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Abstract. We define bisimulations for temporal logic with Since and Until. This new nation is
compared to existing notions of bisimulations, and then used to develop the basic model theory
of temporal logic with Since and Until. Our results concern both invariance and definability. We
conclude with abrief discussion of the wider applicability of our idess.
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1. Introduction

Labeled transition systems are probably the simplest structures used to model
dynamic phenomena: they are simply structures equipped with a collection of
states and one or more transition relations that indicate how one state can evolve
into another. Numerous languages have been proposed as suitabl e description tools
for talking about transition systems. Process algebraic languages take an external
view on transition systems in that each process algebraic term denotes an entire
transition system. Modal and temporal languages, on the other hand, offer an
internal perspective on transition systems, as they describe (local) properties of
states and transitions between them.

This paper deals with the model theory of one particular ‘internal’ description
language for transition systems: the temporal language with Since and Until. This
language, and languages closely related to it, have been proposed by a number of
authors as suitable for describing dynamic phenomena. For example, van Benthem
(1991) suggeststhat we use Since and Until to describe operations of theory change.
Also, information change often involves an ‘economy principle’ saying that one
should change as little information as possible when accommodating new data;
languages with Since and Until (or Since and Until-like operators) are the obvious
candidatesif onewantsto expressthisideaof minimal change, and, indeed, in most
of the more powerful dynamic languages one can define them (see, for example,
van Benthem et al., 1994; van Eijck et al., 1996; de Rijke, 1992).
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In aproperly developed theory of dynamicsthe relation between the models of
dynamic phenomenaon the one hand, and the description language used to specify
such models is a central issue. In this paper we analyze the model theory of the
temporal language with Since and Until; the main tool in our analysisis a special
kind of bisimulations.

The relevance of bisimulations to dynamics lies in the answer one can give
to the following question: when do two transition systems represent the same
process? Obvioudly, it depends on the character of the states and transitions, and
on the features of transition systems that one finds important. If we are modeling
dialogues one can think of the information that a participant in a conversation
has as a state, and the transitions are changes to his information induced as the
conversation progresses. Here, a criterion for identifying two systems could be
that a given statement should produce equivalent outputs on equivalent inputs. As
a second example, in reasoning about theory change, states represent databases
and the actions or transitions represent insertions and deletions of information.
Here, a criterion for calling two states equivalent could be that they have the
same logical consequences or that an insertion or deletion in the one state can
always be mimicked by insertions or deletionsin the other state to yield (logically)
equivalent results. And, of course, in concurrency theory states represent the state
of a machine, and transitions represent executions of atomic programs. Here a
minimal requirement for states to be identified is that they have the same choices
of atomic programs enabled. If we use Since and Until to describe our systemswe
need to require more than this if we insist that states to be identified are logically
indistinguishable. The details will emerge in Section 3 below, but just to give an
idea, one thing we shall need is that if an action is enabled in a state s, then we
should not only find the same action enabled in any state ¢ that we want to identify
with s, but we should also ensure that the ‘interval’ or ‘period’ leading from s to
the result of the action can be matched by a similar interval starting from ¢.

In addition there are also more technical reasonsto work with bisimulationsin
trying to understand the model theory of Sinceand Until. Recent work in the model
theory of modal languagesis characterized by apervasive use of bisimulations. Van
Benthem (1991) first observed the close resemblance of bisimulations to partial
isomorphism. This observation hasinspired a systematic investigation of the model
theory of basic poly-modal logic along the lines of first-order model theory in de
Rijke (1995b), whoseresultstake thefollowing ‘ heuristic equation’ astheir starting
point:

partial isomorphims bisimulations

first-order logic modal logic

Andrékaet al. (1995) further explore the links between modal logic and first-order
logic using bisimulations as a central tool, and the investigations of van Benthem
et a. (1994), van Benthem and Bergstra (1994), and de Rijke (1995a) also revolve
around the use of bisimulations in the model theory of modal logic.
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Most of theresultsin the paperscited above concern only basic modal diamonds
(o) and boxes [«] with their familiar truth definitions, or simple variations thereof.
Themode theory of modal and temporal languageswith more complex operatorsis
not aswell developed. In particular, in the case of the temporal language with Since
and Until, thereisno proper notion of bisimulation that allowsfor the devel opment
of itsmodel theory in analogy with basic poly-modal logic; this has been observed
by a number of authors (see van Benthem and Bergstra, 1994; van Benthem et al.,
1994; de Rijke, 1995b). In this paper we address this issue by introducing anotion
of bismulation that ‘works' for the temporal language with Since and Until. That
is, we define a notion of bisimulation that can serve as a central tool in the model
theory of temporal logic by allowing usto prove basic preservation and definability
results.

The structure of the paper is as follows. In Section 2 we recall some basic
concepts; in Section 3 we introduce a notion of bisimulations for Since and Until,
and compare it to related equivalence relations on models. Section 4 considers
the question when temporal equivalence implies bisimilarity, and Section 5 then
uses bisimulations to establish basic model-theoretic results on preservation and
definability for the temporal language with Since and Until. We conclude with
some questions and suggestions for future work.

2. Définitions

This section introducesthe conceptswe need. First, SU-formulasare built up using
propositional variablesyp, ¢, . . ., the constants T and L, boolean connectives —, A,
and the binary temporal operators S (Since) and U (Until). We use Ly to denote
this language. We use the usual abbreviations: F¢p = U(p, T), Gp = —F=¢,
Pp=S(¢,T), Hp = ~P—¢.

A flow of time, temporal order or frameisapar F = (W, <), where W isa
non-empty set of time pointsor states, and < isabinary relation on W. A valuation
isafunction assigning a subset of W to every proposition letter. A model is a pair
M = (F,V) where F' isaframe and V avaluation.

The satisfaction relation is defined in the familiar way for the atomic and
boolean cases, while for the temporal connectiveswe put

M,t = S(¢,v) iff thereexistsv < ¢ such that M, v = ¢, and
forall uwithv < u < t: M,u |= 1,

M.t = U(¢p,) iff thereexistsv > ¢ suchthat M, v = ¢, and
for al uwithv > u > ¢ M,u |= 1.

To talk about the points involved in interpreting temporal formulas, the notion
of an interval proves useful. Let M = (W, <, V) be amodel. An interval in M
is simply a pair of points w,v € W. An interval wov is called a pseudo-interval
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if thereisnouw € W suchthat w < v and u < v. If wv isaninterval, and ¢ a
temporal formula, then define truth of ¢ in wv by putting

wo = ¢ iff foral u withw < u < v wehaveu = ¢.

Using our notion of intervals we can rewrite the truth condition for S as w =
S(¢, ) iff thereexistsv < w withv |= ¢ and vw = 1.

The temporal theory of apoint w isthe set tp(w) = {¢ € Lsv | w |= ¢}, and
the temporal theory of an interval wv isthe set tp(wv) = {¢ € Lsy | wv = ¢}.
If we want to emphasize the model M in which w (or wv) lives, we write tp,;(w)
(or tpy;(wv)). Observethat if wo is apseudo-interval, then its temporal theory is
simply the set of all temporal formulas. Two pointsw, v are temporally equivalent
if tp(w) = tp(v) (notation w = v); temporal equivalence for intervals is defined
anaogously.

Let £ bethefirst-order language with unary predicate symbols corresponding
totheproposition lettersin L g7, and with one binary relation symbol <. £ iscalled
the correspondence language for Lg7. £1(x) denotes the set of all £;-formulas
having one free variable .

Models can be viewed as L1-structures in the usual first-order sense. The stan-
dard translation takes temporal formulas ¢ into equivalent formulas ST (¢) in
the correspondence language. It maps proposition letters p onto unary predicate
symbols Pz, it commutes with the booleans, and the temporal caseis

ST(S(¢, ) = Fy(y <z AST(P)(y) AVz(y <z <z — ST(Y)(2))),
STU(p,9)) = Fy(z <yAST($)(y) AVz(z <z <y — ST(Y)(2))).

For al models M and points t we have M, t = ¢ iff M = ST(¢)[t], where the
latter denotesfirst-order satisfaction of ST (¢) under the assignment of ¢ to the free
variableof ST (¢).

3. Bisimulationsfor S and U

Several notions of bisimulation that preserve temporal formulas have aready been
proposed in the literature. But none of these provides an exact characterization of
the expressive power of the language with Since and Until. To fill this gap, we
introduce a notion of bisimulation for Since and Until in this section, and compare
it to related equivalence relations on models; our findings are summarized in a
diagram at the end of the section (Figure 5).

To define bisimulations that work for temporal logic, we will use relations that
link points to points and intervalsto intervals.

DEFINITION 3.1 (Bisimulations). Let M1 = (W1, <1, V1) and My = (W, <,
V>) betwo models. A bisimulation between M; and My isatriple Z = (Zo, Z1, Z2),
Whel’eZo C |M1| X |M2|, Zl C |M1|2 X |M2|2, and Zz C |M2|2 X |M1|2 such that
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Zo # () and the following clauses hold:

1. If £1Zpz> then 21 and z, satisfy the same proposition letters.

2. If z1Z9zo and 1 <1 y1, then there exists y, in Mo with 22 <5 y» such that
y1Zoy2 and x1y1Z172y>.

3. If z1y1Z120y» and there exists zp with yo <2 22 <2 z2, then there exists z;
with z1 <1 21 <1 y1 and z1Zpz».

4. If 217022 and z2 <2 Yo, then there exists y1 in M1 with z1 <1 y1 such that
y1Z0y2 and x2y2 Zox1y1.

5. If zoy»Zox1y1 and there exists z1 with y1 <1 21 <1 x1, then there exists z»
with 22 <o 22 <2 y2 and z1Zp2o.

6. Clauses 2-5 with >4 (>5) instead of <; (<>).

If thereisabisimulation Z = (Zy, Z1, Z>) with 21 Zpz», then we say that 2:1 and z»
arebisimilar (notationz, & zp,0r Z : x1 & xp), andsimilarly for intervalsz1y,
and x,y». If necessary, the modelsin which z; and z live will also beincluded in
the notation: My, x, & My, x>.

A few remarks are in order. First, in the semantics of dynamic formalisms both
states and transitions play an important role; the semantics of Since and Until
may seem to suggest that the transitions only have a secondary role to play in
determining the truth value of a formula involving Since and Until. Our notion of
bisimulation, however, clearly showsthat both properties of states and of intervals
are important: points are related to points, and intervalsto intervals.

Second, observethat we have back and forth conditionsfor the first component,
Zo, of abisimulation Z: amove from a point in the first model should be matched
with amoveto a Zy-related state in the second model, and, vice versa, amovein
the second model is matched with amovein thefirst oneto a Zy-related point. For
the second and third component (Z; and Z5) we only have one direction: intervals
in the first model are Z;-related to intervals in the second model, but to relate
intervalsin the second model to intervalsin the first one we use a separate relation
Z». Thereason for the use of two relationsin linking intervalsisthefollowing. The
back-and-forth character of Z ensuresthat negated formulas are preserved; but the
way we have set up things, we do not have proper boolean negations of formulas
interpreted onintervals, and thus arelation connecting intervalsin aback-and-forth
manner would be too strong for our purposes. See Kurtonina and de Rijke (1996)
for further details on (bi-)simulations for negation free languages.

Finaly, it iseasily verified that arbitrary (component-wise) unions of bisimula-
tion relations are again bisimulations, and that £ is the maximal bisimulation and
an equivalencerelation.

In Section 5 we show that afirst-order formulain the correspondence language
L1 is equivalent to atemporal formula with Since and Until iff it is invariant for
the notion of bisimulation definedin Definition 3.1. In the remainder of the present
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section we compare our notion of bisimulation to closely related equivalence
relations on models. Such comparisons can take place at two levels. one can
compare particular instances of bisimulation relations, but at a more abstract level
one can a so comparethe equival ence classes of models modulo the various hotions
of bisimilarity.

Our goal in comparing these equivalence relationsis to locate our notion in the
wider landscape of such relations, and to show that our notion of bisimulation is
the weakest one that allows for a direct development of the model theory of Since
and Until without a detour through richer languages.

3.1. MODAL BISIMULATIONS

We start with bisimulations for standard modal languages, often called strong
bisimulations in the computational literature (see Hennessy and Milner, 1985).
These are defined by clause 1 of Definition 3.1 together with clauses 2 and with
their last conjuncts (‘and x1y1 Z1z2y2" OF ‘22y2 721y’ ) 1€ft out. Strong bisimula-
tions are much weaker than our bisimulations: they do not take the ‘ past’ of nodes
into account. An obvious way of taking the past into account is by extending the
language so as to include the familiar forward looking modality 7' and backward
looking modality P. The corresponding notion of bisimulation is defined as fol-
lows. Let M7, M> betwo models; anon-empty relation Z C Wy x W isarelation
of F, P-bisimulationif it satisfiescondition 1 of Definition 3.1 and atrimmed down
version of its condition 2 in which references to intervals have been del eted:

2. If 1172, and 71 <1 y1, thenthere exists y, in M, with zo <, v and y1 2>,

and similar conditionswith >, instead of <1, and going from M5 to M1. We write
z1 Zpp 2 to denote that there exists a F, P-bisimulation between z1 and z».
Clearly, z1 = zp implieszqy g p 2, but the converse need not hold, as is
witnessed by the following example.

1 Ml 2 M2

Here we have M1 <pp M via the relation indicated with dotted lines; but
M; % M, because any candidate bisimulation Z should link 1 to both 2 and 3;
so it would follow that 117,23, and by the definition of bisimulations, there would
be a state z between 2 and 3 — a contradiction.

All in all, then, we have the following.
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PROPOSITION 3.2.
1. My, un hd M, wo impIiele,wl ﬁpyp M>, ws.
2. My, un iF,p M>, wr doesnotimply My, un hd M>, ws.

3.2. U-BISIMULATIONS

Next we consider so-called U/-bisimulations. These were defined by van Ben-
them et al. (1994 definition 4.2) as candidate bisimulations for temporal logic. A
non-empty relation Z C Wy x Wy is ald-bisimulation if it satisfies clause 1 of
Definition 3.1, clause 2’ above, and

3. ifx1Zx3, 21 <1 y1, 2 <2 Y2, y1Zy2, and z1 <1 21 <1 y1, thenthere existsa
z2 iINWo such that z2 <5 2o <2 y2 and 212 2o,

aswell as similar conditionswith >4 (>2) instead of <1 (<2), and going from M
to M. Weusez; £ z» to denote that there exists alf-bisimulation between z,
and z.

It is easily verified that M1, w 23y Mop,v implies My, w & Mo, v: any
U-bisimulation can be extended to a bisimulation in our sense. Let Z be a U-
bisimulation, and define Z’ by

— Zy = Z,
— T1Y121T2Y2 iff 21 <1 y1, 72 <2 Y2, 11222 &d y1 Zy,; and
— zy2Zyr1y1 1ff z1y1Z) z2y0.

By way of examplelet us check clauses 2 and 3 of Definition 3.1. Assume z1 Zjz>
and z1 <3 y1. By U-bisimilarity there exists y» with z» <5 y» and y1 Zy»; putting
these things together yields z1y17Z122y2, as required. To check clause 3, assume
xlylZixzyz and y, <2 22 <2 x2; weneedto find az; with xy <1 21 <1 y1. Now,
z1y1Z122y2 implies 1 <1 y1, 2 <2 Y2, £1Zx2 and y1Zy», so by the third clause
in the definition of Z/-bisimulation there exists a z1 as required.

The upshot of the aboveis that any I/-bisimulation induces a bisimulation in a
straightforward way. What about the converse? If Z isabisimulation in our sense,
isitsfirst component Zy al{-bisimulation? As the following example shows, the
answer is ‘no.’” Consider Figure 1. The dotted curves depict the first component
of a bisimulation in our sense that is not a I/-bisimulation. To be precise, let
M; = (Z,<,V), where V is constant, and < is the usual less-than relation;
M, = (z,<,V),whereV and < areasin M.

Definerelations Zo C Z x 7, Z1, Z» C (72 x 7.?) asfollows:

Zo = {(n,n) |nez}u
{(n,(n+1)") | nez}
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2/
Figure 1. A bisimulation whose first component is not aZ{-bisimulation.

nm,n'm') |n<m}uU

1 Z:{
{(nm,(n+21) (m+121))|n<m}

(
(
Zy = Z7, the converseof Z;.

We leave it to the reader to check that Z : M1,0 & Mo, 0. However, this is
not enough to make Z into ai/-bisimulation. To seethat Zy : M3,0 ¢ M, O,
observefirstthat 0 < 2,0 < 1< 2,1 < 2/,0Z91', and 2Z,2'. Hence, by clause 3,
for Zp to be alf-bisimulation we should be able to find a z with 1’ < z < 2’ and
174z — but there is no such point.

PROPOSITION 3.3.

1 M, w ﬁu M>,v impIi&Ml,w hd M, v.

2. 7 . My,w & M>,v doesnotimply Zg : M1, w 34 M>,v; and, more gen-
eraly, M1,w & My, v doesnotimply M1, w 3, Mo, v (cf. Proposition 3.4
below).

3.3. B-BISIMULATIONS

Van Benthem et al. (1994) aso consider an aternative notion, called B-
bisimulation, which relates points to points and pairs of points to pairs of points,
much like our notion of bisimulation; the notion of B-bisimulation is used to ana-
lyze atwo-dimensional counterpart of the language of temporal logic with .S and
U.Tobeprecise, arelation Z C (Wq x Wo) U(WZ x W2) with ZN (W x Wa) #
isa B-bisimulation if it satisfies clause 1 of Definition 3.1 and

2" if x1Zx and z1 <1 y1, then there exists i, with zo <5 1y, and z1y1 Zzoy»

3" if z1y1Zwoy0, then z1Zx, and y1 2y

4", if zy1Zxoy, and z1 <1 21 <1 y1, then there exists z, with 2, <5 2 <5 y»
and both x121 Z 2222 and z1y1 7 221>,
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— —v o v P4

Figure 2. A bisimulation which isnot a B-bisimulation.

and similar conditions with >1 (>2) instead of <1 (<2), and going from M> to
Mi.* Weuse r1 5 x, to denote that there exists a B-bisimulation between z;
and z». Van Benthem et al. (1994: proposition 4.8) show that z1 £, o implies
1 25 xo. any U-bisimulation can be extended to a B-bisimulation. What about
the relation between < and £ 5? It is clear that any B-bisimulation induces a
bisimulation in our sense: if Z is a B-bisimulation between M7 and M>, simply
define Z' by putting Zh = Z | (|Ma| x |Ma|); Zi = Z | (|M1]? x |M2|?), and
Zh =7\

The converse does not hold: abisimulation Z need not induce a B-bisimulation
simply by taking the union of the components of Z (even when Z, = Z7). To see
this, look at Figure 1 again, but redefine the relations in the models to arrive at
the picturein Figure 2. That is, define M1 = (Z, R1, V'), where V' is constant, and
Rinm iff m =n + 1;and M, = (Z, R, V'), where V and R, areasin M.

Definerelations Zo C 7 x 7, and Z1, Z, C (72 x 7?) by putting

Zo = {(n,n') | n € ZYU {(n,(n+1)) | n €L}
Z1,Z7 = {(n(n+21),m (m+21))|nmeZ}.

We leave it to the reader to check that Z : M1,0 £ M>, 0. Now, defining Z' =
Zp U Z3 does not produce a B-bisimulation. In particular, Z' : M1,0 &g M, 0,
becauseif Z' : 01 £ 2’3 wereto hold, we would also have Z' : 0 <5 2,
which is not the case.

The above observations can be strengthened: there are modelsthat are bisimilar
in our sense, but not B-bisimilar (and hence, not Z/-bisimilar either). Here is an
examplethat isoriginally dueto Holger Sturm. Consider Figure 3. Thetwo models
M and M depicted there are clearly not B-bisimilar, but they are bisimilar in our
sense. Define the following relations between M; and M5:

Zo = {(ui, uj), (vi,vj), (wi,w;) |1 <1, j>2}

* Asone of thereferees pointed out, actually van Benthem et al. (1994) only use B-bisimulationsto
describe the forward looking fragment of their language (that is: only for the fragment with temporal
operators exploring <, discarding >), and for this fragment it is definitively too strong. But for their
full language (with forward and backward looking features) it is appropriate.
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u0 w1 U w3
[ ] [ ] [ [
A A
Y
My ® U ® U ® Uy ® U3 M>
A A
Y
[ [ [ ] [ ]
wo U1 Wy u3

Figure 3. Bisimilar but not B-bisimilar models.

Z1 = {(wo uo, w2 u3), (wo ug, wauz)} U
{(w; Vi, Wy ’Uj), (v; Uj, Vj Uj) |i<1, j5>2}U
(v wgug) |i 27 <1, 5 £ >2)
Z = {(wjvj,wiv;), (vjujviu) i <1, j>2}U
(

{
We leaveit to the reader to check that Z = (Zo, Z1, Z») isindeed a bisimulation.

J
wjup,wiug) | A1 <L G #§ > 2}

PROPOSITION 3.4.
1 M, w ﬁg M, v impIiele,w & M, v.
2. My,w £ Mj,v does not imply M1, w <5 Mo, v, and hence it does not
imply Mz, w “u Mo, v either.

3.4. S-SIMULATIONS

Sturm (1997) definesa notion of bisimulation, called S-simulation, for the forward
looking fragment of our temporal language asfollows. Let M;, M> betwo models;
a non-empty relation Z C Wy x W is arelation of S-simulation if it satisfies
condition 1 of Definition 3.1 aswell as

— If z1Zx5 and 21 <1 y1, then there exists y» in M, with y1 Zy, and z2 <2 y»
such that for every 2z, in Mo with zo <2 22 <5 y» there exists z; in M; with
21 <1 21 <1 y1and 217 2.

— A similar clause going from M to Mj.

Observethat S-simulations only *‘look forward’; they do not take the converse >,
of <4 into account. Sturm (1997: lemma 2.11.6) shows that all forward looking
temporal formulas (that is: formulas without occurrences of Since) are preserved
under S-similarity.
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For a proper comparison between S-simulations and our bisimulations we
extend the above definition with backward |ooking clausesin the obvious way:

— If 21725 and 21 >1 y1, then there exists i, in M, with y1 7y, and 22 >» y»
such that for every z, in My with 2o, > 2 >2 yo there exists z; in My with
21 >1 21 >1 y1 and 217 2.

— A similar clause going from M to Mj.

It turnsout that bisimilarity in our senseand S-similarity are equivalent notions, and
thereforethey preservethe sasmeformulas. Clearly bisimilarity implies S-similarity
(simply take the first component of a bisimulation). To see that the converse holds
aswell, let Z be an S-simulation, and define Z' = (Z), Z1, Z5) asfollows:

Zy =7

71 = {(z1y1,2292) | V22 (12 <2 22 <2 y2 —
dz1 (:El <121 <1y1 A Z]_ZZZ))}

Zé = {(:Ez Y2, L1 yl) | Vz1 (:El <121 <1Y1 —
2z (22 <2 22 <2 Y2 N 21Z22)) }

Then Z' is abisimulation.
PROPOSITION 3.5. M1, w & Mo, v isequivalentto My, w £ Mo, v.

To conclude our discussion of S-similarity we want to emphasize the following.
We have seenthat S-similarity (extended with backward |ooking clauses) coincides
with our notion of bisimulation. Thismay seemto beareasonto prefer S-similarity
over our notion of bisimilarity, especially since.S-simulations arerel ations between
points only, while our bisimulations involve both points and intervals, while tem-
poral formulas are evaluated at points only. However, as we will show below, itis
precisely this special two-sorted character of our notion of bisimulation that allows
us to develop the model theory of Since and Until in a direct way (without detours
through richer languages).

3.5. 3-BACK-AND-FORTH EQUIVALENCE

The following notion of an equivalence relation on models is taken from (van
Benthem, 1991). First, a partial isomorphism from M7 to Mo is a partial map
0 : W1 — W> such that

— for al proposition letters p and all statesw, w € Vi(p) iff 8(w1) € Va(p),
— for al states w1, v1 € W1 and all quantifier-free formulas a(x, y) in < and =
we haveMl |: a[wlvl] iff M> ): a[0(w1)9(v1)].
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M,

KA

Figure 4. Bisimilar but not 3-back-and-forth-equivalent.

Next, a x-back-and-forth system (v < w) from M3 to M> is anon-empty set C of
partial isomorphismsfrom M, to M> such that

1. if § € C then |dom(0)| < k

2. if 8 € C then any restriction of 6 to a subset of itsdomainisalsoinC

3.if0eC,we Wy\ dom(#) and |dom ()| < k, then there exists 7 in C with
{w} U dom(0) C dom(67T)

4.if0 € C,v € W2\ rng() and |dom(0)| < k, then there exists 6 in C with
{v} Urng(0) C rng(67T).

Let w € M; and o € M> be tuples of equa length. The structures (M, w)
and (M;,v) are k-back-and-forth equivalent if there exists a x-back-and-forth
system C from M; to M, containing a map @ such that §(w) = v, notation
C: My,w>, My,m.

Van Benthem (1991) showsthat afirst-order formula (in <, =) can be written
with at most three variablesiff it isinvariant under 3-back-and-forth equivalence.
The relevance of this result for temporal logic is that temporal formulas with
Since and Until can be tranglated into the 3-variable fragment of £4, thefirst-order
correspondence language.

Clearly, My, w ~3 M>,v implies M1, w ~ M>,v for al ~ € {ﬁu, <5, 2,
£g, €5 p}, but none of the converse implications holds, as is witnessed by the
examplein Figure 4.

We leave it to the reader to check that M1, w £y Mo, v viathe dotted lines
(and from this the other bisimilarities follow). However, the single ‘end point’ in
M, satisfiesthe 3-variable statement

yIz(y#2zANy<zAz<z)

whichisnot satisfied by any nodein M5, so M7 and M cannot be 3-back-and-forth
equivalent.
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SN

=3

Figure 5. Thefindings of this section.

PROPOSITION 3.6.
1. My, w ~3 M, v |mpI|eSM1 & Mo, v.
2. My & My, v doesnotimply My, w ~3 Mo, v.

3.6. TEMPORAL EQUIVALENCE

Finally, we compare temporal equivalenceto bisimilarity.

PROPOSITION 3.7. Let ¢ be a temporal formula, and assume that ¢ cannot
distinguish between bisimilar points, that is: if wZgv, then (w = ¢ iff v = ¢).
If wiv1Z1wovy, then wivy ): ¢ implies wovy ): ¢. And if wovo Zowivy, then
WV ): ¢ implieSwlvl ): ¢

Proof. We only prove thefirst of thetwo claims. Assumewjv; = ¢ and assume
that Z is a bisimulation such that w1v1 Z1wov,. We have to show that wovp = ¢.
So choose uy such that wy <2 uz <2 vy. We need to show that uy = ¢. As
w101 Z1waova, thereexists ug such that wy <1 w1 <1 v1 and uq Zguy. Thenug ): o,
so by the assumption on ¢ we have uy |= ¢. O

LEMMA 3.8.1f My = (W1, <1, V1) and M, = (W, <2, V») are two models, and
wy € W1, wy € Wo, aresuchthat Z : wy & wo, then wy = ws,. In other words:
bisimilarity implies temporal equivalence.

Proof. We argue by induction on the structure of formulas. The atomic and
boolean casesare easy. Solet usconsider thetemporal case. Assume w; = U (¢, 1)
and Z : w1 £ wy. We need to show that wo = U(¢, 1). By definition there exists
avy suchthat (i) wy <p v1, (i) v1 = ¢, and (iii) wyvy = . From (i) and clause 2 of
Definition 3.1 we obtain av, with (IV) wp <2 U2, (V) v1Zov2, and (VI) WU 41 W22,
By the induction hypothesis, (v) and (ii) we get v, = ¢. From the induction
hypothesis, (iii), (vi), and Proposition 3.7 it follows that wyv2 |= 1. By (iv) this
implieswy = U(¢, ), asrequired.

The casefor S is proved similarly. O

The converse of theimplication provedin Lemma3.8 (‘ Doestemporal equivalence
imply bisimilarity?) will be examined in Section 4 below.
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w1 w2

Ml M2

Figure 6. Equivalent but not bisimilar.

Summarizing the findings of this section, we arrive at the diagram of inclusions
depicted in Figure 5, where an arrow ~ — = denotes that ~-bisimilarity implies
~-bisimilarity. The upward arrow marked with a question mark represents an open
problem due to van Benthem et al. (1994: Open Problem 4.7).

4. Hennessy—Milner Classes

In this section we consider the converse of Lemma 3.8. when does temporal
equivalence imply bisimilarity? Using a standard example from the literature on
modal logic, it is easily seen that this is not the case in general. The two models
in Figure 6 satisfy the same temporal formulas in their root nodes, but there is no
bisimulation linking the two root nodes.

To get ahandle on situations where temporal equivalence doesimply bisimilar-
ity, we need the following definition.

DEFINITION 4.1 (Hennessy—Milner class). A class K of models is called a
Hennessy—Milner class if for My, M, € K, and all wy € M; and wy € My,
w1 £ wy iff wy = wo. Thatis, if temporal equivalenceis a bisimulation between
M, and M>.

For the standard modal languagewith < and 0 the above notion is due to Gol dbl att
(1995) and Hollenberg (1995). The standard example of amodal Hennessy—Milner
classin which modal equivalence and modal bisimilarity coincide, is the class of
all image-finite models— models for which the set of <-successorsisfinite for any
point in the model.

It turns out that a natural way to determine whether a class of models is a
Hennessy—Milner class involves the concept of temporal saturation. Let A Cgip, @
denotethat A isafinite subset of ®.

DEFINITION 4.2. Let M = (W, <, V') beamodel. M is said to be ¢-saturated if
it satisfies the following conditions:

[f VA Chin OVI Cin VI e W (w <vandv = AA andwv = AT)
thendv e W (w <vandv = A ® andvw = A ¥); and
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VD ChinVu e W (w<u<vandu = AT)
thenJu e W (w <u<vandu = A 7).

(And similarly, with > instead of <.) We use T-SAT to denote the class of all
t-saturated models.

The notion of m-saturation considered in the literature on modal logic arisesif one
only takes the first condition for > in the definition of ¢-saturation, with & = ()
(see Fine, 1975; Goldblatt, 1995; Hollenberg, 1995).

THEOREM 4.3. T-SAT is a Hennessy—Milner class.

Proof. Assume that M;, M, are in T-SAT. Define Z by putting w1 Zow»
iff tp(w1) = tp(wy); wiviZiwovy iff tp(wivi) C tp(wavz); and, similarly,
wovp Zowiv1 iff tp(wav2) C tp(wiv1). Wewill show that 7 is abisimulation.

Thefirst clause of Definition 3.1istrivially satisfied. For the second one, assume
tp(w1) = tp(wz) and w1 <1 v1. We need to find av, such that wo < vy, tp(vy) =
tp(vz) and tp(wyv) C tp(wavz). Consider A Ciin tp(v) and I' Crin tp(wyvy).
Then w1 = U(AA,AT), and so, as w1 = wp, we have wy = U(AA,AT).
Thus, there exists vy in M, such that wy <2 v2, v2 = AA, and wav = AT.
By t-saturation there must be a wp <, vy such that v, = Atp(v1) and vowy =
Atp(viwi). But then tp(vy) = tp(vy) and tp(wiv1) C tp(wovz), asrequired.*

For clause 3 of Definition 3.1, assume that tp(wyv1) C tp(wovz) and wy <>
up <2 wp. We need to find awuj such that wy <3 w1 <1 v1 and tp(u1) = tp(uz).
Consider I' Ciip tp(ug). Then wovs = = AT, and so, since tp(wivy) C tp(wava),
we find that wivy = = AT. Thisimplies that there exists  in Mj with w; <3
u <1 vy andu = AT. Applying the second clause in the definition of t-saturation,
we find a s in M7 such that wi <1 ug <1 v1 and tp(u1) = tp(uy), and we are
done.

The remaining clauses may be proved by similar arguments. O

We now give two examples of ¢-saturated classes of models, the second of which
will be used extensively below.

PROPOSITION 4.4. Every finite model is ¢-saturated.
Proof. Let w € |M|, and consider sets of formulas & and ¥ such that for all
A Ciin @ and I' Cyip, U there exists av such that

w<vandv):/\Aandwv|:/\I‘. Q)

We need to show that there exists v such that (1) holdsfor all of & and . Suppose,
for contradiction, that thereis no v. Then, for every v > w, wefinda¢, € ® with
v £ ¢y Or asp, € W with wo & ¢,. As M isfinite, there are only finitely many

* Observe that v2 = tp(vi) implies tp(v1) = tp(v2), but wov2 = tp(wivi) only implies
tp(wiv1) C tp(wavz).
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such v; collect theformulas ¢, and v, (for v > w) together in finite sets A Ciip @,
I’ Ciin 0. For these A and T (1) does not hold — a contradiction!

To establish the second clause of Definition 4.2, assume w, v € |M]|, and
consider a set of formulas ¥ such that for every finite ' Cii, ¥ there exists a
u € |M]| such that

w<u<vandu):/\I‘. 2

We need to show that there exists « such that (2) holds for all of ¥. Suppose for
contradiction that there is no such u. Then, for every u with w < u < v thereis
ay, € U withu = 1,. Collect these formulas together into afinite set T Cip ¥
(M isfinitel). For thisT (2) fails— acontradiction.

The remaining clauses in Definition 4.2 may be established by similar argu-
ments. |

We need the following form of saturation from first-order logic. Recall first that
M is an elementary extension of M, if Wy D W, and for al L£i-formulas
a(zy,...,z,) and al tupleswy, .. ., wy, of My,

M = a(z, ..., zp)[wi, ..., wy] iff My = oz, ... zp)[we, ..., wy).

We write M, < Mj inthis case.

Let x be a cardinal number. A model M is k-saturated in the sense of first-
order logic if whenever ® isaset of £(z)-formulas, where £} extends £, by the
addition of fewer than x many individual constants, and @ isfinitely satisfiablein
an L-expansion of M, then @ itself is satisfiable in this expansion.

To show that M is t-saturated it suffices to show that M is 3-saturated. Below
we will need the stronger assumption of w-saturation.

PROPOSITION 4.5. Every w-saturated model is ¢-saturated.
Proof. The proof is similar to the proof of Theorem 4.3. O

One can construe w-saturated models as ultrapowers over a specia kind of ultra-
filters. We assume that the reader is familiar with the definition of ultraproducts
and ultrapowers of models (consult Hodges, 1993, if necessary). An ultrafilter is
called w-incompleteif it is not closed under countable intersections. As aresult, if
U is an w-incomplete ultrafilter and M is a model, then the ultrapower [];; M is
an w-saturated elementary extension of M .

THEOREM 4.6. Assume that our language is countable. Let M1, M, be two
models, and let w1, w» be elements of M1, M, respectively. If wi = wy then M,
and M, have bisimilar ultrapowers.

Proof. The proof is similar to the proof of (de Rijke, 1995b: theorem 5.7).
We confine ourselves to a sketch of the proof. Let T be an infinite index set; by
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Chang and Keisler (1973: proposition 4.3.5) there is an w-incomplete ultrafilter U
over I. By our previous remarks the ultrapowers []; (M1, w1) =: (M7, w}) and
[T (M2, wp) =: (M3, wh) are w-saturated.

Observe that tpy; (wh) = tpar(wp) = tpar, (w1). Hence, My, wi = M, wj;
as Mj,w; and M, w, are w-saturated, it follows from Proposition 4.5 that
M, wy € Mo, wh, asrequired. ]

Thus, temporal equivalence implies that there exist bisimilar ultrapowers.
Hennessy—Milner classes can be characterized in terms of a stronger connection
between temporal equivalence and bisimilar ultrapowers. We need two lemmas to
arrive at this characterization.

LEMMA 4.7. Let I be anindex set, and U an ultrafilter over 1. Then

1. Ifforal: e I, M;, w; & Ni,vi,then HU(Miawi) & HU(Nian)-
2. 1f M,w & N,v,thenI[;(M,w) & [[y(N,v).

Proof. We only prove the first item. For each i € I, let Z(*) be a bisimulation
linking M; and N;: 29 : M;, w; £ Nj,v;. Define a bismulation Z between
points of [];(M;,w;) and [];(N;,v;), and pairs of points of [];(M;,w;) and
[T (N;,v;) in the obvious way by putting

2170w iff {i € I| 31(i) 28 22(i)} € U;

v11Zamays if {i € T| 21(i)y1(i) 2 ma(i)ya(i)} € U

T2Yy2Z2T1Y1 iff {Z el | $2(z)y2(z)Z§Z)xl(z)yl(z)} eU.

Why isthisisabisimulation? First of al, it isclearly non-empty (take z1 : 7 — w;,
and z2 @ i — v;; then z1/U Zoz2/U). Next, if = in [T, (M;, w;) hasz = p and
xZoy, then, by the definition of ultraproducts {i € I | z(i) € Vi(p)} € U. As
x Zoy, thisimplies

X = {i € I'| (i) € Vi(p) and z(i) Z3y (i)} € U.

Aseach Z() isabisimulation it follows that X C {i € I | y(i) € Vi(p)}, hence
the latter setisin U, from which we get y = p, asrequired.
The remaining clauses may be proved by similar arguments. O

LEMMA 4.8. Let K be a Hennessy—Milner class, and M1, M> € K. Let wy, wr
be elements of My, M>, respectively, such that wy = wo. Then [ (M1, w1) &
[1 (M2, w,) for al index sets I and ultrafilters U over I.

Proof. From w; = w, and the definition of a Hennessy—Milner classit follows
that w1 < wy. Applying the second statement of Lemma 4.7 givestheresult. O
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COROLLARY 4.9. Let K beaclass of models. Then K isaHennessy—Milner class
iff the following are equivalent for all models M1, M, € K and states wy, € My,
wyp € Mo:
1. My, w1 = Mo, wo, and
2. for all ultrafilters U the ultrapowers of [, (M1, w1) and []; (M2, wp) are
bisimilar.

For the standard modal language with <& and 0O, Hollenberg (1995) has charac-
terized the maximal Hennessy—Milner classes in terms of submodels of canonical
models. No such characterization has been obtained for Hennessy—Milner classes
for thetemporal languagewith Sinceand Until; infact, it isnot always clear whether
canonical modelsfor Since and Until form a Hennessy—Milner class. For example,
the lack of a uniform definition of an accessibility relation in the completeness
proofsfor logics with Since and Until due to Burgess (1982) and Xu (1988) makes
it hard to determine whether their Henkin-style models form a Hennessy—Milner
class.

5. Applicationsto Temporal Model Theory

In this section we apply the tools developed in Sections 3 and 4 to arrive at
model-theoretic results for temporal logic on preservation and definability. We
give quick proofs of definability, separation, and interpolation theorems, as well
as a preservation theorem characterizing the first-order trandations of temporal
formulas.

To smoothen the presentation of our results, we will be working with so-called
pointed models; these are structures of the form (M, w), where w lives in the
domain of M; w is called the distinguished point of (M, w). We will assume that
abisimulation between two pointed models links their distinguished points.

We will aso be using the following operations on classes of models: Pr, Po,
B. Here Pr(K) isthe class of ultraproducts of modelsin K; Po(K) isthe class of
ultrapowers of modelsin K; and B(K) is the class of al models that are bisimilar
to amodel in K.

LEMMA 5.1. Let K be aclass of pointed models.

1. Kisclosed under bisimulations and ultraproductsiff K = BPr(K),
2. K is closed under bisimulations and ultrapowersiff K = BPo(K).

Proof. We only prove the first item, and to prove the first item it suffices to
show that PrB(K) C BPr(K). So, assume (M, w) € PrB(K). Then there are
an index set I, models (M;,w;) and (N;,v;) (i € I) such that (N;,v;) € K,
(M;,w;) & (Nj,v;), and (M,w) = [y (M;,w;), for some ultrafilter U over
I. Trividly, [Ty (N;,v;) € Pr(K). By Lemma 4.7, (M,w) = [[y(M;,w;) &
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[17(Ni, v;). Hence, (M, w) € BPr(K), asrequired. O

We will say that a class K of pointed modelsis SU-definable, or simply definable,
by means of a set of temporal formulasif there exists a set of temporal formulas T
suchthat K = {(M,w) | (M,w) = T}. A class of pointed modelsK is definable
by means of a single formula if it is definable by means of a singleton set.

Let K be a class of pointed models; we use K to denote the class of pointed
modelsthat are not in K.

THEOREM 5.2. Let K be aclass of pointed models. Then

1. K is definable by means of a set of temporal formulas iff K = BPr(K) and
K = Po(K),
2. K is definable by means of a single temporal formula iff K = BPr(K) and

K = Pr(K).

Proof. 1. The only if direction is easy. For the converse, we can ‘bisim-
ulate’ familiar arguments from first-order model theory. Assume K is closed
under ultraproducts and bisimulations, while K is closed under ultrapowers. Let
T = ({tp(ar) (w) | (M, w) € K}.

Wewill show that 7" definesK. First, K |= T'. Second, assumethat (M, w) = T,
we need to show (M,w) € K. Consider tp(s,.)(w), and define I = {3 C
to(vw)(w) | [X] < w}. Foreachi = {oy,...,0,} € I thereisamodel (M;, w;)
of 7 in K. By standard model-theoretic arguments there exists an ultraproduct
[Ty (M;, w;) which is amodel of tp(a; ., (w); hence [1 (M;, w;) = (M, w). As
Pr(K) C K, [Ty (M;,w;) € K. By Theorem 4.6 there is an ultrafilter U’ such that

]1<Hmﬂmw>iiﬂmmwy

U’ U U’

Hence, the latter isin K, and, by the closure condition on K, thisimplies (M, w) €
K, asrequired.

2. Again, theonlyif directioniseasy. AssumeK, K satisfy the stated conditions.
Then both are closed under ultrapowers, hence, by item 1, there are sets of temporal
formulas Ty, T defining K and K, respectively. Obviously, T UT» = L, soby com-
pactnessfor some ¢y, ..., ¢n € T1, Y1, ..., m € T2, Wwehave \; ¢; =V, —1b;.
Then K is defined by A; ¢;. O

COROLLARY 5.3 (Separation). Let K, L be classes of pointed models such that
KNnL=0.

1. If Kisclosed under bisimulations and ultraproducts, and L is closed under
bisimulations and ultrapowers, then there exists a class of models M that is
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definable by means of a set of temporal formulas and such that K € M and
LAM=0.

2. If both K and L are closed under bisimulations and ultraproducts, then there
exists a class of models M that is definable by means of a single temporal
formulaand suchthat K C MandLN'M = 0.

Proof. We only prove the first item. Let K’ be the class of al pointed models
(M, w) such that for some (N,v) € K, (M,w) = (N,v). ThenK C K, andK' is
closed under =. Moreover, K' N L = (). For suppose (M, w) € K' N L; then there
exists (N,v) € K suchthat (N, v) = (M, w). By Theorem 4.6 (N, v) and (M, w)
have bisimilar ultrapowers ], (IV,v) and [];; (M, w). AsK, L are closed under B
and Po, thisimplies[[;(N, v) € KN L —acontradiction.

To complete the proof, let ' = N {tp(arw)(w) | (M, w) € K'}. Then T defines
K'.AsK C K'andK' N L = (), we are done. O

Observe that Corollary 5.3, item 2 is a strong form of the Craig interpolation
theorem.

To obtain a characterization of the first-order formulas that are equivalent to a
temporal formula, we usethe following notion. A first-order formulac(x) in £1(z)
isinvariant for bisimulations iff for any two pointed models (M, w) and (N, v),
any two statesw’ € M and v’ € N, and any bisimulation Z such that w' Zv', we
havethat M = ofw'] iff N = afv'].

COROLLARY 5.4 (Invariance). Let a(x) bean £1(x)-formula. Thenthefollowing
are equivaent.

1. a(z) isinvariant for bisimulations.
2. o(z) isequivalent to the standard translation of atemporal formula

Proof. Theimplication from 2 to 1 is Lemma 3.8. For the converse implication,
let a(z) beinvariant for bismulations. Let K be the class of (pointed) models of
a(z). Then K and K (being defined by —a(x)) are closed under ultraproducts.
As «a(z) isinvariant for bisimulations, both K and K must also be closed under
bisimulations. Hence, by Theorem 5.2, K must be definable by a single temporal
formula ¢. Thismeansthat «(x) is (equivalent to) the standard translation of ¢. O

6. Concluding Remarks

In this paper we have introduced a notion of bisimulation for temporal logic with
Sinceand Until that allowsoneto devel op the basic model theory for temporal logic.
We established a preservation result that characterizesthe first-order formulas that
correspond to temporal formulas with Since and Until, thereby answering Open
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Problem 4.4 from van Benthem et al. (1994). In addition, we proved definability
and interpolation results.

A lot remainsto be done. First of all, we believe that our notion of bisimulation
may be a useful tool in obtaining further results in the model theory of Since
and Until. In particular, Kamp’'s famous result of the expressive completeness
of Since and Until over dedekind-complete linear order is an important one, for
which multiple proofs should be available. One of the most recent proofs, due
to Hodkinson (1995) uses games that seem to be quite close to our notion of
bisimulation; it therefore seems feasible to try and prove Kamp's theorem using
our bisimulations.

Next, wethink that our general methodol ogy of involving morecomplex patterns
of states in the definition of bisimulation for Since and Until also indicates the
way to go when attempting to define suitable bisimulations for other complex
modal operators whose truth definition involves both universal and existential
quantification. In particular, our ideas seem applicable to the minimality operator
min whose semanticsis given by

wEmn(e) iff y(w <yAyEIAVZ(w <z <y— 2z P)).

Obviously the min-operator is definable using Since and Until, and as aresult we
havethat statesthat are bisimilar in our sense agree on formulasinvolving the min-
operator — but what about a notion of bisimulation that exactly characterizes the
fragment involving minin the sense of Corollary 5.4? Further examplesalong these
lines could include the temporal operators found in Manna and Pnueli (1992). But
more exotic modal operators might also be analyzed using our strategy. A suitable
test case would be the binary interpretability operator > whose truth definition is
based on abinary relation R and aternary relation S asfollows:

w = ¢>iff Iy (Rwy Ay = ¢ AVz (Swyz — z = 1)).

See Berarducci (1990) for further details on this operator.

In our comparisonsin this paper we focused on equivalence relations between
models that were defined by fairly simple first-order conditions. De Nicola
and Vaandrager (1995) study so-called branching bisimulations whose definition
involves non first-order definable concepts like ‘finitely many silent steps’; they
show that on certain transition systems branching bisimulations and several tem-
poral logics induce the same equivalence relations. The exact connection hasn’t
been determined, though, and to obtain a precise description of the connectionsone
needs other tools than the ones we have used in this paper as these are essentially
first-order.

An interesting further point raised by one of the referees is to determine the
relation between bisimulation, temporal equivalence and the notion of aHennessy—
Milner class on restricted classes of models, especially on the various classes of
linear orders which are most commonly seen in temporal logic.
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Finally, in this paper we have given the first notion of bisimulation that allowed
for an exact characterization theorem in the sense of Corollary 5.4 of modal oper-
ators whose truth definition is not of the simple3---3a or V.- -V« format (for
a quantifier-free). Do our ideas of introducing bisimulations that link states to
states and sequences to sequences generalize to the extent that we can handle any
first-order definable modal operator, no matter how complex its truth definition is?
Recent work by Andrékaet al. (1995) and by Hollenberg (1996) is relevant here.
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