:
wtiþ1
t¼ti
¼

#documents in run and ground truth combinedtiþ1
t¼ti

#documents in run and ground truth combinedT
t¼0

:
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5.2. Normalizing trends

The size of the batches is a parameter of the trend estimation model. We refer to this as the time granularity. If two trends
have been estimated on the same data but with different granularity they need to be normalized before they can be com-
pared. If, e.g., one trend is estimated on 1-h batches, while the other is based on 24-h batches, the slope coefficients will
not correspond directly. This is simply due to a difference in units of measurement. The first slope coefficient represents
the change per hour where the second one represents the change per day, which, if the two trends are in fact the same,
is 24 times as much. To compare the two, the two trends can be normalized to the same time unit, e.g., hours or seconds.
See Section 6.4 for additional discussion.

5.3. Statistical significance

With respect to statistical significance, there are two questions of interest about the slope coefficients of regression lines.
One is whether the observed trend is a trend at all (i.e., if it is distinguishable from a zero trend); this is answered using a
t-test (Field, 2013). The other question is whether the slope coefficients of two fitted lines are significantly different; we
employ a z-test to answer this (Paternoster, Brame, Mazerolle, & Piquero, 1998; Clogg et al., 1995).

5.3.1. Testing for a trend

When testing whether an estimated slope coefficient b̂ is different form a zero trend b0, the t-statistic is given by
t ¼ ðb̂� b0Þ=SEðb̂Þ (Field, 2013), which, as b0 is 0, reduces to:
2 The

Please
(2015
t ¼ b̂

SEðb̂Þ
; ð3Þ
where SEð�Þ is the standard error of the residuals.2 The degrees of freedom are the number of observations minus the number of
regressors including the intercept (so 2 in our case).

5.3.2. Testing between trends
The statistical significance between two trends is determined by a z-test (Paternoster et al., 1998):
z ¼ b̂1 � b̂2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEðb̂1Þ

2 þ SEðb̂2Þ
2

q ; ð4Þ
where b̂1 and b̂2 are the slope coefficients of the fitted lines.
As discussed in Section 2 there are multiple ways to calculate the standard error of the slope coefficient SEð�Þ. We show

results for HC3 standard error estimates for our tests in Section 6 and do not use conventional standard error estimates.
For the tests just presented to be applicable, a number of conditions have to be met as discussed next.

5.4. Assumptions

For statistical tests on slope coefficients of fitted lines (as detailed in Section 5.3) to be valid, assumptions need to hold
concerning linearity, normality, homoscedasticity and independence (Field, 2013). In this section we briefly discuss the
assumptions in our setting of filtering documents over time.

5.4.1. Linearity
The linearity assumption simply means that there is a relation between the variables we observe and that this relation is

linear. If this assumption does not hold any interpretation of outcomes or statistical significance is meaningless as the model
is not right. In the present case for the linearity assumption to hold, the dependent variable, performance, has to have a linear
relation to the independent variable, time. Note that this is not a given fact: performance might, e.g., degrade exponentially.

A standard way of testing for a linear relation between two stochastic variables is to calculate Spearman’s correlation
coefficient. We should note, however, that while values of the coefficient towards the extreme ends of its scale do indicate
a correlation, they do not, in fact, tell anything about it being linear or not (Anscombe, 1973). Visual inspection of results and
background knowledge about the underlying systems producing them remain invaluable.

In this work, we assume that a linear relation holds between time and performance, and show how the trend analysis
framework works if it does. We note that this is a simplifying assumption and it might well be that a trend is occurring that
is non-linear. We argue, however, that it is reasonable to assume that, given the short time interval during which systems are
being monitored, changes in performance (if observed at all) are relatively constant, and that, therefore, it is reasonable to
assume that a linear fit to the performance over time.
slope coefficients are usually referred to by b̂ rather than just b to indicate that they are estimates of a (assumed) true underlying function.
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5.4.2. Normality
For the normality assumption to hold the residuals (from the fitted line) need to be normally distributed. For the purpose

of estimating the regression line this assumption is barely important (Gelman, 2007). The normality assumption is of con-
cern, however, for the statistical tests to be valid especially with small sample sizes.

We should note that as the metrics we use as data points are usually on a closed scale (with values typically between 0
and 1) the distribution of residuals can in fact never be truly normal. This is not a problem as long as the distribution is still
‘‘sufficiently normal.’’ If, however, only score values 0 or 1 occur, the variable is actually categorical, and the assumption does
not hold.

Normality can be tested in numerous ways. As reported in Razali and Wah (2011), the Shapiro–Wilk test and Anderson–
Darling test are the most powerful tests for normality, and they are comparable in performance. We use the latter in our tests
in Section 6.

5.4.3. Homoscedasticity
Homoscedasticity concerns the homogeneity of variance. The homoscedasticity assumption is violated when the variance

across data points varies too much. Although the parameters estimated by the least squares method are unbiased if the
assumption does not hold, the assumption needs to hold for statistical significance tests to be valid (Hayes & Cai, 2007).
The residuals of the fitted line can be normally distributed, but if they are heteroscedastic, the least squares estimator
can be inefficient, and the confidence intervals for the regression parameters can be inaccurate (Wilcox, 2012). This can,
for example, be the case when there are far more measures for one system than for another system it is compared to.
Also, in our case where observations are collected over time, homoscedasticity is related to homogeneity of observations
over time. If we take the average per time span of several observations this can lead to heteroscedasticity, as averages will
be taken over different numbers of observations, and hence different variances or uncertainties over time.

A solution for dealing with heteroscedastic data is to weight each data point by its variance and apply weighted least
squares estimation to fit the regression line, rather than ordinary least squares (Field, 2013).3 However, this method also
builds on certain assumptions, in particular about the nature of heteroscedasticity in the residuals. As discussed in Section 2,
a more robust method is to use heteroscedasticity-consistent standard error estimators. In results reported in Section 6, we
use HC3 standard error estimators to compute the standard errors following (Hayes & Cai, 2007; Long & Ervin, 2000).

5.4.4. Independence
The independence assumption holds if the errors from the fitted line (the residuals) are independent of one another.

Independence of residuals can be tested for by the Durbin–Watson test (Durbin & Watson, 1951). The values of the statistic
range between 0 and 4. A value of 2 indicates no correlation. The test statistic is compared to a lower limit and an upper limit,
which depend on the number of variables of the model (2 in our case), the number of observations and a p-value. If the test
value is below the lower limit there is evidence of positive autocorrelation. If the value is higher than the upper limit there is
no evidence. For values in between, the test is inconclusive. A rule of thumb is that values close to 2 are preferred, while
values below 1 or above 3 are problematic (Field, 2013).

6. Results

We analyze the runs submitted to the KBA CCR tasks of TREC 2012 and TREC 2013 (KBA’12 and KBA’13 for short) with the
time-aware evaluation metric as described above. In particular we are interested in answering the following research
questions:

1. Do rankings of systems change when we evaluate document filtering systems with our time-aware evaluation metric,
compared to using a time-agnostic method?

2. Does including aptness in Fpra make a difference compared to using Fpr?
3. Does our time-aware evaluation metric have all required properties as specified in Section 4?
4. Can claims about statistical significance be made using our time-aware evaluation metric?

6.1. Experimental setup

Every document returned in a KBA CCR run has a score that indicates its relevance to the topic it is associated with. The
official TREC evaluation method performs a sweep over a range of possible values to find the optimal cutoff value for every
run. As we evaluate the runs in batches and employ trend estimation, the optimal cutoff value for the new evaluation can
differ from the ones reported in the official TREC results. Hence, we perform a cutoff sweep as well (from 50 up to and includ-
ing 1000 in steps of 50) to find the optimal cutoff values in terms of estimated end point performance for both Fpr and for Fpra.
In the tests below we report only on central/vital documents and we use 1-day time batches unless stated otherwise.
3 We use weighted least squares and weigh data points by the amount of data their values are based on rather than their variance. In the case of, e.g., simple
non-averaged precision or recall in one time batch, there is no such thing as variance, as no average is being computed.
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6.2. Time-aware evaluation

The official TREC results provide a ranking of teams based on their best performing run in terms of macro-averaged F1

(computed over the entire testing period). To answer research questions 1 and 2 we present rankings of the same runs based
on the time-aware evaluation metric. For the first ranking we use the same macro-F1 score that the official TREC results are
based on as the underlying metric, computed as the harmonic mean of macro-precision and macro-recall. However, we
compute it per batch, and refer to it as macro-Fpr . For the second new ranking, we use macro-Fpra, averaged in the same fash-
ion, and also calculated per batch. Table 1 lists the rank correlation coefficients between the official TREC results the newly
produced rankings, based on the time-aware metrics.

6.2.1. Using Fpr

Fig. 3 and 4 show the official results in terms of macro-averaged F1-score for the runs submitted to KBA’12 and KBA’13,4

respectively (Frank, Kleiman-Weiner, et al., 2013; Frank, Bauer, et al., 2013). Figs. 5 and 6 show the corresponding plots using
estimated end-point macro-Fpr performance. Note that for easy reference and comparison we adhere to the respective styles
used in the original TREC publications for KBA’12 and KBA’13 plots.

There is a number of interesting observations to make from Figs. 5 and 6. First, for both years, the ranking of runs has
changed considerably compared to the ‘‘official’’ plots, which is also reflected by a Kendall’s s figure of 0:49 and 0:67.
Most notably in 2012, the hltcoe team, which was ranked second in the official results, scores considerably lower, while
the UvA and CWI teams are promoted upwards. The official results for 2013 show a plateau of top achievers with the runs
of the BIT team elevated slightly above the plateau. The new ranking in Fig. 6 shows a different picture. The plateau is gone,
and uiucGSLIS’s best run is promoted to the first position while previously their runs were ranked close to the middle. The
UMass_CIIR best-performing run was ranked second; it ends up in the middle region in the new ranking.

Second, for both years, the scores per team show a bigger spread than in the official graphs for some teams. An interesting
case in 2012 is, e.g., the UvA. Where all the runs of this team were lumped together in the original graph, we see a spread of
scores when ranked by the new metrics. This shows that the different approaches the teams implemented have a more
distinct effect than one would be led to conclude from the official result graphs. From these findings we conclude that
evaluating the TREC KBA CCR runs in a time-aware fashion leads to a considerably different insights and analysis than
the time-agnostic evaluation does.

Third, with our time-aware evaluation method, the absolute scores go up to a higher value, in particular in 2013. This is a
result of using macro-averaging per batch using Fpr , where false positives returned for entities that were not listed in the
ground truth for that batch are ignored by Fpr (see Section 4.2). As a result, the macro-Fpr scores for some systems are con-
siderably higher for certain batches, which is reflected in the graphs.

6.2.2. Using Fpra

The overly positive view that Figs. 5 and 6 might present, because of the disregarded false positives, is corrected for when
we use the estimated end-point macro-Fpra score for evaluation. Figs. 7 and 8 display the new rankings produced accordingly
for KBA’12 and KBA’13.

As expected, the absolute scores have dropped considerably compared to the ones in Figs. 5 and 6 (from max. � 0:5 to
max. � 0:4, and max. � 0:8 to max. � 0:6 for 2012 and 2013, respectively). This shows that including aptness scores in
the metric has a noticeable effect, which is also reflected by the rank correlation scores between rankings based on Fpr

and Fpra as reported in Table 1.
In 2012 the ranking at the top has changed again compared to the rankings based on macro-Fpr . We still see the same

spread of scores we observed in Fig. 5.
In 2013 the most striking observation is that at the end of the evaluation period, no run is doing better than the oracle

baseline, neither in terms of estimated end-point macro-Fpr nor in terms of estimated end-point macro-Fpra. This has several
implications. The oracle run uses a hand-picked set of surface form names. It assigns a ‘‘vital’’ rating to every document that
matches a surface form of an entity and assigns a confidence score based on the length of the observed name (Frank, Bauer,
et al., 2013). Apparently, having a very well-tuned set of surface form names per entity is crucial. Adaptivity, however, is
important. Of the participating teams in 2013, four teams submitted runs for systems that were sensitive to changes at
run time — uiucGSLIS (Efron, Willis, Organisciak, Balsamo, & Lucic, 2013), BIT (Wang, Song, Lin, & Liao, 2013),
UAmsterdam (Kenter, 2013) and IRIT (Abbes, Pinel-Sauvagnat, Hernandez, & Boughanem, 2013). If the teams are ranked
by the time-agnostic official TREC score, Fig. 4, there seems to be a plateau of ‘best teams’ (uiucGSLIS, PRIS, UDel (Liu &
Fang, 2013), UMass (Dietz & Dalton, 2013) and BIT). If we look at the overview as produced by the time-aware Fpra metric,
Fig. 8, we see that the only top achievers are BIT and uiucGSLIS, while the performance of the other teams is lower.
Interestingly, these are the only two teams of the five high achievers as measured by the official TREC measure, that have
time-aware systems. This shows that adaptivity turns out to be of key importance for performance over time (i.e., these
systems do best at the end of the evaluation period). This distinction is lost when the original metric is used.
4 The graph of the official KBA’13 results lists some additional runs that were submitted for an additional task called KBX. As this task was part of a slot filling
experiment (some runs even were in the slot filling run format), and as such actually closer to the KBA SSF task, we omit these runs in our overview.
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Table 1
Kendall’s s rank correlation coefficients between different rankings.

TREC official vs. Fpr TREC official vs. Fpra Fpr vs. Fpra

2012 0.49 0.49 0.85
2013 0.67 0.64 0.67
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Fig. 5. KBA’12 results in terms of estimated end-point Fpr .
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6.3. Analysis of properties

To answer research question 3 we analyze the properties and requirements discussed in Section 4.1 in the context of our
proposed method. It is important to distinguish between the underlying metric that the trend estimation framework
incorporates (Fpr or Fpra), and the slope coefficient it produces. The properties as discussed in this section pertain to trend
estimation and the slope coefficient, not to the underlying metric.

6.3.1. Time-awareness
The time-aware evaluation metric we propose incorporates the temporal dimension of the document filtering task in two

ways. Firstly, the slope coefficients estimated by trend analysis quantify how much a system is improving/degrading over
time. Secondly, the estimated end-point performance values express the estimated performance of a system at the end of
the evaluation period, taking changes in performance over time into account.

6.3.2. Stability
Stability can be measured by the extent to which a ranking of systems is affected by changes in the experimental setting.

The trend estimation model as proposed in this paper has one parameter, which is the time granularity. Robustness with
respect to this parameter would mean that changes in time granularity should not affect the fitted line or its slope coeffi-
cient. To test the stability of the trend estimation framework we compare the trends of all KBA’12 and KBA’13 runs across
different levels of granularity for macro-precision, -recall, -aptness, -Fpr and -Fpra for 20 different cut-off levels. We normalize
the slope coefficients to second level and compute the difference for every run between the trend estimated at a granularity
of 1-day level and 7-day level and 30-day level respectively. Table 2 shows the statistics for the comparisons. We observe
Fig. 6. KBA’13 results in terms of estimated end-point Fpr .
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Fig. 7. KBA’12 results in terms of estimated end-point Fpra .
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that the differences and deviations from the mean value are very close to 0, and conclude that the slope coefficients are
stable under different levels of time granularity in all cases.

6.3.3. Sensitivity
Sensitivity is the ability to detect changes in the quality of rankings (Radlinski & Craswell, 2010; Hofmann et al., 2011). In

the present setting this means that the trend estimation framework, and the slope coefficients it produces, should be
sensitive to meaningful differences between systems. The significance tests in Section 5.3 describe how differences between
rankings should be calculated.

As discussed in Section 2 the ordinary least squares method is sensitive to outliers, especially if they appear at the
extreme ends of the scale (i.e., the start or end of the time period under consideration). In this paper we apply weighted least
squares to fit a straight line to the data (see Section 5.1). This is very similar to the ordinary least squares method, only we
weight the data points by the amount of data they are based on.

There is a caveat when for a batch both the ground truth and the results a system returned are empty. As described above,
the Fpra score will be 1 in this case, but the weight for the score, as used for the weighted least square fit, is 0, as no
documents are observed. This can have a negative effect on the fitted trend lines.

We should note that weighting data points as we propose in itself makes the method more robust to outliers. There is a
risk that in a time batch with few observations, extreme values might cause a substantial deviation. However, as only few
observations are involved, the weight of this data point will be low. And conversely, for a data point to be weighted heavily
and have a big impact on the slope coefficient of the fitted line, it has to be based on a considerable number of observations,
and hence it is not an outlier.
Fig. 8. KBA’13 performance in terms of estimated end-point Fpra .
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Table 2
Comparison of differences between normalized trends of macro-averaged metrics (precision, recall, aptness, Fpr and Fpra) between 1-day granularity level and 7-
day and 30-day granularity levels.

Measure Mean Std. dev. Min Max

KBA’12 – 7-day
pr 1.649e�10 1.401e�08 �7.254e�08 2.494e�07
rc 9.779e�10 1.881e�09 �4.163e�09 1.044e�08
apt 4.704e�09 5.762e�08 �2.139e�07 5.637e�07
Fpr 6.533e�10 2.973e�09 �1.016e�08 9.951e�09
Fpra �2.230e�10 3.110e�09 �1.218e�08 1.234e�08

KBA’12 – 30-day
pr �5.245e�10 1.329e�08 �1.142e�07 1.546e�07
rc 2.263e�09 3.645e�09 �7.378e�09 1.610e�08
apt 1.226e�08 1.377e�07 �2.066e�07 1.370e�06
Fpr 8.503e�10 3.821e�09 �1.619e�08 1.135e�08
Fpra 1.066e�10 5.520e�09 �1.978e�08 1.260e�08

KBA’13 – 7-day
pr 1.855e�09 1.486e�08 �1.035e�07 1.889e�07
rc �5.774e�10 1.117e�09 �4.406e�09 3.069e�09
apt �5.847e�10 3.999e�09 �5.892e�08 2.496e�08
Fpr �3.870e�10 1.296e�09 �5.131e�09 4.467e�09
Fpra �6.222e�10 1.165e�09 �5.386e�09 2.357e�09

KBA’13 – 30-day
pr 1.777e�09 1.486e�08 �1.036e�07 1.888e�07
rc �9.259e�10 1.761e�09 �6.683e�09 3.448e�09
apt 5.687e�10 1.139e�08 �8.532e�08 4.333e�07
Fpr �4.304e�10 1.867e�09 �7.798e�09 5.506e�09
Fpra �7.954e�10 1.853e�09 �8.424e�09 4.338e�09
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6.3.4. Reliability
In the context of trend estimation, reliability means that random changes observed over time should not be mistaken for

actual changes in performance over time. Any noise introduced by random chance is accounted for by the least squares
algorithm by design, as it models a line by y ¼ bþWxþ �, where � represents the estimated errors. If the estimated errors
account for all the variance in that data, no trend will in fact be observed. Furthermore, if only random noise is observed, this
results in a relatively flat line being fitted by the weighted least squares method, which would be statistically indiscernible
from a zero trend (see our discussion on bias in Section 3).

6.4. Applicability

To answer research question 4 it is important to see if the assumptions needed for the statistical tests hold in a majority of
cases. As described in Section 5.4, the normality assumption and the assumption of independence of errors are particularly
important. To investigate if these assumptions hold for large numbers of runs regardless of the choice of metric or cutoff
level, we analyze all KBA’12 and KBA’13 runs in terms of macro-precision, -recall, -aptness, -Fpr and -Fpra, at every cutoff level
and at three different levels of time granularity: 1-day level, 7-day level and 30-day level. In 2012 there were 45 runs in total,
which gives us 4500 results (45 runs � 20 cut-off values � 5 metrics) at every level of granularity. In 2013 there were 112 runs
in total, leading to 11,200 results at every granularity level. Table 3 provides an overview of the number of cases in which a
particular assumption was met for both years. A large portion of runs do not produce any results at lower cut-off values. The
Durbin–Watson assumption trivially never holds in these cases. As this is not informative, we leave these runs out in Table 3
and only report on non-zero runs. The numbers for KBA’12 are lower, which might be caused by a larger number of
poor-performing runs (i.e., a lot of very low, and hence very similar scores).

We see a consistent pattern, where at the finest level of granularity (1-day batches) the assumptions hold in most cases.
An important implication of this finding is that when dealing with results as submitted to an evaluation campaign widely
used in the IR community such as TREC KBA, the trend estimation framework as proposed here can be employed to make
claims about significance of results in a vast majority of cases.

6.5. Analysis of systems

To see whether a particular choice of algorithms or parameter settings makes a substantial change in performance of a
system, we can perform significance tests as described in Section 5.3. As an example, the BIT team that submitted runs to
KBA’13 might be interested, based on the results displayed in Fig. 8, to know whether there is a significant difference
between their best and worst run. Fig. 9 shows the results of the two runs over the entire evaluation period analyzed in
24 h batches. The relevant statistics are listed in Table 4. As we can see from this table, both the normality assumption
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Table 3
Validity of Anderson–Darling and Durbin–Watson assumptions for multiple cut-off levels, at different levels of granularity.

Granularity # Non-0 runs A–D D–W A–D & D–W

KBA’12
30-day 3758 1211 2916 1119 (30%)
7-day 3758 1291 3527 1246 (33%)
1-day 3774 2928 3595 2796 (74%)

KBA’13
30-day 8537 1706 7637 1645 (19%)
7-day 8783 6881 7034 5498 (63%)
1-day 8715 8706 7752 7743 (89%)

Fig. 9. Visual comparison of two runs submitted by the BIT team to KBA’13, in terms of estimated end-point Macro-Fpra .

Table 4
Overview of relevant statistics for two runs of the BIT team as submitted to KBA’13, based on macro-Fpra trend estimation. HC3 s.e.: HC3 standard errors, A–D:
Anderson–Darling test statistic, D–W: Durbin–Watson test statistic. The last column shows the t-test statistic and p-value for a H0 hypothesis that the trend line
is equal to 0 (see Eq. (3)).

Run Slope HC3 s.e. A–D (p-val) D–W t (p-val)

RFClassLoose �1.11e�4 4.87–05 5.93 (1e�14) 1.58 2.29 (0.2)
RFClassStrict �3.14e�4 7.03–05 5.81 (2e�14) 1.66 4.47 (0.05)
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and the independence assumption hold. While the runs start out roughly similar, RFClassStrict’s performance (orange5 line in
Fig. 9) drops while the performance of RFClassLoose (blue line in Fig. 9) stays more or less the same. In fact, we can see from
Table 4 that the slight trend in the results for RFClassLoose is significantly different from a zero-trend, while the more pro-
nounced trend in the RFCClassStrict results is, at a p-value of 0:05. To see if the two trends differ significantly from one another,
we use the numbers from Table 4 in Eq. (4). We get a z-statistic of 2:37 which leads us to conclude that the two trends are
indeed different, at a p-value of 0:02, for a two-tailed test.

7. Conclusions

In this paper we have proposed to measure the performance of document filtering systems in a time-aware manner. The
underlying idea behind our approach is to measure overall system performance in time batches, fit a trend line to the results,
and consider the value assumed by the fitted trend line at the end of the evaluation period (referred to as estimated
end-point performance) as the time-aware evaluation metric.

Our analysis of requirements has revealed that existing measures fail to correctly deal with batches for which the ground
truth mentions no relevant documents at all. We have introduced the concept of aptness and incorporated it into a new vari-
ant of the F-measure, Fpra. We have evaluated the runs submitted to TREC KBA CCR in 2012 and 2013 using the trend esti-
mation framework and found that the order of top-performing systems changes. Perhaps the most remarkable and
important finding is that from the official TREC 2013 KBA CCR results, based on time-agnostic metrics, it would seem that
the oracle baseline run was beaten by several systems. However, we show by re-evaluation using our proposed time-aware
metrics that in fact none of the systems is able to outperform the oracle run. As the oracle baseline is static and does not
5 For interpretation of color in Fig. 9, the reader is referred to the web version of this article.
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attempt to learn during runtime, this has strong implications concerning (the need for) adaptivity strategies for this task and
corpus.

Additionally, we have shown that the assumptions needed for statistical significance tests with the new method hold in a
vast majority of the cases for the TREC KBA CCR runs for both years in which the track ran.

Our experiments have focused exclusively on the TREC KBA CCR task, as a representative of a document filtering problem.
The proposed trend estimation framework and time-aware evaluation metric, however, are not limited to the task of docu-
ment filtering, but can also be applied to other retrieval tasks, where a more or less monotonic increase or decrease in per-
formance of the retrieval system over time can reasonably be assumed. Dealing with non-linear trends is left for future work.
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