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Abstract—Session-based recommendation (SBR) targets a core
scenario in e-Commerce: Given a sequence of interactions of a
visitor with a selection of items, we want to recommend the
next item(s) of interest to interact with. Unfortunately, SBR
models are difficult to deploy in practice, as (i) session-based
recommendations cannot be precomputed offline, but must be
inferred online for ongoing user sessions with low latency, and
(ii) there is a huge variety of SBR models available, typically
designed by academic researchers, whose inference performance
and deployment cost is unclear. As a result, data scientists must
typically prototype and evaluate different deployment options in
collaboration with devops teams – a tedious and costly process,
which does not scale to multiple use cases.

To alleviate this, we present ETUDE, an end-to-end bench-
marking framework, which enables data scientists to automati-
cally evaluate the inference performance of SBR models under
different deployment options. With ETUDE, data scientists can
declaratively specify workload statistics, hardware options, as
well as latency and throughput constraints. Based on these,
ETUDE automatically deploys and runs an inference benchmark
in Kubernetes with a synthetically generated click workload. Sub-
sequently, ETUDE provides the data scientists with measurements
on the achieved throughput and latency, as a basis for deciding
on feasible and cost-efficient deployment options.

We detail the design of ETUDE and present an experimental
study for ten different SBR models in challenging settings
resembling real-world workloads encountered at the large Euro-
pean e-Commerce platform bol.com. We determine performant
and cost-efficient deployment options in terms of models and
cloud instance types for a variety of online shopping use cases
(ranging from grocery shopping to large e-Commerce platforms).
Moreover, we identify severe performance bottlenecks in the
open source TorchServe inference server from the PyTorch
ecosystem and in the implementation of four SBR models from
the open source RecBole library. We make the source code of
our framework and experimental results publicly available.

I. INTRODUCTION

Session-based recommendation (SBR) targets a core sce-
nario in e-Commerce. Given a sequence of interactions of a
visitor with a selection of items, we want to recommend the
next item(s) of interest to interact with. [1]–[11]. This machine
learning problem is crucial for large e-Commerce platforms
which offer millions of items such as bol.com [12], [13].

Challenges in deploying session-based recommendation
systems. Scaling session-based recommender systems is a
difficult undertaking, because the input space (sequences of
item interactions) for the recommender system is exponentially

spec {
  model: “gs://…//gru4rec.bin",
  catalog_size: 10_000_000,
  device_type: nvidia-tesla-t4,
  target_rps: 1_000, … }
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Fig. 1: High-level overview of ETUDE: Data scientists can
automatically evaluate the inference performance of SBR
models under declaratively specified deployment options in
terms of hardware, workload statistics, as well as latency and
throughput constraints.

large, which renders it impractical to precompute recommen-
dations offline and serve them from a data store. Instead,
session-based recommenders have to interactively react to
changes in the ongoing user sessions, and compute next item
recommendations with low latency [12], [14]. At bol.com
for example, a SBR model has to handle at least 1,000
requests per second with a 90-th percentile latency of at
most 50 milliseconds [12], [13]. Furthermore, deploying an
SBR system often involves choosing from a large number
of models [1]–[10], implemented in academic libraries like
RecBole [15], which lack support for model deployment [16]
and inference optimisations [17].

For these reasons, it is currently very difficult for companies
to deploy SBR models in challenging production scenarios.
Data scientists typically have to prototype different deploy-
ment options in collaboration with devops teams, in order to
manually evaluate a model’s inference performance on a per
use-case basis. This is often a tedious process lasting several
weeks, which eats up the time of hard-to-hire to experts.
Furthermore, this process may have to be repeated multiple
times in retail corporations such as Ahold Delhaize,1 which
have different brands and platforms in different countries, with
varying product catalogs and visitor numbers.

1Ahold Delhaize is an international retail group composed of nineteen
companies located across the United States, Europe and Indonesia.



Existing benchmarks are not designed for such industry
scenarios unfortunately. The Session-Rec [18] benchmark, for
example, measures prediction quality only, with Python-based
single-threaded evaluation, and can therefore not assess real-
world inference performance. Systems-focused benchmarks
like MLPerf [19] are designed to evaluate the performance
of inference systems, but not to help data scientists with the
choice of models and deployment options in an end-to-end
cloud setup.
The ETUDE benchmarking framework. In order to address
the issues outlined above, we present the ETUDE benchmark-
ing framework (Section II). ETUDE allows data scientists
to automatically evaluate the inference performance of SBR
models under different deployment options. Data scientists
provide a set of trained SBR models and declaratively specify
statistics of the underlying product catalog, hardware options
for deployment (e.g., the type of GPU to use), together with
latency and throughput constraints. Based on this, ETUDE
automatically deploys and runs an inference benchmark in
Kubernetes with a synthetically generated click workload, and
provides the data scientists with measurements on throughput
and latency, as a basis for deciding on feasible and cost-
efficient deployment options.

We discuss the design of ETUDE in Section II, including
its synthetic workload generator, its backpressure-aware load
generator and our Rust-based inference server. We show-
case ETUDE in Section III, where we evaluate ten recently
proposed neural SBR models with different deployment op-
tions (CPU/GPU inference, small/large product catalogs, just-
in-time-optimisation of the underlying models) in challeng-
ing settings resembling real-world workloads encountered at
bol.com.
Contributions. Our contributions are as follows:
• We detail the design of our automated end-to-end SBR

model benchmarking framework ETUDE (Section II).
• We present an experimental study for ten different SBR

models in challenging settings resembling real-world work-
loads encountered at bol.com. We determine performant and
cost-efficient deployment options in terms of models and
cloud instance types for a variety of online shopping use
cases (ranging from grocery shopping to large e-Commerce
platforms) in Section III.

• We identify severe performance bottlenecks in the open
source TorchServe inference server from the PyTorch
ecosystem and in the implementations of four SBR models
from the open source RecBole library (Section III).

• We make the source code of ETUDE and our experimental
results available at https://github.com/bkersbergen/etudelib.

II. THE ETUDE BENCHMARKING FRAMEWORK

Design goals. We design ETUDE to address the previously
outlined challenges. We assume that a data scientist (who is
typically an ML expert, but not an expert in systems or devops)
wants to assess whether their SBR model can be deployed in
production, and what setup (in terms of the number and type of

machines) is required to adhere to the latency and throughput
constraints of their company. As illustrated in Figure 1, ETUDE
helps the data scientist to automate and accelerate this pro-
cess. Our framework enables fully automated benchmarking,
where the data scientist only needs to provide their model
and declaratively specifies statistics of the underlying product
catalog, hardware options for deployment (e.g., the type of
GPU to use), together with latency and throughput constraints.
Thereby, ETUDE reduces time-to-deployment and experimen-
tation cost for industry practitioners. Note that ETUDE only
measures the inference performance of a model, not its predic-
tion quality; we assume that the data scientist already evaluates
the prediction quality during the model design phase.

Supported models. In general, ETUDE is compatible with
any SBR model implemented in PyTorch [20]. For this paper,
we discuss ten different neural SBR methods, as implemented
in the open source RecBole library [15]. These include two
recursive neural network-based methods: GRU4Rec [1], which
utilises GRU neural networks with gating mechanisms for
long-term dependencies in item interactions, and Repeat-
Net [2], which employs an encoder-decoder architecture with a
repeat-explore mechanism. Furthermore, we include two graph
neural network-based methods: GC-SAN [3], which uses
graph contextualised self-attention for session representation
and SR-GNN [4], which combines graph models to predict
user actions based on long-term preferences and current in-
terests. We use three attention-based methods: NARM [5],
which employs a hybrid encoder with attention to model
sequential behavior, SINE [6], which introduces sparse-interest
embeddings for session recommendations, and STAMP [7],
which captures short-term attention and memory using gated
self-attention. Finally, we also use three transformer-based
methods: LightSANs [9], which uses transformers on session
item embeddings for sequential recommendations, CORE [8],
which ensures consistent session representations via weighted
sum item embeddings, and SASRec [10], a self-attention-
based recommendation model assigning weights to previous
items in sessions.

Time complexities for inference. We derive the asymptotic time
complexities for inference with the models. These complexi-
ties depend on common hyperparameters, such as the catalog
size C and the number of items to recommend k. Additionally,
they are influenced by model-specific hyperparameters, such as
the hidden size for recursive neural networks or the embedding
dimension of transformers and graph neural networks, to
which we collectively refer as d. In a typical SBR scenario
with a relatively short session length, the asymptotic complex-
ity for inference with all models is O (C(d+ log k)), despite
the different neural architectures. This is because all models
conduct a maximum inner product search for the top-k similar
items in the d-dimensional learned vector representations of
all C items within the catalog. The embedding dimension d
is typically chosen heuristically based on the value of C and
k is set to a small value, which means that the inference time
is dominated by the catalog size C across all models.

https://github.com/bkersbergen/etudelib


Synthetic session generation. A design goal of ETUDE is to
enable load testing and benchmarking without having to replay
sensitive real-world click data. Therefore, we run experiments
with synthetic sessions, which preserve key statistical proper-
ties of the underlying workload. Users only have to provide
two statistics: the exponent αl of a power law distribution
fitted to the distribution of session lengths in the click log,
and the exponent αc of a powerlaw distribution fitted to the
distribution of click counts. These statistics can be estimated
once from a real click log and reused for experiments later.

We detail how to generate N synthetic clicks for a catalog
with C items based on these exponents in Algorithm 1. For
each synthetic session, we first sample a length l from a power
law distribution with exponent αl (Line 10), and subsequently
select l items via inverse transform sampling (Line 14) from
the empirical cumulative distribution (CDF) of C click counts
generated upfront by sampling from a power law distribution
with exponent αc (Line 7). This algorithm is fast enough for
online generation (our implementation is able to generate over
one million clicks per second on a single core for a catalog
size C of ten million items).

Algorithm 1 Synthetic workload generation from the marginal
statistics of a real clicklog.

1 function GENERATE SYNTHETIC SESSIONS(C, N , αl, αc)
2 Input: catalog size C, number of clicks N , exponents αl and αc for the
3 distribution of session lengths and click counts.
4 Output: Synthetic sessions Q.

5 Q← ∅
6 n, s, t← 0
7 I ← sample C click counts from power law dist. with exponent αc

8 while n < N :
9 s← s+ 1 // increment session identifier

10 l← sample session length from power law dist. with exponent αl

11 n← n+ l // increment number of clicks generated
12 for 0 to l : // Generate l clicks
13 t← t+ 1
14 i← sample item id from the empirical CDF of I // Choose item
15 Q← Q ∪ (s, i, t) // Add synthetic click on item i in session s

return Q

Load generator. Our goal is to measure the latency of a
deployed model for a given target throughput (in terms of
requests per second). However, ETUDE should still provide
insightful results in situations where the model cannot handle
the desired throughput (and for example times out the majority
of requests). Therefore, we design a custom load generator for
ETUDE, which slowly ramps up the load to a specified target
throughput while keeping track of backpressure. It will refrain
from sending more work once too much backpressure is built
up, which allows us to gracefully shutdown experiments in
such cases and determine the throughput threshold where a
model fails to handle the load.

As detailed in Algorithm 2, the load generator ramps up
the load to a target throughput r over the timespan d, while
replaying the synthetic sessions Q. The load generator operates
in “ticks” of one second and keeps track of the current number
of pending requests. The main loop to handle a single tick
starts in Line 3. In each tick, the current number rc of requests

Algorithm 2 Backpressure-aware load generator, which re-
plays the synthetic sessions Q for a target throughput r with
a ramp-up over the duration d.

1 function GENERATE LOAD(r, d, Q)
2 t, p← 0 // Tick counter and atomic counter for pending requests
3 for rc ← TIMEPROP RAMPUP(r, d) : // Main tick loop
4 terminate in case deadline d reached
5 t← t+ 1
6 for i← 0 . . . rc : // Request generation loop
7 terminate in case deadline d reached
8 while p ≥ rc : // Backpressure handling
9 if no time left for current tick t

10 go to next tick t+ 1

11 wait 1 millisecond
12 if no time left for current tick t
13 go to next tick t+ 1

14 SCHEDULE REQUEST ASYNC(p,Q)
15 dt ← milliseconds till next tick
16 wait for dt/(rc − i) milliseconds // Evenly spread out requests
17 wait until next tick t+ 1

to send per second is ramped up by the TIMEPROP RAMPUP
function, proportionally to the time spent with respect to
the desired benchmark duration d, so that we reach the
target throughput r eventually. Requests replay clicks from
the synthetic session log Q, and are sent asynchronously
(Line 14) and dynamically spread out over the duration of a
tick (Line 16). During the request generation loop, the count
of currently pending requests p is used to handle backpressure:
if this count reaches the current throughput target (p ≥ rc),
the generator pauses for a millisecond to wait for the load
to be handled by the server (Lines 9 and 12). Note that p is
decreased when responses are received asynchronously (not
shown in the pseudo code).

We implement Algorithm 2 in Java, using the asynchronous
HTTP client from Apache HttpComponents 5.2.1 and integrate
our synthetic clicklog generation. Our implementation addi-
tionally ensures that the load generator respects the order of
the sessions, e.g., it will only send the next interaction for a
session if a response for the previous interaction was received.

Inference server. We focus on efficiently serving Py-
Torch [20] models in ETUDE, which is the implementation
framework of choice for the vast majority of state-of-the-
art SBR models [15]. We spent several weeks evaluating
the open source inference server TorchServe [21] for Py-
Torch models, which unfortunately fails to satisfy our la-
tency and performance requirements. We experienced severe
performance issues with TorchServe, which we attribute to
the overhead of using several Python processes, orchestrated
by a Java frontend. We experimentally validate this finding
in Section III-A, where we showcase that TorchServe fails
to handle 1,000 requests/second efficiently even if no model
inference is performed.

As a consequence, we implement our own light-weight
inference server for ETUDE in Rust, based on Actix [22],
a high-performance web server leveraging non-blocking IO,
the Rust bindings [23] for the C++ API of PyTorch and
a plugin enabling request batching for GPU inference [24].



Our inference server can deploy serialised PyTorch models
from Google storage buckets and serve them with CPU or
GPU inference. Furthermore, it allows users to configure the
number of worker threads and details of the request batching.
As validated in Section III-A, the latency overhead of this
inference server is extremely low.

Benchmark execution. We detail how to concretely execute
benchmark experiments with ETUDE. We automate the cloud
infrastructure management via a make infra command,
which provisions and configures essential components such
as a Kubernetes cluster, Google Storage and the addition of
service accounts required for deployments. Importantly, this
setup is a one-time operation, which can be reused for multiple
experiments.

Experiment deployment and execution. The definition and
execution of a single experiment proceeds as follows. ETUDE
users declaratively specify the model(s) to deploy and the
type of hardware to use. Furthermore, they specify the catalog
size C, the statistics for click generation and the target
throughput to which the load generator should ramp up. Sub-
sequently, the execution is triggered via the command make
run_deployed_benchmark. ETUDE will then deploy the
model onto a dedicated machine in Kubernetes. Once the
model deployment is finished (determined via Kubernetes’s
readiness probes), a ClusterIP service interface is deployed
for allowing access to the serving machine. Next, the load
generator is deployed on an another machine, from which
it sends the corresponding recommendation requests to the
model inference server via the service interface. The load
generator measures the end-to-end response latencies for its
recommendation requests and the inference server additionally
communicates metrics like the inference duration via HTTP
response headers. The observed measurements are written to
a Google storage bucket upon termination of the experiment.

III. EXPERIMENTAL STUDY

We validate our design decisions and showcase how ETUDE
can be used to determine performant and cost-efficient deploy-
ment options for a variety of e-Commerce scenarios.

If not declared otherwise, we use the following settings. We
run our experiments in the Google Cloud Platform (GCP) via
the Google Kubernetes Engine v1.27.3-gke.100, operating in
Autopilot mode with Google Cloud SDK 442.0.0. We leverage
general purpose e2 instances [25] with 5.5 vCPUs from an
Intel Xeon CPU@2.20GHz and 32 GB RAM. For the GPU
experiments, we either use an NVidia-Tesla-T4 with 16GB
RAM attached to an e2 instance or a preconfigured instance
with an NVidia-Tesla-A100 with 40GB GPU memory, 12
vCPUs and 85GB of RAM.

We choose the embedding dimensions of the models via the
common heuristic of rounding up the fourth root of the catalog
size C [26] to the nearest power of two (which is in line
with the original embedding sizes used in the corresponding
research papers), and randomly initialise the weights of the
SBR models (which need not be trained in order to measure
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Fig. 2: Infrastructure test for answering 1,000 requests/s
without model inference. TorchServe already fails at handling
“empty” requests efficiently.

inference performance). For synthetic session generation, we
leverage marginal statistics from a real bol.com click log. On
our inference server, we apply request batching for GPUs for
up to 1,024 requests, and empty the underlying buffer every
two milliseconds. We make our code and experimental re-
sults available at https://github.com/bkersbergen/etudelib/blob/
main/experiments.md.

A. Validation of Design Choices

First, we validate our design choice of leveraging an Actix-
based Rust runtime instead of the open source TorchServe
project as serving engine.

Experimental setup. In order to measure the serving perfor-
mance of TorchServe independent of the model inference over-
head, we deploy TorchServe on a 2 vCPU e2 machine with
2GB of memory, and implement a Python model that returns a
empty response and does not conduct any computation. Next,
we configure our load generator to ramp up to 1,000 requests
per second over the duration of ten minutes, and measure the
response latencies. We deploy our Actix-based inference server
analogously and also make it return a static answer.

Results and discussion. We plot the results of our experiment
in Figure 2. The load ramps up to 1,000 requests per second
over 10 minutes, and we observe early on that TorchServe
cannot keep up with the load and starts to return a large
number of HTTP errors (due to reaching the internal timeout of
100ms). It handles the remaining requests with a p90 latency
between 100 and 200ms. Our Actix-based inference server
easily handles the load with a p90 latency of around one
millisecond for serving the static content and does not throw
any HTTP errors. These results are a strong indication that
TorchServe’s design causes severe latency overheads and that
it is not suitable for low-latency, high throughput use cases
like session-based recommendation. This insight is further
supported by the documentation on benchmarking and tuning
TorchServe, which only uses workloads with a small number
of requests (1,000 in total) and low concurrency (10 requests
at the same time) [27], [28].

We also run a validation experiment for the synthetic
click generation, where we compare the latency measurements
achieved by replaying a real click log from bol.com to the
measurements achieved when using a synthetic workload
generated based on statistics from the real click log. We find
that the achieved latencies resemble each other closely.

https://github.com/bkersbergen/etudelib/blob/main/experiments.md
https://github.com/bkersbergen/etudelib/blob/main/experiments.md
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B. Micro-Benchmark

We run a micro-benchmark to confirm our theoretical insight
about the impact of the catalog size on prediction latency, the
potential of accelerator hardware and the benefits of PyTorch’s
just-in-time (JIT) optimisation [29].
Experimental setup. We conduct our micro-benchmark on a
single machine with synthetic click data generated according
to the marginal statistics of session lengths from bol.com
and varying catalog sizes. We send recommendation requests
in a serial manner (one request after another, waiting for
model responses), measure the prediction time and report the
p90 latency. We repeat the experiment with two different
instances (CPU and GPU-T4), different execution types (eager
execution without optimisation and JIT-optimised versions of
the models) and catalog sizes of 10,000, 100,000, 1,000,000,
and 10,000,000 distinct items.
Results and discussion. We observed similar results for all
models and plot a selection of the resulting prediction latencies
in relation to the catalog sizes on a logarithmic scale in
Figure 3. The results confirm our theoretical analysis from
Section II about the strong dependence of the runtime on the
catalog size, as we observe a linear scalability of the prediction
latency with the catalog size. We see clear benefits of using
GPUs for medium to large catalog sizes: starting from catalogs
with one million items, the prediction latency of the GPU
is more than an order of magnitude lower than the latencies
achieved with CPUs only (and the CPU already requires more
than 50ms per prediction for catalogs with one million items).
Interestingly, this relation does not hold for small catalogs with
10,000 items, in six out of ten cases, the CPU latency is on
par with or lower than the GPU latency here. Furthermore,
we find that JIT-optimisation is always beneficial and never
hurts performance. We identify an issue with the LightSANs
model implementation though, which cannot be JIT-optimised
by PyTorch due to dynamic code paths.

C. End-to-End Benchmark

Our goal for the final experiment is to showcase how
ETUDE can identify well performing models and cost-efficient
deployment setups for a variety of e-Commerce use cases.

Experimental setup. We define five end-to-end use case
scenarios, detailed in the first three columns of Table I:
Grocery shopping (small), Grocery shopping (large), Fashion,
e-Commerce, and Platform with catalog sizes from 10,000 up
to 20,000,000 items and a target throughput ranging from 100
to 1,000 requests per second. These scenarios are inspired
by experiences from our various brands and use cases at
Ahold Delhaize, and are in line with publicly reported catalog
sizes [30]–[32].

We conduct an end-to-end benchmark for the JIT-optimised
variants of all ten models in all scenarios with three different
instance types (CPU, GPU-T4, and GPU-A100). We ramp up
the load to 1,000 requests per second over a period of ten
minutes and measure the response latency. We execute each
configuration three times and ignore the runs with the lowest
and highest latencies, amounting to around four hundred runs.
Results and discussion. We plot detailed results for a selection
of scenarios in Figure 4 and discuss various aspects of our
findings.
Issues with selected SBR models. We encounter serious issues
with three additional SBR model implementations from the
RecBole library [15]: SR-GNN, GC-SAN, RepeatNet are
not able to handle most of our use cases (or only handle
them with unacceptably low performance). We inspect their
implementations to determine the root causes for this finding.
The RepeatNet model contains expensive tensor multiplica-
tions of very sparse matrices which are implemented with
dense operations and representations (and therefore incur high
overheads), and the SR-GNN and GC-SAN models contain
NumPy operations in their inference functions which require
repeated data transfers between CPU and GPU at inference
time. We filed bug reports [33] for these issues with the
RecBole project.
Impact of catalog size and accelerator hardware. We observe
that catalog sizes of 10,000 and 100,000 can be handled
well with CPU instances only, where most models achieve
more than 500 requests per second at a 50ms p90 latency.
The situation changes for catalogs with one million items,
where the performance of CPU instances drops to around 200
milliseconds. At the same time, we see that this setup is easily
handled by instances with GPUs, where the T4 card already
handles more than 700 requests per second at a 50ms p90
latency. Only GPU instances are able to handle the load for
catalogs with 10 million items, and for the platform setting
with 20 million items, the high-end A100 cards are required.
Cost-efficient deployment options. The most performant setup
may not necessarily be the most cost-efficient one. The
monthly costs (given a one year commitment) for different
machines vary [34]; a CPU instance, for example, costs
$108.09 in GCP, an instance with an additional T4 GPU costs
$268.09 per month, and the instance with the A100 GPU has
a hefty price tag of $2,008.80. There may be cases where it is
more beneficial to linearly scale out the recommender system
with cheaper hardware than to use a high-end device.



Scenarios Deployment Options SBR Models

Use case Catalog size Throughput Instance type Amount Cost/month CORE GRU4Rec NARM SASRec SINE STAMP

Groceries 10,000 100 req/s CPU 1 $108 ✓ ✓ ✓ ✓ ✓ ✓
(small) GPU-T4 1 $268 ✓ ✓ ✓ ✓ ✓ ✓

Groceries 100,000 250 req/s CPU 1 $108 ✓ ✓ ✓ ✓ ✓ ✓
(large) GPU-T4 1 $268 ✓ ✓ ✓ ✓ ✓ ✓

Fashion 1,000,000 500 req/s CPU 3 $324 ✓ ✓
GPU-T4 1 $268 ✓ ✓ ✓ ✓ ✓ ✓
GPU-A100 1 $2,008 ✓ ✓ ✓ ✓ ✓ ✓

e-Commerce 10,000,000 1,000 req/s GPU-T4 5 $1,343 ✓ ✓ ✓ ✓ ✓
GPU-A100 2 $4,017 ✓ ✓ ✓ ✓ ✓ ✓

Platform 20,000,000 1,000 req/s GPU-A100 3 $6,026 ✓ ✓ ✓ ✓

TABLE I: Cost-efficient deployment options for SBR models in varying e-Commerce scenarios with costs per month, derived
from ETUDE measurements. Boldface indicates the most cost-efficient deployment option for a scenario. Empty cells for models
indicate that they are not able to handle the target throughput with the given deployment option.
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Fig. 4: Observed latency and throughput of different SBR
models in deployment scenarios with varying instances types.

Such cost decisions can be made based on ETUDE’s exper-
imental results: Table I lists the monthly costs for the best
models per scenario for different setups. Note that we applied
a latency threshold of 50 milliseconds in the 90th quantile and
ignored the four models for which we found implementation
errors. We find that (i) both grocery shopping scenarios can
be handled very cost-efficiently with a single CPU machine
for $108 per month (for all models); (ii) the specialised e-
Commerce scenario can be handled with a single GPU-T4
instance (for all models) for $268 per month, and two models

(SASRec and STAMP) are also comparatively cheap to deploy
with only CPUs (at a cost of $324 per month); (iii) the general
e-Commerce and platform scenario require GPUs: the platform
scenario with a large catalog of 20 million items can only be
efficiently handled with three high-end GPU-A100 instances
at the high cost of $6,026 per month. Interestingly, for the
general e-Commerce scenario, it is significantly cheaper to
deploy five GPU-T4 instances ($1,343) than to leverage two
more powerful GPU-A100 instances (for $4,017).

IV. CONCLUSION

We presented ETUDE, a framework to automatically eval-
uate the inference performance of SBR models under declar-
atively specified deployment options in terms of hardware,
workload statistics and latency and throughput constraints.

In the past, we have seen recommendation teams refrain
from building online SBR systems due to the outlined serving
challenges. As a consequence, they designed static recom-
mender systems with precomputed recommendations for the
last item of a session only, which often exhibit low prediction
quality due to the missing session context. ETUDE is currently
helping such teams to reduce risk, as they can test newly de-
signed models early on challenging workloads, and to improve
their model implementations by identifying bugs which impact
performance.

In the future, we plan to extend ETUDE with more inference
runtimes such as ONNX [35] or TensorRT [36] and to support
additional cloud environments such as Microsoft Azure or
Amazon Web Services. Furthermore, we will explore the
incorporation of techniques to trade-off prediction quality with
inference latency, such as model quantisation [37] or approx-
imate nearest neighbor search [38], as well as the automatic
choice of appropriate instance types for declaratively specified
workloads. Our findings also indicate that there is a need to
design custom neural models for high cardinality catalogs.
This is evidenced by the enormous costs for deploying models
on catalogs with twenty million items, which can be handled
much cheaper with non-neural approaches [13].
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