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ABSTRACT
In web search, recency ranking refers to the task of ranking doc-
uments while taking into account freshness as one of the criteria
of their relevance. There are two approaches to recency ranking.
One focuses on extending existing learning to rank algorithms to
optimize for both freshness and relevance. The other relies on an
aggregated search strategy: a (dedicated) fresh vertical is used and
fresh results from this vertical are subsequently integrated into the
search engine result page. In this paper, we adopt the second strat-
egy. In particular, we focus on the fresh vertical prediction task
for repeating queries and identify the following novel algorithmic
problem: how to quickly correct fresh intent detection mistakes
made by a state-of-the-art fresh intent detector, which erroneously
detected or missed a fresh intent shift upwards for a particular re-
peating query (i.e., a change in the degree to which the query has
a fresh intent). We propose a method for solving this problem.
We use online exploration at the early start of what we believe to
be a detected intent shift. Based on this exploratory phase, we cor-
rect fresh intent detection mistakes made by a state-of-that-art fresh
intent detector for queries, whose fresh intent has shifted. Using
query logs of Yandex, we demonstrate that our methods allow us to
significantly improve the speed and quality of the detection of fresh
intent shifts.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval
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1. INTRODUCTION
In web search, recency ranking refers to the task of ranking doc-

uments while taking into account freshness as one of the criteria of
their relevance [5, 8, 11]. This is particularly important for recency
sensitive queries, i.e., queries for which a user expects topically rel-
evant documents to be also fresh (that is not older than a few days),
and failing to recognize the temporal aspect of such queries will
likely lead to user dissatisfaction. Previous work on recency rank-
ing comes in two broad flavours: one type of approach focuses on
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improving the ranking of generic web results by extending exist-
ing learning to rank algorithms to optimize for both freshness and
relevance using temporal features [5, 8, 11]. The second type of ap-
proach to recency ranking is an aggregated search based approach
in which a dedicated fresh vertical (indexing only fresh documents)
is used, whose results are integrated into the search engine result
page (SERP), once the need in fresh content (fresh intent) has been
detected for a particular query with some probability [29] (see §5
for related work). In this paper, we adopt and contribute to the latter
approach to recency ranking.

Importantly, in the aggregated search-based approach to recency
ranking approaches, one does not always integrate fresh results
amongst generic web results by grouping them into slots as is typ-
ically done in aggregated search with other types of verticals [21].
Instead, fresh results are often mixed together with generic web
results—this seems to have become the default (e.g., at Google
and Bing, as of June 2014). Consider, e.g., the query “Game of
Thrones,” whose results from Google are shown in Fig. 1: impor-
tantly, some documents of this SERP were published only a few
hours before the query was issued and the page is a mixture of both
fresh and generally relevant documents.

Within the aggregated search-based approach to recency ranking,
we need to decide when and how to integrate fresh results on the
SERP. To this end, we can rely on existing research on aggregated
search. This task is usually decomposed into two subtasks: vertical
selection [1, 2] and result merging [3, 25]. We focus on the vertical
selection task and, as we will show in §2.2, a special treatment is
required for this task in the case of a fresh vertical. The vertical
selection task depends on assessing what we call the fresh intent of
a query: the probability that a user issuing the query to the search
engine is looking for fresh content. This task is similar to, but dif-
ferent from, assessing the newsworthiness of a query when working
with a news vertical [9, 11, 20]: fresh intent is not restricted to news
events and also concerns queries about, e.g., the last episode of a
television series for which fresh results are required (see Fig. 1) but
which do not make the news most of the time. To tackle this task,
we use a state-of-the-art fresh intent detector that exploits a large
and diverse set of features (see §2.1).

The predicted fresh intent from this detector is then used to de-
termine, for each query, the number of fresh results (if any) to inte-
grate on the SERP as well as their position. To give some examples,
our recency ranking system at Yandex (Russia’s leading search en-
gine) uses the predicted fresh intent value 0.10 as a uniform thresh-
old for determining which queries are predicted as fresh at a given
point in time, that is, for which fresh results have a chance to be
integrated somewhere into the SERP. A similar threshold was used
in related work, e.g., in [9]. In the production environment of Yan-
dex, the value 0.10 corresponds, on average, to 1 fresh document at



Figure 1: Google results for the query “Game of Thrones,” with
fresh results on top.

the 10th position of the SERP, while, for example, the value 0.35
corresponds, on average, to 3–4 fresh documents spread across the
SERP, and the value 0.60 corresponds, on average, to a SERP with
5–6 fresh documents and with a majority of fresh documents in the
top of the SERP. Of course, this is subject to the choice of a partic-
ular search engine and depends on its mechanism used to integrate
fresh results into SERPs, which is beyond the scope of this paper.

The main challenge associated with accurately predicting the
fresh intent of a query is that for many recurring queries the fresh
intent may change over time and that such intent shifts can happen
really fast. We illustrate this in Fig. 2 for a query about a govern-
ment department that made the news. There, we see that a large and
sudden intent shift upwards occurred at the 18th hour, when the real
fresh intent went up from 0.06 to 0.28 within a single hour (see the
green curve, which plots the real fresh intent of this query).1

Failing to properly integrate relevant fresh results in the SERP
for fresh queries usually happens due to incorrect fresh intent de-
tection and is likely to lead to user dissatisfaction. The problem is
illustrated in Fig. 2 (see the blue curve, which plots the predicted
fresh intent of this query—which clear lags behind the real fresh
intent following the fresh intent shift). We see that the potential
dissatisfaction with the search results, which we assume to be pro-
portional to the difference between the real and predicted fresh in-
tent of a query, can be important. As we see, fresh results could be
inadequately integrated into the SERP due to the incorrectly pre-

1We use surrogate ground truth for fresh intent for defining the real
fresh intent; we discuss and explain the need for using this type of
ground truth, and demonstrate its extremely high quality, in §2.2.
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Figure 2: The evolution of real and predicted fresh intent for a
random query, which quickly became fresh.

dicted fresh intent of the query around, and at, the peak of user
interest (measured as the number of queries per hour) following
the fresh intent shift that happened three hours before the peak.

In §2.2, we will show that a state-of-the-art fresh intent detector,
although highly precise on average, may fail to detect shifts up-
wards in fresh intent soon after such a shift occurred in user pref-
erences but is not yet well reflected in the available data sources,
and that it may, in fact, need a long time to properly detect the real
fresh intent of a query (as in Fig. 2). Therefore, the core challenge
of the present study is to learn to correct for such fresh intent de-
tection mistakes and to rapidly recognize large changes in the fresh
intent of a query when the detector is failing.2 This is a challenging
problem, because, during or immediately after changes in the fresh
intent of a query take place, we usually do not have much infor-
mation yet to determine the exact fresh intent of a query—that is
exactly why mistakes happen. To the best of our knowledge, this
important problem has not been studied in previous work.

Our idea of solving this problem of detecting shifts in fresh in-
tent of a query is to perform online exploration at the very begin-
ning, when we are starting to detect an increase in fresh intent,
but when we are still uncertain that the detected increase is really
due to a shift that took place, or a shift that is about to happen, in
user preferences, or due to the noise in our observations. We inte-
grate fresh results on the SERP for a query that has displayed an
increase in fresh intent and gather user feedback to quickly correct
our predicted fresh intent for queries whose fresh intent has shifted
and that were not handled well by our fresh intent detector. Obvi-
ously, this procedure cannot be followed for all queries for which
the predicted fresh intent has slightly increased due to the risk of
degrading the search experience by presenting fresh results at the
top of too many SERPs, whilst most users actually do not need
that. Hence, we learn to select only the most appropriate queries
for this treatment and we do so using a semi-supervised machine
learning model trained to predict the probability for the fresh intent
of a query to have actually shifted considerably after we started to
detect a small increase in its predicted fresh intent.

The main contributions of this paper are the following.

• We present a large scale analysis of how a state-of-the-art
2We focus only on fresh intent shifts upwards, because not showing
any relevant fresh results at the peak of user interest here is much
more critical that showing fresh results a bit too long, i.e., when
people care less, which might happen with potential detection mis-
takes of fresh intent shifts downwards.



fresh intent detector deals with fresh intent shifts upwards
using query logs of Yandex. Our observations motivate the
following novel algorithmic problem: how to quickly correct
mistakes in fresh intent detection made by this detector after
an instant intent shift.
• Using a semi-supervised learning approach we demonstrate

how to better predict whether the fresh intent of a query has
actually substantially shifted upwards after a small observed
increase in its fresh intent. We build on this prediction to
decide whether to start an online exploration in order to refine
our estimate of the query’s fresh intent.
• We propose and evaluate different methods for rapid online

detection of shifts in fresh intent using online exploration.
We find that our methods allow us to significantly improve
the speed and the quality of the detection of intent shifts with-
out deteriorating overall retrieval performance.

In §2, we motivate our algorithmic problem through a presentation
of a fresh intent detector and an analysis of intent shifts in the wild.
We describe our machine learning model for predicting the proba-
bility for the fresh intent of a query to have shifted after we started
to detect an increase in its predicted fresh intent in §3.1. Methods
for performing online exploration are discussed in §3.2. We present
our results in §4; §5 is devoted to related work; we conclude in §6.

2. MOTIVATION
In this section, we motivate our novel algorithmic problem, that

is how to quickly correct fresh intent detection mistakes made by
a state-of-the-art fresh intent detector for queries whose fresh in-
tent has shifted, through a presentation of our fresh intent detector
(§2.1) and an analysis of intent shifts “in the wild” (§2.2).

2.1 Fresh intent detector
We describe our state-of-the-art fresh intent detector, that is, our

model for performing vertical selection, which estimates the fresh
intent of a query as discussed in §1. Recall that in the aggregated
search-based approach to recency ranking which we follow, the
predicted fresh intent of a query is used to determine the number of
fresh results to be integrated on the SERP and their position.

The most common approach to estimating the fresh intent of a
query [9, 11, 20, 29] is to combine features extracted both from
search engine query logs (representing the fresh content demand),
as well as from the fresh vertical (representing the fresh content
production). The idea is that a combined increase in demand and
production of fresh content related to the query topic most probably
indicates an increase in the fresh intent of the query.

Our fresh intent detector is based on a machine learned model
that is trained offline using assessments from professional judges,
hired by Yandex. The data used for training and testing this model
was collected according to the following procedure. We sampled
10,000 queries over a period of 3 months with upsampling in or-
der to have enough queries with a high fresh intent. Each query
was then labelled by at least 2 judges, who were asked to deter-
mine the fresh intent of each query, that is, to determine to which
extent these queries express an interest in upcoming or on-going
events for which users would prefer fresh content at the time of the
issue (without taking into account the relevance of search results).
For each query, judges were asked to decide in which interval the
query’s fresh intent is and we use the mean values of these intervals
as our targets for learning. We train our fresh intent detection model
by minimizing the mean squared error of the difference between
the predicted and real fresh intent for labeled queries in the training
data using Gradient Boosted Regression Trees (GBRT) [13]. This
approach was used also in [29].

The features used in our model (about 100 overall) are borrowed
from existing studies, and, most notably, include the following:

• Features extracted from our fresh vertical (representing the
fresh content production) similar to the ones described and
discussed in existing studies on query recency sensitivity and
newsworthiness detection [9, 11, 20]. Well-performing ex-
amples include the number of fresh documents retrieved by
the query in our fresh vertical (NewDocsTotal), or the ratio
of NewDocsTotal and the number of web results returned by
Yandex for the query (NewDocsFraction), or the fraction of
fresh documents added to the fresh vertical in the last X hours
containing all the query words (HasAllWordsXh), or also the
probability for the query to be generated by language models
from our fresh vertical.
• Features extracted from the query stream (representing the

fresh content demand) similar to the ones described and dis-
cussed in previous work [9, 11, 20]. Well-performing exam-
ples include the number of issues of the query over differ-
ent time periods or the ratio of the number of issues of the
query in the last day and in the last week (QueryConstrast),
or also the probability for the query to be generated by lan-
guage models from the query stream.
• Query features such as the number of words or boolean fea-

tures indicating whether the query is navigational, about a
product, etc. [20].
• Features extracted from social data streams (e.g., Twitter),

such as those described in [12, 20].
• Click-through features, that is, the CTR of fresh results on

the SERP. Such features were discussed in [26].

These features are continuously updated in near real-time. Hence,
potential time delays in accurate prediction of the fresh intent of
queries whose fresh intent has suddenly shifted are not due to time-
consuming system processes, but because the signal indicating a
change in fresh intent is sometimes weak and intent shift can there-
fore only be detected with high uncertainty.

To estimate the performance of the fresh intent detector, we use
the average square error, which is around 0.025 as estimated using
10-fold cross validation, thus proving the high quality of our fresh
intent detector. The square error can be very large (up to 0.48) for
some queries, which means that our detector can substantially fail
for some queries as we will see in the next section.

2.2 Fresh intent shifts in the wild
We investigate how the state-of-the-art fresh intent detector (as

described in §2.1) deals with fresh intent shifts upwards. More pre-
cisely, we investigate the following questions through an analysis
of the query logs of Yandex.

RQ1 How fast is the state-of-the-art fresh intent detector defined
in §2.1 able to accurately estimate the fresh intent of queries,
whose fresh intent has shifted, right after the shift has hap-
pened because of some external event?

RQ2 What is the cost of the error in our prediction of fresh intent
during a certain period of time, when we are catching up with
the correct detection of the intent shift?

Surrogate ground truth. We start by presenting the surrogate
ground truth for the fresh intent of queries. In order to understand
how our fresh intent detector deals with fresh intent shifts upwards,
we need to compare our predicted fresh intent to a ground truth.
Due to the massive amount of data to analyze we cannot rely on



expensive manual assessments and, instead, we propose a method
for generating this ground truth based on two assumptions.

The first assumption is that the predicted fresh intent, once sta-
bilized at a new (higher) fresh intent value corresponds to the real
fresh intent, because the state-of-the-art fresh intent detector is high-
ly precise once we have enough signal (see §2.1). Second, we as-
sume that after an intent shift has occurred, as confirmed by the
stabilized prediction produced by our fresh intent detector, we can
look back into the past to find the moment in time when our pre-
dicted fresh intent, yet unstable, started to increase from its previ-
ous stable value eventually reaching a new stable value. We assume
this point to be the moment of the intent shift, since we know, post
factum, that this increase, because it was followed by a sustained
growth, was not due to noise in our observations but due to an ac-
tual shift in user preferences, as happened, e.g., at the 18th hour in
Fig. 2. These two assumptions behind our surrogate ground truth
are very strong and we checked that they hold as follows.

Let tq1 be the point in time of the intent shift of a query q (e.g.,
the 18th hour in Fig. 2) and let tq2 be the point in time when the
predicted fresh intent stabilized (e.g., the 26th hour in Fig. 2).3

The latter is the moment in time from which we are able to infer
the real fresh intent as discussed above. We randomly selected 20
queries whose fresh intent has shifted, from 20 randomly selected
days in February 2014, so 400 queries overall, and checked that the
real fresh intent at tq1 is indeed equal to the predicted fresh intent
at tq2 using manual assessments (see §2.1). This was the case for
85% of the queries and we observed that tq1 is really close (within
minutes) to the beginning of the real-world event that triggered the
intent shift (e.g., a train accident or the release of a new episode
of a television series), thus confirming our two assumptions. For
the 15% for which this is not the case, we observe that the problem
is due to noise in our observations that resembles a fresh intent
shift (note that these queries are uniformly distributed in our data
in terms of number of issues per day).

Algorithm 1 allows us to retrospectively detect pairs tq1 and tq2 in
the data and thus generate our surrogate ground truth for the real
fresh intent between tq1 and tq2. This algorithm works as follows.
First, we assume that we are starting to detect an increase in real
fresh intent after observing a certain increase of the median pre-
dicted fresh intent over the last N issues of the query in a certain
time window. In our study, we consider an increase of at least 0.02
to be important; this threshold allows us to detect intent shifts really
fast, e.g., before the peak of user interest for a query, as illustrated
in Fig. 2. We empirically set the size of the time window, used
here as well as further in the paper, to six hours; we obtained sim-
ilar results using other values. We use the boolean function Inc,
which returns true when an increase is detected, which means that
the following condition became true:

µcurrent − µinitial > 0.02, (1)

where initial (current) is the sequence of predicted fresh intent val-
ues for the first (last)N issues of q in our time window, and where µ
is the median value of each sequence. Second, we consider that the
predicted fresh intent of a query has stabilized when it has reached
a value at most 0.02 less than the real fresh intent (according to our
surrogate ground truth). We use the boolean function End, which
returns true when the predicted fresh intent has stabilized, which
means that the following condition became true:

µreal − µcurrent < 0.02 (2)

3In the next paragraph we explain how to compute these two points
in time.

Algorithm 1: Estimation of tq1 and tq2
input : List Iq of issues of a query q in a time window
output: tq1, tq2, fresh intent reached at times tq1 and tq2
// To mark found increase in fresh intent
FoundInc←− False
t1 ←− 0 t2 ←− 0

for i=N to length(Iq)− 1 do
// Get median fresh intent over first N

issues of q in a 6-h window (past).
InitialFresh IntentSeqN ←− GetFresh IntentFstN (Iq, i)
// Get median fresh intent over last N

issues of q in the same window.
FreshIntentSeqN ←− GetFreshIntentLstN (Iq, i)
// Looking for increase in fresh intent
if FoundInc == False then

if Inc(InitialFreshIntentSeqN ,FreshIntentSeqN ) then
FoundInc←− True, t1 ←− GetCurrentTime()

// Growth ended
else if End(FreshIntentSeqN ) then

return t1,GetCurrentTime(), FreshIntentSeqN

// Growth continues
else

// Nothing

// Stable or still growing fresh intent
return NoIntentShift

where µreal is the real fresh intent, that is the largest median fresh
intent overN issues reached by q between tq1 and the moment when
fresh intent starts to decay.

Cost of prediction error. Next, we formalize the cost cq(t1, t2)
of the prediction error of the real fresh intent of a query q in a given
time window [t1, t2]:

cq(t1, t2)

=

∫ t2

t1

fq(t) · |fresh_intentq(t)− ̂fresh_intentq(t)| dt (3)

where fresh_intentq(t) and ̂fresh_intentq(t) are, respectively, the
real and predicted fresh intent of q at time t, and fq(t) is the fre-
quency of q at time t.

For example, for the query shown in Fig. 2, the cost, as defined
above, corresponds to the area between the green and blue curves,
when we are catching up with our prediction following the intent
shift, weighted by the frequency of q at time t. This measure allows
us to reliably compare different methods for predicting fresh intent,
as a smaller cost does imply a better prediction and vice versa.

Dataset. We created two datasets, Dtrain and Dtest, using data
from query logs of Yandex from respectively 10 consecutive days
in February 2014 and 10 consecutive days in March 2014. We se-
lected all queries of users from Russia, whose fresh intent started to
increase according to Algorithm 1. We empirically setN , the num-
ber of consecutive issues of a query used to compute the median in
Algorithm 1, to 10 (we obtained similar results for all values be-
tween 5 and 20). We filtered out queries that were issued 20 times
or less in the last 6 hours thus focusing on recurring queries as less
frequent queries are not of particular interest for us here. Then,
we use our surrogate ground truth for fresh intent to determine the
queries whose fresh intent has indeed shifted. We consider an in-
crease of at least 0.10 in less than one day (between tq1 and tq2) to



Table 1: Time delays (TD) and cost over all queries in the time
window, whose fresh intent has shifted.

TD (mean) TD (median) TD (skew) Cost

7.9 h 9.5 h 0.64 37.66

be important. In this way, we obtain a fully labelled dataset that we
will use for analyzing how the state-of-the-art fresh intent detector
deals with fresh intent shifts and also for training and testing our
method for solving the problem at hand.

Specifically, we obtained 3, 402 and 5, 054 queries forDtrain and
Dtest, respectively, whose fresh intent has shifted, and 83, 711 and
72, 186 queries for which we started to detect a small increase in
their predicted fresh intent but not due to an intent shift.

Results. Here, we use Dtrain and consider only queries whose
fresh intent has indeed shifted. We observe important time delays
with a median delay of about 9.5 hours, as shown in Table 1. Such
important delays are due to the fact that, right after an intent shift
happened (due to some external event), only a few queries were
issued and little relevant content about this event was created and
indexed yet (as in Fig. 2), which made the signal weak and the pre-
dicted fresh intent uncertain.

About 1% of queries (issues) out of all fresh queries (issues) and
2–4% of queries (issues) out of all fresh queries (issues) whose
fresh intent is higher than 0.35 are affected by time delays related
to fresh intent shifts. This is a substantial number considering that
failing to show fresh results in time can lead to important user dis-
satisfaction and might even lead to people switch to another search
engine to find the information they are looking for—a big failure
for the search engine in the long term considering the huge amount
of traffic every day.4 Here, in Dtrain, more than 1 million query is-
sues are affected. The overall cost is 37.66. This value is going to
be useful in §4 when weThe overall cost is 37.66. This value is go-
ing to be useful in §4 when we study different exploration strategies
and their usefulness for predicting fresh intent.

The overall cost is 37.66. This value is going to be useful in §4
when we study different exploration strategies and their usefulness
for predicting fresh intent.

Discussion. We can now answer our research questions. The
answer to RQ1 is that the state-of-the-art fresh intent detector often
makes mistakes soon after an intent shift occurred and may need
a long time to properly detect the real fresh intent of a query with
time delays of 9.5 hours on average. The answer to RQ2 is that
the cost of the error in our prediction is substantial as indicated
by the large percentage of queries for which fresh results could
be not adequately integrated into the SERP due to the incorrectly
predicted fresh intent of the query.

These observations motivate the following algorithmic problem:
how to quickly correct fresh intent detection mistakes made by our
fresh intent detector after an instant intent shift upwards? To avoid
missing the peak of user interest, this correction has to be made as
soon as we have started to detect an increase in fresh intent. Small
spikes in predicted fresh intent happen for a large number of queries
every day, and determining the exact fresh intent right after those
small increases is thus a challenging task.

3. METHOD
Next, we present our method to quickly correct our predicted

4http://www.internetlivestats.com/
google-search-statistics/#trend

fresh intent for queries whose fresh intent has shifted upwards. Our
proposed solution is two-fold. First, we estimate the probability for
the fresh intent of a query to have shifted considerably after we de-
tected a small increase in its predicted fresh intent (§3.1). Second,
we select queries depending and this probability and explore those
queries’ fresh intent online by gathering user feedback to test the
hypothesis made at the previous step (§3.2).

3.1 Predicting intent shift
We investigate how to predict the probability of the fresh intent

of a query to have shifted after we have detected an increase in its
predicted fresh intent: Pr(IntentShiftedq). It is important to distin-
guish this prediction task from the fresh intent estimation task de-
scribed in §2.1. We use a state-of-the-art learning method to learn
a model for predicting Pr(IntentShiftedq). An underlying question
is whether we can learn this probability well enough, so that on-
line exploration can be effective. The latter means that we need
to achieve high recall (to get most queries whose fresh intent has
shifted as candidates) at sufficiently high precision (so as not to
“pay” too much on the possible degradation resulting from explor-
ing other queries).

Dataset. There is a trade-off between how quickly we will be
able to predict Pr(IntentShiftedq) and the complexity of the learn-
ing task. If we use a small threshold for defining when the predicted
fresh intent started to increase, we will have a heavily imbalanced
data set with more negative examples (i.e., queries whose fresh in-
tent did not actually shift despite that slight increase). On the other
hand, if we use a higher threshold, we will wait for a stronger in-
crease before exploring, so we will wait longer before detecting
fresh intent shifts. Here, we will use our datasets Dtrain and Dtest

(see §2.2), which are imbalanced, but we will see that learning is,
nevertheless, possible.

Learning & features. We use GBRT [13] along with a logistic
transformation to learn a model for predicting Pr(IntentShiftedq)
using Dtrain. These are the features for a given query q; the last
issues of q are all the issues made in the last 6 hours.

• IntentMax, IntentMin, IntentMean, IntentStd, IntentSkew:
the maximum, minimum, mean, standard deviation and skew
of the predicted fresh intent for the last issues of q.
• IssueMax, IssueMin, IssueMean, IssueStd, IssueSkew, which

are the maximum, minimum, mean, standard deviation and
skew of the time passed since each of the last issues of q.
• The number of issues of q in the last 6 hours.
• The Kendall tau rank correlation coefficient between the time

passed since each of the last issues of q and the predicted
fresh intent of each issue. This feature gives some informa-
tion about the shape of the small increase in q’s predicted
fresh intent that we have detected.
• All the features described in §2.1.

We explored the usage of up/down sampling but this did not signif-
icantly improve the performance of our model.

Performance. In Fig. 3, we plot the performance of our predic-
tive model for different precision and recall values. We are able to
learn our model with reasonable accuracy despite the imbalanced
nature of our data set. E.g., we are able to accurately predict 92%
of the queries that became highly fresh at 20% precision level. This
result outperforms random guessing for which queries fresh intent
has shifted (we have a fixed precision of 7% in this case). Below,
we will see that the performance of our predictive model is good
enough for the subsequent exploration phase to be effective.

http://www.internetlivestats.com/google-search-statistics/#trend
http://www.internetlivestats.com/google-search-statistics/#trend
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Figure 3: Recall versus precision of our model for predicting
the probability for the fresh intent of a query to have shifted af-
ter we started to detect an increase in its predicted fresh intent.

Table 2: Top 10 features according to their contribution to our
model for predicting the probability for the fresh intent of a
query to have shifted after we have started to detect an increase
in its predicted fresh intent.

Rank Feature Score Rank Feature Score

1 IntentSkew 7.28 6 NewDocsFraction 3.03
2 ShowProb 5.80 7 HasAllWords5h 2.76
3 IntentMax 4.65 8 IssueMean 2.75
4 IntentMedian 3.75 9 QueryFreq 2.56
5 IntentStd 3.18 10 IssueStd 2.21

We turn to the contribution of individual features. The top 10
features according to their weighted contribution to our model are
shown in Table 2; see [15, §10.13] for a description of the weights.
The Intent and Issue features perform well; other well-performing
features are the probability for fresh results to be integrated on the
SERP aggregated over each word of the query (ShowProb), New-
DocsFraction (see §2.1), HasAllWords5h (§2.1), and the query fre-
quency (QueryFreq).

The features that we added on top of the ones used in our fresh
intent detector (as detailed in §2.1) allow us to notably improve the
performance: about 5% recall at each precision level. However,
the main contribution of this section is about learning our model on
a new target (our surrogate ground truth, i.e., not the current, but
the future predicted fresh intent). This new predictive model also
opens the opportunity to test new real-time features, which would
not be very strong in the default fresh intent detector, but which
could yield really good results in our model here.

Discussion. Using the model described in this section, we can
predict the probability for the fresh intent of a query to have shifted
after we have detected an increase in its predicted fresh intent, that
we denoted Pr(IntentShiftedq). There is a trade-off when choosing
the precision level at which to use our model, between how many
intent shifts we will be able to detect (recall) versus how many
queries will (possibly) be degraded while exploring (precision); see
Fig. 3. In §4, we discuss how we tune, in order to maximize the
retrieval performance, this precision level—based on which we ob-
tain a probability threshold p to be used on the outcome of our
predictive model to select queries.
3.2 Online exploration

We present our algorithms for performing online exploration for
queries selected by the predictive model introduced in §3.1. This

will allow us to gather user feedback to quickly correct our pre-
dicted fresh intent for queries, whose fresh intent has shifted, right
after we started to detect an increase in their predicted fresh intent.

Note that each query, whose fresh intent has shifted, was not nec-
essarily issued thousands of times before our fresh intent detector
catches up with the intent shift (with a median of 81 times and a
mean of 281 times in Dtest). We therefore do not have much time
to gather user feedback for solving the task at hand. We need to
keep in mind this interesting aspect of our setting when designing
our exploration algorithms.

Online exploration can be done in different ways and we need
to decide how to proceed in order to satisfy the following goals:
(1) To correct our predicted fresh intent for queries, whose fresh
intent has shifted as fast as possible in order to reduce the cost
from §2.2, while (2) limiting the risk of degrading the search ex-
perience while exploring. We propose two exploration methods,
multi-armed bandits and explore on top.

3.2.1 Multi-armed bandits
The state-of-the-art in online learning would suggest to model

our online exploration problem as a multi-armed bandit problem
(MAB) [4, 6], which is typically used to model situations where
it is possible to explore and exploit simultaneously, as has been
done previously for creating a unified search federation system [19,
see §5], and for ranker evaluation [18]. We do so in the following
algorithm, that we call Bandits.

Our formalization of the task at hand as a bandit problem runs
as follows. We consider the SERP as an arm (or action) [19] and
consider only actions that integrate fresh results on the SERP dif-
ferently. Each action therefore corresponds to deciding how many
fresh results to integrate on the SERP as well as their position. In
other words, each action is associated with a fresh intent value (the
one to use to obtain this SERP) and we can thus, by finding the best
action, correct our predicted fresh intent for queries whose fresh in-
tent has shifted—thus solving the task at hand.

As we do not use slots for placing fresh results on the SERP,
we have 2N possible actions, where N is the number of fresh and
generic web results to mix (usually, 10). This number is too large
to be practical, but we can easily limit the number of actions to any
number B. To this end, we first define a probability distribution
over a query’s fresh intent that we discretize by defining B buckets
of equal probability. Then, for each action i (from 0 to B − 1),
we define the SERP obtained by integrating fresh results accord-
ing to the mean fresh intent value of each bucket i. For example,
using a uniform probability distribution over a query’s fresh intent
and 10 buckets, we end up with the following buckets: [0.0, 0.1],
[0.1, 0.2], . . . up to [0.9, 1.0]. Each action, then, corresponds to the
SERP associated, on average, with the mean (fresh intent value) of
each bucket, that is in this case, for each bucket, with 0.05, 0.15,
. . . up to 0.95.

Then, we need to define the reward of each action. We follow
[19] and define a reward of an action to be the sum of the rewards
of the items composing the SERP and we use a click-skip per-item
reward. Specifically, the reward of an action is equal to the sum
of the number of clicked documents minus the number of skipped
documents. To solve the MAB problem, we propose to use Thomp-
son sampling, a state-of-the-art heuristic for choosing actions [7].

3.2.2 Integration on top and boosting
We also propose the following simple and fast algorithm, specif-

ically designed for solving the task at hand. In this algorithm, that
we call ExploreOnTop, every time we receive a query to explore,
we integrate, for some time, fresh results on top of its SERP and
gather user feedback. ExploreOnTop integrates a single fresh result



at the top position of the SERP, thus allowing us to get user feed-
back that is not too noisy. We propose two exploration methods for
deciding for how long we need to integrate this one fresh result at
the top position of the SERP, uniform and dynamic.

Exploration method 1: Uniform. In this algorithm, that we
call ExploreOnTop-Uniform, each selected query is explored for all
the next M consecutive issues following its selection, where M is
a parameter to tune experimentally.

Exploration method 2: Dynamic. In this algorithm, that
we call ExploreOnTop-Dynamic, each selected query is explored
at most for all the next M consecutive query issues and we adapt
to the user feedback observed to decide when to stop exploring.

This is different from the previous algorithm where the stopping
condition is fixed and depends neither on the user feedback ob-
served during the exploration and, therefore, nor on our belief that
we gathered enough feedback in order to properly correct our pre-
dicted fresh intent for queries whose fresh intent has shifted.

Each time we show a fresh result at the top position of the SERP,
we either observe a click or not. We thus have a binomial dis-
tribution, whose success probability in each trial is the real click-
through rate (CTR) of the fresh result, that we denote FreshCTRq .
We stop when the standard error of the mean of our observations,
i.e., of FreshCTRq , is less than a small value S provided that we
explored at least M ′ < M issues already (for the standard error
to be estimated well enough), where S and M ′ are parameters to
tune experimentally. Intuitively, this method allows us to do less
exploration on average and therefore to reduce the cost compared
to ExploreOnTop-Uniform.

After this exploration phase, whether uniform or dynamic, we ex-
ploit the user feedback to correct the predicted fresh intent. This
can be done either by predicting a new fresh intent value using our
fresh intent detector from §2.1 or by using a linear combination of
our predicted fresh intent and the observed CTR of the fresh result
shown at the top position of the SERP (that we denote ̂FreshCTRq)
as our new prediction of fresh intent as follows:

(1− α) ∗ ̂fresh_intentq(t) + α ∗
̂FreshCTRq

R̂
(4)

Where α ∈ [0, 1] is a parameter to tune experimentally and R̂ (R)
is the expected (real) probability of relevance of the fresh result
placed at the top position of the SERP (with fresh_intentq ∗ R =
FreshCTRq). This means that we actually boost our predicted fresh
intent using user feedback. In §4, we use this latter approach.

4. RESULTS
In this section, we investigate how our two-fold method intro-

duced in §3 allows us to quickly correct the predicted fresh intent
for queries whose fresh intent has shifted.

4.1 Experimental setup
Research questions. We seek to answer the following research
questions.

RQ3 How does the performance of our multi-armed bandits ap-
proach to online exploration for fresh intent compare with
our fresh intent detector?

RQ4 How does the performance of our explore on top approach
to online exploration for fresh intent compare with our fresh
intent detector?

To answer these questions, we perform a comparison of our algo-
rithms against each other, and against our fresh intent detector from
§2.1, i.e., when no exploration is performed.

Simulation. We propose and investigate the following experi-
ment simulating a running system using query logs of Yandex.
Simulated production environments have already been used in re-
lated studies on query intent detection [9, 10].

Every time a query that was not explored yet is issued, we deter-
mine whether we are starting to detect an increase in its predicted
fresh intent using Algorithm 1. If this is the case, we use our predic-
tive model from §3.1 to predict the probability for the fresh intent
of this query to have shifted. If this probability is more than p (to be
discussed later), we start to explore this query using one of our ex-
ploration approaches (§3.2), i.e., either Bandits or ExploreOnTop.

In order to simulate a running system, we need to simulate user
feedback. To do that, we use the dependent click model (DCM) [14],
which effectively simulates user feedback, as done in previous stud-
ies on online learning to rank [16, 18] and online evaluation [17].
DCM assumes a cascade model of user behavior on the SERP: the
user scans the page from top to bottom clicking on results perceived
to be relevant and can stop searching after a click [14].

To experiment with Bandits, we need to assess the relevance of
the top 10 generic web and fresh results for each query at time t
(between tq1 and tq2) for DCM. As this data, which is quite difficult
to collect for about 80,000 queries, is not available to us, we use
using internal statistics from Yandex to estimate the expected rele-
vance of generic web and fresh results depending on their position
in the ranking of each vertical as done in [29].

We assume that the first fresh result to be integrated on the top
of the SERP in ExploreOnTop has a fixed expected probability of
relevance R̂ (see (4)) for all queries.5 We experiment with different
values and, in 4.2, we show the impact of this expected value, that
is of quality of the other parts of Yandex such as fresh ranking, on
our results. In all others experiments, though, we use R̂ = 1 as this
allows us to focus on the fresh intent detection and to understand
the benefits of our approach providing that other parts of the system
such as fresh ranking are of high quality in accordance with the
industry standards.

When using DCM, we define the probability (denoted λi in [14])
that the user would like to see more results after a click at position
i to be 0.8i as in [28].

Metrics and significance testing. Our main metric is the dif-
ference between the number of upgraded and degraded SERPs, i.e.,
respectively, the SERPs for which fresh results were integrated bet-
ter (worse) than with our default fresh intent detector. Such degra-
dations can happen, for instance, for Bandits, while exploring when
the selected action integrates too many or too few fresh results (see
§3.2.1) and, for ExploreOnTop, when we show one fresh result at
the top position of the SERP or due to a wrong correction, because
the user feedback was not informative enough. This metric, which
we compute for all queries, represents the overall performance of
our system, which must be positive for the benefits of our method
to be greater than the exploration cost.

We also use the following metrics for queries, whose intent has
shifted: the cost (as defined in (3)) and median time delay (see
§2.2). We do not report the median time delay for Bandits because,
as we never really stop exploring, we never totally catch up with
the correct detection of the intent shift.

5If this is not the case, then we need to (be able to) predict R̂ from
(4); this prediction task is beyond the scope of this paper and can
be tackled, e.g., by using score normalization [24] or by predicting
the quality of the top fresh vertical results (here, top 1) [22].



Table 3: Comparison of our different exploration algorithms with our fresh intent detector. A H (M) denotes significantly worse
(better) performance compared to the best performance (the default fresh intent detector) per metric indicated with bold face (see
below for details about each column). Underlining indicates the best result on our main metric.

SERPs

Cost upgraded / degraded Performance Median time delay (seconds)

Fresh Intent detector 37.66HH – 0HH 26,740HH

Bandits (B=5) 35.48HM 1,015,774H / 711,947H 303,827HM –

ExploreOnTop-Uniform (M=11, R̂ = 0.5) 34.63HM 1,026,711H / 701,011H 325,700HM 11,777HM

ExploreOnTop-Uniform (M=11, R̂ = 1) 30.67HM 1,279,220H / 448,503H 830,716HM 11,057HM

ExploreOnTop-Dynamic (M=11, R̂ = 1) 30.78HM 1,282,529H / 445,197H 837,330HM 11,387HM
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Figure 4: Performance versus precision of our model for pre-
dicting the probability for the fresh intent of a query to have
shifted after we started to detect an increase in its predicted
fresh intent using ExploreOnTop-Uniform with α = 0.04 and
M = 11 on Dtrain.

Statistical significance of observed differences between an algo-
rithm and the best performing algorithm on each metric is tested
using a one-tailed paired t-test (at the 0.05 level) using the results
from each run.

Settings and parameters. For ExploreOnTop-Uniform, we set
p, the threshold for deciding whether to explore (see §3.1), in or-
der to reach a 20% precision level, M , the number of consecutive
issues to explore to 11, and α, the coefficient used to boost our pre-
dicted fresh intent using observed user feedback (see 4) to 0.4—as
these parameters allow us to reach the best performance after try-
ing all triplets (p, M , α) with steps (1,1,0.1) on Dtrain. We show, in
Fig. 4, the overall performance depending on the precision of our
predictive model from §3.1, on Fig. 5, we show that the exploration
cost (red) overcomes the improvement in performance (blue) after
M = 11, and, on Fig. 6, we plot the cost as a function of α, where
we see a convex function as expected.

For ExploreOnTop-Dynamic, we also need to tune S, the thresh-
old on the standard error of the mean to stop exploring, andM ′, the
minimum number of consecutive issues to explore. The best per-
formance is reached when using the same values for p, M and α as
for ExploreOnTop-Uniform and setting S = 0.05 and M ′ = 9.

For Bandits, we set B, the number of arms (or actions), to 5 and
we use queries fromDtrain, whose fresh intent has shifted, to set the
probability distribution over a query’s fresh intent, used to define
each bucket (see §3.2) using the fresh intent of each query after the
shift to compute the probability distribution—as these parameters
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Figure 5: The improvement in performance versus the cost of
exploration as M increases using ExploreOnTop-Uniform with
p set to reach a 20% precision level and α = 0.04 on Dtrain.

allow us to reach the best performance on Dtrain. To give some
insight into the actions used, note that we end up with the following
mean fresh intent values for each bucket: 0.18, 0.25, 0.31, 0.36,
0.45. Then, we derived the SERP for each action using the average
SERP shown for each such fresh intent value by the search engine
under study. We set p in order to reach a 14% precision level, which
allows to reach the best performance on Dtrain.
4.2 Results

We use Dtrain for training our predictive model from §3.1, train-
ing the parameters of all exploration algorithms from §3.2, and use
queries from Dtest for the final evaluation (see §2.2). Results for
all algorithms are shown in Table 3 (averaged over 10 runs of each
simulation).

First, our Bandit algorithm allows us to reduce the cost from
37.66 to 35.48, without deteriorating the overall performance as
the number of upgraded SERPs is much higher than the number of
degraded ones (1,015,774 versus 711,947, that is +303,827). This
limited performance is due to the fact that this algorithm spends
too much time exploring each action as it takes a rather long time
to determine which action is the best, while we do not have much
time as we discussed in §3.1. Indeed, quickly finding which SERP
is the best between the one associated with a fresh intent of 0.30
and 0.35 or even 0.41 is challenging when the median number of
rounds is 81.

Second, ExploreOnTop, whether uniform or dynamic, allows us
to greatly reduce both the cost and the median time delay (from
37.66 to 30.78 and 26,740 to 11,387, respectively, for the best per-
forming algorithm) without deteriorating the overall performance
as the number of upgraded SERPs is much higher than the number
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Figure 6: Cost versus α using ExploreOnTop-Uniform with p
set to reach a 20% precision level and M = 11 on Dtrain.

of degraded ones (1,282,529 versus 445,197, that is +837,330 for
the best performing algorithm). This means that even at M = 11,
that is after exploring 11 issues of each selected query, user feed-
back is quite reliable and allows us to quickly correct fresh intent
detection mistakes made by our fresh intent detector after an instant
intent shift in most cases. Of course, increasing M makes user
feedback even more reliable, but this comes at the cost of exploring
much more, which is not worth it overall as the bias is already small
atM = 11 (see Fig. 5). Dynamic exploration, even though it yields
a slightly better performance, does not significantly outperform the
uniform one; after only 8 or 9 issues, it is pretty difficult to know
how good is our current estimate to decide whether to stop.

Even by setting R̂ to 0.5, that is, by assuming that the first fresh
result to be integrated at the top position of the SERP is always rele-
vant to only half of the users with fresh intent, we obtain very good
results. The cost and median time delay are very close to the ones
obtained by setting R̂ to 1, while the overall performance decreases
but stays large at +325,700. Our algorithm is able to improve over
our fresh intent detector even when the fresh vertical only provides
fresh results that are not very relevant during exploration.

Depending on the quality of the search engine under study, we
could investigate different ways of integrating fresh results on (top
of) the SERP while exploring in order to get user feedback that is
sufficiently informative. We could, for example, try to blend a few
fresh results to increase the chance of at least one being relevant,
or we could try to consider only very recent fresh documents when
retrieving results from the fresh index. We leave this as future work.

Returning to our research questions RQ3 and RQ4, Bandit out-
performs our fresh intent detector and our ExploreOnTop method
outperforms both our fresh intent detector as well as Bandit. This
interesting result is a consequence of the specifics of our setting,
where the goal is to be faster than our fresh intent detector, and
in which the opportunity to explore is limited. We thus need to
take risks while exploring in order to be faster—as in our simple
ExploreOnTop algorithm for which taking risks pays off.

5. RELATED WORK
We discuss related work on recency ranking and aggregated search.

Recency ranking. As discussed in §1, there are two main types
of approach to recency ranking. One focuses on improving the
ranking of generic web results by extending existing learning to
rank algorithms to optimize for both freshness and relevance using
temporal features. This is done either by training separate rankers

for different classes of queries [5, 11] or by using a unified model
that simultaneously optimizes freshness and relevance [8, 23].

An alternative approach to recency ranking, and the one that we
use in this paper, avoids the complexity of the learning model of the
approaches listed above as it uses a dedicated fresh vertical with its
own documents, features and a ranking model that is specifically
designed for dealing with recency ranking and that is independent
from the web ranking model. This aggregated search-based ap-
proach is also more flexible than those approaches, where select-
ing a wrong ranker due to misclassification can substantially hurt
the performance, as this approach allows one to integrate more or
fewer fresh results depending on the probability of the query being
fresh—thus dealing with cases when this value is uncertain [29]. In
this context, we motivate the following algorithmic problem: how
to quickly correct fresh intent detection mistakes made by our fresh
intent detector after an instant intent shift.

Moon et al. [23] propose an algorithm for reranking the top por-
tion of the SERP for recency sensitive queries using online explo-
ration and real-time user feedback in order to keep track of the
changes in the documents’ relevance over time. In this paper, we
also use online exploration and user feedback, but solve another
problem related not to fresh ranking but to fresh intent detection.

Aggregated search. Diaz [9], Dong et al. [11], König et al. [20]
propose different algorithms for identifying queries with a news
intent that have been shown to be really accurate. The authors,
however, do not discuss time delays in measuring the probability of
the news intent, neither for new nor for recurring queries, including
the queries whose newsworthiness has suddenly shifted. Therefore,
they do not take into account the cost of the error in predicting this
probability after such intent shifts. Our fresh intent detector also
uses features similar to those in [9, 11, 20] (see §2.1). However,
in this paper, we analyze time delays associated with these intent
detections features observed in our setting, and the core challenge
of our study is to learn to correct fresh intent detection mistakes
and to rapidly recognize large changes in the fresh intent of a query
when the detector is failing; a challenging problem that was not
studied before. We solve this problem using online exploration, but
as we cannot explore all queries for which a fresh intent shift might
have happened, since we take the cost of exploration into account,
we select the most appropriate queries for this treatment for which
we then correct our fresh intent prediction using a linear model in
order to properly integrate fresh results across the SERP.

Radinsky et al. [27] study how to model and predict behavioral
dynamics on the Web such as query frequency or clicks using time
series. In this paper, we use time series as features (see §3.1) and
discuss how such techniques can be useful in our context, which
differs from the ones studied in [27].

Jie et al. [19] study how to model the aggregated search task
as a multi-armed bandit problem (MAB). The authors show how
this approach can be used to deal with vertical selection and re-
sult merging in general, while we focus on the important problem
of quickly correcting our predicted fresh intent for queries whose
fresh intent has shifted. Here, their formulation as a MAB does not
readily apply as we do not use slots to place fresh results on the
SERP (see §3.2), and we propose a new formulation for our task
thus complementing their study.

In sum, we contribute a new problem (rapid correction of fresh
intent detection mistakes made by the state-of-the-art fresh intent
detector after an instant intent shift), plus a new method to address
the problem based on a semi-supervised predictive model trained
from query logs and on online exploration phase.



6. CONCLUSION
In this paper, we have studied an aggregated search-based ap-

proach to recency ranking, where a (dedicated) fresh vertical is
used and fresh results from this vertical are subsequently integrated
into the search engine result page.

We presented a large scale analysis of fresh intent shifts upwards
using query logs of Yandex. We observed that the state-of-the-art
fresh intent detector often makes mistakes soon after a fresh intent
shift occurred and may need a long time to properly detect the real
fresh intent of a query with time delays of 9.5 hours on average.
We also observed that the cost of the error in our prediction is im-
portant as indicated by the large percentage of queries for which
fresh results could be inadequately integrated into the SERP due to
the incorrectly predicted fresh intent of the query. Based on this,
we motivated the following algorithmic problem: how to quickly
correct fresh intent detection mistakes made by this detector after
an instant intent shift upwards.

Then, we described a new method for solving this problem based
on two phases: a phase in which we estimate the probability for the
fresh intent of a query to have shifted considerably after we started
to detect a small increase in its predicted fresh intent using a semi-
supervised learning approach and a subsequent phase in which we
perform an exploratory feedback step online.

Using query logs of Yandex, we demonstrated that our method,
when using a multi-armed bandits approach to online exploration
for the second phase, allows us to reduce the cost of fresh intent
detection mistakes made by the state-of-the-art detector after an in-
stant intent shift, without deteriorating the overall performance. We
also demonstrated that our method, when using a new explore on
top approach to online exploration, where we briefly show a fresh
result on top of the SERP and then exploit user feedback to cor-
rect the predicted fresh intent, allows us to significantly improve
the speed and quality of the detection of fresh intent shifts and out-
performs the multi-armed bandits approach.

We have shown that a system using the aggregated search-based
approach to recency ranking, which uses a fresh intent detector,
can benefit from this work and from our proposals to significantly
improve the speed and the quality of the detection of intent shifts
without deteriorating overall retrieval performance.

Our semi-supervised learning approach opens the opportunity to
test new real-time features, which would not be very strong in our
fresh intent detector, but which could yield good results in our pre-
dictive model from §3.1 in order to further reduce the cost and time
delays connected to fresh intent shift detection—with less degrada-
tion. Our exploration algorithms could also be improved by inves-
tigating ways of integrating fresh results on (top of) the SERP for
our explore on top approach as discussed in §4.2, or by investigat-
ing ways to make multi-armed bandits converge faster.
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