
Evaluating Personal Assistants on Mobile devices
Conceptual Paper

Julia Kiseleva
UserSat.com & University of Amsterdam

Amsterdam, the Netherlands
j.kiseleva@uva.nl

Maarten de Rijke
University of Amsterdam

Amsterdam, the Netherlands
derijke@uva.nl

ABSTRACT
The iPhone was introduced only a decade ago in 2007, but has fun-
damentally changed the way we interact with online information.
Mobile devices differ radically from classic command-based and
point-and-click user interfaces, allowing for gesture-based interac-
tion using fine-grained touch and swipe signals. Due to the rapid
growth in the use of voice-controlled intelligent personal assistants
on mobile devices, such as Microsoft’s Cortana, Google Now, and
Apple’s Siri, mobile devices have become personal, allowing us to
be online all the time, and assist us in any task, both in work and
in our daily lives, making context a crucial factor to consider.

Mobile usage is now exceeding desktop usage, and is still grow-
ing at a rapid rate, yet our main ways of training and evaluating
personal assistants are still based on (and framed in) classical desk-
top interactions, focusing on explicit queries, clicks, and dwell time
spent. However, modern user interaction with mobile devices is rad-
ically different due to touch screens with gesture- and voice-based
control and the varying context of use, e.g., in a car, by bike, often
invalidating the assumptions underlying today’s user satisfaction
evaluation.

There is an urgent need to understand voice- and gesture-based
interaction, taking all interaction signals and context into account
in appropriate ways. We propose a research agenda for developing
methods to evaluate and improve context-aware user satisfaction
with mobile interactions using gesture-based signals at scale.

CCS CONCEPTS
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1 INTRODUCTION
Recent years have witnessed an explosive growth in the usage of
gesture- and voice-controlled devices. The usage of mobile phones
increased five-fold from 11.78% in October 2012 to 53.01% in Decem-
ber 2016,1 and it overtook the usage of desktops in October 2016.
To a large degree, this increase is due to the availability of personal
assistants. Spoken dialogue systems have been thoroughly studied
in the literature [48, 58–60]. However, it has only been in recent
years that a new generation of personal assistants, powered by
voice, such as Apple’s Siri, Microsoft’s Cortana, Google Now, have
become common and popular on mobile devices. One of the reasons
for the increased adoption are the recent significant improvements
in accuracy of automatic speech recognition [50].

Evaluation of effectiveness is an essential part of developing any
interactive system such as web search and e-commerce applications.
Modern evaluation methods, which were developed for desktops,
heavily rely on interaction data, e.g., explicit queries and clicks that
are massively logged [11–13, 69]. However, interaction signals on
mobile devices are different due to the context of use and due to
gesture- and voice-based control, such as swipes, touch and voice
conversations [4, 6, 38, 51, 63, 65]. As a consequence, there is an
urgent need to develop new scalable techniques for understanding
context-aware user satisfaction for gesture- and voice-controlled
devices.

Our aim is to exploit voice- and gesture-based signals, trackable
at large scale, for understanding context-aware user satisfactionwith
personal assistants. This overall aim leads to three specific research
questions:

• RQ1: How to model interaction with gesture- and voice-con-
trolled devices?

• RQ2: How to define context-aware user satisfaction with per-
sonal assistants in mobile environments?

• RQ3:How to predict context-aware user satisfaction with per-
sonal assistants using gesture-based signals onmobile devices?

2 SCIENTIFIC CHALLENGES
We list four central challenges that provide the background for the
research questions listed above.

How and why to evaluate the effectiveness of a personal assistant?
Previously, a common practice for evaluation was to create a ‘gold’
standard2 [55]. In modern personal assistants, there may be no
general “correct” answers since the answers are highly personalized
and contextualized, e.g., to a user’s location [3, 31, 66] or a user’s

1http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-
201208-201612
2A gold standard is a set of “correct” answers as judged by editorial judges.

http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201208-201612
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201208-201612
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Figure 1: Illustrations of (A) how to define user satisfaction, (B) where users click on the mobile screen, and (C) how touches
are tracked

past preferences [25, 35, 68]. User satisfaction is widely adopted as
a subjective measure of the quality of the search experience [30].
It has become common practice to evaluate personal assistants on
desktops by analysing interaction signals such as clicks (if users
like a result, they click) and dwell time (the actual length of time
that a visitor spends on a page) [2, 11–13, 18, 23, 28, 29].

Currently, the research community is facing a challenge to eval-
uate user satisfaction at scale. Very large scale online controlled
experiments, such as A/B testing and interleaving, have become a
widely used technique for controlling and improving search quality
based on data-driven decisions [26]. This methodology has been
adopted by many leading companies [5, 14, 17, 57]. User behavior
in voice- and gesture-controlled environment is very different from
desktops [38, 39, 42, 44, 64, 65], but our understanding of this differ-
ence is still fragmented at best. Unlike desktop computers with large
displays and mouse-keyboard interactions [20–22, 47, 54], personal
assistants come on mobile devices that have smaller displays and of-
fer voice commands and a variety of gesture interactions, e.g., touch:
swiping and zooming. Moreover, user behavior on mobile devices
is very context-dependent [71]. Therefore, traditional evaluation
methods are not applicable for the growing mobile environment.

The fundamental problem limiting current progress in devel-
oping personal assistants for mobile environment is the lack of
scalable methods to infer user satisfaction.

Why is context-awareness needed for evaluating user satisfaction?
Kelly [30] proposes the following definition: “satisfaction can be
understood as the fulfillment of a specified desire or goal.” Online
user behavior is highly:

• context-dependent [1, 31, 32, 36, 37, 53, 67];
• sensitive to changes in the outside world [33, 34].

In a mobile environment, users are dealing with a much richer
space of potential contextual situations, e.g., while driving, in the
bus, on the way, a slow connection, compared to the relatively
static desktop environment. These conditions have a great impact
on mobile user satisfaction. Similar experiences can be satisfying
in one situation (Figure 1(A)‘+’), e.g., a user is sitting in a hotel
lobby with a fast wifi connection, and it can be totally frustrating

in another situation (Figure 1(A)‘–’), e.g., when the same user is
driving and having a slow data connection.

Therefore, situational context has to be studied in far greater de-
tail, allowing us to reason about how a user’s current environment
impacts his satisfaction with personal assistants.

How can we evaluate context-aware user satisfaction at scale?
Eye-tracking techniques have been successfully used to gain an ini-
tial understanding of user interactions with mobile devices [43, 44],
but they cannot be applied at scale. In contrast, user gestures and
voice commands can be collected and analysed at scale [65]. We
suggest to model advanced voice- and gesture-based signals to pre-
dict context-aware user satisfaction for millions of users, which can
be easily plugged-in into A/B testing platforms [5, 15, 16, 40].

Why is analyzing gestures the way to infer context-aware user
satisfaction? Analyzing click heat maps as displayed in Figure 1(B),
is quite tricky. Because the screen size is small, it is difficult to
click an item, and conversely, not to click inadvertently. Analyzing
gesture-based patterns is a better way to infer user satisfaction as
it helps to decipher hidden behavioral aspects, e.g., swipes in the
two figures show in Figure 1(C) clearly belong to left- and right-
handed people. Moreover, touch signals are extremely useful to
predict user satisfaction for mobile search [38, 65]. Movements of
the human body, e.g., gestures, reflect emotions [7, 8] that are closely
connected with user satisfaction (Figure 1(A)). User emotions are
used to evaluate voice-controlled systems [41, 52], e.g., changes in
user intonation [56, 70]. We propose to exploit gesture-based and
voice-based interactions to infer context-aware user satisfaction in
mobile environment because they:

• are the primary ways to interact with mobile devices;
• are very sensitive to situational and behavioral aspects (Fig-
ure 1(C));

• reveal user emotions: satisfaction (Figure 1(A)‘+’) and frus-
tration (Figure 1(A)‘–’);

• are highly scalable, both w.r.t. collection and analysis.
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Figure 2: Modelling gesture-based interactions.

3 DISCUSSION
We propose ventures into a new area of research, by moving be-
yond the interaction models that have been shown to be effective
for desktop applications and fully embrace the new paradigm of
gesture- and voice-controlled personal assistants on mobile devices.
Such a move has the potential to impact billions of users around the
world, and it has a large scientific impact. The research we propose
will significantly contribute to our scientific understanding of user
satisfaction in mobile environments, and to the value of massive-
scale gesture-based interaction logs to infer user satisfaction based
on complex and subtle interaction patterns. Obtaining insights into
this value is crucial if wewant to evaluate new algorithms for search
and recommendation in a mobile or screen-less environment.

RQ1: How to model interaction with gesture- and voice-controlled
devices? We need to encompass all gesture- and voice-based fea-
tures related users’ interactions with personal assistants. Capturing
touch events (Figure 2(A)) is difficult in practice [27]; however, it
is possible to infer touch-based interactions based on the mobile
viewport [38, 65].3 For instance, if an element is visible in the view-
port at some point in time and then no longer visible, one can infer
that a gesture must have taken place. To get a complete view of
user gestures, we should capture (1) orientation and acceleration of
a device in space (Figure 2(B)) that will allow us to model users’
hands position; (2) the GPS signal to infer changes in user loca-
tions; (3) movement events, e.g., ‘shakes.’ We could use this rich set
of gesture-based features to build an advanced representation of
interactions in a mobile setting.

RQ2: How to define context-aware user satisfaction with personal
assistants in mobile environments? As a starting point, we can start
from the approach presented in [38] to define user satisfaction
with mobile interactions at the session-level. Then, one should
3The viewport is the visible region on the device.

extend it by introducing context-aware [31, 32, 37] and changing
environments [33, 34]. In addition to unsupervised logs, dedicated
user experiments should be conducted to gather rich, explicitly
annotated data for further analysis and validation.

RQ3:How to predict context-aware user satisfaction with personal
assistants using gesture-based signals on mobile devices? Recently,
deep neural networks have given rise to significant performance
improvements in speech recognition [24] and computer vision
tasks [45]. They have also led to exciting breakthroughs in novel
application areas such as automatic voice translation [46], image
captioning [62], and conversational assistants [19, 61]. However,
there are only few publications on using deep neural networks to
model user interaction behavior. So far these have been confined
to desktop settings [9, 10, 49], where the advantage of neural ap-
proaches has been clearly demonstrated; the time is right to put
them to work in a mobile setting.
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