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Abstract

We describe a method for characterizing the
expressive power of description logics. The
method is essentially model-theoretic in nature,
and it is applied to obtain expressiveness results
for a wide range of logics in the well-known
FL− and AL hierarchies. As a corollary we
obtain a complete classification of the relative
expressive power of these logics.

1 Introduction

In the field of description logics, and indeed, in Knowl-
edge Representation in general, one of the guiding
themes in the design of representation formalisms has
been the slogan ‘feasibility vs. expressiveness.’ Or: the
more expressive a formalism is, the higher the computa-
tional costs of the reasoning tasks that can be performed
in it. The complexity of satisfiability and subsumption
problems for description logics has been studied exten-
sively [Donini et al., 1997], but the issue of expressiveness
has hardly been addressed in a formal and rigorous man-
ner; we are aware of only two publications on this topic
[Baader, 1996; Borgida, 1996].

While we don’t claim to have the final analysis of the
interplay between feasibility and expressiveness, we do
hope to contribute to a better understanding of the issue
by offering a formal yet intuitive explanation in model-
theoretic terms of the expressive power of a wide range of
description logics. Briefly, we identify description logics
as fragments of a common background logic, character-
ize these fragments semantically in terms of preservation
results, and then compare description logics by compar-
ing the corresponding fragments. The main result is a
complete classification of a wide range of description log-
ics.

We proceed as follows. Section 2 recalls the logics we
will consider, as well as their semantics. Section 3 ex-
plains our methods, and Section 4 summarizes our main
results. In Section 5 we briefly discuss related work, and
in Section 6 we mention our ongoing work.

2 Preliminaries

The description logics we consider are built up using the
constructors in Table 1. Recall that FL− has univer-
sal quantification, conjunction and unqualified existen-
tial quantification ∃R.>; see [Brachman and Levesque,
1984]. To simplify the formulation of our results we will
assume that FL− contains top and bottom. AL extends
FL− by negation of (atomic) concept names. Extensions
of FL− and AL are denoted by postfixing the name of
the constructors being added.

Constructor Syntax Semantics

concept name A AI ⊆ ∆I

top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI

disjunction (U) C tD CI ∪DI

negation (C) ¬C ∆I \ CI

univ. quant. ∀R.C {d1 | ∀d2 (d1, d2) ∈ RI → d2 ∈ CI}
exist. quant. (E) ∃R.C {d1 | ∃d2 (d1, d2) ∈ RI ∧ d2 ∈ CI}
number (≥nR) {d1 | |{(d1, d2) ∈ RI}| ≥ n}
restriction (N ) (≤nR) {d1 | |{(d1, d2) ∈ RI}| ≤ n}
role name R RI ⊆ ∆I ×∆I

role conj. (R) Q uR QI ∩RI

Table 1: Constructors in First-Order Description Logics

We refer the reader to [Donini et al., 1996] for a recent
overview of the area.

Description logics are interpreted on interpretations
I = (∆I , ·I), where ∆I is a non-empty domain, and ·I



is a function assigning subsets of ∆I to concept names
and binary relations over ∆I to role names; complex
concepts and roles are interpreted using the recipes in
Table 1. The semantic value of an expression E in an
interpretation I is the set EI ; two expressions are equiv-
alent if they have equal semantic values in every inter-
pretation.

3 The Method

Let L1 and L2 be description logics. We say that L1

is at least as expressive as L2 if for every expression in
L2 there is an equivalent expression in L1 that uses (at
most) the same concept and role names.

Our method for characterizing and comparing the ex-
pressive power of description logics consists of the fol-
lowing:

I a mapping taking description logics to fragments of
a ‘background logic’;

II model-theoretic characterizations of such fragments;
and

III comparisons of description logics via comparisons
of the corresponding fragments, using the semantic
characterizations to separate logics.

Let us consider each of these in turn, starting with
item I. As is well-known, each extension of FL− that
is defined using the constructors from Table 1 can be
viewed as a fragment of first-order logic over a suitable
vocabulary; thus, in this paper we use first-order logic
as our background logic.

Item II is the heart of the method. With each fragment
corresponding to a description logic L that is defined us-
ing the constructors in Table 1 we will associate an L-
relation between interpretations that characterizes L in
the following way. Roughly speaking, a first-order for-
mula is (equivalent to) an L-concept if, and only if, it re-
mains true under passing from an interpretation to an L-
related interpretation. These characteristic L-relations
are all derived from the notion of bisimulation known
from concurrency theory and modal logic.

As to item III, the notion of preservation gives us the
tools we need to distinguish between description logics.
To show that a description logic L1 is more expressive
than L2, we first show that for every L2-concept there
is an equivalent L1-concept, and, next, that there exists
an L1-concept that is not equivalent to an L2-concept
as it is not preserved by the characteristic L2-relations
between interpretations. In all cases considered here the
latter can be established using small interpretations and
simple concepts.

4 Main Results

Our results come in two kinds. First, we establish the
model-theoretic characterizations announced above for

every extension of FL− and AL that can be defined us-
ing the constructors from Table 1. Second, we use these
characterizations to separate description logics. By way
of example we consider FL− and define the notion of an
FL−-simulation; after that we indicate how characteris-
tic relations for other logics may be built on top of the
one for FL− by adding further clauses or conditions.

Given a binary relation S on objects, and sets of ob-
jects X and Y , we write XS↑Y if ∀x ∈ X∃y ∈ Y Sxy,
and XS↓Y if ∀y ∈ Y ∃x ∈ X Sxy.

Definition 1 Let I and J be two interpretations. An
FL−-simulation is a non-empty relation Z ⊆ P(∆I) ×
∆J such that the following hold.

1. If X1Zd2 then, for every (atomic) concept name A,
if X1 ⊆ AI , then d2 ∈ AJ .

2. For every role name R, if X1(RI)↑Y1 and X1Zd2,
then there exists e2 ∈ ∆J with RJ d2e2.

3. For every role name R, if RJ d2e2 and X1Zd2, then
there exists Y1 ⊆ ∆I with X1(RI)↓Y1 and Y1Ze2.

A first-order formula α(x) is preserved under FL−-si-
mulations if for all interpretations I and J , all sets X ⊆
∆I and objects d2 ∈ ∆J , and all FL−-simulations Z
between I and J , we have that if XZd2 and for all
d1 ∈ X, I |= α[d1], then J |= α[d2].

It is easily verified by induction on concepts that
all (first-order formulas that are equivalent to) FL−-
concepts are preserved under FL−-simulations. But the
converse of this statement is also true: if a first-order for-
mula is preserved under FL−-simulations, then it must
be (equivalent to) an FL−-concept. It is in this sense
that FL−-simulations characterize FL−.

To obtain analogous characterizations for richer log-
ics in the FL−-hierarchy, the definition of an FL−-
simulation has to be strengthened so as to identify fewer
interpretations and thereby ensure preservation of the
additional constructors. For each constructor (C, E , U ,
N , R) one has to amend the existing clauses or add one
or more new clauses. Without going into details, the
main ideas are the following:

(E) To ensure preservation of qualified existential quan-
tifications ∃R.C we only need to add a conjunct
‘and Y1Ze2’ to clause 2 in Definition 1, thus estab-
lishing a symmetry between clauses 2 and 3.

(U) To characterize logics with disjunction of concepts
we have to change the format of our simulation
relation by linking objects to objects rather than
sets of objects to objects. Put another way, one
can arrive at simulations for FLU− by requiring,
essentially, that the sets X1, Y1 in Definition 1 are
singletons.

(C) To ensure preservation of negated (atomic) con-
cept names, we change clause 1 in Definition 1 by



demanding that both atomic and negated atomic
concepts are preserved. For the more general case
where we add negations of arbitrary concepts to
FL−, disjunctions become definable, of course, and
by the previous item, the format should be changed
to a relation linking objects to objects. Moreover,
the first clause in Definition 1 should become an
equivalence: if d1Zd2, then, for every (atomic) con-
cept name A, d1 ∈ AI iff d2 ∈ AJ .

(N ) Guaranteeing that number restrictions are pre-
served requires more substantial changes. In the
presence ofN our simulation relation becomes a tu-
ple (Z0, Z1, Z2, . . .), where Z0 is just like the FL−-
simulations defined in Definition 1, and the rela-
tions Zi (i > 0) relate sets of size i to each other.
Suitable back-and-forth conditions for the relations
Zi (i > 0) ensure that number restrictions (≤ i R)
and (≥ i R) are preserved.

(R) Similarly, characterizing logics with role conjunc-
tions also requires a substantial change to Defini-
tion 1. Simulations now become triples (Z0, Z1, Z2)
where Z0 is just like an FL−-simulation, and Z1,
Z2 link pairs of (sets of) objects to pairs of objects.
Basically, they record the roles satisfied by pairs on
either side of the relation.

The above remarks sketch what changes have to be made
to Definition 1 if the constructors mentioned are added
to FL−. By combining the various changes, appropriate
notions of simulation can be found for richer logics in a
modular way.

To summarize, then, using simulation relations based
on the above ideas, we can obtain the following collection
of characterization results.

Theorem 2 (Characterization) Let L be a descrip-
tion logic that can be obtained by adding zero or more of
the constructors U , C, E, N , or R to FL− or AL. Then
there exists a characteristic L-relation on interpretations
(similar to the above FL−-simulations) such that a first-
order formula α(x) is preserved under L-relations iff it
is (equivalent to) an L-concept.

Some comments about the proofs of the characteriza-
tion results summarized in Theorem 2 are in order. The
proofs consist of two parts: an easy induction to show
that L-concepts are indeed preserved under L-relations,
and a non-trivial proof of the converse. The latter fol-
lows a strategy that is familiar from a wide range of
preservation results in first-order logic. Let α(x) be a
first-order formula that is preserved under L-relations;
to show that α(x) is (equivalent to) an L-concept, we
reason as follows. Let L-CONS (α) denote the collection
of L-consequences of α: {β | α |= β and β is an L-
concept}. Then, by the compactness theorem it suffices

to show that L-CONS (α) |= α(x). This is where we use
the assumption that α is preserved under L-relations.
First, take an interpretation I with an object d such
that d ∈ (L-CONS (α))I ; we need to show d ∈ (α(x))I .
Second, we construct an interpretation J with an object
e ∈ ∆J such that e ∈ (α(x))J and e ∈ (L-CONS (α))J .
The main step in the proof is where we use the latter
property to construct elementary extensions I∗ and J ∗
of I and J , respectively, in such a way that there ex-
ists an L-relation between e, or a set containing e (in
J ∗), and d (in I∗). This step uses tools from first-order
model-theory in an essential way, and it allows us to
conclude that d ∈ (α(x))I , as required.

How can Theorem 2 be used to compare the expressive
power of description logics? As announced in Section 3,
to separate two description logics L1 and L2, we show
that there exists an L1-concept C that is not preserved
under L2-simulations. This is done by presenting two
interpretations I and J such that there exists an L2-
simulation linking (a set of objects in) I to (an object
in) J , while all objects in the set in I satisfy C, whereas
the object in J does not. Although the task of finding
two such interpretations is, in general, an undecidable
problem, in practice one can separate description logics
using very small interpretations.

By way of example, we will now use Theorem 2 to sep-
arate FL− from other description logics. We only show
this for one language, namely FLE−, and we do so by
showing that the concept ∃R.A (which lives in FLE−
and its extensions) can not be equivalent to an FL−-
concept, as it is not preserved under FL−-simulations.
Consider the interpretations I and J depicted in Fig-
ure 1 (dotted lines indicate an FL−-simulation). We
have {d1} ⊆ (∃R.A)I , but d2 /∈ (∃R.A)J even though
there is an FL−-simulation relating {d1} and d2. Hence,
by Theorem 2, ∃R.A can not be equivalent to an FL−-
concept. As FL− is obviously contained in FLE−, the
latter must be strictly more expressive than FL−.
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Figure 1: Separating FL− and FLE−

The above separation result is an instance of a more
general result which completely classifies the expressive
power of all description logics extending FL− or AL.

Theorem 3 (Classification) Using the characteriza-
tions of Theorem 2 all extensions of FL− and AL ob-
tained by adding the constructors in Table 1 can be com-
pletely classified with respect to their expressive power.



The classification may be presented in a diagram; see
Figure 2. Due to space limitations we are only able to
depict extensions of FLE− instead of the full hierarchy.
The diagram should be read as follows. First, the classi-
fication is complete in the sense that every extension of
FLE− coincides with one of the logics shown; if a logic
is linked to a logic at a higher level, the former is strictly
less expressive than the latter; logics not connected by
(sequences of) lines are incomparable with respect to
their expressive power.

FL−

FLE−

FLEU−

ALC FLEUN− FLEUR−

ALCN ALCR FLEUNR−

ALCNR

ALE

ALEN ALER

FLEN−

FLENR−
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Figure 2: Classifying Description Logics

5 Related Work

We see two major lines of work related to this paper,
the first one centered around the use of model-theoretic
methods similar to the ones we have used, the second one
focusing on the expressive power of description logics.

As to the first theme, the technique of Ehrenfeucht-
Fräıssé games in first-order logic is closely related to our
simulations, and it has been used to obtain numerous
separation and preservation results; see [Doets, 1996].
[Immerman and Kozen, 1987] use pebble games to obtain
model-theoretic expressivity results about finite variable
logics, and related techniques have been used in modal
logic as well; for instance, [Kurtonina and de Rijke, 1997]

use various kinds of bisimulations to characterize tem-
poral logics with Since and Until . Also, [Toman and
Niwiński, 1997] use similar methods to separate query
languages. One of the principle advantages shared by
these methods is their explicit and intuitive descriptions
of the languages being studied. The results in this paper
are different from the above ones, as we are interested in
relatively poor languages with limited expressive power
and without closure under some of the boolean opera-
tors; this special focus necessitates both new notions of
simulations and novel techniques for proving the charac-
terization results.

As to the second theme — expressiveness of descrip-
tion logics —, we know of only two earlier references:
[Baader, 1996] and [Borgida, 1996]. We will briefly dis-
cuss each of these. Baader’s work is different from ours
in two important ways. First, Baader’s definition of ex-
pressive power differs from ours. Recall that we we define

a logic L1 to be at least as expressive as a logic L2 if for
every L2-expression there is an equivalent L1-expression
over the same vocabulary. Intuitively, Baader’s defini-
tion allows L1 to use additional concepts and roles in
finding L1-equivalents for every L2-expression. More for-
mally, let Γ be a collection of concepts, and let Voc(Γ )
denote the collection of all atomic concepts and roles
occurring in Γ . Further, assume that we have a map-
ping f : Voc(Γ1) → Voc(Γ2), and interpretations I1
and I2 that satisfy all of I1 and I2, respectively. Then
f embeds I1 in I2 if for all S ∈ Voc(Γ1) we have
SI1 = f(S)I2 . Then, Γ2 can be expressed by Γ1 if there
exists f : Voc(Γ2)→ Voc(Γ1) such that

1. every interpretation that validates all of Γ2 can be
embedded by f in some interpretation that validates
all of Γ1, and

2. for every interpretation I1 that validates all of Γ1

there exists an interpretation I2 that validates all
of Γ2 and that can be embedded in I1 by f .

Then, L1 is at least as expressive as L2 (according to
Baader) if every collection of L2-concepts can be ex-
pressed by some collection of L1-concepts.

Clearly, this more involved definition allows one to
equate more description logics with respect to their
expressive power than ours does; for instance, under
Baader’s definition negation of atomic concepts can be
simulated by number restrictions over additional roles,
whereas according to our results negations of atomic con-
cepts can’t be expressed using number restrictions (over
the same vocabulary).1 While we agree that it may be
useful to be able to use additional concepts and roles in
finding equivalent expressions, as Baader himself points
out, what is lacking from his definition is a measure on
how much additional material one may use and on the
complexity of the function that maps L2-expressions to
equivalent L1-expressions over a possibly richer vocabu-
lary.

A second important difference between Baader’s work
and ours lies in the results that have been obtained.
Baader only establishes a small number of separation
results, whereas we provide a complete classification of
all languages definable using the constructors in Table 1.
More importantly, our separation results are based on se-
mantic characterizations; this gives a deeper insight into
the properties of logics than mere separation results.

In [Borgida, 1996] the author shows that certain de-
scription logics have the same expressive power as the
two or three variable fragment of first-order logic (over
the same vocabulary). Two remarks are in order. First,

1As an aside, the difference between our definition and
Baader’s is analogous to the difference between definability
and projective definability in the area of model-theoretic log-
ics; see [Barwise and Feferman, 1985].



it is well-known that there is a correspondence between
some description logics and modal logics (see [Schild,
1991]), and modal logicians have considered the links
with finite variable fragments for quite some time (see
[Gabbay, 1981]). Thus, Borgida’s results could also have
been obtained this way. Secondly, the description log-
ics considered in this paper are all expressible in the
two variable fragment of first-order logic (possibly with
counting), however, it may be shown that none coincides
with the full two-variable fragment.

6 Concluding Remarks

In this paper we have introduced a series of model-
theoretic tools to capture the expressive power of all
description logics in the FL−-hierarchy. We have used
these tools to separate description logics, and our main
result is a complete classification of the expressive power
of all extensions of FL− that are definable using the con-
structors in Table 1.

Future research in this area will concentrate on the
following themes. First, as was pointed out above, the
proofs for our characterization results use first-order
techniques in an essential way. We aim to avoid these
techniques, and thus to extend our methods to descrip-
tion logics with non-first-order features (like transitive
closure). Second, we want to gain a better understand-
ing of the difference between our approach and that
of [Baader, 1996]. In particular, we want to extend
our model-theoretic tools in ways that will character-
ize the expressive power of description logics in Baader’s
sense. Third, there is an influential line of work in
the database literature that characterizes the expressive
power of query languages in terms of the complexity of
the recognition problem associated with queries express-
ible in the language at hand; see, for instance, [Abite-
boul et al., 1995]. Can this approach be adapted to
description logics? And if it can, would it induce the
same classification of description logics as ours? Finally,
what is the complexity of separating description logics?
It is known from the literature on bisimulation that, in
general, even the question whether two given interpre-
tations are bisimilar, is undecidable, but for finite inter-
pretations the question becomes decidable. In our case,
the question is not just to check bisimilarity, but to de-
termine whether there exists an L1-concept that is not
preserved under L2-relations. Are there special cases of
this question that become decidable?
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