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Abstract. Modern search engines aggregate results from specialized verticals
into the Web search results. We study a setting where vertical and Web results
are blended into a single result list, a setting that has not been studied before.
We focus on video intent and present a detailed observational study of Yandex’s
two video content sources (i.e., the specialized vertical and a subset of the gen-
eral web index) thus providing insights into their complementary character. By
investigating how to blend results from these sources, we contrast traditional fed-
erated search and fusion-based approaches with newly proposed approaches that
significantly outperform the baseline methods.

1 Introduction
Modern search engines integrate results from specialized search services, or verticals,
into their Web search results. This task is called aggregated search [11] and is usually
decomposed into vertical selection [1] and result merging [3, 13]. Aggregated search
aims at diversifying the search engine result page (SERP) in order to provide results for
different possible information needs, or intents, in different types of content (e.g., im-
ages, videos). Previous work often assumes a so-called block search result presentation,
where vertical results are grouped together in a block and placed amongst the generic
web results; see Fig. 1 (left). Instead, we assume a search result presentation in which
homogeneous vertical and Web results are blended into a single result list, as in Fig. 1
(right), before being placed amongst other results, a setting that has not been studied be-
fore. In this setting, vertical and Web results blended together should be homogeneous
because incoherent result presentation can result in user dissatisfaction [5].

We focus on video intent, i.e., the user intent that is satisfied by videos (in the
same way that image intent is satisfied by images). Video intent is broad and diverse
with queries such as “games of thrones watch video” or “the great gatsby.” To answer
such queries commercial search engines have two content sources: (1) A specialized
video vertical that typically only contains videos from video hosting services, such as
Youtube; we refer to this vertical as the Video vertical. (2) The subset of pages from the
general web index with at least one video embedded in them; one can easily identify
such pages and we refer to the set of such pages as the WebVideo source. These two
sources correspond to different products and have different underlying ranking systems.

Is one of these two sources sufficient? To what extent do the Video and WebVideo
sources complement each other as sources for answering the video intent in terms of
user satisfaction? We investigate these questions through a case study of Yandex’s two
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Fig. 1: Traditional block (left) vs. blended
(right) search result presentations, where
video vertical documents are shown as dot-
ted lines, while pages from the general web
index that have at least one video embedded
in them are marked with ∗.

video content sources. We examine the
hypothesis that the two sources satisfy
different video information needs and
complement each other in this respect,
i.e., that both sources are required in
order to more effectively satisfy infor-
mation needs with a video intent. One
striking example of such a need (query)
is “games of thrones watch video,” for
which a user might want to watch the lat-
est episode of the series (such videos are
usually ranked sufficiently high only in
Video) or to browse through all previous
episodes to watch some of them (such
hub pages are usually included only in
WebVideo): these information needs are
actually sub-intents of the video intent.
These information needs are both satisfied by watching a video online, but the videos
are typically found in different types of source (Video and Webvideo) so that both types
of source are required to address queries with a video intent.

Below, we start with an observational comparison of the two types of video content
source that we consider. We find that they complement each other and that both are
required to best answer video information needs. For many queries, the two sources
return highly relevant, but different results and, in such cases, presenting results from
both sources is better for diversity than using a single source. In some cases, one of
the two sources does not provide highly relevant results even for queries with a strong,
dominant video intent. Therefore, by itself query intent is not enough to properly decide
when to present results from a particular source, and the relevance of the results w.r.t.
sub-intents of the underlying video intent must be taken into account. I.e., we also need
to consider the ability of a particular source to answer some classes of queries.

These observations motivate us to address the following algorithmic problem: which
results from the two sources should be presented on the SERP? Specifically, we consider
the following blending problem: given the result lists from the two sources, produce the
best possible result list in terms of overall relevance, where documents from each source
can be interleaved (blended) together, subject to the constraint that no change is allowed
in the relative order of results from the same source (see below).

The main challenge with our blending problem lies in the fact that document scores
are not comparable across the two sources, because they have completely different un-
derlying ranking systems. Our blending problem is similar to an aggregated or federated
search problem, but it differs in the following essential ways. First, we blend documents
and not blocks, as has been done so far in aggregated search [3, 13]. Second, compared
to a federated search setting we exploit additional knowledge about each source (e.g.,
document scores returned by each source plus relevance assessments for training our
models). Third, we do not want to change the relative order of results from the same
source; we assume that the base rankers underlying the sources are the best experts



about their own documents, so we do not overrule them [3, 16]; we refer to this con-
straint as the no re-ordering constraint. According to our experiments, our methods do
not improve by relaxing this constraint; doing so only slows down the computation.

We consider a number of methods from federated search and data fusion. Their
performance is found to be far below what could be achieved given the quality of the
sources being blended. We therefore consider two types of alternative method. One pre-
dicts the quality of the top results from each source for a given query in order to blend
results, but without directly using the document scores. The second is based on learn-
ing to rank (LTR); we propose three approaches: point-wise, pair-wise and list-wise.
Our most effective blending approach belongs to the first type; it yields a significant
+13.20% improvement in ERR@5 scores compared to using the best vertical only.

The main contributions of this paper are the following. (1) We present a detailed ob-
servational study of two video content sources thus providing insights into their comple-
mentary character. (2) We propose and evaluate different methods for blending results
from these two sources into a single result list.

2 Related work
There are several tasks where documents are retrieved from multiple systems and merg-
ed into a single SERP. We review them and explain how our blending problem differs.
Aggregated Search. Prior work on aggregated search and result merging [3, 13] as-
sumes a block search result presentation, so that, in our case, results from the Video
vertical would be grouped together in a block and placed amongst the generic web re-
sults; see Fig. 1 (left). We, instead, assume a search result presentation in which vertical
and Web results are blended into a single result list (right), a setting that has not been
studied before. Aggregated search methods are not usable to solve our problem, because
we blend documents and not blocks, as is customary in aggregated search [3, 13]
Federated Search. In federated search [16], of which aggregated search is a possible
application, documents can come from several search engines. Popular result merging
methods, such as CORI [4], use a combination of local collection scores and document
scores to compute a global score for each document that is then used to rank results
globally. We use variations of CORI as baselines (see §3.1), but not the original CORI
method because it relies on term usage statistics from each collection. Such statistics are
meaningful only when collections have documents of the same nature, which is not the
case here as WebVideo indexes web pages, while Video indexes video metadata [18],
which implies the use of a specialized ranking system designed for the video retrieval
task. Other popular methods (e.g., SAFE [17]) rely on a centralized index and are not
applicable to our task because such an index is unavailable to us.
Data Fusion. In many data fusion methods, results in the lists being fused come from
a single collection, but are retrieved using different strategies. These methods, either
unsupervised (e.g., CombSUM [6]) or supervised (e.g., λ-Merge [15], where result lists
are retrieved using the same ranker unlike in our setting), are based on a voting principle
and therefore some intersection between results is assumed. In our case, the intersec-
tion between the two video content sources is really small (see §6.1). Hence, fusion
methods are not readily applicable to our blending problem. Still, we use some merging
algorithms from data fusion as some of our baselines (see §3.1).



Learning to Rank. Learning to rank (LTR) approaches are not straightforward to use
here because of the different feature spaces (one per source), which must be merged
somehow. This was extensively discussed in [3], where different ways to construct fea-
ture vectors were proposed and compared in the context of block-ranking (ordering
blocks of Web and vertical results in response to a query). In [3], the variant perform-
ing the best is one that makes a copy of each feature for each vertical, thus allowing
the LTR model to learn a vertical-specific relationship between features and relevance.
In this paper, we follow Arguello et al. [3] and also use one copy of each source fea-
ture for every source, which yields better performance according to our experiments as
well. Then, to solve our problem of blending results, we propose a pair-wise approach
inspired by [3, 15], but adapted to our problem as well as a point-wise approach similar
in aim to the method described in [19], where it was outperformed by Round-Robin
[21], and a list-wise approach that is the most fitted to our problem and allows us to use
features from [12], where query performance was predicted.
In sum, we contribute a new problem (our blending problem) for which existing feder-
ated search and fusion methods are ill-fitted, plus algorithms to address the problem.

3 Blending methods
In this section, we describe different methods to address our blending problem. Recall
that we do not change the relative order of documents that come from the same source.
For example: W1,W2,V1,V2 is an allowed blending, while V1,W3,V2,W2 is disallowed
as W2 and W3 were re-ordered, where V (W) means Video (WebVideo) and Si is the
ith result from S. Given this constraint, there are, for a blended list of N results, 2N

possible blendings of the two sources.
3.1 Baselines We use the following baselines: Round-Robin [21], Raw Score Merging
[10], and several variations of CORI merging [4]. The CORI result merging method
computes a global score for each document from each source using a linear combination
of the collection score C and the original document score D returned by each source:

global score(D) =
D′ + 0.4 ·D′ · C ′

1.4

where C ′ (respectively D′) is C (respectively D) MinMax-normalized to [0, 1]. The
global score of each document is then used to rank results globally. We cannot use the
CORI collection selection algorithm [4] to compute C (see §2). Instead we propose two
variations, where D is the original document score and C is defined as follows:
CORI-Size. We define C to be the number of documents retrieved from each source
(this was already proposed in [14]).
CORI-ML. We define C to be the predicted quality of each source as defined in §3.2,
which makes this baseline our contribution as well.
3.2 Approaches based on source quality These methods consist of two steps: (1) we
predict the quality of the top results from each source for a given query in order to
(2) blend results from each source using this predicted quality (as in CORI-ML). Such
methods are common in federated search (see §2) and the main problem lies in the
uncertainty of how this predicted quality best translates into a weight for estimating



the global score of each document. We therefore propose methods that do not use the
original document scores returned by each source directly to overcome such issues (as
opposed to baselines described in §3.1). Note that our methods are not suitable for a
federated search setting as they are not readily applicable to more than two sources. Let
qS(vq, θ) be the source quality function of a source S with parameters θ, and where vq
is the vector of source features (see §4.1) for a query q. Using qVideo and qWebVideo, we
define the following blending methods:
Source-Binary. For each query, we show results from one source only, i.e., from Video
if qVideo > qWebVideo, and otherwise from WebVideo.
Source-KMeans. Let x = qVideo − qWebVideo be the predicted difference in quality of
the two sources for a given query. For each possible difference x, the best uniform
blending (i.e., the same blending for all queries) is found out of all possible blendings
satisfying the no re-ordering constraint. E.g., for x = 0.01, it is V1, W1, V2, W2,
while for x = 0.6, it is V1,V2,V3,V4. To find this blending, for a difference x, we
take the k queries in the training data whose predicted difference in quality of the two
sources is closest to x. For each query, we compute the score of each possible blending
according to the retrieval metric used to train qS . We then take the uniform blending
with the highest average performance among these k queries. Here, k is a parameter
that is determined experimentally on the training data.

We also investigated methods based on clustering the predicted values of quality
(e.g., 0–0.20, 0.20–0.45, 0.45–1.0) and on defining a uniform blending depending on
the class of each source. However, such methods did not yield better results than the
Source-KMeans method and are omitted for brevity. We train qS to predict ERR@N
(whereN is defined for the retrieval metric being used) by minimizing the mean squared
error of the difference between the predicted and actual value of ERR for labeled result
lists in the training data using Gradient Boosted Regression Trees (GBRT) [7]. Using
ERR here yields better results than NDCG, both for ERR and NDCG.
3.3 Learning to rank approaches
Point-wise. The first of the three LTR approaches that we describe is a point-wise ap-
proach. In other words, we predict the global score of each document from each source
that is then used to rank results globally using one independent model per source. Using
one unified model does not improve the performance according to preliminary experi-
ments on the training data, and is less scalable as the number of sources increases. Let
fS(vq, wqd, θ) be the scoring function of documents from a source S with parameters
θ, where vq and wqd are, respectively, the vector of source features (see §4.2) and the
vector of document features (see §4.3) for a query q and document d. This function
predicts the global score of each document from source S. Using fVideo and fWebVideo,
we can easily define a blending algorithm, where the blended result list is the one with
the highest value of the retrieval metric being used according to predicted scores; see
Algorithm 1. Due to the no re-ordering constraint, we cannot simply rank documents
by their predicted score. We train fS to predict the score of each document obtained
through judgements (see §5.2) by minimizing the mean squared error using GBRT [7].
Pair-wise. For this method, we use a pair-wise approach to LTR. In other words, we
predict the preference between any pair of documents from Video and WebVideo in a
unified model. Let f(vq, wqd, θ) be a document preference function with parameters θ,



Algorithm 1: Point-wise LTR blending algorithm
input : Result list from S, fS, θS for S ∈ {Video,WebVideo}, vq , wqd, N
output: Blended result list

BlendedResultList←− {}; MaxScore←− 0
for tuple ∈ NAryCartesianProduct({0,1}) do

Blending←− {} i←− 0 j←− 0
for x ∈ tuple do

if x == 0 then
Blending[i + j] = ResultListWebVideo[i] // ith result from WebVideo

i←− i + 1

else
Blending[i + j] = ResultListVideo[j] // jth result from Video

j←− j + 1

Score←− Metric@N(Blending, fVideo, θVideo, fWebVideo, θWebVideo, vq, wqd)
if Score > MaxScore then

BlendedResultList←− Blending
MaxScore←− Score

return BlendedResultList

where vq and wqd are, respectively, the vector of source features (see §4.2) and the vec-
tor of document features (see §4.3) for query q and document d. This function predicts
the preference between any pair of documents dx and dy coming from either Video or
WebVideo. Here, f(vq, wqdx , θ) > f(vq, wqdy , θ) means that dx should be preferred
over dy , i.e., is predicted to be more relevant. Using f , we can easily define a blending
algorithm, where the blended result list is obtained by ranking documents according
to the predicted preferences and by satisfying the no re-ordering constraint; see Algo-
rithm 2. We train f by directly optimizing for the retrieval metric being used to assess
the blended result list (e.g., ERR or NDCG); for this purpose, we use YetiRank [8]. We
use one copy of each source feature for each source, which yields better performance
than using one single feature according to our experiments (as in [3]).

List-wise. In this method, we use a list-wise approach to LTR. In other words, we
predict the preference between any pair of blendings satisfying the no re-ordering con-
straint. This approach is the best fit for our problem and is applicable due to this con-
straint, which drastically limits the number of possible blendings. Let f(vq, ub, θ) be a
blending preference function with parameters θ, where vq and ub are, respectively, the
vector of source features (see §4.2) and the vector of blended result list features (see
§4.4) for a query q and blending b. This function predicts the preference between any
pair of blendings bx and by from all possible blendings satisfying the constraint men-
tioned at beginning of §3. Here, f(vq, ubx , θ) > f(vq, uby , θ) means that bx should be
preferred over by , i.e., is predicted to be more relevant. Using f , we can easily define a
blending algorithm, where the blended result list is obtained by using the most preferred
blending as predicted by f . This algorithm is similar to Algorithm 1, but, in this case,
the score of each blending is computed by f directly using blended result list features
and without document features. We train f using GBRT [7], where the target score of
each blending in the training data is computed using the retrieval metric used.



Algorithm 2: Pair-wise LTR blending algorithm
input : Result list from S for S ∈ {Video,WebVideo}, f , θ ,vq , wqd, N
output: Blended result list
BlendedResultList←− {} i←− 0 j←− 0
for ←− 0 to N − 1 do

dw ←− ResultListWebVideo[i] // ith result from WebVideo

dv ←− ResultListVideo[j] // jth result from Video

if f(vq, wqdw
, θ) > f(vq, wqdv

, θ) then
BlendedResultList[i + j] = dw
i←− i + 1

else
BlendedResultList[i + j] = dv
j←− j + 1

return BlendedResultList

4 Features
We present the features used in the blending methods proposed in §3.
4.1 Query-source features (source quality-based) These are the features for a given
query-source pair used by a Yandex system to decide which vertical results to present
and how to integrate them into the Web results. More than one hundred features are
currently used by this system, including, in particular, click-through, vertical-intent and
hit count features (similar features were used in [1, 2]). For space reasons, we do not
describe them here and instead, in §6.2, we discuss only the strongest features. We also
use the following features, where the ones from [15] are marked with ∗: ListMaxS ,
ListMinS , ListMeanS∗, ListStdS∗, ListSkewS

∗, which are respectively, the maximum,
minimum, mean, standard deviation and skew of original documents scores the result
list taken from each source S.
4.2 Query-source features (LTR) In our LTR approaches, we use all the features
described in 4.1, as well as the following features: PredictedERR@NS : the predicted
value of ERR@N for each source S as computed by qS (§3.2), whereN ∈ {1, 3, 5, 10}.
4.3 Query-source-document features These are the features for a given query-
source-document triplet (q, S, d), with features from [15] marked with ∗: (1) Score∗:
the original document score returned by S. (2) Rank∗: the position of d in the results
from S. (3) NormScore∗[0,1]: the score of d returned by S after the top 10 results were
shifted and scaled in the interval [0, 1] using MinMax normalization. (4) IsTopN∗: a
binary feature to indicate if d is within the top N results, where N ∈ {1, 3, 5, 10}.
(5) IsVideo: a binary feature to indicate if S is Video.
4.4 Blended result list features These are the features for a given blended result
list b: (1) List∗: the same features as defined in §4.1, but over b. (2) NumFrom{Video,
WebVideo}: the number of results from each source in b. (3) CosineSimilarity(S, b): the
cosine similarity [12] between each source S and b. We do not use the KL similarity
from [12], because it is not well defined in our case. (4) CombinedPredictedERR@N:
the combined predicted value of ERR for the top N results (ERR@NS) from each
source S from [12], where N ∈ {1, 3, 5, 10}, as: simcosine(Video, b) · ERR@NVideo +
simcosine(WebVideo, b) · ERR@NWebVideo.



5 Experimental setup

5.1 Research questions In §6.1, we investigate the following observational question:
(RQ1) To what extent do the Video and WebVideo complement each other as sources
for answering the video intent in terms of user satisfaction? When investigating which
results from the two sources should be presented on the SERP in §6.2, we investi-
gate the following research questions: (RQ2) How effective are source quality-based
approaches when compared against common federated search methods to solve this
problem? (RQ3) How effective are LTR approaches when compared against common
federated search methods to solve this problem?

5.2 Data set We randomly sampled 1,000 queries from the live stream of search
queries to Yandex that had Video results aggregated into the SERP. For each query,
the top 10 results of the Video and WebVideo sources were independently assessed for
relevance by one judge using a 5-grade system (Perfect, Excellent, Good, Fair, Bad)
and the same assessor instructions (video intent) for both types of content.

5.3 Oracle baselines and comparisons We use the following oracle blending meth-
ods, which utilize relevance judgments of each document and satisfy the no re-ordering
constraint: (1) Best uniform blending: We use the best uniform blending for all queries.
(2) Best blending: We show the best blending for each query. This method is the upper-
bound of any blending method. (3) Best source: We show results only from the best
source for each query. Here, the best (blending, source) refers to the one giving the best
results in terms of the retrieval metric being used. We compare all methods mentioned
so far, plus those listed in §3, and the Video vertical (i.e., only return results from this
vertical) against the WebVideo source (the best source on average). Comparisons are
based on average performance across all queries using 10-fold cross-validation.

5.4 Metrics and significance testing We use the well-known ERR and NDCG mea-
sures as metrics. Statistical significance is tested using a one-tailed paired t-test (at the
p < 0.05 level). Regarding the k parameter of the Source-KMeans blending method,
we tuned it manually using the training data and use k = 10 in all our experiments.

6 Results

6.1 Observational We start with our observational research question (RQ1). Let us
first give an overview of the results returned by each source. Results from Video in-
clude relevant documents (at least Fair) from 481 hosts with 71% of the documents
coming from the top 5 hosts, while results from WebVideo include relevant documents
(at least Fair) from 1,850 hosts with only 536 of them from the top host. The inter-
section between the top 10 results of each source is really small: 68% of queries have
no intersection, 17% have one common document, 9% have two common documents,
and 6% have three or four common documents (never more). In other words, the two
sources seem quite different, which is unsurprising considering the specialized nature
of Video in comparison with WebVideo.

Let us now compare the performance of each source (Video and WebVideo) with
the oracle blending methods from §5.3. The results are shown in Table 1. Video gives



Table 1: Relative effectiveness of the Video vertical and oracle blending methods when
compared against WebVideo. A N (H) denotes significantly better (worse) performance
compared to (Oracle) Best source. Bold face indicates best performance per metric.

ERR@5 ERR@10 NDCG@5 NDCG@10

Video −5.16%H −0.57%H −2.68%H 0−1.34%H

WebVideo – – – –
(Oracle) Best uniform blending 0+4.05%H 0+9.63%H 0+3.81%H 0+7.82%H

(Oracle) Best blending +26.06% +26.65% +33.27% +37.29%
(Oracle) Best source +22.25%H +22.58%H +28.61%H +30.77%H
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Fig. 2: Number of queries vs. difference in
ERR@5 between Video and WebVideo.

−5.16% in ERR@5 and −2.68% in
NDCG@5 compared to WebVideo, which
means that the specialized video vertical is
worse, in general, at answering the video
intent. When blending results from both
sources, the oracle method, as the up-
per bound, gives +26.06% in ERR@5 and
+33.27% in NDCG@5 (RQ1). This large
improvement shows that, indeed, the two
sources complement each other and that
both are required in order to best answer
the video intent. The best uniform blending
mix (V1,W1,V2,V3,W2 for ERR@5) gives
only +4.05% in ERR@5 and +3.81% in
NDCG@5, so a blending algorithm must
be query dependent to get closer to the up-
per bound. Using the best source for each query gives as much as +22.25% in ERR@5
and +28.61% in NDCG@5.

For a significant number of queries, the difference between the relevance of the
top results from each source is quite small, as shown in Fig. 2 (notice 170 queries at
0). Moreover, as results from the sources are different, presenting results from both
sources will lead to an increase in diversity. In such cases, e.g., for “games of thrones
watch video,” each source contains results for different sub-intents of the main video
intent and a single source would therefore likely lead to user dissatisfaction. Hence,
presenting results from both sources while keeping the quality of the blending at the
same level is better when each has highly relevant results (RQ1); below, we examine
how diverse the blended result lists are for the blending methods from §3.

We also find that, in some cases, one of the two sources does not provide highly rel-
evant results even for queries with a strong dominant video intent as shown in Fig. 2 and
Table 3. E.g., for “watch anime video online,” where Video does not return highly rel-
evant results as opposed to WebVideo due to the query being really ambiguous. There-
fore, by itself the intent of the query is not enough to properly decide when to present
results from a particular video source, and the relevance of the results w.r.t. sub-intents
of the video intent underlying the query must be taken into account.



Table 2: Relative effectiveness of blending methods when compared against WebVideo.
A N (H) denotes significantly better (worse) performance compared to Source-KMeans.
Bold face indicates best score per metric.

ERR@5 ERR@10 NDCG@5 NDCG@10

Round-Robin 0+1.90%H 0+7.20%H 0+2.43%H 0+4.44%H

Raw Score Merging 0+0.02%H 0+0.27%H 0+0.21%H 0+1.75%H

CORI-Size 0+3.96%H +10.71%H 0+4.69%H 0+9.71%H

CORI-ML 0+8.85%H +13.73%H +10.76%H +15.20%H

Source-Binary +12.44% +13.49%H +15.73% +17.01%H

Source-KMeans +13.19% +14.88% +15.59% +18.07%
LTR-Pointwise +11.30%H +14.01% +14.11%H +17.14%
LTR-Pairwise +11.87%H +14.82% +13.80%H +17.38%
LTR-Listwise +11.88%H – +15.20% –

6.2 Algorithmic Next, we turn to our algorithmic research questions (RQ2, RQ3).
The results obtained are shown in Table 2. Of the federated search and fusion-based
approaches from §3.1, CORI-ML performs best and gives +8.85% in ERR@5 and
+10.76% in NDCG@5. Next, our source quality-based approaches from §3.2 perform
well as Source-KMeans (the best one) gives a +13.19% in ERR@5 and +15.59% in
NDCG@5, thus outperforming CORI-ML by a large margin (RQ2). The fact that Source-
KMeans is not significantly better than Source-Binary @5 can be explained by the fact
that even queries with small predicted differences in quality of the two sources can have
really different best blendings, especially close to 0. Our LTR approaches perform well,

Table 3: Content-type diversity of the top 5 results
produced by each of the blending methods (using
ERR@5).

The number of results @5
from video hosting sites

0 1 2 3 4 5

Video 0% 0% 0% 0% 0% 100%
WebVideo 44% 21% 23% 7% 4% 1%

(Oracle) Best blending 11% 11% 10% 10% 12% 46%

Round-Robin 0% 0% 26% 47% 21% 6%
Raw Score Merging 44% 21% 23% 8% 3% 1%
CORI-Size 3% 19% 24% 26% 20% 8%

CORI-ML 14% 20% 21% 19% 17% 9%
Source-Binary 29% 12% 10% 3% 2% 44%
Source-KMeans 23% 12% 12% 7% 13% 33%
LTR-Pointwise 28% 12% 15% 10% 10% 25%
LTR-Pairwise 26% 13% 14% 10% 8% 29%
LTR-Listwise 19% 14% 11% 11% 15% 30%

but do not outperform Source-
KMeans. Our best LTR approaches
are LTR-Listwise and LTR-Pair-
wise, which yield +11.88% and
+11.87% in ERR@5 and +15.20%
and +14.82% in NDCG@5, re-
spectively (RQ3). Results at @10
are consistent with these find-
ings, although LTR-Listwise was
not used @10 due to the com-
binatorial explosion. Even though
there is no significant difference
between the three LTR methods,
LTR-Pointwise scales much bet-
ter as the number of sources in-
creases due to the fact that two
independent models are used, and
its training process is much faster.

Next, we examine content-
type diversity of the top 5 results
produced by each of the blending methods, i.e., the percentage of result lists with 0 to 5
results from video hosting sites (using ERR@5). The results are shown in Table 3. The



content-type diversity of all our source quality-based and LTR approaches is similar.
Compared with the oracle method as the upper bound, we observe that our methods
have a similar top 5 content-type diversity, but return slightly more result lists with 0
results from video hosting sites and fewer with 5 results. Investigating ways to directly
take diversity into account in our blending methods is future work.

Finally, we turn to the contribution of individual features. The top 10 features
according to their weighted contribution to qVideo from §3.2 (one of the two models

Table 4: Top 10 features according to their contribution to
qVideo from §3.2 (ERR@5).

Rank Feature Score Rank Feature Score

1 ListMax 6.70 6 ListSkew 3.56
2 ListMean 6.00 7 WebDCG 3.04
3 ListMin 4.54 8 IsFilm 2.55
4 ListStd 4.41 9 VideoSites 2.51
5 NumDocs(Video) 4.40 10 VideoTop3MaxRel 2.32

used in Source-KMeans)
using ERR@5 are shown
in Table 4; see [9, §10.13]
for the description of those
weights. We observe that
List* features perform re-
ally well, which is consis-
tent with previous studies
[20]. Other well-perform-
ing features are: the num-
ber of documents returned by the Video vertical, WebDCG (i.e., DCG of original docu-
ment scores from WebVideo), IsFilm (i.e., whether the query is about a film), VideoSites
(i.e., whether the sites in the top results are known to be relevant for video queries)
and VideoTop3MaxRel (i.e., the maximum of the top 3 original document scores from
Video). Results for qWebVideo (the second model used in Source-KMeans and Source-
Binary) are consistent with these findings.

7 Conclusion

We have introduced and studied a setting where vertical and Web results are blended
into a single result list. We have focused on video intent and presented a detailed ob-
servational study of a Yandex’s two video content sources. The two sources that we
consider complement each other and both are required in order to best answer video in-
formation needs. An oracle-based upper bound gives +26.06% improvement in ERR@5
and +33.27% in NDCG@5 compared to the case where only WebVideo (the best per-
forming source) is used. For a large number of queries, presenting results from both
sources is better for diversity than using a single source.

These observations motivated us to investigate the following algorithmic problem:
which results from the two sources should be presented on the SERP? We proposed
source quality-based methods and learning to rank methods to address this problem.
Our source quality-based approaches perform well (+13.20% in ERR@5 for the best
one) and outperform the best baseline approach, a variation of CORI, by a large margin
(+8.85% in ERR@5). Our LTR approaches perform well (+11.88% in ERR@5 for the
best one), outperforming the best baseline approach but not the source quality-based
approaches. Compared with the oracle method as our upper bound, we observe that our
methods have a similar top 5 content-type diversity.
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