
31

Personalised Reranking of Paper Recommendations

Using Paper Content and User Behavior

XINYI LI and YIFAN CHEN, University of Amsterdam, The Netherlands and National University

of Defense Technology, China

BENJAMIN PETTIT, Elsevier, United Kingdom

MAARTEN DE RIJKE, University of Amsterdam, The Netherlands

Academic search engines have been widely used to access academic papers, where users’ information needs
are explicitly represented as search queries. Some modern recommender systems have taken one step further
by predicting users’ information needswithout the presence of an explicit query. In this article, we examine an
academic paper recommender that sends out paper recommendations in email newsletters, based on the users’
browsing history on the academic search engine. Specifically, we look at users who regularly browse papers
on the search engine, and we sign up for the recommendation newsletters for the first time. We address the
task of reranking the recommendation candidates that are generated by a production system for such users.
We face the challenge that the users on whom we focus have not interacted with the recommender sys-

tem before, which is a common scenario that every recommender system encounters when new users sign
up. We propose an approach to reranking candidate recommendations that utilizes both paper content and
user behavior. The approach is designed to suit the characteristics unique to our academic recommendation
setting. For instance, content similarity measures can be used to find the closest match between candidate
recommendations and the papers previously browsed by the user. To this end, we use a knowledge graph
derived from paper metadata to compare entity similarities (papers, authors, and journals) in the embedding
space. Since the users on whom we focus have no prior interactions with the recommender system, we pro-
pose a model to learn a mapping from users’ browsed articles to user clicks on the recommendations. We
combine both content and behavior into a hybrid reranking model that outperforms the production baseline
significantly, providing a relative 13% increase in Mean Average Precision and 28% in Precision@1.
Moreover, we provide a detailed analysis of the model components, highlighting where the performance

boost comes from. The obtained insights reveal useful components for the reranking process and can be gen-
eralized to other academic recommendation settings as well, such as the utility of graph embedding similarity.
Also, recent papers browsed by users provide stronger evidence for recommendation than historical ones.

CCS Concepts: • Information systems → Recommender systems;

X. Li is now at the National University of Defense Technology, Changsha, China.

This research was partially supported by Ahold Delhaize, the China Scholarship Council, and the Innovation Center for

Artificial Intelligence (ICAI). All content represents the opinion of the authors, which is not necessarily shared or endorsed

by their respective employers and/or sponsors.

Authors’ addresses: X. Li and Y. Chen, Science and Technology on Information Systems Engineering Laboratory, National

University of Defense Technology, China; emails: lixinyimichael@gmail.com, y.chen4@uva.nl; B. Pettit, Elsevier, London,

United Kingdom; email: b.pettit@elsevier.com; M. de Rijke, Informatics Institute, University of Amsterdam, Science Park

904, 1098 XH Amsterdam, The Netherlands; email: derijke@uva.nl.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1046-8188/2019/03-ART31 $15.00

https://doi.org/10.1145/3312528

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

mailto:permissions@acm.org
https://doi.org/10.1145/3312528

31:2 X. Li et al.

Additional Key Words and Phrases: Academic search, paper recommendation, reranking

ACM Reference format:

Xinyi Li, Yifan Chen, Benjamin Pettit, and Maarten De Rijke. 2019. Personalised Reranking of Paper Recom-
mendations Using Paper Content and User Behavior. ACM Trans. Inf. Syst. 37, 3, Article 31 (March 2019), 23
pages.
https://doi.org/10.1145/3312528

1 INTRODUCTION

Along with the digitization of academic resources and the increasing popularity of academic in-
formation platforms, online access to academic papers has become a widely used service. Various
online academic service providers have given users access to papers through their search engines,
such as Google Scholar [20], Aminer [66], and ScienceDirect [59], where users can enter queries
to seek relevant papers in their database. In this scenario, users need to have an idea of what they
are looking for, and the information needs can be formalized as queries. The search system takes
a query as input and returns a ranking of relevant papers for users to examine and interact with.
While such academic search engines can often fulfill user requests by catering to specific in-

formation needs represented as queries, there are cases when users’ information needs are not
explicitly specified. For instance, users may want to learn about new developments in their do-
main by looking at emerging papers that are relevant. In this case, the user may not have an idea
of what queries to enter on the search engine. This is a situation where paper recommender sys-
tems can step in and recommend relevant papers without the need for a user query.
Paper recommender systems have a role that is complementary to the search engine. The pos-

sible recommendation scenarios fall into three categories based on the recommendation timing:

(1) displaying paper recommendations before users start a new search session, based on their
paper library or previously accessed papers [see, e.g., Google Scholar, 20];

(2) during a search session, displaying related recommendations beside the content that the
user is currently browsing [see, e.g., ScienceDirect, 59]; and

(3) after a search session, sending emails of paper recommendations in the form of a newslet-
ter [see, e.g., ScienceDirect, 59].

The first and third scenario fill the gap between user search sessions, while the second scenario is
related to within-session recommendations.
In this study, we focus on the third scenario. We look at the ScienceDirect paper recommender,

which sends a weekly email of paper recommendations to users. First, we provide a recommenda-
tion example from the system in Figure 1 to show how it works.1 The recommender of ScienceDi-
rect generates a ranked list of five paper recommendations based on the user’s browsed papers.
The email newsletter displays the title, venue (journal), authors, and publication date of each rec-
ommended paper. On clicking a recommendation, the user is linked to the paper on ScienceDi-
rect. The system then logs on which recommendation(s) the user clicks. As a short summary, this
system aims to recommend interesting papers to users based on their browsing history. A good
recommendation list will place more relevant papers higher in the list.
Since the ScienceDirect paper recommender was released, an increasing number of users have

signed up. It is especially challenging tomake recommendations for these new users due to the lack
of historical interactions with the recommender system. In this article, we address the challenge
and try to come up with better recommendations for these new users. Specifically, we study the

1https://www.elsevier.com/connect/suffering-from-information-overload-personalized-recommendations-can-help.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

https://doi.org/10.1145/3312528
PLX-HTTPS://www.elsevier.com/connect/suffering-from-information-overload-personalized-recommendations-can-help

Personalised Reranking of Paper Recommendations 31:3

Fig. 1. An excerpt from a sample recommendation email sent to a ScienceDirect user based on his recent

activity. The email contains five papers linked to ScienceDirect.

task of reranking the paper candidates generated by the current production system. Ranking is
a very common module of the workflow in production recommendation systems, which usually
include at least a candidate-generation phase and a ranking module [10, 13, 56]. The output of
the system is generated by a multi-step process. We address this reranking task so that our model
can easily be integrated into paper recommender systems (e.g., the ScienceDirect recommender).
A direct application is to use our model to rerank the recommended papers generated by the
ScienceDirect recommender system.
Over 14 million papers are indexed on ScienceDirect [60]. Picking the few papers that may

appeal to the user is not a trivial task. Collaborative filtering techniques are often used in recom-
mender systems to generate a candidate pool of papers based on user-paper interactions. Even
though there was initially no data on user interaction with the recommender system, there was
still a wealth of data on user interactions with papers on ScienceDirect. Apart from this behavioral
aspect, paper metadata may also assist the recommendation task by providing similarity measures
that are based on paper contents, e.g., to recommend semantically similar papers, or papers that
are authored by the same or similar authors.
In this article, we propose a hybrid model that combines content and behavior to rerank the

candidate paper recommendations generated by the ScienceDirect recommender. First, we propose
several content-based measures that are derived from various paper aspects, such as word space
similarity, and author similarity from an embedding space. Next, we use joint matrix factorization
to learn a mapping from a user’s browsed articles on the search engine to a user’s clicks on the
recommendations, to alleviate the sparsity of the recommendation click data. We use a pairwise
learning model to rerank the candidate paper recommendation, which eventually leads to better
results in offline evaluations based on real email click data.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:4 X. Li et al.

The contribution of this article mainly lies in: (1) “task transfer” for the academic setting: data
collected for one task (search) is used to help optimize performance on another (recommendation),
and (2) how to combine content and user behavior to generate high-quality academic recommen-
dations. The framework captures user interests on different paper aspects, as well as alleviating
the sparsity problem in click data. The recommendation framework for ScienceDirect has implica-
tions for academic recommendation settings that share similar inputs. The framework relies on two
kinds of input: paper properties and user interactions. The paper properties that we have utilized
can be found on many popular academic search engines such as Google Scholar [20], Semantic
Scholar [61], and CiteseerX [35]; the user interactions, i.e., how users interact with the search en-
gine and the recommender, respectively, are also available. For instance, in Google Scholar’s search
interface, there is a snippet showing recommended papers below the search bar for users to click
on, even when users have not entered a search query; Semantic Scholar also has its proprietary
email alert service that can send relevant paper recommendations.
The article is structured as follows. We describe the models that we propose in Section 2, the

experimental setup in Section 3, and the results and analysis in Section 4. We present related work
in Section 5 and conclude in Section 6.

2 MODELS

In this section, we introduce themodels for the paper recommendation task. First, we introduce the
production baseline, because it provides the candidates for our proposed reranking model. Then,
we introduce our hybrid reranking model (Hybrid Reranking Model (HRM)) that considers both
behavior and content and reranks the candidates. Here, “hybrid” refers to using both content and
behavior.

2.1 Production Baseline

The production system takes the paper browsing history of a user as input and produces a ranked
list of five paper recommendations. While we are not able to elaborate on the exact details of
the production system, we can describe the core part of the algorithm: The five candidates are
generated and ranked by an algorithm that uses an item-item neighborhood-based collaborative
filtering method [41, 57], based on usage similarity from ScienceDirect browsing logs. We refer to
this paper-paper similarity as browsing similarity in the remainder of the article.
In this study, we apply the reranking model to the top five candidates from the production sys-

tem, and compare the model’s ranking to the production baseline. The top five candidates were
chosen because for these recommendations there is email click feedback that enables offline eval-
uation; if successful, the model could be applied to a longer list of candidates.

2.2 Proposed Model

In this section, we introduce the Hybrid Reranking Model (HRM) by first providing an overview of
the model architecture and then delving into the details. The model scores paper recommendation
candidates generated by the production system, using both content and behavior components,
which will be explained shortly. The candidates are then reranked by the score.

2.2.1 Model architecture overview. An overview of the model is shown in Figure 2. A two-layer
feedforward neural network is used as the scoring function, where the input layer takes features
from each candidate paper, and the output layer contains one node that yields the score.
We explain what the input feature representations are in Figure 2 from left to right: Srecent

and Shistory are the similarity between recommendation candidates and users’ browsed papers.
They contain the average similarity scores of each paper aspect by comparing the candidate

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:5

Fig. 2. Architecture of the Hybrid Reranking Model (HRM) that shows how a candidate paper recommen-

dation for a user is scored.

paper against the recent papers and historic papers, respectively; the attention features on dif-
ferent fields of papers and on recent/historical papers are derived from a user’s browsed papers.
These functions will be described in Section 2.2.4.

The browsing similarity features used by the production system are based on ScienceDirect
browsing data: We use the mean and maximum similarity scores of each paper recommendation
candidate compared against papers in the browsing history. The behavior features are the predicted
click scores from the behavior model to be described in Section 2.2.5. Together these features
determine the inputs for Hybrid Reranking Model (HRM).
Training is done by optimizing a pairwise hinge loss from the preferences of clicked papers R+u

over the non-clicked papers R−u for each user u, as follows:

L(R+u ,R−u) =
∑

pi ∈R+u

∑
pj ∈R−u

[
1 − f (xpi) + f (xpj)

]
+
, (1)

where f (·) denotes the scoring function (neural network), and xpi and xpj denote the feature
representations for clicked paper pi and non-clicked paper pj , respectively.
We apply rectified linear unit (ReLU) activations on the hidden layer for efficient learning. We

apply linear activations on the output layer, because this ensures an unbounded value for the
pairwise loss function and also performs best in our experiments. We use the Adam optimizer [32]
and mini batches during training.
Next, we introduce how we consider paper metadata to measure different types of similarity.

Below, we provide formal representations of various paper aspects, of users, and then the similarity
functions for them.
Before continuing, let us briefly introduce the main notation that we will be using in the re-

mainder of the article; see Table 1.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:6 X. Li et al.

Table 1. Notations Used in the Article

Notation Description

p, pi , pj papers
A(p) set of authors of paper p
V (p) venue where paper p is published
F (p) freshness score of paper p
I (p) impact score of paper p
P (p) popularity score of paper p
W (p) word space representation of paper p
E (p) entity space representation of paper p
SimX similarity of field X for 7 choices of X (V , A, F , I , P ,W , E)
αfieldi attention feature for fieldi from 7 fields (V , A, F , I , P ,W , E)
αrecent attention score on the user’s recent papers
αhistory attention score on the user’s historic papers
m number of users
n number of papers
k number of latent dimensions
B ∈ Rm×n paper browsing history matrix
R ∈ Rm×n paper click history matrix
S ∈ Rn×n paper-paper browsing similarity matrix
D ∈ Rn×n a diagonal matrix whose entries are the row sums of S
M ∈ Rn×n matrix to map browse to click
Q ∈ Rn×k paper factor matrix
Tr (·) the trace operator of a matrix
si j ∈ Rn×n browsing similarity between paper pi and pj
qi latent factor for paper pi
bi bias of paper pi
rui predicted score of click of user u to paper pi
B+u set of papers browsed by user u
R+u set of papers clicked by user u
R−u set of papers shown to but not clicked by user u
Ru set of papers in the candidate, i.e., Ru = R+u ∪ R−u

2.2.2 Paper Representations. Each paper p is represented as a collection of different aspects,
grouped as follows:

• metadata from papers: author A, venue V , freshness F , word spaceW , entity space E;
• metadata from user interactions: impact I and popularity P .

These aspects are available for all papers and users in our scenario and considered to be po-
tentially useful for the recommender system. The reason for considering authors and venues is
that users may be interested in papers from the same or similar authors, and those published
in the same or similar venues. The word space and entity space measure content similarity and are
thus also potentially useful. Besides, academic searchers may seek papers with high impact when
they are learning about a domain, or popular papers (e.g., those with many downloads) that their
community is discussing, or newly published papers that track the latest developments, hence the
inclusion of impact, popularity and freshness.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:7

Formally, we can think of every paper p as a tuple p = 〈A(p),V (p), F (p),W (p),E (p), I (p), P (p)〉,
where each aspect is defined as follows:

Authors:

A(p) = [a1,a2, . . . ,an], (2)

where ai is an author of the paper p.

Venue:

V (p) = vi , (3)

meaning that paper p is published in venue (journal) vi .

Freshness Score:We also model how “fresh” a paper p is, defined as

F (p) =
1

etcurrent−tpublish (p)
, (4)

where tcurrent is the current time, and tpublish (p) is the time of the paper p being published online.
F (p) ∈ (0, 1]. The more recently a paper has been published, the higher the freshness score is.

Impact Score:We use citations as a measure of impact for papers, which is defined as

I (p) =
log(c (p) + 1)

log(cmax + 1)
, (5)

where c (p) is the citation count of paper p, and cmax is the maximum number of citations in the
dataset.

Popularity Score: The popularity of a paper p reflects how often users interact with the paper.
We use the number of downloads to represent popularity:

P (p) =
log(d (p) + 1)

log(dmax + 1)
, (6)

whered (p) is the number of downloads of paperp, anddmax is the maximum number of downloads
of a paper in the dataset.

Word Space: To represent a paper p in a word spaceW (p), we use tf-idf vectors, with values for
words and bigrams in the article title, abstract and keywords. We remove English stop words, very
common words and very rare words before calculating the tf-idf values. In the end, each paper is
represented as a sparse vector of size of 221, with hashing to determine token indices in the vector.

Entity Space:While word space measures such as tf-idf similarities can be used to directly com-
pare the contents of papers, an entity space representation E (p) is able to provide uswith additional
information that incorporates both structure and semantics through graph embeddings [3, 40].
We first build a knowledge graph by using important aspects of a paper including keyword,

author and venue. The graph contains four node types, paper, author, keyword, and venue nodes,
and three relations (predicates) between a paper and an aspect as listed below:

• hasAuthor: the paper has this author;
• hasKeyword: the paper contains this keyword; and
• publishedInVenue: the paper is published in this venue (journal).

Next, to compute the entity space, we use the TransE model [3] to derive embeddings based on
knowledge graphs. As input the model takes the triplets in the graph; these have the form (h, r , t),
with a head entity h, a relation (predicate) r , and a tail entity t . The objective of the model is to
learn embeddings so that h + r lies in the proximate neighborhood of t if such a triplet (h, r , t)

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:8 X. Li et al.

exists in the training set, and h + r will be far away from t if the triplet is not valid. The model
learns embeddings by minimizing a pairwise hinge loss:

∑
(h,r,t)∈T

∑
(h′,r,t ′)�T

[1 + ‖h + r − t ‖2 − ‖h′ + r − t ′‖2]+, (7)

where T denotes the training set of triples. Negative triplets (h′, r , t ′) are sampled by replacing
either the head or the tail entity with another random entity. After training, the cosine distance of
the node embeddings reflects their proximity in the knowledge graph.
Due to the relatively high computational costs of working with knowledge graphs [3], we de-

rive the embeddings on a subgraph instead of on the complete graph. We choose a reasonable size
for the subgraph so that it is computationally feasible and also alleviates the sparsity problem in
the node connections. The subgraph is comprised of the union of the browsed papers and recom-
mended papers from 65,994 users, a superset that is about 15 times the size of the set of users that
we will study in our experiments. In total, we have 609,716 paper nodes, 1,650,470 author nodes,
3,961 venue nodes and 808,845 keyword nodes, plus 6,103,728 relation edges.
The graph is then used as input for the TransE model to derive embeddings of the nodes in the

graph. In the end, we obtain embeddings for papers, authors and venues. These embeddings will
be used later in content similarity measures.

2.2.3 User Representations. The user representations are straightforward: each user u is repre-
sented as a collection of papers in their browsing history:

u = [Precent , Phistory], (8)

Precent = [p1,p2, . . . ,pk], (9)

Phistory = [pk+1,pk+2, . . . ,pn]. (10)

We segment a user’s browsed papers into two sets, the recent ones, Precent , and the historical ones,
Phistory . Wewritepi to refer to the ith paper in each of the segmentations, in the order of occurrence
in the user’s timeline starting from the most recent one. In academic search, users’ topic interests
may shift over time [37]. We make this segmentation so that it may help us compare the user’s
recent interests against their historical interests, and see whether and to which extent there is a
deviation.
In case of a large deviation, Precent should provide more support to generate paper recommen-

dations.
Specifically, the clicked papers in the most recent session are put into Precent if it contains at

least clicks on two different papers, and the rest into Phistory . Otherwise, we select the most recent
θ papers fromu into Precent and put the rest into Phistory . Papers in Precent and Phistory are deduplicated.

2.2.4 Content Similarities. Based on the user and paper representations, in this section, we de-
scribe similarity functions to measure different types of content similarity. Specifically, the content
component measures the similarity between candidate recommendations and users’ browsed pa-
pers using information from the paper metadata. The output consists of similarity scores to feed
into the reranking model.

Field-level Similarities and Attention Features. First, we introduce similarity measures for indi-
vidual fields, which are used to compare paper similarities in each field. When comparing two
papers pi and pj , the similarity of each field is defined as follows.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:9

For the word space and entity space, we use the cosine similarity of the vectors that represent
each paper. The cosine similarity between two vectors v and v ′ is defined as

cos(v,v ′) =
v · v ′
‖v ‖ · ‖v ′‖ , (11)

where the similarity value cos(v,v ′) ranges between −1 and 1.
Then, the similarities for word and entity space are

SimW (pi ,pj) = cos(Wpi ,Wpj), (12)

SimE (pi ,pj) = cos(Epi ,Epj), (13)

whereWpi is the tf-idf vector and Epi is the paper entity vector for paper pi obtained from the
output of the TransE model [3].
Similarly, a venue entity vector Evpi for paper pi and an author entity vector Eam for author

am of pi are obtained from the output of the TransE model [3]. We apply a “soft match” approach
when comparing venue and author similarities. Compared to an “exact match” approach where
the similarity ends up being either 1 (same) or 0 (different), the “soft match” approach outputs a
continuous similarity score. For instance, “Accident Analysis & Prevention” and “Safety Science”
being two different journals (with no overlapping terms in the journal title), they would have a
similarity score of 0 in the “exact match” approach. However, in the embedding space they would
have a similarity score of 0.48, representing a more precise estimate of the inherent similarity.
Then, venue- and author-based similarity measures, SimV (·, ·) and SimA(·, ·) are defined as fol-

lows:

SimV (pi ,pj) = cos(Evpi ,Evpj), (14)

SimA(pi ,pj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑
am ∈Api maxan ∈Apj cos(Eam ,Ean)

|Api |
, if |Api | ≤ |Apj |

∑
an ∈Apj maxam ∈Api cos(Ean ,Eam)

|Apj |
, otherwise,

(15)

where vpi is the venue of paper pi , Evpi is the corresponding paper entity vector; Api is the set of
authors of paper pi , and Eam is the entity vector for author am . Note that in the author similarity
function, we examine each author from the smaller author set and find the most similar one in
the other set and then calculate the average of the similarities. This ensures that SimA(pi ,pj) is
symmetrical.
For freshness, impact, and popularity, these three measures are single value features. We use L1

distance with an adjusted weighting to obtain their similarities:

SimF (pi ,pj) = (1 − ‖F (pi) − F (pj)‖1) ×max(F (pi), F (pj)), (16)

SimI (pi ,pj) = (1 − ‖I (pi) − I (pj)‖1) ×max(I (pi), I (pj)), (17)

SimP (pi ,pj) = (1 − ‖P (pi) − P (pj)‖1) ×max(P (pi), P (pj)). (18)

We define the weighting to capture the similarities only when two papers both have a high value
in this field. In cases where both have a low value, the similarity value will be “down-weighted,”
representing a weaker level of evidence for similarity. For instance, given two paper pairs with
low impact values (0.1, 0.2) and high impact values (0.8, 0.9), the similarity score would be 0.09 and

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:10 X. Li et al.

0.81, respectively. Although the absolute difference of impact is the same for both pairs (0.1), the
pair with relatively high values has a much larger similarity score.

Field Level Attention. Now that we know how to obtain the similarity scores SimX for seven
choices of X (V , A, F , I , P ,W , E), we would like to further know which specific fields the user
may be focusing on while browsing papers. This is to tailor the recommendations for those fields,
be it the semantic similarity, venues or authors. These “attention features” are implicit. However,
we can derive the attention features through past user interactions. In particular, we assume that
they can be inferred from Precent (users’ recently browsed papers). We hypothesize that for a set
of papers, if the average pairwise similarities of certain aspects are higher than other fields, it
is probably because users are paying attention to these aspects. For instance, high word space
similarity indicates that users are sticking to a specific topic. Likewise, if the venue and freshness
similarity scores are high, this could be that the user is mostly checking papers that are both recent
and are from a specific journal. We use the averaged pairwise similarities calculated by each field
as the field-level attention feature.
The attention feature for fieldi is the sum of its pairwise similarities divided by the number of

paper pairs in Precent :

αfieldi =

∑
pi ,pj ∈Pr ecent ,i�j Simfieldi (pi ,pj)

C2
|Precent |

, (19)

where C2
|Precent | refers to the number of paper pairs.

Recent and History Attention. The users’ recent and historical paper interactions may both pro-
vide evidence to surface good recommendations. We make the distinction between recent and
historical papers, because users’ interests may evolve over time. When the users’ recent inter-
ests are significantly different from their historical interests, the recommender should be aware of
this deviation. Therefore, we define attention features for this situation, where αrecent and αhistory
represent the two attention scores on the user’s recent and historic papers.
αrecent and αhistory are calculated using the browsed papers (Precent and Phistory). The more the

user’s recent interests deviate from the historic interests, the higher the value of αrecent , hence
providing a bias feature to consider the more recent user activities. It is calculated as follows:

αrecent = Distance(Precent , Phistory), (20)

αhistory = 1 − αrecent . (21)

The distance Distance(Precent , Phistory) is calculated by averaging over the distance of each paper
in Precent to its closest match in Phistory . The idea of finding each paper’s closest match instead of
averaging over all papers in Phistory is because the history may be diversified: A recent paper may
be very similar to one paper in the history but different from the rest. In case there is at least one
similar paper in Phistory , we consider that the current paper being examined does not deviate far
from the history. Formally, the distance is defined as follows:

Distance(Precent , Phistory) =

∑
pi ∈Precent minpj ∈Phistory (1 − cos(Wpi ,Wpj))

|Precent | , (22)

where 1 − cos(Wpi ,Wpj) is the cosine distance between two papers’ tf-idf vectors.
So far, we have explained howwe exploit the content aspects for recommendation that are based

on the paper metadata. Next, we introduce the behavior aspect where user-paper interactions are
concerned.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:11

2.2.5 Behavior. Paper metadata provides evidence for recommendations from the content per-
spective. User interactions, i.e., users’ browsing behavior on the search engine and clicks on rec-
ommendation emails, also provide signals for generating good recommendations. In our scenario,
the users have past browsing behavior but no clicks prior to their first interaction with the recom-
mender system.
Nevertheless, the paper-paper browsing similarities are available to us (as used by the produc-

tion system, described in Section 2.1). They provide a measure of behavior-based similarity based
on readership of all users on ScienceDirect.2 Naturally, we can incorporate this external similarity
information into our model.
We devise a behavioral model, that utilizes both browsing and click behavior in the interaction

log. The motivations of our model are given below:

• For new users, there are no prior email clicks for predicting their interactions with the
recommender. To address the issue, we complement the absence of click ratings by using
the browsing history. Obviously, browsing papers on the search engine and clicking a paper
in the email are two different user interactions with papers. Thus, a mapping function is
required to transform browsed papers to email clicks. It is not possible to learn the mapping
for every user as there may be no click at the time of recommendation, but it is possible to
utilize the browsed papers and email clicks of other users (and this data quantity will grow
over time). Essentially, we try to infer the clicks of new users from other users’ mappings,
using supervised learning.

• As paper recommendations are shown in a relatively compact email, we assume that users
have noticed all the papers. Therefore, a user’s clicks on the five shown papers in the email
entail implicit pairwise preferences. For instance, given five papers p1, p2, p3, p4, and p5, if
the user clicks paper p2 and p3 in the list of five papers, then it is reasonable to assume that
they prefer paper p2 and p3 over paper p1, p4, and p5.

• The paper-paper similarity based on a user’s browsing history is available. It is likely more
accurate than the similarity fromuser clicks in emails, because it is based on the complete set
of ScienceDirect users, which is several orders of magnitudes larger. Moreover, it captures
transitive similarities from a global perspective. Therefore, it is important for our model to
preserve this similarity.

Recall that our notation was introduced in Table 1; it is used in the following model descriptions.
We propose to learn a mapping function from user browsed papers to user clicks on the email,
denoted as

R ∼ BM, (23)

where B,R ∈ Rm×n are the matrices for browses and clicks, respectively, andM ∈ Rn×n is a map-
ping matrix. In practice, n is generally very large so that it could pose a great burden to learn
M . Thus, we propose to factorize M into the multiplication of a low-dimensional paper factor
Q ∈ Rn×k , as follows:

M ∼ QQT , (24)

where T is the transpose operator of a matrix.
Based on the assumptions given in Equations (23) and (24), we can predict the click of user u on

paper pi by the following equation:

r̃ui = bi + q
T
i

∑
t ∈B+u

qt , (25)

2The involved users outnumber the users we study in our experiments by several orders of magnitude.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:12 X. Li et al.

where bi is a scalar for the bias of paper pi . B+u is the set of papers browsed by user u. Here, we
ignore the user bias in Equation (25), since it is unknown for new users. Note that we do not exclude
pi from B+u , as suggested by the item-based collaborative filtering methods. This is because the set
of candidate papers does not overlap with the set of browsed papers, i.e., B+u ∩ Cu = ∅. Each time
we draw a pair of papers (pi ,pj) for each user to learn Q and bi ,bj , where pi ∈ R+u and pj ∈ R−u ,
and optimize a pairwise loss function given by Bayesian personalized ranking [54]:

L (u,pi ,pj) = − logσ
(
r̃ui − r̃uj

)
, (26)

whereσ (·) stands for the sigmoid function. To preserve paper-paper similarities from the browsing
history, we follow the assumption that the distance between qi and q j is small when si j is large.

Without loss of generality, we adopt the Euclidean distance, e.g., ‖qi − q j ‖22 . We can then define
the following similarity regularization terms:

1

2

n∑
i, j

‖qi − q j ‖22si j =
n∑
i=1

qTi qidii −
n∑
i, j

qTi q jsi j

= Tr
(
QTDQ

)
− Tr

(
QT SQ

)
= Tr

(
QTLQ

)
,

(27)

where Tr (·) is the trace operator of a matrix, D is a diagonal matrix whose entries are the row
sums of the browsing similarity matrix S (S is symmetric), i.e., dii =

∑n
j=1 si j , and L = D − S is the

Laplacian matrix of the graph [9]. Putting Equations (26) and (27) together, the model is given as
follows:

min
Q, {bi }

m∑
u=1

∑
pi ∈ R+u ,
pj ∈ R−u

− logσ
(
r̃ui − r̃uj

)
+ αTr

(
QTLQ

)
+
λ

2
‖Q ‖2F . (28)

The first term in the objective function captures the pairwise preferences of every user over the pa-
pers shown in the emails. The second term preserves the paper-paper similarities in the browsing
history through graph regularization. Graph regularization is widely used to preserve similari-
ties, e.g., social regularization [43] and locality regularization [58]. The third term regularizesQ to
avoid overfitting. α and λ are hyper-parameters.
We optimize Equation (28) via Stochastic Gradient Descent. The optimizing procedure is similar

to Reference [18], i.e., for each useru, we sample a positive item i ∈ R+u and a negative item j ∈ R−u ,
and optimize Equation (28) with respect to (u, i, j). Note that we train Equation (28) first, and
then train Hybrid Reranking Model (HRM) (Equation (1)) given the output scores generated by
the behavior-based model. While we can devise an end-to-end model to train the behavior-based
model jointly with HRM, the optimization procedure can be very complex and inefficient. This is
because the training procedures of Equation (28) and HRM are very different. The behavior-based
model is trained via sampling to capture the implicit relationships between items, whereas HRM
assumes the independency among inputs to perform mini-batch training.

3 EXPERIMENTS

In this section, we describe the experiments, including research questions, data preparation, and
experimental setup.

3.1 Research Questions

We aim to find out how to utilize both content and behavior to rerank paper recommendations.
We are interested in whether HRM, which utilizes content and behavior, can beat the production
baseline, and how useful the different input features are. Specifically, we answer the following
research questions.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:13

(1) Does HRM, which utilizes content and behavior, provide improvements in reranking over
the production baseline?

(2) What is the utility of the content features and behavior features in reranking, respectively?
(3) Within the content features, for paper similarity based on various paper aspects, which

paper aspects contribute to good reranking performance and which do not?

3.2 Dataset

Weuse a dataset provided by ScienceDirect,3 a popular academic search engine that offers access to
millions of academic papers. Users can gain access either by a subscription service, or by individual
purchases of papers. The dataset contains anonymized user activity logs from signed in users. We
look at newly signed up users and their interactions on the first paper recommendation email.
The paper recommendations emails were sent between December 12, 2017 and January 21, 2018.
For each user, browsed papers on ScienceDirect prior to receiving the email were also obtained. A
browsing action is characterized by any form of a click on a paper, such as a click on the search
engine result page, or a click on related papers shown on the detailed paper content page. For
email recommendation data, each email contains five candidate paper recommendations where
users’ responses to each one of them are logged (clicked or not clicked). To obtain paper metadata,
we use the paper metadata from Scopus,4 which can be obtained by querying paper IDs from
papers in the ScienceDirect database.
Since we want to study how content contributes to better reranking, we need users that have at

least a few papers in their browsing history to utilize the content information. The content data
of the browsed papers should be clean and complete. Also, we need users who have at least one
click on the recommendation email so that we can perform offline evaluations for reranking and
calculate the metrics. Correspondingly, we apply the following filtering steps prior to obtaining
the data:

(1) we filter out cold start users with fewer than five browsed papers prior to the
recommendation;

(2) we remove users whose browsed papers have incomplete or corrupt fields of data; and
(3) we remove the recommendation emails without any clicks.

In total, we have obtained 4,392 recommendation sessions for our experiments. Each session con-
tains one recommendation email with a field that indicates whether each paper has a click, and
also the user’s browsing history prior to the recommendation’s timestamp.
Also readily available are the item-item collaborative filtering scores based on readership of

papers from ScienceDirect users. The scores of paper pairs are symmetrical so that si j = sji .

3.3 Experimental Setup

The experiments on our dataset are conducted through fivefold cross validation. For each run,
4 folds are used for training and 1 fold is used for testing. There are one or more clicks on the
candidate paper recommendations for each email. We code relevance as a binary label, which
is 1 for clicked papers and 0 for the rest. We compute the mean average precision (MAP) and
Precision@k (k = 1, 2, 3, denoted as Prec@k for short) as the evaluation metrics.

Significance tests are applied when comparing the results of different models. Specifically, we
apply the two-tailed student t test to MAP and Wilcoxon signed rank test to Prec@k, according to
assumptions underlying the significance tests.

3https://www.sciencedirect.com/.
4https://www.scopus.com.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

PLX-HTTPS://www.sciencedirect.com/
PLX-HTTPS://www.scopus.com

31:14 X. Li et al.

We select the optimal hyper-parameters for HRM by iterating over possible parameter com-
binations. For the content component of HRM, we have θ = 3 chosen from {1, 2, 3, 4, 5}; for the
behavior component of HRM, we have α = λ = 0.01 and k = 100; for the scoring function of HRM,
the hidden layer contains 32 nodes (more nodes may lead to overfitting and worse performances
in the experiments), and the learning rate is set as 0.001.
What are appropriate baselines to consider? The first and obvious baseline is the production

system that we seek to improve over; this baseline mainly uses item-item similarity-based user
browsing data on ScienceDirect. In addition, two families of approaches appear to be natural can-
didates: learning to rerank methods and collaborative filtering methods.

As to learning to rerank models, to the best of our knowledge, approaches to learning to rerank
a production system published in the literature focus on learning from interaction data (see Sec-
tion 5.5). We, however, focus on similarity-based models. Thus, we consider an (offline) point-
wise learning to rerank model based on logistic regression with Adagrad optimization [15], which
has achieved state-of-the art performance [63]. We also use the state-of-the-art pairwise model
RankSVM [26] and listwise model LambdaMART [4]. The hyperparameter crank of RankSVM is se-
lected from {0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000}.We use the default parameters of Lamb-
daMART in the Ranklib [12] implementation and tune the trees and leaves parameters. We also
consider an (offline) linear pairwise learning model that is trained using pairwise hinge loss, which
differs fromHRMby using a linear scoring function instead of the neural structure. These baselines
use the same inputs as HRM.
As to collaborative filtering methods as possible baselines against which to compare the ap-

proaches in this article, we compare with libFM [53] and SVDFeature [6]. libFM and SVDFeature
construct the feature matrix from user ratings; both can provide effective recommendations even
if the ratings are sparse [22, 49].5

We describe how to construct the featurematrix for libFM and SVDFeature. (1) The firstm values
represent the users; (2) the following n values represent the candidate paper recommendations for
the user; (3) the nextn values represent the browsed papers on the search engine; (4) the final value
indicates whether the user clicked the paper from the candidate recommendations. An example is
given as follows. Suppose we have 3 users and 10 papers. Suppose for user 1, papers 1, 3, 4, 6, 9 are
presented to them as candidate recommendations, among which they clicked paper 1, 3. Besides,
the user also browsed papers 2, 5 on the search engine. We use red, blue, green, and black color to
represent the users, recommended papers, browsed papers and clicks, respectively, in the feature
matrix constructed for user 1, as follows:

1 0 0 1 0 0 0 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 1
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 1
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0.7 0 0 0.7 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0.7 0 0 0.7 0 0 0 0 0 0︸������︷︷������︸︸��︷︷��︸︸���︷︷���︸︸︷︷︸

users recommended papers browsed papers clicks

(29)
For SVDFeature, we tune the regularization parameters for user factor λ1 and item factor λ2. We

tune parameter for user bias b1 and item bias b2. We also tune the dimension of latent factors k .
The parameters λ1, λ2,b1,b2 are explored from {0.01, 0.1, 1, 10}; k is explored from {5, 10, 15, 20}.

5The rating density is less than 0.02% even if we consider both browses and clicks as ratings on papers, which is significantly

less than common recommendation datasets (Movielens 100K: 6.30%, Movielens 1M: 4.47%, FilmTrust: 1.14%).

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:15

Table 2. Results of Reranking Candidate Paper Recommendations Across Models

Model MAP Prec@1 Prec@2 Prec@3 W/T/L

Production baseline 0.588 0.392 0.350 0.323 -/-/-
libFM 0.525 0.302 0.295 0.293 1,854/999/1,539
SVDFeature 0.525 0.305 0.296 0.292 1,837/1,004/1,551
Linear pointwise learning to rerank 0.534 0.330 0.296 0.280 1,595/753/2,044
Linear pairwise learning to rerank 0.620 0.432 0.378 0.343 1,822/1,254/1,316
RankSVM 0.615 0.423 0.376 0.341 1,924/1,220/1,248
LambdaMART 0.627 0.443 0.383 0.345 2,006/1,102/1,284
HRM 0.663 0.502 0.453 0.421 2,005/1,171/1,216

Win/Tie/Loss are the number of users for which a model performs better than, the same as, or worse than the production

baseline.

We use Stochastic Gradient Descent to optimize libFM. We tune the regularization parameters
for bias α , one-way interaction β , two-way interaction λ, and the dimension of latent factors k .
Similarly, α , β, λ are tuned from {0.01, 0.1, 1, 10} and k from {5, 10, 15, 20}.

Note that when answering the second and third research questions (examining the feature util-
ity), certain components’ feature size is very small. For instance, the behavior component consists
of a feature size of two: one from our proposed behavioral model (Section 2.2.5), one from the
browsing similarity (Section 2.1). Such a small feature vector is not suitable as input for the neural
structure in HRM. Therefore, we use the pairwise linear model in this case.

4 RESULTS AND ANALYSES

In this section, we present the experimental results, including the results of different models, and
break-down analyses on different components of the model.

4.1 Overall Comparison

To address our first research question (Does HRM, which utilizes content and behavior, provide
improvements in reranking over the production baseline?), we compare HRM against the produc-
tion baseline, as well as the other baselines, see Table 2.
Compared with all baselines, significant improvements are made in the hybrid reranking model

HRM that combines content and behavior (p < 0.01). Compared with the production baseline,
HRM performs better or the same for 72.3% of the users. There is a relative 13% increase in MAP
and a relative 28% increase in Prec@1 for HRM, meaning that users are more likely to click the
top candidates in the reranked list. This answers the first research question.
Besides, when given the same input features, HRM also performs better than all four rerank-

ing baselines, although leading LambdaMART only by a small margin. LambdaMART is a strong
baseline and it has more users that perform better than the production baseline, compared with
HRM. Interestingly, the pointwise learning to rerank method is beaten by the production baseline
on all metrics. This shows that learning absolute user preferences of papers based on clicks is not
optimal in our scenario. Models based on pairwise and listiwise learning (HRM, LambdaMART,
RankSVM, and the linear pairwise model) have produced better results by learning relative user
preferences.
The behavioral baselines, i.e., libFM and SVDFeature demonstrate worse performance than

HRM. A possible explanation is that libFM and SVDFeature cannot utilize paper browsing sim-
ilarity, which contains useful information to recover user behavior patterns, and they also do not
capture content similarities.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:16 X. Li et al.

Table 3. The Performance of Reranking Candidate Paper Recommendations

Using Different Input Features of HRM Shown in Figure 2

Model MAP Prec@1 Prec@2 Prec@3

proposed behavior feature 0.540 0.332 0.302 0.288
all behavior 0.602 0.411 0.358 0.327
only recent content 0.590 0.384 0.354 0.333
only historical content 0.582 0.374 0.343 0.327
all content without attention 0.598 0.398 0.359 0.337
all content 0.601 0.402 0.365 0.338

We have also attempted to replace our behavior model in HRM by libFM and SVDFeature to see
how they work with content similarities, which yields worse results than the original HRM. The
scores are neglected for brevity.

4.2 Utility of Content and Behavior Features in Reranking

To answer the second research question (What is the utility of the content features and behavior
features in reranking, respectively?), we analyze the utility of the input features of individual
components in HRM, shown in Figure 2. Specifically, we look at the reranking performance using
the following input features separately.

• Proposed behavior feature (Section 2.2.5).
• All behavior features: browsing similarity features (Section 2.1) and proposed behavior fea-

ture (Section 2.2.5).
• Only recent content similarity: Srecent (Section 2.2.4).
• Only historical content similarity: Shistory (Section 2.2.4).
• All content features without attention features: Srecent , Shistory (Section 2.2.4).
• All content features: Srecent , Shistory , attention features (Section 2.2.4).

The behavior features have small sizes (a single feature from our behavioral model and the pro-
duction system, respectively). Therefore, we opt for the linear pairwise model, because the small
input feature vector is not suitable for the neural structure in HRM. For other features that have
larger sizes, we use the neural structure of HRM for reranking; see Table 3 for the results.

Using behavior and content separately for reranking, the results (MAP score of 0.602 and 0.601,
respectively) already outperform the production baseline (0.588) that mainly uses item-item col-
laborative filtering. The proposed behavior feature provides a boost for the behavior component in
addition to using the browsing similarity features from the production system (p < 0.01). However,
the content component has a performance quite close to the behavior component. The attention
features lead to a slight improvement over the model without them. We also find that using the re-
cently browsed papers is better for reranking paper candidates than to using historically browsed
papers, and even better is to use both recently and historically browsed papers. This answers the
second research question.

4.3 Utility of Paper Aspects in Reranking

To answer the third research question (Within the content features, for paper similarity based on
various paper aspects, which paper aspects contribute to good reranking performance and which
do not?), we continue to delve into the content similarity in HRM, which contains similarity mea-
sures for different aspects of papers.We are interested to see the reranking performance of features
based on a single paper aspect. For each paper aspect, we take the recent/historic similarity and

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:17

Table 4. Reranking Candidate Paper Recommendations

by Restricting the Pairwise Linear Learning Rerank Model

to Using Only One Paper Aspect

Field MAP Prec@1 Prec@2 Prec@3

freshness 0.426 0.153 0.248 0.242
popularity 0.453 0.154 0.276 0.284
venue 0.468 0.203 0.272 0.276
impact 0.489 0.257 0.283 0.267
word 0.526 0.312 0.291 0.284
author 0.549 0.327 0.320 0.311
paper entity 0.550 0.330 0.319 0.311

the recent/historical attention scores as the input features for reranking. Similar to Section 4.2, we
use the pairwise linear model due to the small input feature size. The results are shown in Table 4.
The reranking performance of the paper candidates differs among the paper aspects. In general,

the similarity measures based on semantics or entities perform better than those that do not. The
two entity space measures: the author and paper entity similarities perform better than other
measures, also beating the word-space similarity. Comparing three entity-based measures, the
author similarity performs similarly to the paper entity similarity, this is due to the high correlation
between them (Pearson correlation coefficient being 0.88); the author similarity performs much
better than the venue similarity (0.549 vs. 0.468 for MAP scores). This may suggest that users
pay attention to the authorship of the paper more than the venue. Using freshness, popularity, or
impact similarity alone does not generate good performance, understandably, as these measures
do not consider semantic relevance or entity relationships. Combining all paper aspects produces
the best performance. The third research question is hence answered by the above comparisons of
paper aspects’ utility in reranking.

5 RELATEDWORK

In this section, we discuss the related work to our study. The related work spans several topics:
academic search, paper recommendation, citation recommendation, top-N recommendation, and
learning to rerank the output of a production system. We introduce them below and explain how
they are related to our work.

5.1 Academic Search

Our work is relevant to academic search, because we are examining the recommendation service
attached to an academic search engine. Academic search engines [20, 35, 59, 66] have given users
convenient access to academic resources such as papers, journals, and authors. Mitra and Awekar
[44] found that different academic search engines have their own coverage of literature and rank-
ing strategy, and the overlap among search results is low. Compared to general web search, there
is far less research on user behavior in academic search, possibly due to a lack of public datasets.
Research on academic search has examined user behavior through surveys [48, 51, 52] and aggre-
gated usage statistics such as query frequencies [29]. Khabsa et al. [30] studied user queries on
Microsoft Academic Search and proposed a query classifier.
Recently, more studies have been conducted on user behavior within and across search sessions,

based on a large-scale user transaction log. Li et al. [39] have studied the null query phenomenon
in academic search and proposed a query suggestion method as a remedy. Li and de Rijke [37]

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:18 X. Li et al.

have revealed correlations of query reformulation and topic shift in academic search. Li and de
Rijke [36] have studied characteristics of user queries in academic search followingmajor scientific
events. Li and de Rijke [38] have also studied download behavior in academic search and proposed a
download prediction model. There has also been research aimed to improve the search experience.
Tang et al. [67] combined topic modeling with randomwalks to improve academic search retrieval
performance. Khazaei and Hoeber [31] proposed a visual search interface via citation links to help
users better navigate through search results. Xiong et al. [72] proposed improving paper rankings
in academic search using entity embeddings.
Our work in this article differs from previous work in academic search in that we do not di-

rectly deal with search. We utilize the browsing history on the academic search engine to make
improvements to a paper recommender.

5.2 Academic Paper Recommendation

Our recommendation task falls in the broad category of academic paper recommendations. Gener-
ally, based on the system inputs, paper recommendation tasks can be classified into the following
scenarios: the system generates a list of paper recommendations given a single paper as input [2, 25,
46]; the system generates a list of paper recommendations given a set of papers as input (without
ordering) [33, 62, 68]; the system generates recommendations given a time-ordered set of papers
as input [23, 71]. The first and second scenarios include cases where a user is browsing a paper, or
a list of relevant papers is available (e.g., through a set of papers selected by the user). The system
assumes the input to be representative of a user’s interests, then provides related papers as rec-
ommendations. These are the most common scenarios that are being studied. The third scenario
is rarely studied, because: (1) it is relatively difficult to acquire user data that spans a long period,
for instance, users’ paper browsing history; (2) it is more difficult to model user interests based on
a sequence of inputs, compared to static inputs in the first two scenarios.
Common methods involved in making recommendations can be classified as: content-based fil-

tering (CBF), collaborative filtering (CF) and hybrid models that combine the two. CBF involves
using various parts of the paper contents, such as titles, abstracts, and keywords, to suggest re-
lated papers based on their similarity with input paper(s) [19, 25, 65]. While they are able to expose
related papers that are similar by content, CBF models do not take into account user-paper inter-
actions. CF models, however, utilize the user-paper interactions to generate recommendations,
and can result in strong performance [5, 23, 50]. However, a common drawback of CF models is
the cold start problem, which is severe in our academic recommendations when using real user-
paper interaction data. Finally, there are hybrid models that combine CBF and CF models for paper
recommendations [17, 68, 69]. The hybridization process is usually rule-based instead of learned:
either the system first runs CBF models and then uses its output as input to run CF models to gen-
erate recommendations (cascade hybrid); or it simply mixes results that are separately generated
from CBF and CF models (mixed hybrid).
Our work in this article differs from previous work on academic paper recommendation in that

we study a rarely examined, but real scenario: generating paper recommendations given an or-
dered sequence as input. Specifically, we make recommendations for new users that sign up for
the recommendations based on their browse history on the search engine. Compared to Refer-
ence [71], which uses a simulated and artificial recommendation setting, our scenario concerns
real user interactions with a recommender system. We have proposed a hybrid model that com-
bines content similarities, that draws distinction between multiple aspects of paper contents, and
behavior-based similarities. We have applied pointwise and pairwise learning approach to train
the model, unlike the rule-based approaches to generate paper recommendation that do not apply
learning techniques [17, 68].

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:19

5.3 Citation Recommendation

Citation recommendation is sometimes mixed with paper recommendation. Hence, we draw the
distinction between our paper recommendation task and citation recommendation. We consider
citation recommendation to be the task of recommending papers to an author who is writing a
manuscript. A citation recommender may take a complete or incomplete manuscript as input,
identify places where citations are needed, and recommend relevant citations [21, 64]. It may also
take a piece of “context” as input, which is represented as a few sentences, and generate relevant
citation suggestions [16, 24].

It is obvious that the citation recommendation task is mainly focused on similarity. Even when
collaborative filtering is applied, it is using the citation relation matrix as a paper similarity mea-
sure [42], instead of using the user-paper rating matrix. The evaluation setup is also confined to
predicting the cited papers of an input paper or paragraph.
Our work in this article differs from previous work on citation recommendations in terms of the

methods we propose, the recommendation goal, and the evaluation setup.

5.4 Top-N Recommendation

In the context of more general recommendation problems, our scenario is related to top-N recom-
mendation [14]. Top-N recommender systems provide users with a ranked list of items based on
predicted scores of individual items, where the relative ranking matters more than the absolute
item scores. This is similar to our problem, as we aim to produce a ranking of papers according to
the predicted scores. However, the candidate set from which we make recommendations is differ-
ent: We pick the papers from a recommendation email, while a typical top-N recommender selects
from all items that have not been rated by users.
Top-N recommenders have been intensively studied [55]. In general, there are approaches that

use latent space models [11] and approaches that rely on neighborhood-based models (whether
user-based or item-based) [14]. While latent factor models can also generate top-N recommenda-
tions, they are originally designed for the rating prediction task. Therefore, they are sub-optimal
for top-N recommendation. Neighborhood-basedmethods identify similar users or items, and have
been shown to be more suitable for the top-N recommendation problem [1, 14, 27, 47]. Item-
based methods have been shown to outperform user-based methods for the top-N recommenda-
tion task [8]. Similarity models have recently been proposed to improve item-based neighborhood
models. They learn a coefficient matrix that is analogous to the item-item similarities [7, 27, 28, 47]
directly from the data. A novel similarity model, Sparse Linear Method (SLIM), has been proposed
by Reference [47]. Several authors have proposed improvements to SLIM. Low-rankness has been
investigated to capture transitive relations [7, 27, 28]. Kabbur et al. [27] proposed the Factored Item
Similarity Model (FISM), which factorizes the coefficient matrix into two low-dimensional factor
matrices. Cheng et al. [7] proposed the Low-rank Sparse Linear Method (LorSLIM), which intro-
duces a rank regularization to SLIM. Kang and Cheng [28] made improvements over LorSLIM by
providing a better proxy to approximate the rank of the coefficient matrix. Instead of estimating a
single model for all users, Christakopoulou and Karypis [8] clustered users and estimated several
local models. Zhao and Guo [73] minimized a combined heterogeneous loss function, which is a
combination of pair-wise ranking loss and point-wise recovery loss. Wu et al. [70] generalized
FISM from linear to non-linear by incorporating a denoising auto-encoder.
Our work in this article differs from previous work on top-N recommendation in important

ways. First, directly applying top-N recommendation models to our task will lead to two prob-
lems: new users have no clicks on the recommendation emails, a situation that cannot be han-
dled by existing top-N recommenders. Also, we have two types of interaction between users and

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

31:20 X. Li et al.

items: user browses and user clicks. Existing top-N recommenders focus only on homogeneous
interactions.

5.5 Reranking the Output of a Production System

Like us, Lefortier et al. [34], Moon et al. [45], and Zoghi et al. [74] use a commercial search engine as
their main baseline that they learn to improve. Moon et al. [45] and Lefortier et al. [34]’s methods
directly use click-through rates, with a focus on documents that appear in the first position; both
also focus on recency ranking and queries with shifting intent. Zoghi et al. [74] learn from a
pairwise signal – out of order clicks in the top 5 produced by the production ranker.
Our work in this article differs from previous work on reranking the output of a production

search engine or recommender system in that we do not restrict ourselves to recency ranking.
Moreover, we do not work in an online setting and we do include content-based signals, not just
behavior-based ones.

6 CONCLUSION AND DISCUSSION

In this article, we have examined an interesting recommendation scenario for an academic search
engine, namely, to rerank paper recommendations in email newsletters for newly signed up users.
We have addressed this challenge by proposing a hybrid recommendation approach that includes
a content component and a behavior component. The content component measures similarities of
various paper aspects between users’ browsed articles and candidate recommendations, and also
considers the user’s attention on paper aspects and on recent/historical browsing. The behavior
component learns a mapping from browsed articles to user clicks in the recommendations. The
model combines content and behavior through a pairwise learning approach that is based on user
interaction data.
We have found that our hybrid reranking model HRM significantly improves over the produc-

tion baseline. We have dug into the components of our model to see what works and what does
not. In the content component, the graph embeddings work the best, especially the author simi-
larity based on soft matching; users’ recently browsed articles can lead to better recommendations
compared to historical browsing; however, popularity and impact similarities are not sufficient to
bring up good recommendations alone. In the behavior component, our learned scores combined
with browsing similarity scores have led to better performance than the production baseline. The
best performance is achieved when combining content and behavior through learning.
Our hybrid reranking model HRM can be seen as a module that can be plugged into a recom-

mendation system. Besides, we also have generalizable insights for other paper recommenders.
For instance, we have revealed how each paper aspect contributes to the reranking performance.
A limitation of our study is that we have not performed online evaluations, such as A/B testing,

to validate the model’s effect on user engagement. Another limitation is due to the production
dataset: our reranking is limited to the candidate articles generated by the production system.
Therefore, if the inputs are not of high quality, it will impact our final recommendation perfor-
mance. In practice, HRM could be used to rerank a longer list of candidate recommendations, so
that it effectively chooses the top five to be sent in an email. It would be interesting to also explore
different methods of paper candidate generation and examine how they impact the recommenda-
tion performance. Besides, if we can obtain user profile information (such as domain interests),
can we apply topic modeling to provide more personalized recommendations for users? We leave
these interesting questions as future work.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their constructive comments and helpful suggestions.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:21

REFERENCES

[1] Fabio Aiolli. 2013. A preliminary study on a recommender system for the million songs dataset challenge. In Proceed-

ings of the 4th Italian Information Retrieval Workshop (CEUR Workshop Proceedings), Vol. 964. CEUR-WS.org, 73–83.

Retrieved from http://ceur-ws.org/Vol-964/paper12.pdf.

[2] Joeran Beel, Akiko Aizawa, Corinna Breitinger, and Bela Gipp. 2017. Mr. DLib: Recommendations-as-a-Service (RaaS)

for academia. In Proceedings of the ACM/IEEE Joint Conference on Digital Libraries (JCDL’17). IEEE, 1–2.

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating

embeddings for modeling multi-relational data. In Adv. Neural Info. Process. Syst. 2787–2795.

[4] Christopher J. C. Burges. 2010. From RankNet to LambdaRank to LambdaMart: An overview. Learning 11, 23–581

(2010), 81.

[5] Laurent Charlin, Richard S. Zemel, and Hugo Larochelle. 2014. Leveraging user libraries to bootstrap collaborative

filtering. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 173–182.

[6] Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong Yu. 2012. SVDFeature: A toolkit for

feature-based collaborative filtering. J. Mach. Learn. Res. 13 (2012), 3619–3622.

[7] Yao Cheng, Li’ang Yin, and Yong Yu. 2014. LorSLIM: Low rank sparse linear methods for top-N recommendations. In

Proceedings of the 2014 IEEE International Conference on Data Mining (ICDM’14). IEEE Computer Society, 90–99.

[8] Evangelia Christakopoulou and George Karypis. 2016. Local item-item models for top-N recommendation. In Pro-

ceedings of the 10th ACM Conference on Recommender Systems. ACM, 67–74.

[9] Fan R. K. Chung. 1997. Spectral Graph Theory. Number 92. American Mathematical Soc.

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for YouTube recommendations. In Pro-

ceedings of the 10th ACM Conference on Recommender Systems. ACM, 191–198.

[11] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. 2010. Performance of recommender algorithms on top-n rec-

ommendation tasks. In Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010. ACM, 39–46.

[12] Van Dang. 2018. The Lemur Project-Wiki-RankLib. Lemur Project. Retrieved from https://sourceforge.net/projects/

lemur/.

[13] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He,

Mike Lambert, Blake Livingston, and Dasarathi Sampath. 2010. The YouTube video recommendation system. In Pro-

ceedings of the 4th ACM Conference on Recommender Systems. ACM, 293–296.

[14] Mukund Deshpande and George Karypis. 2004. Item-based top-N recommendation algorithms. ACM Trans. Info. Syst.

22, 1 (2004), 143–177.

[15] John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and stochastic

optimization. J. Mach. Learn. Res. 12 (2011), 2121–2159.

[16] Travis Ebesu and Yi Fang. 2017. Neural citation network for context-aware citation recommendation. In Proceedings of

the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 1093–1096.

[17] Michael D. Ekstrand, Praveen Kannan, James A. Stemper, John T. Butler, Joseph A. Konstan, and John T. Riedl. 2010.

Automatically building research reading lists. In Proceedings of the 4th ACM Conference on Recommender Systems.

ACM, 159–166.

[18] Asmaa Elbadrawy and George Karypis. 2015. User-specific feature-based similaritymodels for top-n recommendation

of new items. ACM Trans. Intell. Syst. Technol. 6, 3 (2015), 33:1–33:20.

[19] Felice Ferrara, Nirmala Pudota, and Carlo Tasso. 2011. A keyphrase-based paper recommender system. In Italian

Research Conference on Digital Libraries. Springer, 14–25.

[20] Google Scholar. 2018. Retrieved from https://scholar.google.com/.

[21] Qi He, Daniel Kifer, Jian Pei, Prasenjit Mitra, and C. Lee Giles. 2011. Citation recommendation without author super-

vision. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining. ACM, 755–764.

[22] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse predictive analytics. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 355–364.

[23] Maya Hristakeva, Daniel Kershaw, Marco Rossetti, Petr Knoth, Benjamin Pettit, Saúl Vargas, and Kris Jack. 2017.

Building recommender systems for scholarly information. In Proceedings of the 1stWorkshop on ScholarlyWebMining.

ACM, 25–32.

[24] Wenyi Huang, Zhaohui Wu, Liang Chen, Prasenjit Mitra, and C. Lee Giles. 2015. A neural probabilistic model for

context-based citation recommendation. In Proceedings of the 29th AAAI Conference on Artificial Intelligence. AAAI,

2404–2410.

[25] Yichen Jiang, Aixia Jia, Yansong Feng, and Dongyan Zhao. 2012. Recommending academic papers via users’ reading

purposes. In Proceedings of the 6th ACM Conference on Recommender Systems. ACM, 241–244.

[26] Thorsten Joachims. 2006. Training linear SVMs in linear time. In Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 217–226.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

http://ceur-ws.org/Vol-964/paper12.pdf
https://sourceforge.net/projects/lemur/
https://sourceforge.net/projects/lemur/
https://scholar.google.com/

31:22 X. Li et al.

[27] Santosh Kabbur, Xia Ning, and George Karypis. 2013. FISM: Factored item similarity models for top-N recommender

systems. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

ACM, 659–667.

[28] Zhao Kang and Qiang Cheng. 2016. Top-N recommendation with novel rank approximation. In Proceedings of the

2016 SIAM International Conference on Data Mining. SIAM, 126–134.

[29] Hao-Ren Ke, Rolf Kwakkelaar, Yu-Min Tai, and Li-Chun Chen. 2002. Exploring behavior of e-journal users in science

and technology: Transaction log analysis of elsevier’s sciencedirect OnSite in Taiwan. Library Info. Sci. Res. 24, 3

(2002), 265–291.

[30] Madian Khabsa, ZhaohuiWu, and C. Lee Giles. 2016. Towards better understanding of academic search. In Proceedings

of the 16th ACM/IEEE-CS on Joint Conference on Digital Libraries. ACM, 111–114.

[31] Taraneh Khazaei and Orland Hoeber. 2017. Supporting academic search tasks through citation visualization and

exploration. Int. J. Dig. Libraries 18, 1 (2017), 59–72.

[32] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980

(2014).

[33] Onur Küçüktunç, Erik Saule, Kamer Kaya, and Ümit V. Çatalyürek. 2012. Recommendation on academic networks

using direction aware citation analysis. arXiv preprint arXiv:1205.1143 (2012).

[34] Damien Lefortier, Pavel Serdyukov, andMaarten de Rijke. 2014. Online exploration for detecting shifts in fresh intent.

In Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management.

ACM, 589–598.

[35] Huajing Li, Isaac Councill, Wang-Chien Lee, and C. Lee Giles. 2006. CiteSeerx: An architecture and web service

design for an academic document search engine. In Proceedings of the 15th International Conference on World Wide

Web. ACM, 883–884.

[36] Xinyi Li and Maarten de Rijke. 2017. Academic search in response to major scientific events. In Proceedings of the 5th

International Workshop on Bibliometric-enhanced Information Retrieval.

[37] Xinyi Li and Maarten de Rijke. 2017. Do topic shift and query reformulation patterns correlate in academic search?

In Proceedings of the 39th European Conference on IR Research. Springer, 146–159.

[38] Xinyi Li and Maarten de Rijke. 2019. Characterizing and predicting downloads in academic search. Info. Process.

Manage. 56, 3 (2019), 394–407.

[39] Xinyi Li, Bob J. A. Schijvenaars, and Maarten de Rijke. 2017. Investigating queries and search failures in academic

search. Info. Process. Manage. 53, 3 (May 2017), 666–683.

[40] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation embeddings for

knowledge graph completion. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, Vol. 15. 2181–2187.

[41] Greg Linden, Brent Smith, and Jeremy York. 2003. Amazon.Com recommendations: Item-to-item collaborative filter-

ing. IEEE Internet Comput. 7, 1 (Jan. 2003), 76–80.

[42] Haifeng Liu, Xiangjie Kong, Xiaomei Bai, Wei Wang, Teshome Megersa Bekele, and Feng Xia. 2015. Context-based

collaborative filtering for citation recommendation. IEEE Access 3 (2015), 1695–1703.

[43] Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. 2011. Recommender systems with social regu-

larization. In Proceedings of the 4th International Conference on Web Search and Web Data Mining. ACM, 287–296.

[44] Anasua Mitra and Amit Awekar. 2017. On low overlap among search results of academic search engines. In Proceed-

ings of the 26th International Conference on World Wide Web Companion. ACM, 823–824.

[45] Taesup Moon, Wei Chu, Lihong Li, Zhaohui Zheng, and Yi Chang. 2012. An online learning framework for refining

recency search results with user click feedback. ACM Trans. Info. Syst. 30, 4 (2012), 20:1–20:28.

[46] Cristiano Nascimento, Alberto H. F. Laender, Altigran S. da Silva, and Marcos André Gonçalves. 2011. A source inde-

pendent framework for research paper recommendation. In Proceedings of the 11th Annual International ACM/IEEE

Joint Conference on Digital Libraries. ACM, 297–306.

[47] Xia Ning and George Karypis. 2011. SLIM: Sparse linear methods for top-N recommender systems. In Proceedings of

the 11th IEEE International Conference on Data Mining. IEEE Computer Society, 497–506.

[48] Xi Niu and Bradley M. Hemminger. 2012. A study of factors that affect the information-seeking behavior of academic

scientists. J. Amer. Soc. Info. Sci. Technol. 63, 2 (2012), 336–353.

[49] Zhen Pan, Enhong Chen, Qi Liu, Tong Xu, Haiping Ma, and Hongjie Lin. 2016. Sparse factorization machines for

click-through rate prediction. In Proceedings of the 16th International Conference on Data Mining. IEEE Computer

Society, 400–409.

[50] David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles. 2000. Collaborative filtering by personality diag-

nosis: A hybrid memory-and model-based approach. In Proceedings of the 16th Conference on Uncertainty in Artificial

Intelligence. Morgan Kaufmann Publishers Inc., 473–480.

[51] Sheila Pontis and Ann Blandford. 2015. Understanding “Influence”: An exploratory study of academics’ processes of

knowledge construction through iterative and interactive information seeking. J. Assoc. Info. Sci. Technol. 66, 8 (2015),

1576–1593.

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

Personalised Reranking of Paper Recommendations 31:23

[52] Sheila Pontis, Ann Blandford, Elke Greifeneder, Hesham Attalla, and David Neal. 2015. Keeping up to date: An aca-

demic researcher’s information journey. J. Amer. Soc. Info. Sci. Technol. 68, 1 (2015), 22–35.

[53] Steffen Rendle. 2012. Factorization machines with libFM. ACM Trans. Intell. Syst. Technol. 3, 3 (2012), 57:1–57:22.

[54] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized

ranking from implicit feedback. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. AUAI

Press, 452–461.

[55] Francesco Ricci, Lior Rokach, and Bracha Shapira (Eds.). 2015. Recommender Systems Handbook. Springer.

[56] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2000. Analysis of recommendation algorithms for

e-commerce. In Proceedings of the 2nd ACM Conference on Electronic Commerce. ACM, 158–167.

[57] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based collaborative filtering recommen-

dation algorithms. In Proceedings of the 10th International Conference on World Wide Web. ACM, 285–295.

[58] Martin Saveski and Amin Mantrach. 2014. Item cold-start recommendations: Learning local collective embeddings.

In Proceedings of the 8th ACM Conference on Recommender Systems. ACM, 89–96.

[59] ScienceDirect. 2015. Retrieved from https://sciencedirect.com.

[60] ScienceDirect. 2016. Retrieved from https://www.elsevier.com/solutions/sciencedirect/features.

[61] Semantic Scholar. 2018. Retrieved from https://www.semanticscholar.org/.

[62] Aravind Sesagiri Raamkumar, Schubert Foo, and Natalie Pang. 2018. Can I have more of these please? assisting

researchers in finding similar research papers from a seed basket of papers. Emerald Publishing Limited.

[63] Guocong Song. 2014. Point-wise approach for yandex personalized web search challenge. In Proceedings of theWSDM

2014 Workshop on Web Search Click Data. ACM.

[64] Trevor Strohman, W. Bruce Croft, and David Jensen. 2007. Recommending citations for academic papers. In Proceed-

ings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.

ACM, 705–706.

[65] Kazunari Sugiyama and Min-Yen Kan. 2010. Scholarly paper recommendation via user’s recent research interests. In

Proceedings of the 10th Annual Joint Conference on Digital Libraries. ACM, 29–38.

[66] Jie Tang. 2016. AMiner: Toward understanding big scholar data. In Proceedings of the 9th ACM International Conference

on Web Search and Data Mining. ACM, 467–467.

[67] Jie Tang, Ruoming Jin, and Jing Zhang. 2008. A topic modeling approach and its integration into the random walk

framework for academic search. In Proceedings of the 8th IEEE International Conference on Data Mining. IEEE, 1055–

1060.

[68] Roberto Torres, Sean M. McNee, Mara Abel, Joseph A. Konstan, and John Riedl. 2004. Enhancing digital libraries with

TechLens+. In Proceedings of the 4th ACM/IEEE-CS Joint Conference on Digital Libraries. ACM, 228–236.

[69] Chong Wang and David M. Blei. 2011. Collaborative topic modeling for recommending scientific articles. In Proceed-

ings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 448–456.

[70] YaoWu, Christopher DuBois, Alice X. Zheng, and Martin Ester. 2016. Collaborative denoising auto-encoders for top-

N recommender systems. In Proceedings of the 9th ACM International Conference on Web Search and Data Mining.

ACM, 153–162.

[71] Zhibo Xiao, Feng Che, EnuoMiao, andMingyu Lu. 2014. Increasing serendipity of recommender systemwith ranking

topic model. Appl. Math. Info. Sci. 8, 4 (2014), 2041.

[72] Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit semantic ranking for academic search via knowledge

graph embedding. In Proceedings of the 26th International Conference on World Wide Web. ACM, 1271–1279.

[73] Feipeng Zhao and Yuhong Guo. 2016. Improving top-N recommendation with heterogeneous loss. In Proceedings of

the 25th International Joint Conference on Artificial Intelligence. IJCAI/AAAI Press, 2378–2384.

[74] Masrour Zoghi, Tomáš Tunys, Lihong Li, Damien Jose, Junyan Chen, Chun Ming Chin, and Maarten de Rijke. 2016.

Click-based hot fixes for underperforming torso queries. In Proceedings of the 39th International ACM SIGIR Conference

on Research and Development in Information Retrieval. ACM, 195–204.

Received July 2018; revised February 2019; accepted February 2019

ACM Transactions on Information Systems, Vol. 37, No. 3, Article 31. Publication date: March 2019.

https://sciencedirect.com
https://www.elsevier.com/solutions/sciencedirect/features
https://www.semanticscholar.org/

