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Abstract 

We introduce a method for characterizing the expressive power of concept expressions in first- 
order description logics. The method is essentially model-theoretic in nature in that it gives 
preservation results uniquely identifying a wide range of description logics as fragments of first-order 
logic. The languages studied in the paper all belong to the well-known ,Y'/~- and ,AZ~ hierarchies. 
© 1999 Published by Elsevier Science B.V. All rights reserved. 
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I. Introduct ion 

Description logics have been proposed in knowledge representation to specify systems 
in which structured knowledge can be expressed and reasoned with in a principled 
way. They provide a logical basis to the well-known traditions of  frame-based systems, 
semantic networks and KL-ONE-l ike languages, object-oriented representations, semantic 
data models, and type systems. General ly speaking, description logics have three main 
ingredients: 

(1) a language for defining concept expressions, 
(2) means to specify knowledge about concepts and individuals, and 
(3) methods for reasoning about the knowledge being represented. 
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In this paper we are only concerned with the first aspects, i.e., with languages for defining 
concept expressions. In the design of such languages two important theoretical consider- 
ations are complexity and expressive power. A popular slogan here is "complexity versus 
expressiveness": the more expressive a description logic is, the higher the complexity of 
the reasoning tasks that can be performed in it. The complexity of satisfiability and sub- 
sumption problems for description logics has been studied extensively (cf. [9,10]), but the 
problem of expressiveness of concept expressions has hardly been addressed so far; we 
are aware of only three publications on this topic [2,6,7]. The purpose of this paper is to 
help fill this gap. We characterize and compare the expressive power concept expressions 
definable in all logics in two well-known hierarchies of description logics. 

The methods we use first identify the concept expressions definable in description logics 
as fragment of first-order logic, and then characterize these fragments in terms of a unique 
model-theoretic property. The main technical tool used is preservation under a suitable 
notion of (hi-)simulation. More precisely, with each description logic ~ we associate a 
characteristic (bi-)simulation such that all and only the /Z-concepts are preserved under 
this (bi-)simulation. Then, the expressive power of concept expressions of two description 
logics can be compared by comparing the model-theoretic behavior of their concepts with 
respect to their respective (bi-)simulations. The characteristic (bi-)simulations can then be 
used to classify the concepts that are definable in description logics. 

We think that our results are significant for the knowledge representation community 
because, for the first time, they give exact and expficit model-theoretic characterizations 
of the expressive power of concept expressions definable in a wide range of description 
logics. In addition, they illustrate a general  method for coping with expressiveness issues; 
we hope they may be useful for understanding knowledge based systems, especially with 
respect to the descriptive desiderata one may have. 

Baader [2] seems to have been the first to propose a formal definition of the expressive 
power of description logics; the only other formal papers on the issue are [6,7]. Our 
definition of expressive power is somewhat simpler than Baader's, as we are only 
concerned with the expressive power of concept descriptions. Implicitly, Borgida [6] 
considers the same notion of expressive power as we do. Cadoli et al. [7] explore notions of 
expressive power that are appropriate for hybrid languages that combine description logics 
with rule-based query languages. 

Our paper differs from [2,6,7] in that we give exact and explicit model-theoretic 

characterizations of the expressive power of concept expressions definable in a wide range 

of logics (cf. Section 5 for further discussion). The results in this paper are based on 
preservation theorems that are similar to ones found in the literature on modal and temporal 
logic and the modal/z-calculus [4,19,21]. However, as description logics often lack some 
boolean operations, the proofs of our preservation theorems require novel technical tools 
and methods. Our preservation results arc: similar in spirit to the characterizations of 
finite variable fragments in terms of pebble games due to [17]. Furthermore, there is a 
considerable body of work on the expressive power of query languages, but most of this is 
phrased in terms of complexity classes [1,18]. The results in the present paper, however, 
are entirely model-theoretic. 

We proceed as follows. In Section 2 we describe the technical prerequisites for the 
paper, and review our notation. Section 3 then explains our method and the definition of 
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expressive power used. The main results of  the paper are contained in Section 4, together 
with illustrations of  their use. Section 6 contains concluding remarks and describes ongoing 
work. Formal proofs of  the main characterization results are included in two appendices. 

2. Technical background 

The main ingredients of  description logics are c o n c e p t s  a n d  roles .  The former are 
interpreted as subsets of  a given domain, and the latter as binary relations on the domain. 
Table 1 lists constructors that allow one to build (complex) concepts and roles from 
(atomic) concept names and role names. For instance, the concept Man rq 3Child.T n 
¥Ghild.Human denotes the set of all fathers. 

Description logics differ in the constructions they admit. By combining constructors 
taken from Table 1, two well-known hierarchies of  description logics may be obtained. 
The logics we consider here are extensions of  f £ - ;  this is the logic with T,  2 ,  universal 
quantification, conjunction and unqualified existential quantification 3R.T.  2 ,AE extends 
.TE- by negation of  concept names (that is, negations of  the form -,A, where A is an 
atomic concept name). Extensions of  .T'E- and ,A£ are denoted by postfixing the name 
of  the constructors being added. For instance, 5rECL/- is ) r E -  with (full) existential 
quantification and disjunction. 

Table 1 
Constructors in first-order description logics 

Constructor name Syntax Semantics 

Concept name A A Z c_ A Z 

Top T A 27 

Bottom ± 13 

Conjunction C • D C Z (7 D Z 

Disjunction (ld) C u D C Z tO D Z 

Negation (C) ~ C  A Z \ C Z 

Universal quantification ¥R.C  {dl I ¥d2 (dl, d2) e R Z ~ d 2 e C Z} 

Existential quantification (E) 3R.C {dl I Bd2 (dl, d2) 6 R Z A d 2 e C Z} 

Number restriction (At') (t> n R) {dt I]{(dl, d2) e R27}]>>. n} 

(<. n R )  {dl [l{(dl,d2) eRZ}]<~n} 

Role name R R Z C_ A Z x A Z 

Role conj. (7-4.) Q n R Q z  N R Z 

Description logics are interpreted on i n t e r p r e t a t i o n s  Z ---- (A I ,  . I ) ,  where A 2: is a non- 
empty domain, and .z is an interpretation function assigning subsets of  A 2- to concept 

2 Some definitions of ~ '£ -  don't include T and ± in the logic; cf. [10]. To simplify the formulation of our 
results we have decided to include them. 
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names and binary relations over A 7: to role names; complex concepts and roles are 
interpreted using the recipes specified in Table 1. The semantic value of an expression 
E in an interpretation 2- is simply the set E I .  Two expressions are called equivalent  if they 
have the same semantic value in every interpretation. 

For further details on both applications and theoretical aspects of description logics, 
we refer the reader to [10], or to the description logic home page at h t t p :  / / d l .  k r .  
org/dl/. 

3. Defining expressive power 

In this section we define our notion of expressive power, and explain our method for 
determining the expressive power of a given description logic. 

Our aim in this paper is to determine the expressive power of concept expressions of 
every extension of 9rE - and ,A£ that can be defined using the constructors in Table 1. We 
say that a logic £1 is at least as expressive as a logic £2 if for every concept expression 
in £2 there is an equivalent concept expression in £~; notation: £2 <<, £1.  If £2 ~< £j and 
/~1 ~ £2, we write £2 < £~; if both £1 ~< £2 and £:2 ~ £1 hold, we write £1 : £2. 

The method we use for explaining the expressive power of description logics has the 
following ingredients: 

(1) a mapping taking concept expressions in description logics to fragments of first- 
order logic; 

(2) characterizations of these fragments by model-theoretic means; and 
(3) comparisons between (the expressive power of) the concepts definable in description 

logics based on comparisons between the corresponding first-order fragments; cf. 
Fig. 1, where the rectangle denotes first-order logic, and the closed curves denote 
(fragments corresponding to) concepts definable in description logics. 

In line with our methodology we will pursue the above items (1), (2), and (3) for 
each of the description logics considered in this paper. First, item (1) is next to trivial. 
The semantics given in Table 1 induces translations (.)~ and (.)~ taking concepts and 
roles, respectively, to formulas in a first-order language whose signature consists of unary 

FOL 

Fig. 1. The method. 
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predicate symbols corresponding to atomic concepts names, and binary predicate symbols 
corresponding to atomic role names: 

A rx 

Tr~  = 

/rx__-- 

(VR.C) r* = 

(3R.C) r~ = 

(~> n R) r~ = 

A x  (C rq D) r~ = C rx A D t~ 

( x = x )  ( C U D )  ~ =  C r * v D  r~ 

(x # x) (-~C) ~ = --,C ~ 

Vy (R ~y ~ cry) ,  where y is a fresh variable 

3y (R tray A CRY'), where y is a fresh variable 

3YI'"Yn(i~jYi~yjAAR~rxYi)i 

where all Yi are a fresh variables 

(<~nR)rx= Vyl . . .Yn+l(AYiS~Yj--~V~R~rxYi ) 
is~j i 

where all Yi are a fresh variables 

R °xy = R x y  (Q rq R) c~xy = Q,rxy/\ R~x~. 

Observe that to translate concepts and roles in description logics without number 
restrictions we only need two individual variables. 

To be able to state that concepts and roles are equivalent to their translations under 
r and a ,  we need to relate the semantics of  description logics and first-order logic. But 
interpretations can naturally be viewed as models for the first-order language we consider 
here. Thus, we will for example write 2- ~ a(x) [d]  to denote that the first-order formula c~ 
is true in 2- (viewed as a first-order model), with d assigned to c~'s free variable x. Below 
we will exploit this connection, often without making it explicit. 

Proposition 3.1. Let C be a concept and R a role. For any interpretation Z and any d, 
e E A 2r we have the following equivalences: 

(1) d c C I i f f Z  ~ C~[d],  

(2) (d, e) ~ R :r i f f Z  ~ R crx~ [de]. 

Given this proposition we are allowed to simply identify concepts definable in 
description logics with their corresponding first-order fragments, and if no confusion is 
possible we write C instead of  C r, and R instead of  R ~ . 

Proposition 3.1 settles item (1) of  our method. Next comes item (2) this is much more 
work. The semantic characterizations that we are after will be formulated in terms of  
preservation under a suitable relation between interpretations. To make this strategy more 
concrete we first recast a result from modal logic in description logical terms. 

Schild [25] was the first to give a precise formulation of  the connection between 
description logics and modal logics. Readers familiar with multi-modal logic will 
immediately recognize the similarity between existential quantification 3R .C  and the 
diamond operator (R)C, and between universal quantification VR.C and the box operator 
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[R]C. Given this connection between description logics and modal logics, results in the 
one domain become available to the other. In modal logic, the following notion is now 
being used as an important model-theoretic tool, even at the textbook level, cL [23]. 

Definition 3.2. Let 2" = (/1 2-, . I )  and ,7 == (A`7, .3)  be two interpretations. A non-empty 
relation Z c (212- x 21`7) is called a bisimulation if it satisfies the following clauses. 

(1) If dlZd2, then, for every (atomic) concept name A, dl ~ A77 iff d2 ~ A "7. 
(2) For every (atomic) role name R, if dl Zd2 and RIdl  el, then there exists e2 in 21,7 

such that R`7d2ee and elZe2. 
(3) For every (atomic) role name R, if dl Zd2 and RJdee2, then there exists el in 212- 

such that R77dl el and el Ze2. 
A first-order formula or(x) is said to be preserved under bisimulations if for all 
interpretations Z, ,7, all objects dl e 2177 and de ~ 21`7, and all bisimulations Z between 2- 
and ,7, we have that Z ~ a[dl]  implies ,7 ~ ot[d2] whenever dl Zd2. 

Bisimulations are also used extensively in concurrency theory [22], and to a lesser extent 
in the area of semistructured data [3]. 

What is the relevance of bisimulations for the purposes of the present paper? Briefly, 
bisimulations are relations between interpretations that preserve all .A£C-concepts. This 
is clear for atomic concept names (clause (1) in Definition 3.2), and a simple induction 
shows it to hold for boolean combinations as well. The back-and-forth clauses (2) and (3) 
guarantee preservation of existential and universal quantification, respectively. 

The following theorem establishes a kind of converse for this preservation result; it is 
the starting point for our investigations. 

Theorem 3.3. Let or(x) be a first-order figrmula. Then or(x) is (equivalent to) an .A£C- 
concept iff it is preserved under bisimulations. 

Proof. The proof consists of two parts: as explained above, by a simple induction one 
can show that A£C-concepts are preserved under bisimulations. The proof of the other 
direction can be obtained as follows. As was first observed in [25], .A£.C is a notational 
variant of normal multi-modal logic (with full boolean expressivity). The corresponding 
preservation theorem for mono-modal logic may be found in [4], but it can easily be 
extended to the multi-modal case. [] 

In words, preservation under bisimulations is the unique model-theoretic property that 
characterizes the concepts definable in .A£C as a fragment of first-order logic. One can 
put this property to good use in the following way: to show that a description logic L; 
(extending .A/~C) is more expressive than .A/~C, by Theorem 3.3 it suffices to identify an 
/~-concept that is not preserved under bisimulations. 

Corollary 3.4. Let £. be a description logic that can be obtained from .4£C by adding any 
non-empty combination of T~ or A/'. Then .Af-.C < £.. 

Proof. To prove .AL;C < .AL;CTZ (or .4£C.Af or A£C7"¢~, respectively), it suffices to 
provide two interpretations 27, ,7 and objects dl E A 2;, dx E A "7 as well as a bisimulation Z 
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linking dl and d2, such that for some AECT~-concept C (or AECN'-concept or A£.C.M~- 
concept) we have dl ~ C :/7 but d2 ¢ C J .  

Consider the interpretations 2- and J depicted below. (The arrows denote the interpre- 
tation of R, an object is labeled A if it is in the interpretation of A, and the dotted lines 
indicate the bisimulation.) 

2 

I ......... R I .  dl d2 • 

Let C1 := (3(R n S).T) and C2 :~- (~ 2 R). Then, clearly, dj 6 C11 and dl 6 Cf, but 

d2 ~ C f  and d2 ~ C2 J .  
We leave it to the reader to check that the relation indicated by the dotted lines is 

indeed a bisimulation. It follows from Theorem 3.3 that neither 3(R n S) .T nor (/> 2 R) is 
(equivalent to) an AEC-concept. Hence, AEC < A£C7~, AECN', ,A£CRN'. [] 

Now, what do we need to do to adapt the above result for other extensions of 7-/2- 
defined by Table 1? For logics less expressive than )tE, C we can not just use bisimulations, 
as such logics lack negation or disjunction, and these are automatically preserved under 
bisimulations; moreover, the proof of Theorem 3.3 uses the presence of the booleans in 
an essential way. For logics more expressive than ,AEC some of their constructors need 
not be preserved under bisimulations. Therefore we have to develop new notions of (bi-) 
simulation; this will be the focus of our attention in Section 4. 

4. Separating description logics 

This section contains the main results of the paper. For 7 - £ - ,  At;,  and all of their 
extensions that can be defined using the constructors in Table 1, we present semantic 
characterizations analogous to Theorem 3.3. We subsequently use these to separate logics, 
thus completing items (2) and (3) of the methodology outlined in Section 3, and we obtain 
a complete classification of the full Y £ -  and AE-hierarchies. 

We proceed as follows. We first consider the "minimal" logic Y £ - ,  characterize its 
concepts semantically, and use the characterization to separate 7 -E-  from richer logics. 
After that, we treat each of the constructors in Table 1 that are not in Y £ - ,  and examine 
which changes are needed to characterize the concepts definable in the resulting logics. 
This is followed by a brief section in which we consider combinations of constructors. Our 
classification results are summarized in a diagram at the end of the section. Proofs of the 
characterization and combination results are given in two appendices. 

Throughout this section the following abbreviations will prove to be useful; let X, Y be 
subsets of a given domain. 
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XR  ? Y iff for all d 6 X there exists e E Y such that Rde, 

XR+ Y iff for all e 6 Y there exists d 6 X such that Rde. 

In words, X is Rt-related to Y if every object in X "sees" an object in Y; and X is R+- 
related to Y if every object in Y is "seen" by an object in X. As an aside, the two relations 
R 1" and R~ are two particular instances of  "lifting" a binary relation on objects to a binary 
relation on sets of  objects. In the setting of  program semantics they are known as the Hoare 
power order and the Egli-Milnerpower order, respectively; cf. [27]. 

4.1. The base case: .T£-  

Recall that the logic U £ -  has T,  l ,  universal quantification VR.C, conjunction C n D, 
and unqualified existential quantification 3R.T. 

What do we need to develop a notion of  bisimulation that can be used to characterize 
.T '£--concepts? First of  all, ordinary bisimulations as defined in Definition 3.2 preserve 
negations of  concepts--this is obviously too much for 5v£ - ,  as it does not have negations. 
To destroy preservation of  negations we will introduce a direction in the atomic clause of  
Definition 3.2, and hence make bisimulations non-symmetric. This change will enable us 
to preserve positive (negation-flee) information only. 

However, disjunctions would still be preserved under such non-symmetric bisimulations. 
As 5t-£ - does not allow disjunctions of  concepts, we need to block this as well. To 
achieve this, we change the format of  bisimulations: instead of  linking an object to an 
object, we will link a set of  objects to an object. The notion of  preservation will then say 
that if a concept or formula holds for every object in the set, then it must hold in the 
"similar" object. If  a disjunctive concept or formula holds for all objects in a set (of size 
at least two) this no longer implies that one of  the disjuncts holds for all objects in the 
set; as a consequence the inductive argument needed to prove Theorem 3.3 may break 
down. 3 

Definition 4.1. Let Z = (A z,  3 )  and J := (A J ,  . J )  be two interpretations. An . T E - -  
simulation is a non-empty relation Z ___ T'(zl I )  x A J such that the following hold. 

(1) If  Xl Zd2 then, for every (atomic) concept name A, if X1 ~ A I ,  then d2 6 A J .  
(2) For every (atomic) role name R, if XI(RI)~Y1 and X1Zd2, then there exists 

e2 E AJ with RJd2e2. 
(3) For every (atomic) role name R, if RJd2e2 and X1Zd2, then there exists Y1 ~ ,4Z 

with X1 (R Z) j. Y1 and Y1Ze2. 
A first-order formula c~(x) is preserved under .Y'£--simulations if for all interpretations 2- 
and ,7, all sets X _ A I and objects de E A J ,  and all 5t'£ --simulations Z between 2- and 
,7, we have that if XZd2 and for all dl 6 X, 2- ~ a[dl] ,  then ,7 ~ ~t[d2]. 

The basic intuition underlying the clauses in Definition 4.1 is that atomic concepts need 
to be preserved (clause ( 1)); we only need to preserve unqualified existential quantifications 

3 As an aside, by linking sets (or objects) to sets we would also be able to deal with logics without 
conjunction. 
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(clause (2)), but we need to preserve full universal quantification VR.C, where C may 
itself be a complex concept--this necessitates the "and Y1Ze2" in clause (3). Of course, in 
addition we need to preserve conjunctive concepts C n D, but this we get for free. 

Theorem 4.2 (Characterization of f £ - ) .  Let or(x) be a first-order formula. Then or(x) is 
equivalent to an f F_.- -concept iff it is preserved under f £--simulations. 

Corollary 4.3. Let £ be either ~A£ or any description logic that can be obtained from 
r E -  or .A£ by adding any non-empty combination oflg, C, E, A/', or TO. Then r E -  < £. 

Proof. We only show this for one logic, and we do so by displaying a concept that can 
not be equivalent to a concept in f £ - .  The concept 3R.A (which lives in f E E -  and 
its extensions) is not equivalent to an f £ - - c o n c e p t ,  as it is not preserved under r E - -  
simulations. To see why, consider the interpretations Z and ,7 depicted below. (The dashed 
boxes indicate sets.) 

Z " . . . . .  " A  

- - - -  . . . . . . . . . . .  • . . . . . . .  

J 

Here we have that {dl} _ (3R.A) z but d2 ~ (3R.A) J ,  even though there is an r E - -  
simulation relating {dl} to d2. Hence, by Theorem 4.2, 3R.A can not be equivalent to an 
r E - - c o n c e p t .  As f £ -  <. f £ E -  is obvious, it follows that OrE- < f E E - .  [] 

4.2. Adding negation 

We now consider the changes that need to be made to the basic set-up for r E - -  
simulations if some form of negation is present in the logic. In particular, we consider 
the logic .AE; recall that it extends r E -  by negation of (atomic) concept names. It turns 
out that only minor changes are required as compared to Definition 4.1. 

Definition 4.4. Let Z = (A z, .2:) and J = (A J ,  . J )  be two interpretations. An .AE- 
simulation is a non-empty relation Z c T'(A I )  × A,7 such that the following hold. 

(1) If XIZd2 then, for every (atomic) concept name A, if Xl _ A s,  then d2 6 A "y, and 
if X1 ___ --,A I ,  then d2 6 "-'A J .  

(2) For every (atomic) role name R, if XI (RI ) tY 1  and X1Zd2, then there exists 
e2 6 A J  with RJd2e2. 

(3) For every (atomic) role name R, if RJd2e2 and X1Zd2, then there exists Y1 c z~ 2: 
with X1 (RI)$ Yl and Yl Ze2. 

A first-order formula a(x)  is preserved under .A£-simulations if for all interpretations 77 
and ,.7, all sets X __c z~ I and objects d2 E A J ,  and all .AE-simulations Z between 77 and 
,7, we have that if XZd2 and for all dl ~ X, Z b ~[dl], then f f  ~ a[d2]. 
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The intuition underlying the change in clause (1) of Definition 4.4 (as compared to 
clause (1) of Definition 4.1) is that both positive and negative atomic information now 
needs to be preserved in passing from Z to J .  

Theorem 4.5 (Characterization of AE). Let a(x) be a first-order formula. Then or(x) is 
equivalent to an ¢4E-concept iff it is preserved under ,Ate-simulations. 

Corollary 4.6. Let £ be a description logic that can be obtained from e4E by adding any 
non-empO, combination oflg, C, g, .Af, or T~. Then ~ < E. Also, if E is obtained from 
f E -  by adding one ofbt, g, Af, or TO, then E ¢ AE. 

Proof. As in Corollary 4.3, by way of example we only consider one case for the proof 
of the first claim. We show that .AE is strictly less expressive than .A£Z/by providing an 
¢4EM-concept that is not equivalent to any ,AE-concept. 

2- 

i .............. • ........................................................... • d 2 

el i 

The ~4£L/-concept A u B is not equivalent to an .AE-concept. In the two interpretations 
17, J depicted above we have that {dl, el } ~ (A t~ B) ~, and there exists an .AE-simulation 
linking {dl,d11} to d2, but d2 ~ (A H B) J .  By Theorem 4.5, then, (A u B) can not be 
equivalent to an .AE-concept. 

Similar arguments may be used to establish the second claim of the corollary. [] 

4.3. Adding existential quantification 

Next we consider adding full existential quantification as a constructor to 5rE - .  For 
the resulting logic 5r/~g - we obtain the appropriate notion of simulation by taking 
Definition 4.1 and adding "and Y1Ze2" as a conjunct to clause (2). Clearly, what we need 
for ~ 'Eg--concepts to be preserved by an appropriate notion of simulation, is that concepts 
of the form 3R.C are preserved, and the additional condition "Y1Ze2" achieves this--it 
simply mirrors clause (3) (which achieves preservation of universal quantifications), and 
hence to a certain degree it restores symmetry. 

Definition 4.7. Let Z = (z3 g, J )  and J = (A J ,  . J )  be two interpretations. An .TEg- -  
simulation is a non-empty relation Z _c p ( A  I )  x z3 J such that the following hold. 

(1) If XI Zdz then, for every (atomic) concept name A, if Xt c_ A 7, then d2 6 A "y. 
(2) For every (atomic) role name R, if XI(Rg)tY1 and X1Zd2, then there exists 

e2 E z3 J with RJd2e2 and Y1Ze2. 
(3) For every (atomic) role name R, if RJd2e2 and X1Zd2, then there exists Yl c A 2 

with Xt (RI)~ Y1 and 111Ze2. 
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A first-order formula a (x )  is preserved under ,~£E--simulations if for all interpretations 
2- and ,7, all sets X ___ A2- and objects d2 e A 'y, and all f ' £ E - - s i m u l a t i o n s  Z between 2- 
and ,7, we have that if XZd2 and for all dl 6 X, 2- ~ or[d1 ], then ,7 ~ c~[d2]. 

T h e o r e m  4.8 (Characterization of  ~ E g -  ). Let a(x ) be a first-order formula. Then or(x) 
is equivalent to an ,~EC- -concept iff it is preserved under ~ E -  -simulations. 

Corol la ry  4.9. Let E be a description logic that can be obtained from . ~ £ S -  by adding 
any non-empty combination of Ll, C, iV', or 7g. Then 5r~E- < E. Also, if £ is either A L  
or obtained from 5rE- by adding one oflA, iV', or T~, then E ¢~ ~ E C - .  

Proof.  As before, we will only prove the corollary for one case. We will show that 5 r E E -  
is strictly less expressive than 5rECA/'- .  The interpretations in the following figure show 
that the ,T'£EA/'--concept (/> 2 R) is not equivalent to an 5t'/2C --concept .  

2- ....... I 
d, ii i ] ii ! . .  • ........... d2 

,;r 

In the above figure we have {dl} _ (~> 2 R)2- but d2 ~ (/> 2 R) J even though there is an 
5rEg--s imula t ion  (indicated by the dotted lines) that links {dl} to d2. [] 

4.4. Adding disjunction 

For 5r£Z/-  we obtain the appropriate notion of simulation by taking Definition 4.1, but 
instead of linking sets of  objects to objects, we now link objects (or: singleton sets) to 
objects. As explained in the introduction to this section, if a notion of simulations links 
sets of objects to single objects, disjunctions need not preserved, the reason being that if 
X is a set, then X _ (C u D) 2- does not imply X c C2- or X c D2-. Working with single 
objects, however, we would of course be able to infer from d 6 (C ~ D) 77 that d 6 C I or 
d 6 D 77, and this would allow us to give an inductive proof  of  a preservation result for 
disjunctions. 

Defini t ion 4.10. Let Z = (A2-, .X) and ,7 = (.4 J ,  - J )  be two interpretations. An 5rE/g - -  
simulation is a non-empty relation Z c A I × LI ,y such that the following hold. 

(1) I f  dl Zd2 then, for every (atomic) concept name A, if dl ~ A z,  then d2 ~ A J .  
(2) For every (atomic) role name R, if RZdlel and dlZd2, then there exists e2 ~ A J 

with R J  dze2. 
(3) For every (atomic) role name R, if RJdae2 and dlZd2, then there exists el E A 77 

with RIdlel  and el Ze2. 
A first-order formula a (x) is preserved under 5r£Lt--simulations if for all interpretations 
Z and J ,  all objects dl c A I ,  d2 ~ A J ,  and all 5rEU--s imulat ions  Z between Z and ,7, 
we have that if dl Zd2 and Z ~ a[d!  ], then J ~ ot [d2]. 
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Theorem 4.11 (Characterization of)t-EL/-). Let ~t(x ) be a first-order formula. Then a(x ) 
is equivalent to an fELt - -concept  iff it is preserved under f T_.Zl--simulations. 

Corollary 4.12. Let £ be a description logic that can be obtained from f E L t -  by adding 
any non-empty combination of C, E, Af, or ~.  Then a~ fl_.lg - < £. Also, if £ is either ,4£ 
or obtained from ~ E -  by adding one of ~;, A;, or T~, then E ¢ f lSlJl-. 

Proof. As before, we will only prove the corollary for one case. We will separate fF__L/- 
from .TEL/P,.-. The interpretations in the following figure show that the 5~F__L/7~ --concept 
3(R n S) .T  is not equivalent to an rE/g--concept .  

2- 
. !  ......... ......... ................................. .......... 1 J 

In the above figure we have dl 6 (3(R n S).T) z but d2 ¢ (3(R rq S).T) J even though there 
is an fEb/--simulat ion (indicated by the dotted lines) that links dl to de. [] 

4.5. Adding number restrictions 

To arrive at a notion of simulation for f£ .A/ ' -  we use the above ideas together with 
ideas from [24]. The main feature of the notion of f l2N--s imulat ion is that in order to 
guarantee preservation of number restrictions it records the size of sets of objects taking 
part in the simulation. It does this using a whole sequence of relations between sets of sets 
of objects on the one hand and sets of objects on the other; later on, in the presence of 
disjunction we will be able to simplify these to relations between sets of objects on both 
sides. 

The following notation will prove to be useful. We write R'dl  Y1 if for all el ~ Yl, Rdl e~ 
holds. As before, since f £ A / ' -  is a logic without disjunction, our notion of simulation for 
f E N ' -  needs to relate sets of objects to objects. But we need a bit more. For, let 77 be 
an interpretation, and let X1 __c A I be such that X1 __c (~> n R)~; then, for each dl E X1 
there exists Yd~ C A I with IYdll >>- n and (R:r)°diYd~. Now, to ensure preservation of 
(~> n R) from XI to any object d2 similar to X1, we need to consider the collection of all 
these sets Yd~, where di ranges over elements of X1. The following definition captures this 
idea. 

Definition 4.13. Let R be a role name, and i > 0. Assume that X1 __c d 2;, where 77 is 
some interpretation. An i-cloud is a set ,V of subsets of A 7; such that for all Y ~ X, 

IVl = i .  
An/-cloud ?( is said to be R-above Xt  c_ A ~ if for all d l e  X1 there exists Y1 ~ Af such 

that (RZ)'dx Yl. 
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A set XI is said to be R-below an / - c loud  X if for every Yl ~ X there exists dl E X1 
such that ( Rg)°dl Y1. 

By indexing i-clouds with the set above which they hang, we can ensure that every cloud 
is above exactly one set only. 

We are ready now for the definition of  an .T'E.Af--simulation. We use T'<'°(X) to denote 
the collection of finite subsets of  X. 

Definition 4.14. Let Z = (A s ,  . I )  and f f  = (A 3", .`7) be two interpretations. An 5r£A/"-- 
simulation between Z and f f  is a sequence of relations Z = (Z0, Zl . . . . .  Zn . . . .  ) such that 
the following hold. 

(1) Z0 is non-empty. 
(2) (a) Z0 _c 79(A z)  x A J .  

(b) For all i > 0, Zi C Jg(p<°J(A2-)) × ~O<~°(Z~'-7"). 
(3) For all i > 0, if XZiY2, then, for any X ~ X, [X[ = [Y2I = i. 
(4) I f  X1Zod2, then, for any (atomic) concept name A, if X1 _c A 2- then d2 6 A`7. 
(5) I f X l  Zod2 and X ___ 7~(79<°~(AI)) is a non-empty/ -c loud R-above X1, where i > 0, 

then there exists 172 ___ ,4'7 with (RJ)*d2Y2 and XZi  Y2. 
(6) If  XIZod2 and (R'7)'d2Y2, where [Y2[ =: i > 0, then there exists a non-empty i- 

cloud 2( ___ 7~(79<C°(A7:)) such that XI is R-below X and XZiY2. 
(7) I f  R`Td2e2 and X1Zod2, then there exists a 1-cloud X such that Xl is R-below X 

and ( U  X)Zoe2. 
A first-order formula ot (x) is preserved under .T£A/'--simulations if for all interpretations 
Z and ,7, all sets of  objects XI c_ ,4 77 and objects d2 6 A`7, and all ~ £ N ' - - s i m u l a t i o n s  
Z = (Zo, Zt  . . . .  ) between 2" and J ,  we have that if XlZod2 and for all dl ~ X1, 
2" ~ ot[dl], then ,.7 ~ or[d2]. 

To grasp the intuition behind Definition 4.14, observe that Z0 is the "engine" of  the 
simulation that guarantees preservation, and the other relations ZI ,  Z2 . . . .  are needed for 
matching finite sets of  the same size. Clauses (1)-(3) of  Definition 4.14 are bookkeeping 
clauses, and clause (4) is the familiar one about preservation of atomic concepts. 
Clauses (5) and (6) are the back-and-forth clauses that guarantee preservation of  number 
restrictions (~- i R) and (~< i R), respectively. Clause (7) is needed to preserve universal 
quantifications VR.C. 

T h e o r e m  4.15 (Characterization of 5C£N "-). Let a(x ) be a first-order formula. Then or(x) 
is equivalent to an •£jV'--concept iff it is preserved under .T£.J~- -simulations. 

Corol la ry  4.16. Let £ be a description logic that can be obtained from Y £ N ' -  by adding 
any non-emp~, combination ofld, C, g, or 7~. Then Y E N ' -  < £. Also, if £ is either .A£ 
or obtained from Y £ -  by adding one of g, LI, or ~ ,  then £ ¢ Y E N - .  

Proof.  We only prove the corollary for one case: f ' £ N ' -  < ~ - £ N ' C - .  Consider the 
interpretations 2-, J depicted below (the dotted lines indicate Z0; other relations Zi, for 
i > O, are specified in the text below). 
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I el i(-'O"--ii ............... } ' t  ............. ~ 2 ,  l J" 

I .................... fl  ":.-.-.-.-.? .......... ]" il ,:7..z.f2 

Clearly, {dl} c (3R.A) z, but d2 ~ (3R.A) "7, so if there exists an Y£A/ ' - -s imula t ion  
linking {d~} and d2, then 3R.A cannot be (equivalent to) an 5r£.M--concept .  We leave it 
to the reader to show that the following tuple Z is indeed an f ' £ .N ' - - s imula t ion  linking 
{d~} and d2: Z = (Zo, Zj ,  Z2 . . . .  ), where, for i > 2, Zi = 0, while 

Zo = {({all }, d2), ({el }, e2), ({fl }, j2),  ({el, f l  }, e2), ({el, f l  }, .[2)}, 

Z1 = {({el, {fl }}, {ca}), ({el, {fl }}, {./2})}, 

Z2 = {({el, fl}, {e2, f2})}. [] 

4.6. Adding role conjunction 

Combining ideas from [16,20] and the preceding sections, we arrive at a notion of 
simulation for 5=£7Z - .  Its distinguishing feature is that it not only relates sets of  objects to 
objects (as in Definition 4.1), but to cater for role intersection it also links pairs of  (sets of) 
objects to pairs of  objects. We will need the following auxiliary notion. 

Let X, Y be two sets of objects. A collection of (atomic) role names 7-4 is called meet 
closed for X and Y if X([-ITZ) 1" Y. 

Definition 4.17. Let 2- = (A I ,  .z) and J = ( A J ,  . J )  be two interpretations. An 5~£7Z - -  
simulation is a triple Z = (Z0, Zl ,  Z2) such that the following hold. 

(1) (a) Zo _c 7~(AZ) × A J .  
(b) ZI _c (7 ' (A z)  × 7~(AZ)) x (,6 J × 7a(AJ)). 
(c) Z2 _c (7~(AZ) x P(AZ)) x (A J x AJ).  

(2) If X1Zod2, then, for every (atomic) concept name A, if X1 c A z,  then d2 e A "7. 
(3) (a) If (XI,  Y1)Zl(d2, E2) then, for every collection of role names 7-4 that is meet 

closed for X1 and Y1, there exists an e2 6 E2 such that ([--]TZ)Zd2e2. 
(b) If (XI,  Y1 )Zz(d2, e2) then, for every role R, if RJdze2 holds, then X1 (RZ),~ Y1. 

(4) (a) If XtZod2, then, for every (atomic) role name R, if X~(RZ)tYI, then there 
exists E2 c A ,y with (XI, YI)Zj (d2, E2). 

(b) I f  XlZod2, then, for every (atomic) role name R, if RJdze2, then there exists 
yj c A I with (Xj, YI)Zz(d2, e2). 

(5) I f  (X~, Y1)Z2(d2, e2), then YI Zoe2. 
A first-order formula or(x) is preserved under ~ETZ--simulations if for every two 
interpretations Z and J ,  all sets X c zl I and objects d2 e J J ,  and all 5~£7-4 --s imulat ions 
Z between 2- and J ,  we have that if Xi Zod2 and for all d l e  X1, Z b c~[dl], then 
J ~ o'[d2]. 

Let us briefly explain what the clauses in Definition 4.17 are meant to achieve. 
Clause (2) is the familiar clause about preservation of atomic concepts. Clause (3a) is 
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about preservation of intersecting roles from 2- to , f ;  there is slight technical complication 
here: X I R t Y I  and X~StY1 does not imply X1 (R n S )?YI ,  and this failure forces us to 
consider only those collections of  role names ~ (with Xj R "t YI, for R 6 7~) that are closed 
under intersection in this sense; the notion of meet closure tries to capture this idea. Next, 
clause (3b) simply tries to mirror intersections from ,ff to 2". Clauses (4a) and (4b) are 
the real back-and-forth clauses, where simulations between sets and objects extend to 
pairs of  sets and pairs of  objects (and sets). Clause (5) relates such simulations between 
pairs to simulations between sets and objects (but, by analogy with clauses (2) and (3) of  
Definition 4.1, this is only required in one direction, viz. from J to 2-). 

T h e o r e m  4.18 (Characterization of 5 t -E~- ) .  Let or(x) be a first-order formula. Then or(x) 
is equivalent to an .T127-~- -concept iff it is preserved under .T12T~--simulations. 

Corol la ry  4.19. Let £ be a description logic thai can be obtained from f E T e -  by adding 
any non-erupt, combination of Lt, C, £, or A/'. Then a~127~ - < 12. Also, if E is either .A12 
or obtained from .UE- of A ~  by adding one of C, Lt, or J~ r, then E ¢ .U£.7~-. 

Proof.  We only prove the corollary for the case 5t-£7~ T M  < 5t-ETa.A/"-. Consider the two 
interpretations below. 

i[ e ............. 1 t  .... 1 J 
 ij, ........... ....... . ......... 

The dotted lines indicate the Z0-component of  an F E ~ - - s i m u l a t i o n  linking {dl} to d2; it, 
and the remaining components,  are defined as follows: 

Z0 = {({dl},d2), ({el}, e2), ({fl}, e2), ({el, fl}, e2)}, 

Zl = {(({dl}, {el}), (62, {e2})), (({dl }, {/1}), (d2, {e2})), 

(({dl }, [el, f l}) ,  (d2, {e2}))], 

Z2 = {(({dl }, {el}), (d2, e2)), (({dl}, {fl }), (d2, e2)), 

(({dl }, {el, f l  }), (d2, e2))}. 

We leave it to the reader that this (Zo, ZI ,  Z2) is indeed an 5 rE~- - s imu la t i on  such that 
{dl}Zod2. Clearly, {dj} c (j> 2 R) I ,  but d2 ~ (3; 2 R) "7. It follows that (~> 2 R) is not 
equivalent to an 5t-C7~ --concept .  As we obviously have f E T e -  ~< 5t-E~A/"- , we conclude 
5 v £ ~  - < ~ - £ ~ A / ' - .  [] 

4. 7. Combinations 

The semantic characterization results obtained so far form the basic building blocks for 
our further results. Briefly, the idea is that one should obtain semantic characterizations of  
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logics that contain combinations of  the constructors C, L/, £,  Af and 7~ by combining the 
characterizations of  the logics admitting only one of  the constructors. It turns out that there 
is surprisingly little interaction between the various characterizations, and where there is 
interaction this results in a simplification (especially when L/ is added) or in restoring 
symmetry of  various clauses (when £ or C is added). Only in rare cases (such as Y1;.A/'~-) 
does the characteristic notion of  simulation become more complex. 

As the details do not add too much to the analysis, we do not include them here, but in 
Appendix B. 

4.8. Harvest  

We summarize our results in Fig. 2. The way one should read the diagram is as follows. 
Every logic coincides with one of  the logics in the diagram, and if a description logic £ t  
is above a logic £2 (via a sequence of  one or more arcs), then Z;2 < 1;1. If two logics are 
incomparable in the diagram, then they are incomparable with respect to their expressive 
power. 

Several comments are in order. First, the diagram does not mention all possible 
combinations of  the constructors listed in Table 1. The reason for this is that some logics 
coincide with others (for example, U E C -  coincides with .A1;CL/-). 

Second, it should be noted that the classification obtained in Fig. 2 is exactly the 
classification that one would expect from an intuitive point of  view (where one logic is 
more expressive than another if it has more constructors). We view this absence of  surprises 
both as an intuitive justification of  our resttlts, and as an indication that we have provided 

....... ~i.;:;.:.:sl '~: ::.:: :~ ~ ........ . 

........................ - -  . . . . . . . . . .  L.I 
, i  ~ ~ ~'--.~. . . . . . . . . . . . . .  , .... 

. A L C J v "  . A £ C 7 ~  7 " £ £ U N ~ -  . A £ E X T ~  . A £ L / ~ r ~  

.... ~ ~'~ i.i . . . . . . .  • ............ " \ .  .... :.::"::""'" . . . . . . . . . . . . . . . . . . .  :5: "::":'~'"" ' ' " ..... 

A C C  Y C £ U + f f -  Y C E U T ~ -  A C E . A {  ¢4££7~  .TCEArT:L - .A£L4~" .A£~17~ S~£L4ArT~ - ~4£AfTL 

...... . .  ~<~/ ' . . .  ............ . . . . . . . . . . . .  i~i,- ,~ . . . . . . . . . .  ........ . ....... . . . , .~ ..... , . . /  
~- . . . . . . . . . . .  ~., . . . . . . . . .  ..., . i ~ -  - . ,~< ., ~ ., .. 

Y E £ L /  ¢ 4 £ £ "  ~ ' £ £ A 1 "  7 " £ £ 7 ~  ~4,CL¢ 7 : £ L ~ J V ' -  7 - £ L 4 7 ~ -  ~ t £ A  r ~ 4 £ 7 ~  7 " £ . ~ 7 ~ -  

7 " £ £  7 " £ L 4  A £  y Z 2 2 ~  ~ -  Y ' £ 7 ~  

............................ ........... . . . . . . . . . . .  ...... 

. F C  

Fig. 2. Classifying description logics. 
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Table 2 
A complexity theoretic classification 

Complete for Description logic 

P 

NP 

coNP 

PSPACE 

A£, A £ X  

A££, A£7~, A££7¢. 

A£U, .A£LCN" 

A£C, Ag_MT~, A£AfT-4, .A£CAf, A£C7~, A£gA/', 

A££AfT~, AEMA/'/~, ALCAf/-4 
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a mathematical underpinning for the basic intuitions one has concerning the expressive 
power of  description logics. 

And finally, we should point out that expressive power as studied here and complexity 
of  the satisfiability problem do not induce the same classifications of  description logics: 
there are description logics that have the same complexity results for their satisfiability 
problems but have different expressive power in our sense. To substantiate this claim, let 
us consider the complexity theoretic classification of  .AE-based description logics that has 
been obtained in [9]; see Table 2.4 Notice the following: 

- The satisfiability problems for A £  and ,A£N" are both decidable in polynomial time, 
but according to our analysis AE.Af is strictly more expressive than A £ .  

- The satisfiability problems for .A£S, A£7¢,, and . A £ E ~  are all NP-complete, yet 
A £ S R  is the most expressive of  these. 

- The satisfiability problems for A E b / a n d  A/E/N" are coNP-complete, but AEHN" is 
strictly more expressive than AE2g. 

- The satisfiability problems for AEC, AEMT~, AEN'T~, AECN' ,  A£C7~, .A£gN' ,  
AEEAfT~, ~4£L/A/'T4, and .AECN'7-4 are all PSPACE-complete, yet the logic A£CN'7-4 

is the most expressive of  these. 
What is the upshot? Description logics whose satisfiability problems are complete for the 
same complexity class need not have the same expressive power in our sense. There are 
two sides to this. Of  course, at equal computational costs one may wish to opt for the most 
expressive logics. At the same time, the precise relation between these alternative ways of  
classifying description logics remains to investigated---we think that this is one of  the most 
challenging issues in the area. 

5 .  D i s c u s s i o n  

We see two major lines of  work related to this paper, the first one centered around the 
use of  model-theoretic methods similar to the ones we have used, the second one focusing 
on the expressive power of  description logics. 

As to the first theme, the technique of  Ehrenfeucht-Fraiss6 games in first-order logic is 
closely related to our simulations, and it has been used to obtain numerous separation and 

4 Observe that there is no completeness result for A££N" in [9]; the PSPACE-hardness result included in 
Table 2 is due to [14]. 
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preservation results; see [l 11. [17] use pebble games to obtain model-theoretic expressivity 
results about finite variable logics, and related techniques have been used in modal logic 
as well; for instance, [21] use various kinds of bisimulations to characterize temporal 
logics with Since and Until. Also, [26] use similar methods to separate query languages 
over temporal databases. One of the principle advantages shared by these methods is their 
explicit and intuitive descriptions of  the languages being studied. The results in this paper 
are different from the above ones, as we are interested in relatively poor languages with 
limited expressive power and without closure under some of  the boolean operators; this 
focus necessitates both new notions of  simulations and novel techniques for proving the 
characterization results. 

As to the second theme----expressiveness of  description logics- -we know of  only three 
earlier references: [2,6], and [7]. We will briefly discuss each of  these. Baader's work is 
different from ours in two important ways. First, Baader's definition [2, Definition 3.2] of  
expressive power differs from ours. Recall that we we define a logic E1 to be at least as 
expressive as a logic E2 if for every £2-concept there is an equivalent El-concept  over 
the same vocabulary. Thus, we focus on definable concepts over a given vocabulary only, 
but, at least intuitively, Baader's definition allows El to use additional concepts and roles 
in finding El-equivalents for every E2-concepts. More formally, let F be a collection of  
concepts, and let Voc(F) denote the collection of  all atomic concepts and roles occurring 
in F .  Further, assume that we have a mapping f : Voc(Fl) ~ Voc(F2), and interpretations 
2-1 and :272 that satisfy all of  2-1 and 2-2, respectively. Then f embeds 2-1 in 2-2 if for all 
S 6 Voc(F1 ) we have S 2-J = f ( S )  2-2. Then, F2 can be expressed by Fl if there exists 
f :  Voc(F2) -+ Voc(F1) such that 

(1) every interpretation that validates all of  F2 can be embedded by f in some 
interpretation that validates all of  F1, and 

(2) for every interpretation Zl that validates all of  Fl there exists an interpretation 2-2 
that validates all of  F2 and that can be embedded in ZI by f .  

Then, £ t  is at least as expressive as E2 (according to Baader) if every collection of  E2- 
concepts can be expressed by some collection of  £ l-concepts. 

Clearly, this more involved definition allows one to equate more description logics 
with respect to the concepts they can define than ours does; for instance, under Baader's 
definition negation of atomic concepts can be simulated by number restrictions over 
additional roles, whereas according to our results negations of atomic concepts cannot 
be expressed using number restrictions (over the same vocabulary).5 While we agree 
that it may be useful to be able to use additional concepts and roles in finding equivalent 
expressions, as Baader himself points out, what is lacking from his definition is a measure 
on how much additional material one may use and on the complexity of  the function that 
maps E2-expressions to equivalent El-expressions over a richer vocabulary. 

A second important difference between Baader's work and ours lies in the type of  
results that have been obtained. Baader only establishes a small number of  separation 
results, whereas we provide a complete  classification of  all languages definable using the 
constructors in Table 1. More importantly, our separation results are based on semantic 

5 As an aside, the difference between our definition and Baader's is analogous to the difference between 
definability and projective definability in the area of model-theoretic logics; see [5]. 
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characterizations; this gives a deeper insight into the properties of logics than mere 
separation results. 

Let us now turn to Borgida's [6]. There, the author shows that certain description logics 
have the same expressive power as the two or three variable fragment of first-order logic 
(over the same vocabulary). A few remarks are in order here. First, like us Borgida has 
a strong focus on definable concepts, and he ignores other aspects of description logics. 
Next, it is well-known that there is a correspondence between some description logics and 
modal logics (see [25]), and modal logicians have considered the links with finite variable 
fragments for quite some time (see [13]). Thus, Borgida's results could also have been 
obtained this way. Finally, the description logics considered in this paper are all expressible 
in the two variable fragment of first-order logic (possibly with counting), however, none 
coincides with the full two-variable fragment. 

The third (and final) reference on expressive power of description logics that we are 
aware of is [7]. In this paper the authors consider hybrid knowledge bases that consist 
of a TBox, an ABox, a set of Horn rules, and a relational database. The description logic 
underlying the TBox and Abox is A £ C A f ~ ,  for which we gave a semantic characterization 
in the present paper (see Section 4.8). The authors of [7] focus on capturing the expressive 
power of their hybrid knowledge bases in terms of collections of finite structures (in some 
complexity class) that are definable by means of queries to such knowledge bases. 

How are such complexity theoretic characterizations related to the model theoretic 
findings of the present paper? To start, results such as Fagin's Theorem [12] provide 
links between complexity theoretic characterizations of expressive power and linguistic 
descriptions in terms of sets of logical formulas; this is the level at which the work of [7] 
is situated. Next, these linguistic descriptions may be characterized in terms of special, 
independent model theoretic properties; and this is the level at which the present paper is 
located. 

6. Conclusion 

In this paper we have introduced a model-theoretic method for determining the 
expressive power of concept expressions definable in description logics. The method 
consists of three components: a translation into a common background logic (here first- 
order logic over a suitable vocabulary), semantic characterizations of the translated logics, 
and using these characterizations to separate logics. The method was successfully applied 
to obtain expressiveness results for all logics in the .T'E- and ,A£ hierarchies. 

The main benefits of our methods are that they give exact and explicit characterizations 
of the concept expressions that are definable in the description logics that we consider. 
Our characterizations explain in semantic terms why one logic is or is not different from 
another. While the proofs of the semantic characterizations in terms of various notions 
of (bi)-simulation are admittedly somewhat technical, the use of the characterizations in 
separating logics is fairly intuitive, as we hope to have demonstrated with our examples. 
As summarized in Fig. 2, our mathematical findings corroborate the intuitions one has 
concerning the expressive power of description logics; we view this as additional evidence 
in support of our methods. 
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It should be noted that the role of  our semantic characterization results is in separating 

the expressive power of description logics, not in showing that they coincide with respect to 
the concept expressions that these logics can define. For the latter, we use explicit syntactic 
definitions of the constructions of one logic in terms of the constructions of the other. 

Future research in this area will concentrate on the following themes. 
(1) As was pointed out above, the proofs for our characterization results use first-order 

techniques in an essential way. We aim to avoid these techniques, and thus to extend 
our methods to description logics with non-first-order features. The latter could like 
transitive closure of roles, or least fixed points; see [8,25] for further examples of 
such logics. 

(2) How well do our methods and results behave in the presence of side conditions, 
either on interpretations or on specific roles? For example, what if we restrict 
attention to finite interpretations only? Or to interpretations where certain roles 
are transitive or functional? Preliminary work indicates that the restriction to finite 
interpretations is harmless in that the main results of this paper go through, even 
though the techniques of this paper cannot be applied. At present, we don't know 
how to deal with special properties of roles. 

(3) We want to gain a better understanding of the difference between our approach and 
that of [2]. In particular, we want to extend our model-theoretic tools in ways that 
will characterize the expressive power of description logics in Baader's sense. 

(4) What is the complexity of separating description logics? It is known from the 
literature on bisimulations that, in general, even the question whether two given 
interpretations are bisimilar, is undecidable, but for finite interpretations the question 
becomes decidable. In our case, the question is not just to check bisimilarity, but 
to determine whether there exists an £1-concept that is not preserved under/ :z-  
relations. Are there special cases of this question that become decidable? 
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Appendix A. Proofs of the main results 

For each of the logics obtained from .Y'E- l and ,AE by adding constructors from Table 1 
we will now prove the main semantic characterization theorems announced in Section 4. 
The proofs all follow the same basic strategy. One half of the result is proved by a simple 
induction; the other half is more involved and uses compactness arguments, and, in some 
cases, additional techniques from first-order logic. 



iV, Kurtonina, M. de ROke / Artificial Intelligence 107 (1999) 303-333 323 

Theorem 4.2 Let t~(x) be a first-order formula. Then a (x )  is equivalent to an J r £ - -  
concept iff it is preserved under 9r~--simulations.  

Proof.  The implication from left to right is proved by induction on concepts. The atomic 
case is immediate from the definition of  9rE--simulations, and conjunction is easy. 
Let us consider the existential case. Assume Xl Zd2. Suppose that X1 _ (~R .T )  I .  Let 
Y1 : :  {v 6 A s [ 3w E X1 (RZwv)} .  Then X1R q' Y1. So by clause (2) of  Definition 4.1 there 
exists e2 with RJd2e2  . Clearly, d2 6 (3R.T)`7,  as required. The universal case is next. 
Assume that X~ c (¥R.C)  I .  Suppose that there is a e2 with R'Yd2e2 hut e2 ¢ C,7. Then, 
by clause (3) of Definition 4.1 there exists YI _c A Z with X I R~, YI and Y1 Ze2. By induction 
hypothesis, e2 ~ C,7 implies YI ~ C Z. This contradicts Xt _c (¥R.C) ~. 

Now, for the right to left implication, assume that a (x )  is preserved under 5t-£ - -  
simulations, and let Con(a) be the set of  its 9r£--consequences .  

Claim A.1. Con(a) b a. 

If  we can prove Claim A.I ,  then, by compactness, there exists a finite conjunction of  
elements of  Con(a) that is equivalent to a(x) .  So let us prove Claim A.1. Assume that 
I ~ Con(a)[w]. We need to show that 5[ ~ a[w].  Let F = {~C I C is in 9 r £ -  and 
w ~ CZ}. 

Claim A.2. For every "-,C E F, the set {a(x), --,C} is consistent. 

If  the claim were false, then C would be a consequence of  a,  contradicting the definition 
of  F .  As a corollary we find, for every --,C c F ,  an interpretationZc and element vc c ,4Ic 
such that vc E a (x )  Ic  f3 (--,C) Ic  . 

Let f l  be the disjoint union of  the pairs (Zc, vc) ,  where - ,C  E F .  6 By results from 
standard modal logic (cf. [4]), it follows that for every --,C 6 F there is a bisimulation 
linking vc in ,4zc to vc ~ "4J.  Then, for every ~ C  E F there is an 5t '£--simulation 
linking {vc} in A Ic ,  and an 9rE--simulation linking {vc} in "4,7 to vc in "4~c__ 
simply link every singleton {d} in the one interpretation to the copy of  d in the other 
interpretation. 

By assumption, a (x)  is preserved under 9r£--simulations,  so {vc} ~ a (x )  zc implies 
vc E c~(x),7, for every vc.  Also, as there is an 9rE--simulat ion linking {vc} in ,4,7 to 
vc c A Ic  , the fact that vc ~ C :~c implies vc q~ C J .  

Claim A.3. ['br ever)' 9r£- -concep t  D, i f  for  all vc  (with "-,C E F), vc E D`7, then 
w e  D ~. 

To see why, assume w ~ D I .  Then ~ D  E F ,  so there exists vD E J with v~ ~ D "7. 
Next, define a relation Z _ 79(,4 '7) x A I by putting XI Zd2 iff for all 9 r£- -concepts  D, 
X I c__ D`7 implies d2 E D I .  

6 That is, ,~..7 is the disjoint union of the sets z3 Zc ; for every concept D, D 3 is the disjoint union of the sets 
79Zc; and for every role R, R J is the disjoint union of the sets R :~c . 
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Claim A.4. The relation Z is an .~£--simulation. 

Clause (l) of  Definition 4.1 is trivially satisfied. For the second clause, suppose that 
Xj RtYI and Xl Zd2; we have to show that there exists e2 e A 2- with R~d2e2. This is easy: 
if X1R 1" Yl, then X1 c (3R.T).Y; so from X1Zd2 we get d2 e (BR.T) 77, so the required e2 
exists. For the third clause, assume that RId2e2 and XI Zd2; we need to find a Y1 c A I 
with Xl ( R I ) ,  Y1 and Y1Ze2. Let C be any concept with e2 ~ C I ;  then de q~ (¥R.C) I .  So 

from XiZd2 we get X1 ~ (¥R.C) J .  Therefore, there exists dl e XI and el e A "y with 
RJdle l  but et 6 C J .  If  we repeat this argument for every concept C with d2 ¢ C 17, we 
obtain a set Y1 ___ A I  with X I R ,  YI and YtZe2, as desired. 

Finally, then, as a corollary to Claims A.3 and A.4 there is an 5r£--s imulat ion relating 
{vc E A "y [ -,C • F} and w. As for every vc e A "y with - ,C • F we have ,,7 b a(x)[vc] 
and as a(x) is preserved under U£--s imula t ions ,  it follows that Z ~ a(x)[w]. This proves 
Claim A.1, and hence the theorem. [] 

Theorem 4.5 Let a(x ) be a first-order formula. Then a(x ) is equivalent to an .A£-concept 
iff it is preserved under .A£-simulations. 

Proof.  Repeat all of  the Claims A.1, A.2, A.3 and A.4 verbatim, but with .T'££- instead 
of  ~ ' £ - .  [] 

The key result used in the proofs of' Theorems 4.2 and 4.5 is the compactness 
theorem. To prove characterization results for languages that are richer than ) r £ -  we 
need additional semantic tools, over and above the compactness theorem. The proof of  
our characterization result for U £ E - ,  Theorem 4.8, uses so-called w-saturated models. 
Briefly, an interpretation 2- for a first-order language £ is co-saturated if whenever A is a 
set of  first-order formulas in a language £', where £' extends £ l  by the addition of  finitely 
many new individual constants, and each finite subset of  A is satisfiable in an £ '-expansion 
of  2-, then A itself is satisfiable in this expansion. 

A key result about co-saturated models that will be used in our proofs below says that, 
in a countable language, every interpretation 2- has an co-saturated elementary extension 
2-*; that is, for every interpretation 2- there is an co-saturated interpretation 2"* such that 
A 5c _c A I* and for every first-order formula a(xl . . . . .  Xn) and any objects dl . . . . .  dn 6 A Z, 
2- ~ a[dl . . . . .  dR] iff 2-* ~ a[dl . . . . .  dn]. We refer the reader to any textbook on model 
theory for further details; see, e.g., [15]. 

Theorem 4.8 Let a(x) be a first-order formula. Then a(x) is equivalent to an a~£E-- 
concept iff it is preserved under ~£E--simulations. 

Proof.  We leave the left to right direction to the reader, and only give a sketch of  the right 
to left direction to the extent that it differs from the proof of  Theorem 4.2. 

As in the proof of  Theorem 4.2 we assume that a(x) is preserved under .Y'£g-- 
simulations, and we concentrate on proving that Con(a) ~ a, where Con(a) is the set 
of  ~ E g - - c o n s e q u e n c e s  of  or(x). So, we assume that Z ~ Con(a)[w], and we need to 
show that 2- ~ a(x)[w].  Let F = {~C I C is in .T'£.E- and w ~ C:z}. As in Claim A.2 one 
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can show that for every --,C 6 iF, the set {~(x), --C} is consistent. Consequently, for every 
--,C 6/-" there are interpretations 2-c and objects vc such that vc ~ or(x) 7;c fq (- ,C) ~c . 

Let J be the disjoint union of  the interpretations 2-c. The relation {(Xa, d) [ d ~ Xd} 
is an 5r££--s imula t ion  linking {vc} in f f  (or 2-c) to vc in 2-c (or ,7). It follows that 
vc ~ o4x) J \ C J .  

We leave it to the reader to establish an analog of  Claim A.3. As explained above, 
there exists an co-saturated elementary extension 2-* of  2-. It follows that for every U / 2 £ - -  
concept D, v c DT; iff v E DT;*. 

Next, define a relation Z c_ ( ' p ( A J )  x AT;*) by putting X1Zd2 iff for all f ' / 2 £ - -  
concepts D, X i _c D ,y implies d2 6 D 2:* . 

Claim A.5. The relation Z is an Y££- - s imula t ion .  

We only check clause (2) of  Definition 4.7. (Clause (1) is easy, and clause (3) is 
similar to clause (2) in the proof of  Claim A.4.) Assume that X I ( R J ) ~ Y 1  and XIZd2.  
We need to find an e2 6 -47;* with RI*d2e2 and Yl Ze2. Let C1 I7 .- .  n Cn be an arbitrary 
finite conjunction of concepts such that Y1 _ (C1 n --. r3 Cn) J .  Clearly, then, Xj c 
(3R.(CI n . . .  n Cn)) J .  By the definition of  Z we find that d2 ~ (3R.(Cj n . . .  n Cn)) I*. 
This implies that there exists e2 ~ AT;* such that e2 ~ (C1 n . . .  rq Cn)7;*. At this point we 
use the fact that 2-* is co-saturated. As we have been able to find an object e2 in 2-* that 
satisfies RT;* d2e2 together with an arbitrary finite collection of  concepts satisfied by all the 
objects in YI, by co-saturation we can in fact find an object e2 in 2-* with RT;*d2e2 that 
satisfies all concepts satisfied by the objects in Y1. This means that Y1Ze2, as required. 

With the proof of  Claim A.5 completed, we have found an f 'Z2£--simulation between 
J and 2-* that relates {vc ~ -4J I ~C  ~ F} and w. Hence we have the situation depicted 
in the following diagram. 

J 

w 2-* 

S '  
I 

elementary 
9t-E~C--si [ extension 

I 
I 

{vc ~ a J L-.c ~ 1"} w 2- 

A walk around the diagram completes the proof. From {vc E A J  L --,C ~ F} c__ ~ ( x ) J  
and the fact that there is an .T/2g--simulation linking {vc E A J  L --,C ~ F} to w in Z*, it 
follows that w 6 c~(x) 17. . As 2-* is an elementary extension of  Z, we get w ~ a(x)7;, and 
we are done. [] 

Recall that the change required to prove a characterization result for UEL¢- is that we no 
longer work with simulations involving sets, but with ones involving single objects only. 
for this characterization result we will also need to use w-saturated models. 
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Theorem 4.11 Let a(x)  be a first-order formula. Then or(x) is equivalent to an .TF_Jg-- 
concept iff it is preserved under .TriLl--simulations. 

Proof.  As before, we leave the left to right direction to the reader, and only give a sketch 
of  the right to left direction to the extent that it differs from previous proofs (Theorems 4.2 
and 4.8). Assume that or(x) is preserved under .TEL/--simulations, and consider the set of  
its consequences in 5rEH - ,  Con(a). As before it suffices to prove that Con(a) ~ a. So, 
we assume that Z ~ Con(a)[w], and we need to show that 2- ~ a(x)[w].  Let F = {--,C I C 
is in .TEL/- and w ¢ Cz}. 

Claim A.6. The set {c~(x)} U F is consistent. 

If  the claim were false, there would be concepts - 'C l  . . . . .  -"Cn E F such that t~ 
~(~C1 n . . .  n "Cn),  or, in other words, a ~ C1 u .-. u Cn. So w c (CI u . . .  u Cn) :r as 
w ~ a (x)  I ,  and hence w 6 C {  for some i with 1 ~< i ~< n. But, as C1 . . . . .  Cn are f e b / - -  
concepts, then --,Ci ¢ F,  which is a contradiction. This proves Claim A.6. 

As a corollary we find an interpretation ,.7 and an object v ~ A "7 with v ~ (a(x) "7 
A{-,c J I--c ~ r}). 

Claim A.7. For every .TELl--concept D, if  v E D "7, then w ~ D Z. 

Now, let `7* be an co-saturated elementary extension of ,7. It follows that for every 
f E L t - - c o n c e p t  D, v 6 D "y iff v ~ D J~ . Next, define a relation Z ___ (A 3* x .4 1;) by 
putting dl Zd2 iff for all f E H - - c o n c e p t s  D, dl ~ D J* implies de ~ D 77. 

Claim A.8. The relation Z is an fELt--simulation.  

We only check clauses (2) and (3) of  Definition 4.10. Assume that R J d l  el and dl Zd2. 
We need to find an e2 E A 2- with RZ*d2e2. But this is almost trivial: given the existence of  
el we have dl E (~R.T)  'y*, and hence d2 E (3R.T)  I ,  as dl Zd2; from this the existence of  
the required e2 follows. 

As to clause (3), assume RT;d2e2 and dlZd2. We need an el E A J* with R J ' d l e l  
and el Ze2. Let Cl . . . . .  Cn be an arbitrary finite number of  f E H - - c o n c e p t s  such that 
e2 ~ (Cl n . . .  n Cn) z .  Then, d2 ~ (¥R.(CI n .-, r~ Cn)) z .  By the definition of  Z we find 
that d l ¢  (YR.(C1 n - . .  n Cn)) J*. So there exists el 6 Aft* with e2 ~ (C1 n . . .  n Cn) J*. 
By co-saturation of  J *  this argument can be generalized to the collection of  all f E L / - -  
concepts not satisfied by e2. So, there exists an el E z~ "7. such that RJ*dl el and, for any 
D, e2 ~ D Z implies el ~ D J* .  Hence, el Ze2. This proves Claim A.8. 

The proof may now be completed in the same way as the proof of  Theorem 4.8. O 

Theorem 4.15 Let or(x) be a first-order fonnula. Then or(x) is equivalent to an JrLN'-- 
concept iff it is preserved under .TEJ~ r--simulations. 

Proof.  We first prove the left to right direction. We prove by induction on f E N ' - -  
concepts that if X1Zod2 and Xl c D I ,  then d2 6 D 'y. We only treat the quantificational 
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cases. First, assume that XlZod2 and Xt c_ (i> i R) y" . Then, for every dl E XI there exists 
Ydl C zX J: with ( RZ)°dl YI and [Yd~ [ = i. Collect these sets Ydj together into a collection 

2( c_ 7~(T~<'O(AI)); then X is a an /-cloud that is R-above X~. So, by clause (5) of  
Definition 4.14 there exists g2 _ A'7 with (RJ)'d2Y2 and ,VZi Y2. By clause (3) it follows 
that 1 I:21 = i, as required. 

Next, to prove preservation of (~< i R), assume Xl Zod2 as before, while d2 ~ (<~ i R ) : .  
Choose Y2 _c A ,7 such that IY21 = i + 1 and (RJ)°dzY2. By clause (6) of  Definition 4.14 
there exists an i + l-cloud ,t" ___ T'(Tv<~°(Z~:)) such that Xl is R-below X. Then, for all 
YI 6 A', [Yll = i + 1, by clause (3), so Xl ~ (~< i R) z ,  as required. 

Finally, we have to prove preservation of  concepts of  the form VR.C (the case qR.T 
is covered by (>~ 1 R)). Assume X1Zod2, RJd2e2 and e2 ¢ C J .  By clause (7) of 
Definition 4.14 there exists a 1-cloud 2( c_ 79(79<'°(A37)) such that X1 is R-below X and 
( U  2() Zoe2. By induction hypothesis, ( U  A') ~ C :r. That is, there exists e, 6 U X such 

that el q~ C Z. As Xi is R-below X, there exists dl E X1 with (R:r)'dl{et}, or in other 
words, RZdlel. It follows that dl ~ (VR.C) z,  and therefore X1 ~£ (VR.C) z,  and we are 
done. 

Now, to prove the harder right to left direction, assume that a ( x )  is preserved under 
~ £ N ' - - s i m u l a t i o n s .  As in the proofs of our previous preservation results, we proceed to 
prove that Con(or) ~ or, where Con(or) is the set of  f £ N ' - - c o n s e q u e n c e s  of  a (x ) .  So, we 
assume that Z ~ Con(a)[w], and we need to show that Y ~ a(x)[w]. Let F = {'-,C I C is 
in ~ £ N ' -  and w ¢ CZ}. As in Claim A.2 we find interpretations Zc and objects vc such 
that vc ~ a(x) 75c N (--,C) zc , and we form the disjoint union J of the interpretations Yc. 
Clearly, the relation {(Xd, d) [ d 6 Xj} is the "Z0"-component  of  an f £ N ' - - s i m u l a t i o n  
linking {vc} in f f  (or Zc) to vc in Zc (or J ) .  As a consequence, we obtain that 
vc e c~(x): \ C J .  

We leave it to the reader to establish an analog of  Claim A.3. Define the following 
sequence of relations Z0, Z~ . . . .  : 

Z0 :~--- {(Xl, d2) I Xl ~-- AJ ,  d2 ~ z3 Z, and for all D, Xt ___ D :  

implies d2 ¢ D I } ,  

Zi :=  {(X, I:2) l i > 0, X c_ P ( P < ~ ( a : ) ) ,  Y2 c zX z ,  

and for all YL s X,  [Yl I = I g2i = i J. 

We tacitly assume that all the collections of  sets ,V occurring in the above definition are 
/-clouds above some set Xi c__ A J ,  for some i. 

C la im A.9. The tuple Z = (Zo, Z1 . . . . .  Zn . . . .  ) is an 5;£./V'--simulation. 

To prove the claim, observe first that clauses (1)-(4) of  Definition 4.14 are trivially 
fulfilled, so we only have to check clauses (5)-(7). As to clause (5), assume that X1Zod2, 
and that 2( c p(T'<~°(A,7)) is an / -c loud  which is R-above X1. We need a set Y2 c_ A I 
with (R:r)'d2Y2 and JY2] = i. Clearly, we have that for every d j e  Xj,  d~ ~ (>~ i R) J ,  
hence Xl ___ (>~ i R) J .  Then, XlZod2 gives d2 c (>~ i R) z.  This implies the existence of 
the required Y2. 
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Next comes clause (6) of Definition 4.14. Assume X1Zod2, and (RI) 'dzY2,  where 
11121 = i > 0. We need to find an/ -c loud 2( c T'(Tz'<°~(A,7)) such that X1 is R-below 
2( and 2(ZiY2. Reason as follows: as d2 ~ (~< i - 1 R) 7~, we get XI ~ (~< i - 1 R) J ,  and 
it follows that for some dl e A J  we have d l ¢  (~< i - 1 R) J ,  so dl e (>~ i R) J .  Let 

2(d~ = {Y c__ A J  I IyJ = i  and ( R J ) ' d j Y } ,  

and put 

2(~--- U {2(all Idl ~ X anddl e (>~ i R )J} .  

Then 2( is a non-empty i-cloud such that X1 is R-below ,%' and 2(Zi Y2, as required. 
Next we turn to clause (7). Assume XiZod2 and RZd2e2; we need to find a 1-cloud 2( 

such that Xx is R-below X and (U 2() Zoe2. For every concept C such that e2 ¢ C z ,  we 

can find el, dl e A J  with dl e X1 and RJd le l .  Let 2( be the collection of all singletons 
{el } obtained in this way; then X1 is R-below 2( and (U  z )  Zoe2, as required. 

This proves Claim A.9. Using a by now familiar argument the proof of Theorem 4.15 
can now be completed. [] 

Theorem 4,18 Let or(x) be a first-orderjbrmula. Then a(x) is equivalent to an f £TZ-- 
concept iff it is preserved under .Y'fTg--simulations. 

Proof. We first prove the left to right direction. We prove by induction on .Y'E~--concepts 
that if X1Zod2 and X1 c D I ,  then d2 e D J .  We only treat the quantificational cases. 
First, assume that XtZod2 and X1 c_ (B(Rl n . . .  n Rn).T) Z, where all Ri are atomic role 
names. For each dt E Xl select ee e A 2 with (R1 [q • • • n Rn)Zdxex, and collect these ex's 
together in a set YI. Let 7Z be a collection of (atomic) role names such that R1 . . . . .  Rn E 7"~ 
and such that R is meet closed for Xl and Y1. By clause (4(a)) of Definition 4.17 there 
exists E2 _ A I with (X1, Y1)Z1 (d2, E2). By clause (3(a)) there exists e2 e E2 such that 
([-]7-~)Jd2e2. Hence, d2 e (3(I-]7~).T) J ,  and therefore d2 e (3(R~ n .-- n R , ) .T)  'y, as 
required. Next, to prove preservation of YR.C, assume that X1Zod2 and d2 ~ (YR.C) "7. 
Let e2 be such that R'Yd2e2 and e2 ~ C 'y. Then, by clause (4(b)), there exists YI with 
(Xz, Yl )Z1 (d2, e2). By clause (3(b)), X1 (R37)j, Y1, and clause (5) gives Yl Zoe2. Together 

with e2 ~ C "y and the induction hypothesis this implies Xl Z (YR.C)/7, and we're done. 
Next, to prove the right to left direction, we assume that o~(x) is preserved under f E ~ - -  

simulations, and proceed to prove that Con(~) ~ c~, where Con(or) is the set of .Y'E7~-- 
consequences of ~(x). So, we assume that Z ~ Con(oO[w], and we need to show that 
Z ~ ot(x)[w]. Let /" = {--,C ] C is in ~/27Z- and w ¢ C2-}. As in Claim A.2 we find 
interpretations Zc and objects vc such that vc e or(x) Zc A (--,C) 7;c, and we form the 
disjoint union ,7 of the interpretations Zc. We leave it to the reader to check that there 
is an lET-g--simulation linking {vc} in Lr (or Zc) to vc in Zc (or ,,7). It follows that 
vc ~ o4x) J \ C J .  

We also leave it to the reader to establish an analog of Claim A.3. Next, take w-saturated 
elementary extensions ,7"* and 27* of , f  and 27, respectively. Define the following relations 

Z0, Z l, and Ze: 

Z0 := [(Xl,d2) [ for all D, X1 c D J* implies d2 e D2-* }. 
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Z1 := {((X1, Y1), (de, Ee)) [ for some R, X1R?Y1, and for every 
meet closed collection of atomic concepts 7~ for Xl 
and Y1 there exists e2 6 E2 with ([77~)Z*d2ee}. 

Z2 := {((X1, Yl), (de, e2)) I YIZoe2 and for all concepts R, 
RZr'* dze2 implies X1 ( R'Y*) ; Y1 }. 

Claim A.10. The tuple Z = (Zo, ZI ,  Z2) is an Y£7~--simulat ion.  

To prove the claim, observe first that conditions (1)-(3), and (5) of Definition 4.17 are 
trivially satisfied. As to condition (4a), assume that X1Zod2 and Xl (R3*) i" Y1. Let 7~ be 
any meet closed collection of atomic role names for Xj and YI, and consider the set 

X'(d2, y) :----- { Rd2y [ R c Tg}. 

LT(d2, y) is finitely satisfiable in 2-*. For, consider Rld2y . . . . .  Rndzy 6 Z'(d2, y). As 7~ 
is meet closed for Xl and 111, it follows that XI((Rt rq -. .  n Rn)J* ) tY I ,  and hence 
X1 c_ (3(R~ rq...  rq Rn) .T)  J*. Since XiZod2 it follows that d2 6 (3(R1 n . . -  rq Rn).T) 5c*, 
hence there exists e2 with (RI rq-. -n Rn)Z*d2e2. Now, using the fact that 2-* is co-saturated, 
it follows that all of 22(d2, y) is satisfiable in 2-*, say by e2. Clearly, for this e2 we have 
([-]7"~)Z* dze2. 

Repeat the above argument for every collection of atomic role names that is meet 
maximal for XI and Y1, and collect the satisfying objects e2 together in a set E2. This 
proves clause (4a). 

As to clause (4b), assume XaZod2 and R~C*d2e2. We need a Y1 ~ AJ*  with 
(XI, Y1)Z2(d2, e2). Choose C with e2 ~ C Z*, and define 

2-* r ( x ,  y) := { ~ c / u  {Rxy I R dee2}. 

We claim that 27(x, y) is finitely satisfiable in J *  in such a way that x takes its value in 
X1. To see this, take R1 (x, y) . . . . .  Rn(x, y) 6 r ( x ,  y). Then d2 ~ (V(R1 vl.. .  I-1Rn).C) z*, 
and hence X1 ~ (V(RI N . . .  n Rn).C) J*, as XIZod2. It follows that there exists dL 6 X1 
and el 6 A J* with (Rl rq . . . rq Rn)3* dlel  and el q~ C 3 . .  By w-saturation, all of Z;(x, y) 
is satisfiable in ,7* in such a way that x takes its value in X1. This yields an object el such 
that for some dl 6 X1 

2-* ( d r , e l ) E N {  R J• IR d2e2} and el ~ C  3 . .  

Repeating this argument for every C such that e2 ~ C 2:*, we obtain a set Y1 as desired. 
Using a by now familiar argument, we can use the existence of an f'L;7C--simulation as 

the main step in showing that 2- ~ a(x)[w].  [] 

Appendix B. Combinations 

Let us briefly consider the various combinations now. So as not to get lost in a plethora 
of logics, we will focus on extensions of A£ ,  .7"Z;$-, ~'£Z{-, 5 r£N "-, and YZ;7~- by 
the addition of a single construction. By way of example we show how a characteristic 
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notion of simulation for any logic in the .TE- and .AE-hierarchy may be obtained from 
such extensions. 

B. 1. Extensions of .A~. 

As we have seen from the definitions of bisimulation and ,A£-simulation (Definitions 3.2 
and 4.4), in the presence of negation or negated atomic concept names, the clause 
guaranteeing preservation of atomic concept names either becomes symmetric (in the case 
of full negation) or we have to add preservation of negated atomic concepts as well. 

That is, let A/2X be one of AEC, .AITlg, AEjX/', or .AE~. To obtain a characteristic 
notion of simulation for ,AEX, we simply take the characteristic notion of simulation for 
.f'E2(-- and add to the clause for preservation of atomic concept names the clause that 
negations of atomic concepts should also be preserved (as in Definition 4.4). Then, the 
relevant preservation theorems may be proved. 

B.2. Extensions of Fl~C- 

With full (qualified) existential quantification 3R.C present in the logic, the back-and- 
forth condilions that record the presence of roles, have to become symmetric: not only does 
the relational pattern need to be matched, but it needs to be matched with a similar object. 
For the semantic characterization results for the logics FEEL/ - ,  F/~&N r- ,  and F/~ET~-, 
this requires the following. 

- FECLl--simulations are de fined just like FEb/--simulations (Definition 4.10) except 
for clause (2), which needs to be: 
(2') For every (atomic) role name R, if RZdl el and dl Zd2,  then there exists e2 E A G 

with R'Y d2e2 and el Ze2. 
- FEEH--simulations are defined like .FE.A/'--simulations (Definition 4.14) except 

for clause (7), which needs to be: 
(7') (a) If Xl(RZ)?Y~ and X1Zod2, then there exists e2 such that RJd2e2 and 

YI Zoe2. 
(b) If  R3d2e2 and X1Zod2, then there exists a l-cloud X such that X1 is R- 

below 2( and (U  2()Zoe2. 
- f E ~ g - - s i m u l a t i o n s  are defined like .~-E~--simulations (Definition 4. l 7) except for 

clause (5), which needs to be: 
(5') (a) If(X1, Yl)Zt(dz, e2),then YIZoe2. 

(b) If (XI, Y1)Zz(d2, e2), then YIZoe2. 
Using the above definitions, semantic characterizations may be given for each of the 
languages involved. 

B.3. Extensions of f FSbt- 

From a logical point of view having disjunctions of concepts available in a description 
logic simplifies matters considerably: we no longer have to relate sets of objects to single 
objects, but can simply relate objects to objects. Extending f ' £ 2 g -  by number restrictions 
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or role conjunction requires the following changes to arrive at a characteristic notion of 
simulation. 

- YEb/A/'--simulations are defined just like YEN--simulations (Definition 4.14) 
except that Z0 should now be a relation linking objects to objects, and the Zi (i > O) 
should link finite sets to finite sets (of the same size). Clauses (4)-(7) should then be 
replaced by: 
(4') If dl Zod2 then, for any (atomic) concept name A, if dl ~ A I then d2 ~ A 3. 
(5 ~) If dlZod2 and (RZ)'dlY1, where IYl[ = i > 0, then there exists I"2 ___ A 3  with 

( Rff )°dz Y2 and Y1Zi Y2. 
(6') If dlZod2 and (RJ)'d2Y2, where [1121 = i > 0, then there exists Yl ~ A27 with 

(R:r)°dl Yl and Y1Zi Y2. 
(7') If Rfd2e2 and dlZod2, then there exists el 6 A y such that R:~dlel and elZoe2. 

- YLTdT~--simulations are defined just like Y/27~--simulations (Definition 4.17) 
except that Z0 should now link objects to objects, and Zl and Z2 should link pairs 
of objects to pairs of objects. Then, clause (2) should be replace by clause (4') above, 
while clauses (3)-(5) should be replace by: 
(3') (a) If (dl, el)Zl(d2, e2) then, for every role name R, if RZdlel, then R3d2e2. 

(b) If (dl, el)Z2(d2, e2) then, for every role name R, if Rffd2e2, then R:rdlel. 
(4') (a) If dlZod2, then for every role name R, if R:7;dlel, then there exists e2 E A ff 

with (dl, el)Zl(d2, e2). 
(b) If dl Zod2, then for every role name R, if R3d2e2, then there exists el 6 A :/: 

with (all, el)Z2(d2, e2). 
(5') If (all, el)Z2(d2, e2) then elZoe2. 

Using the above changes, semantic characterizations may be given for each of the 
languages involved. 

B.4. Extensions of Y/2Af- 

The only extension of Y/2.M- (with a single constructor) that has not been considered 
so far is Y £ A f ~ - .  The notion of an Y/2.N'R--simulation is arrived at by simply adding 
together the definitions for an YEA/'--simulation and an Y/2R--simulation, respectively. 
That is, an Y/2AfT~--simulation is a tuple (Z0, ZI. Z2 . . . .  ; Z~, Z~) such that (Z0, Z1, Z2, 
. . .) is an YEAr--simulation, and (Z0, Z~, Z~) is an Y/27~--simulation. Then, the usual 
semantic characterization results may be given for YEAfR- .  

B.5. Extensions of Y / 2 ~ -  

Extensions of Y / 2 ~ -  by one of C, £, U, or .Af are all covered in the preceding 
paragraphs. 

B.6. Classifying an arbitrary description logic: 

To obtain a characterization of an arbitrary description logic (defined from Table 1), 
simply combine the observations listed in Sections B. 1-B.5. More concretely, one may 
proceed as follows. Let /2 be an arbitrary description logic. First, determine how much 
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negat ion it admits. I f  it admits  full negation,  then we have at least .A/ZC ~</: and we can 
use the ideas in Sections B. 1 and B.2; the only  further opt ions are that /~  admits Af  or ~ ,  
and in that case Section B.3 applies. If, on the other h a n d , / :  does not  admit  full  negation,  
we first see whether  it does admit  H, and we consul t  Sections B .1-B.3  if  it does. If /Z does 
not  admit  H, then one of  Sect ions B. l ,  B.2 and B.4 applies. 

As a concrete example,  consider  1: = ¢4Z:EAf~. As .A/~ ~</Z, the atomic clause in the 
not ion of  an /Z-simulation needs to preserve both atomic concepts  and their negations.  
On top of  that we need to ensure  preservat ion of  C (as explained in Sect ion B.2), and of  
.Af and ~ (as explained in Sect ion B.4). Putt ing things together, we get that the not ion  
of  s imulat ion needed to characterize v4/2EAf~,  is a tuple (Z0, Zj  . . . .  ; Z~, Z~), where 
(Z0, Z l  . . . .  ) is an .A£CA/'-s imulat ion (which is jus t  like ~ /~E.Af- -s imula t ions ,  except for 
the atomic clause), and where (Z0, Z~, Z~) is an . A / ~ E ~ - - s i m u l a t i o n  (which is just  like 
br/:C.M - - s imu la t i ons ,  except for the atomic clause). 
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