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ABSTRACT
Label aggregation (LA) is the task of inferring a high-quality label
for an example from multiple noisy labels generated by either hu-
man annotators or model predictions. Existing work on LA assumes
a label generation process and designs a probabilistic graphical
model (PGM) to learn latent true labels from observed crowd la-
bels. However, the performance of PGM-based LA models is easily
affected by the noise of crowd labels. As a consequence, the perfor-
mance of LA models differs on different datasets and no single LA
model outperforms the others on all datasets.

We extend PGM-based LA models by integrating a Gaussian
process (GP) prior on the true labels. The advantage of LA models
extended with a GP prior is that they can take as input crowd
labels, example features, and existing pre-trained label prediction
models to infer the true labels, while the original LA can only
leverage crowd labels. Experimental results on both synthetic and
real datasets show that any LA model extended with a GP prior
and a suitable mean function achieves better performance than the
underlying LA model, demonstrating the effectiveness of using a
GP prior.

CCS CONCEPTS
• Information systems→ Information retrieval; • Computing
methodologies→ Bayesian network models.
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1 INTRODUCTION
Crowdsourcing has been widely adopted as a time-efficient and
cost-effective solution for dataset construction [4, 9, 14, 28, 33, 35,
37, 44]. Typically, examples in a dataset, e.g., query-document pairs
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that need to be labeled with a relevance label, are distributed on
crowdsourcing platforms to multiple annotators (or workers) to
quickly obtain crowd labels. Despite its efficiency and effectiveness,
crowdsourcing comes with a challenge: noisy labels [16, 19].

Various label aggregation (LA) models have been proposed to
infer true labels of examples from noisy crowd labels. Existing work
on LA [8, 11, 18, 23, 24, 39, 40, 43] models the true labels and the
crowd labels as random variables and use a probabilistic graphical
model (PGM) to calculate the probability of generating the crowd
labels and the probability of generating the true labels. The latent
true labels are usually assumed to be generated independently from
each other; and given the latent true label of an example, its observed
crowd labels are also assumed to be generated independently from
other crowd labels. Thus, model parameters can easily be learned
using expectation maximization (EM). However, PGM-based LA
models do not generalize well to different datasets. Relative model
performance is easily affected by datasets. Empirical results show
that no single PGM-based LA model outperforms all others [24, 43].

We propose to integrate LA models with a Gaussian process (GP)
prior to make them generalizable to different datasets. A GP is
defined by a covariance function and a mean function: its covari-
ance function takes example features as input to model example
correlation, and its mean function can be initialized by a label
prediction model that is trained on other datasets and can pre-
dict example true labels. We detail extensions with a GP for four
representative models: (i) the confusion matrix-based Dawid and
Skene model (DS) [6], and the 1-coin models (ii) ZenCrowd (ZC) [7],
(iii) generativemodel of labels, abilities, and difficulties (GLAD) [38],
and (iv) multi-annotator competence estimation (MACE) [15]. GP-
extensions of other LA models can easily be derived following this
paper.

We useGPLAmodel to refer to a LAmodel that has been extended
with a GP prior. The advantage of a GPLAmodel over its underlying
LA model is that it can take as input crowd labels, example features,
and existing label prediction models to infer the true labels, while a
LA model can only leverage crowd labels. An important challenge
of GPLA models is their optimization. The EM algorithm used for
LA models cannot be used by GPLA models because of the GP
prior. Instead, we use the variational expectation maximization
(VEM) [29] algorithm for optimization.

The main contributions of this work are the following:
• We propose a way of extending LAmodels with a GP prior, which
results in Gaussian process-based label aggregation models that
can take as input crowd labels, example features, and existing
label prediction models to infer the true labels, while the original
LA models can only leverage crowd labels.
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• Weempirically demonstrate that any of theGPLAmodels achieves
better label inference performance than all the LA models on
different datasets.

2 RELATEDWORK AND BACKGROUND
2.1 PGMs for label aggregation
Mainstream PGM-based LA models model the label generation pro-
cess using a joint distribution of the observed crowd labels 𝒀 and the
latent true labels 𝒛, defined as 𝑝 (𝒀 , 𝒛) = ∏𝑁

𝑖=1 𝑝 (𝑧𝑖 )
∏𝑀𝑖

𝑗=1 𝑝 (𝑦
𝑗
𝑖
| 𝑧𝑖 ).

𝑁 is the number of examples,𝑀𝑖 is the number of annotators for
example 𝑖 , 𝑧𝑖 is the true label of example 𝑖 , and 𝑦 𝑗

𝑖
is the observed

crowd label given by annotator 𝑗 . The decomposition of 𝑝 (𝑧𝑖 ) over
𝑖 and 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) over 𝑗 is based on the independence assumption.

The likelihood of the observed labels is 𝑝 (𝒀 ) =
∑
𝒛 𝑝 (𝒀 , 𝒛)𝑝 (𝒛).

Model parameters can be learned using the EM algorithm [26]. All
LA models use a categorical distribution to model 𝑝 (𝑧𝑖 ); the main
difference between them is how they model 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ), i.e., what

assumption they make about the label generation process, based on
which they can be classified into confusion matrix-based models
such as DS [6], and 1-coin models such as ZC [7], GLAD [38], and
MACE [15].

The DS model assumes a parameterized confusion matrix 𝜆 𝑗
𝑜𝑙

=

𝑝 (𝑦 𝑗
𝑖
= 𝑙 | 𝑧𝑖 = 𝑜) for each annotator 𝑗 where 𝑙, 𝑜 ∈ {0, 1, . . . , 𝐿 − 1}.

𝐿 is the number of class. The confusion matrix can be understood
as an annotator competence matrix. It contains𝑀 × 𝐿 × (𝐿 − 1) pa-
rameters, which needs a large number of crowd labels to learn. The
ZC model models 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) with a parameter 𝜂 𝑗 , which determines

a Bernoulli variable representing an annotator giving a correct
label: 𝜂 𝑗 = 𝑝 (𝑦 𝑗𝑖 = 𝑧𝑖 ); 𝜂 𝑗 can be understood as annotator compe-
tence similar to the confusion matrix of the DS model. The GLAD
model models 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) by a logistic function 𝜎 𝑗

𝑖
= (1 + 𝑒−𝛼𝑖𝛽 𝑗 )−1,

where 𝛼𝑖 is example difficulty and 𝛽 𝑗 is annotator competence. 𝜎 𝑗
𝑖

represents the probability an annotator gives a correct label. The
MACE model models 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) using a scalar parameter 𝜖 𝑗 and a

parameterized distribution 𝝃 𝑗 . Bernoulli(𝜖 𝑗 ) determines whether
the annotator is not spamming. If so, he copies the true label; if not,
he randomly picks one label from the distribution Categorial(𝝃 𝑗 ).
It reduces the number of parameters to 𝑀 × (𝐿 − 1). There are
also Bayesian extensions of the above models. E.g., Raykar et al.
[31] add Dirichlet priors to the parameters of the DS model, Kim
and Ghahramani [20] propose a full Bayesian model of DS and use
Gibbs sampling for parameter optimization.

There is also work that learns a downstream classification model
using the crowd labels. Cao et al. [3] work on medical image class
annotation. They observe that annotators from the same group
(a hospital in their setting) makes highly correlated mistakes and
modeling annotator weights helps. They jointly learn a classifica-
tion model and an annotator weighting model. Albarqouni et al.
[1] handle label aggregation directly as part of the learning process
of the convolutional neural network via additional crowdsourcing
layer. A survey of more work can be found in [18, 24, 43].

2.2 Gaussian processes for label aggregation
GPs have previously been applied to aggregate multiple data [12, 13,
21, 22, 27, 32, 34, 36, 41]. Groot et al. [12] average multiple crowd

labels to one single label and apply a vanilla GP regression model
for continuous label aggregation. Rodrigues et al. [32] propose a
label generation process that consists of a GP prior for latent true
labels and multiple Bernoulli variables for annotators; they propose
a expectation propagation (EP) algorithm for model optimization.
Ruiz et al. [34] propose a different label generation process that
also consists of a GP prior but a sensitivity-specificity model for
annotators; they propose a variational Bayes (VB) algorithm for
model optimization. The model has been extended to large-scale
datasets [27]. Li et al. [22] propose a GP-based label aggregation
model that consists of a GP to model correlation between examples,
Gaussian variables to model examples and to model annotators;
they apply the VEM algorithm [29] for optimization.

In this work, we take advantage of the GP prior in modeling label
correlation. The main difference with prior work [e.g., 32, 34] is that
we utilize both a non-zero mean function and a covariance function
while they only utilize a zero mean function and a covariance
function. For model optimization, we also use the VEM algorithm
similar to Li et al. [22]. Unlike the EP and VB algorithms in [32, 34],
which depend on the label generation assumption in the LA models,
VEM is agnostic to the label generation assumption and thus is easy
to apply to many different LA models.

2.3 Gaussian process classification
We recall the Gaussian process classification (GPC) model as it is
helpful to understand our proposal of extending LA models with a
GP prior; for a thorough introduction, see [30].

Given training samples (𝑿 ,𝒚) ≜ {(𝒙𝑖 , 𝑦𝑖 )}𝑁𝑖=1, where 𝑁 is the
number of samples, 𝒙𝑖 is a feature vector, 𝑦𝑖 is a label. The goal
is to predict a label for a new point 𝒙∗. A GPC model assumes
the labels are generated through the following process. First, the
latent variable 𝒇 ≜ [𝑓1, 𝑓2, . . . , 𝑓𝑁 ] follows a GP, a stochastic pro-
cess with the important characteristic that any finite number of
random variables follow a joint Gaussian distribution. It is denoted
by 𝒇 ∼ GP(𝑚(𝒙), 𝑘 (𝒙, 𝒙′)), where𝑚(𝒙) and 𝑘 (𝒙, 𝒙′) are the mean
function and covariance function. E.g.,𝑚(𝒙) is usually a zero func-
tion or a linear function, 𝑘 (𝒙, 𝒙′) can be the Euclidean distance
function. Second, each observed variable 𝑦𝑖 follows a Bernoulli
distribution conditioned on its corresponding latent variable 𝑓𝑖 ,
and the positive probability is defined using a probit function,
𝑝 (𝑦𝑖 = 1) = Φ (𝑓𝑖 ) =

∫ 𝑓𝑖
−∞N(𝑡 | 0, 1) d𝑡 .

GPC is optimized to maximize the likelihood. This is not trivial
because the likelihood is not a Gaussian distribution due to the
multiplication of the Bernoulli likelihood and the GP prior. The so-
lution is to use a parameterized Gaussian distribution 𝑞(𝒇 | 𝝁𝜓 , 𝚺𝜓 )
to make an evidence lower bound (ELBO) of the likelihood. Given
a new point 𝒙∗, the predictive distribution of the latent variable 𝑓∗
can be calculated using 𝑝 (𝑓∗ | 𝒙∗,𝑿 ,𝒚) ≈

∫
𝑝 (𝑓∗ | 𝒙∗,𝑿 ,𝒇 ) 𝑞(𝒇 |

𝝁𝜓 , 𝚺𝜓 ) d𝒇 = N(𝜇∗, 𝜎∗), where

𝜇∗ =𝑚(𝒙∗) + 𝐾∗𝐾−1 (𝝁𝜓 −𝑚(𝑿 )),

𝜎∗ = 𝐾∗∗ − 𝐾𝑇∗ (𝐾−1 − 𝐾−1
𝚺𝜓𝐾

−1)𝐾∗,

𝐾 =


𝑘 (𝒙1, 𝒙1) · · · 𝑘 (𝒙1, 𝒙𝑁 )

.

.

.
. . .

.

.

.

𝑘 (𝒙𝑁 , 𝒙1) · · · 𝑘 (𝒙𝑁 , 𝒙𝑁 )

 , (1)
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fi

<latexit sha1_base64="rwMrTBT6IHMcGClmH+qVkW76czc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lZoQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6c+75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav22XmnU8jiKcAKncA4eXEIDbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNhuo3T</latexit>zi

<latexit sha1_base64="/Ghq+Qu5/Fq5rD2kB8D7b7j0cv4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4rmFZoY9lsN+3azW7Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8tUEeoTyaW6D7GmnAnqG2Y4vU8UxXHIaTecXM/87hNVmklxZ7KEBjEeCRYxgo2V/GzAHh4H1Zpbd+dAq8QrSA0KtAfVr/5QkjSmwhCOte55bmKCHCvDCKfTSj/VNMFkgke0Z6nAMdVBPj92is6sMkSRVLaEQXP190SOY62zOLSdMTZjvezNxP+8XmqiqyBnIkkNFWSxKEo5MhLNPkdDpigxPLMEE8XsrYiMscLE2HwqNgRv+eVV0mnUvYt687ZZazWKOMpwAqdwDh5cQgtuoA0+EGDwDK/w5gjnxXl3PhatJaeYOYY/cD5/ANwVjq4=</latexit>

yj
i

<latexit sha1_base64="FOBwT2Ck0BCwPIs2rqFCEVOKBTE=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsN+3S3U3YnYil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O4WNza3tneJuaW//4PCofHzStlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmt5nfeeTGikg/4DTmvqIjLULBKGbS00CUBuWKW3UXIOvEy0kFcjQH5a/+MGKJ4hqZpNb2PDdGf0YNCib5vNRPLI8pm9AR76VUU8WtP1vcOicXqTIkYWTS0kgW6u+JGVXWTlWQdiqKY7vqZeJ/Xi/B8MafCR0nyDVbLgoTSTAi2eNkKAxnKKcpocyI9FbCxtRQhmk8WQje6svrpF2relfV+n290qjlcRThDM7hEjy4hgbcQRNawGAMz/AKb45yXpx352PZWnDymVP4A+fzB5P+jeU=</latexit>xi

<latexit sha1_base64="n5de7k86Wu5Tx/L6aQOYFkHwWFA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHisYD+gXUs2zbZps8mSZIWy9D948aCIV/+PN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wvc38zhNVmknxYGYx9SM8EixkBBsrtfWAPU5Kg3LFrboLoHXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTeamfaBpjMsUj2rNU4IhqP11cO0cXVhmiUCpbwqCF+nsixZHWsyiwnRE2Y73qZeJ/Xi8x4Y2fMhEnhgqyXBQmHBmJstfRkClKDJ9Zgoli9lZExlhhYmxAWQje6svrpF2relfV+n290qjlcRThDM7hEjy4hgbcQRNaQGACz/AKb450Xpx352PZWnDymVP4A+fzBwkLjrw=</latexit>

sj
i

<latexit sha1_base64="aPsDAI2r3Y9DyjV3SnqoR6X9i4s=">AAAB7nicbVBNS8NAEN3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsJ+3azSbsToRS+iO8eFDEq7/Hm//GTZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqObR4LGPdDZgBKRS0UKCEbqKBRYGETjC5zfzOE2gjYvWA0wT8iI2UCAVnaKVOH5ANHkuDcsWtugvQdeLlpEJyNAflr/4w5mkECrlkxvQ8N0F/xjQKLmFe6qcGEsYnbAQ9SxWLwPizxblzemGVIQ1jbUshXai/J2YsMmYaBbYzYjg2q14m/uf1Ugxv/JlQSYqg+HJRmEqKMc1+p0OhgaOcWsK4FvZWysdMM442oSwEb/XlddKuVb2rav2+XmnU8jiK5Iyck0vikWvSIHekSVqEkwl5Jq/kzUmcF+fd+Vi2Fpx85pT8gfP5A7uJjyI=</latexit>⌘j

<latexit sha1_base64="V3mqVFxieY0jhp6KiQK6UMAm9hs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXrwICZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5jc2t7Z38bmFv/+DwqHh80tJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbut59QaR7LBzNJ0I/oUPKQM2qs1LjvF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMT3vhTLpPUoGTLRWEqiInJ/Gsy4AqZERNLKFPc3krYiCrKjM2mYEPwVl9eJ61K2bsqVxvVUq2SxZGHMziHS/DgGmpwB3VoAgOEZ3iFN+fReXHenY9la87JZk7hD5zPH6MrjMo=</latexit>

M<latexit sha1_base64="n5de7k86Wu5Tx/L6aQOYFkHwWFA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHisYD+gXUs2zbZps8mSZIWy9D948aCIV/+PN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wvc38zhNVmknxYGYx9SM8EixkBBsrtfWAPU5Kg3LFrboLoHXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTeamfaBpjMsUj2rNU4IhqP11cO0cXVhmiUCpbwqCF+nsixZHWsyiwnRE2Y73qZeJ/Xi8x4Y2fMhEnhgqyXBQmHBmJstfRkClKDJ9Zgoli9lZExlhhYmxAWQje6svrpF2relfV+n290qjlcRThDM7hEjy4hgbcQRNaQGACz/AKb450Xpx352PZWnDymVP4A+fzBwkLjrw=</latexit>

sj
i

<latexit sha1_base64="FOBwT2Ck0BCwPIs2rqFCEVOKBTE=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsN+3S3U3YnYil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O4WNza3tneJuaW//4PCofHzStlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmt5nfeeTGikg/4DTmvqIjLULBKGbS00CUBuWKW3UXIOvEy0kFcjQH5a/+MGKJ4hqZpNb2PDdGf0YNCib5vNRPLI8pm9AR76VUU8WtP1vcOicXqTIkYWTS0kgW6u+JGVXWTlWQdiqKY7vqZeJ/Xi/B8MafCR0nyDVbLgoTSTAi2eNkKAxnKKcpocyI9FbCxtRQhmk8WQje6svrpF2relfV+n290qjlcRThDM7hEjy4hgbcQRNawGAMz/AKb45yXpx352PZWnDymVP4A+fzB5P+jeU=</latexit>xi

<latexit sha1_base64="LECndHxVWZtQjLrCMOCG5lp5rlU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FL56kiq2FNpTNdtIu3WzC7kYopf/AiwdFvPqPvPlv3LQ5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvs78xydUmsfywUwS9CM6lDzkjBor3d+W+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/ClVhjOBs1Iv1ZhQNqZD7FoqaYTan84vnZEzqwxIGCtb0pC5+ntiSiOtJ1FgOyNqRnrZy8T/vG5qwit/ymWSGpRssShMBTExyd4mA66QGTGxhDLF7a2EjaiizNhwshC85ZdXSbtW9S6q9bt6pVHL4yjCCZzCOXhwCQ24gSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9kJjN8=</latexit>

N

<latexit sha1_base64="rwMrTBT6IHMcGClmH+qVkW76czc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lZoQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6c+75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav22XmnU8jiKcAKncA4eXEIDbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNhuo3T</latexit>zi

<latexit sha1_base64="/Ghq+Qu5/Fq5rD2kB8D7b7j0cv4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4rmFZoY9lsN+3azW7Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8tUEeoTyaW6D7GmnAnqG2Y4vU8UxXHIaTecXM/87hNVmklxZ7KEBjEeCRYxgo2V/GzAHh4H1Zpbd+dAq8QrSA0KtAfVr/5QkjSmwhCOte55bmKCHCvDCKfTSj/VNMFkgke0Z6nAMdVBPj92is6sMkSRVLaEQXP190SOY62zOLSdMTZjvezNxP+8XmqiqyBnIkkNFWSxKEo5MhLNPkdDpigxPLMEE8XsrYiMscLE2HwqNgRv+eVV0mnUvYt687ZZazWKOMpwAqdwDh5cQgtuoA0+EGDwDK/w5gjnxXl3PhatJaeYOYY/cD5/ANwVjq4=</latexit>

yj
i

<latexit sha1_base64="FULkGSy/OkyZMv0PJrSV3aF/wI0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+FADMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP0NCjb8=</latexit>

fi

<latexit sha1_base64="LECndHxVWZtQjLrCMOCG5lp5rlU=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FL56kiq2FNpTNdtIu3WzC7kYopf/AiwdFvPqPvPlv3LQ5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvs78xydUmsfywUwS9CM6lDzkjBor3d+W+uWKW3XnIKvEy0kFcjT75a/eIGZphNIwQbXuem5i/ClVhjOBs1Iv1ZhQNqZD7FoqaYTan84vnZEzqwxIGCtb0pC5+ntiSiOtJ1FgOyNqRnrZy8T/vG5qwit/ymWSGpRssShMBTExyd4mA66QGTGxhDLF7a2EjaiizNhwshC85ZdXSbtW9S6q9bt6pVHL4yjCCZzCOXhwCQ24gSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH9kJjN8=</latexit>

N

<latexit sha1_base64="V3mqVFxieY0jhp6KiQK6UMAm9hs=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKeyGoB4DXrwICZgHJEuYnfQmY2Znl5lZIYR8gRcPinj1k7z5N06SPWhiQUNR1U13V5AIro3rfju5jc2t7Z38bmFv/+DwqHh80tJxqhg2WSxi1QmoRsElNg03AjuJQhoFAtvB+Hbut59QaR7LBzNJ0I/oUPKQM2qs1LjvF0tu2V2ArBMvIyXIUO8Xv3qDmKURSsME1brruYnxp1QZzgTOCr1UY0LZmA6xa6mkEWp/ujh0Ri6sMiBhrGxJQxbq74kpjbSeRIHtjKgZ6VVvLv7ndVMT3vhTLpPUoGTLRWEqiInJ/Gsy4AqZERNLKFPc3krYiCrKjM2mYEPwVl9eJ61K2bsqVxvVUq2SxZGHMziHS/DgGmpwB3VoAgOEZ3iFN+fReXHenY9la87JZk7hD5zPH6MrjMo=</latexit>

M

<latexit sha1_base64="FULkGSy/OkyZMv0PJrSV3aF/wI0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD+FADMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP0NCjb8=</latexit>

fi

<latexit sha1_base64="rwMrTBT6IHMcGClmH+qVkW76czc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2lZoQ9lsJ+3SzSbsboQa+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMTqIaAaBZfYMtwIfEgU0igQ2AnG1zO/84hK81jem0mCfkSHkoecUWOlu6c+75crbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2Lav22XmnU8jiKcAKncA4eXEIDbqAJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNhuo3T</latexit>zi

<latexit sha1_base64="/Ghq+Qu5/Fq5rD2kB8D7b7j0cv4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4rmFZoY9lsN+3azW7Y3Qgh9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8tUEeoTyaW6D7GmnAnqG2Y4vU8UxXHIaTecXM/87hNVmklxZ7KEBjEeCRYxgo2V/GzAHh4H1Zpbd+dAq8QrSA0KtAfVr/5QkjSmwhCOte55bmKCHCvDCKfTSj/VNMFkgke0Z6nAMdVBPj92is6sMkSRVLaEQXP190SOY62zOLSdMTZjvezNxP+8XmqiqyBnIkkNFWSxKEo5MhLNPkdDpigxPLMEE8XsrYiMscLE2HwqNgRv+eVV0mnUvYt687ZZazWKOMpwAqdwDh5cQgtuoA0+EGDwDK/w5gjnxXl3PhatJaeYOYY/cD5/ANwVjq4=</latexit>

yj
i

<latexit sha1_base64="FOBwT2Ck0BCwPIs2rqFCEVOKBTE=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ9lsN+3S3U3YnYil9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O4WNza3tneJuaW//4PCofHzStlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmt5nfeeTGikg/4DTmvqIjLULBKGbS00CUBuWKW3UXIOvEy0kFcjQH5a/+MGKJ4hqZpNb2PDdGf0YNCib5vNRPLI8pm9AR76VUU8WtP1vcOicXqTIkYWTS0kgW6u+JGVXWTlWQdiqKY7vqZeJ/Xi/B8MafCR0nyDVbLgoTSTAi2eNkKAxnKKcpocyI9FbCxtRQhmk8WQje6svrpF2relfV+n290qjlcRThDM7hEjy4hgbcQRNawGAMz/AKb45yXpx352PZWnDymVP4A+fzB5P+jeU=</latexit>xi

<latexit sha1_base64="R2P+42/gN/3cKZMQpnFw1zlS0NM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2A9oQ5lsN+3SzSbuboQS+ie8eFDEq3/Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUUdaisYhVN0DNBJesZbgRrJsohlEgWCeY3M79zhNTmsfywUwT5kc4kjzkFI2Vun0UyRgHfFCuuFV3AbJOvJxUIEdzUP7qD2OaRkwaKlDrnucmxs9QGU4Fm5X6qWYJ0gmOWM9SiRHTfra4d0YurDIkYaxsSUMW6u+JDCOtp1FgOyM0Y73qzcX/vF5qwhs/4zJJDZN0uShMBTExmT9PhlwxasTUEqSK21sJHaNCamxEJRuCt/ryOmnXqt5VtX5frzRqeRxFOINzuAQPrqEBd9CEFlAQ8Ayv8OY8Oi/Ou/OxbC04+cwp/IHz+QMH3o/t</latexit>↵i

<latexit sha1_base64="0PD3hk8VWLJc3kNgmucaCD1YQQY=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2FZoY9lsN+3azSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMb6PqCGS6F4CwVKfp9oTqNA8k4wvp75nSeujYjVHU4S7kd0qEQoGEUrdXoBR/rw2C9X3Ko7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+7pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZr+TgdCcoZxYQpkW9lbCRlRThjahkg3BW355lbRrVe+iWr+tVxq1PI4inMApnIMHl9CAG2hCCxiM4Rle4c1JnBfn3flYtBacfOYY/sD5/AE/Wo95</latexit>

�j
<latexit sha1_base64="n5de7k86Wu5Tx/L6aQOYFkHwWFA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHisYD+gXUs2zbZps8mSZIWy9D948aCIV/+PN/+N2XYP2vpg4PHeDDPzgpgzbVz32ylsbG5t7xR3S3v7B4dH5eOTtpaJIrRFJJeqG2BNORO0ZZjhtBsriqOA004wvc38zhNVmknxYGYx9SM8EixkBBsrtfWAPU5Kg3LFrboLoHXi5aQCOZqD8ld/KEkSUWEIx1r3PDc2foqVYYTTeamfaBpjMsUj2rNU4IhqP11cO0cXVhmiUCpbwqCF+nsixZHWsyiwnRE2Y73qZeJ/Xi8x4Y2fMhEnhgqyXBQmHBmJstfRkClKDJ9Zgoli9lZExlhhYmxAWQje6svrpF2relfV+n290qjlcRThDM7hEjy4hgbcQRNaQGACz/AKb450Xpx352PZWnDymVP4A+fzBwkLjrw=</latexit>

sj
i
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Figure 1: Graphical model representations of GP-DS, GP-ZC,
GP-GLAD, and GP-MACE.

𝐾𝑇∗ = [𝑘 (𝒙1, 𝒙∗), . . . , 𝑘 (𝒙𝑁 , 𝒙∗)],
𝐾∗∗ = 𝑘 (𝒙∗, 𝒙∗) .

The probability of the label to be positive is 𝑝 (𝑦∗ = 1 | 𝒙∗,𝑿 ,𝒚) ≈
Φ(E(𝑓∗)) = Φ(𝜇∗). Following [30, page 44–45], there are two ways
of calculating 𝑝 (𝑦∗ = 1 | 𝒙∗,𝑿 ,𝒚): the full Bayesian treatment,
averaged predictive probability defined as

∫
Φ(𝑓∗)𝑝 (𝑓∗ |𝒙∗,𝑿 ,𝒚) d𝑓∗,

and the simpler maximum a posteriori (MAP) prediction defined is
Φ
(∫

𝑓∗𝑝 (𝑓∗ |𝒙∗,𝑿 ,𝒚) d𝑓∗
)
. We will use the MAP prediction because

the integral of the first one is difficult to calculate while the second
one is easy to calculate.

3 A GAUSSIAN PROCESS FOR LABEL
AGGREGATION

3.1 Problem formulation
Different from Gaussian process classification (GPC), where each
example in the observed data has one label, there are multiple
labels for each example in the crowd annotation data. Assume that
there are 𝑁 examples, 𝑀 annotators, and 𝐿 classes in the crowd
annotation data. We use 𝑿 ≜ [𝒙1, 𝒙2, . . . , 𝒙𝑁 ] to denote the feature
vectors and 𝒀 ≜ [𝒚1,𝒚2, . . . ,𝒚𝑁 ] to denote crowd labels for all
the 𝑁 examples, where 𝒚𝑖 ≜ [𝑦1

𝑖
, 𝑦2

𝑖
, . . . , 𝑦

𝑗
𝑖
, . . . , 𝑦

𝑀𝑖

𝑖
] denotes the

multiple labels of the 𝑖-th example,𝑀𝑖 is the number of labels of the
𝑖-th example. Our goal is to infer the true labels for all examples,
which we denote using 𝒛 ≜ [𝑧1, 𝑧2, . . . , 𝑧𝑁 ]. Note that we work on
binary labels, thus 𝑧𝑖 , 𝑦

𝑗
𝑖
∈ {0, 1} and 𝐿 = 2 in this section.1

3.2 Modeling example correlation and example
label priors with a Gaussian process

We use a Gaussian process (GP) to model example correlation and
the prior knowledge of example true labels. A GP model is formally

1Throughout the paper, we use lowercase for scalars, lowercase bold for vectors, and
bold uppercase for matrices.

represented as:

𝒇 ∼ GP(𝑚(𝒙), 𝑘 (𝒙, 𝒙′)). (2)

𝒇 ≜ [𝑓1, 𝑓2, . . . , 𝑓𝑁 ] are continuous random variables which corre-
spond to the 𝑁 examples and determine 𝑁 Bernoulli distributions
which generate the latent true labels 𝒛. For example 𝑖 , the likelihood
of obeserving 𝑧𝑖 is defined as

𝑝 (𝑧𝑖 | 𝑓𝑖 ) = Φ
(
(−1) (1−𝑧𝑖 ) 𝑓𝑖

)
. (3)

Note that we work on the binary class problem in this paper. One
possible way to extend to the multi-class problem is by using multi-
ple GPs and change the probit function Φ(·) to a softmax function.

The covariance function 𝑘 (𝒙, 𝒙′) captures the correlation be-
tween examples. A higher value indicates that the two examples
are more correlated and that they are more likely to have the same
latent true label. In this work, we use the radial basis function (RBF),
defined as 𝑘 (𝒙, 𝒙′) = 𝜎2 exp (− ∥𝒙−𝒙′ ∥2

𝑙2
).

The mean function𝑚(𝒙) maps a vector to a real value. It can
capture the prior information for example true labels. Previous
work on GPs often uses a zero mean function, i.e.,𝑚(𝒙) ≡ 0. This
is a convenient choice in terms of modeling but introduces no prior
information. There is also the linear mean function, defined as
𝑚(𝒙) = 𝒘T𝒙 , where𝒘 is the weight parameter to be learned during
model optimization. Optionally, we can use a pre-trained label
prediction model as the mean function of which the parameters
are fixed. It can introduce prior knowledge of example true labels
from some similar source domain to the target domain to which
the crowd annotation data belong. In this work, we use a logistic
regression (LR) model that is trained using example features and
labels aggregated by majority voting. Given an example feature as
the input, the output logits are used as the mean function value.

3.3 Modeling label generation processes with a
probabilistic graphical model

Most PGM-based LA models model the joint distribution of 𝒀 and
𝒛 as 𝑝 (𝒀 , 𝒛) = ∏𝑁

𝑖=1 𝑝 (𝑧𝑖 )
∏𝑀𝑖

𝑗=1 𝑝 (𝑦
𝑗
𝑖
| 𝑧𝑖 ). In this work, we model

the joint distribution of 𝒀 , 𝒛, and 𝒇 . 𝒇 denotes a latent function
following a GP, defined in Eq. (2). The generation of 𝒛 is no longer
independent with each other but conditioned on𝒇 , defined in Eq. (3).
The joint distribution is represented as

𝑝 (𝒀 , 𝒛,𝒇 ) =

𝑝 (𝒇 )𝑝 (𝒛 | 𝒇 )𝑝 (𝒀 | 𝒛) = 𝑝 (𝒇 )
𝑁∏
𝑖=1

𝑝 (𝑧𝑖 | 𝑓𝑖 )
𝑀𝑖∏
𝑗=1

𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 ), (4)

where 𝑝 (𝒇 ) = N(𝑚(𝑿 ), 𝑘 (𝑿 ,𝑿 )) is a Gaussian distribution mod-
elling example correlation and true label prior information;𝑚(𝑿 ) ∈
R𝑁 is an 𝑁 -dimensional mean vector, 𝑘 (𝑿 ) ∈ R𝑁 × R𝑁 is a co-
variance matrix; 𝑝 (𝑧𝑖 | 𝑓𝑖 ) is defined in Eq. (3) and models the
true labels, and 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) is defined by different LA models (see

Section 3.3.1–3.3.4). The label generation process is formally sum-
marized in Algorithm 1.

3.3.1 GP-DS. The original Dawid and Skene model (DS) [6] is
for multi-class tasks. It models 𝑝 (𝑧𝑖 ) by a categorical distribution
𝑝 (𝑧𝑖 = 𝑜) = 𝜏𝑜 . It models 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) by a parameterized confusion

matrix 𝚲
𝑗 , and its element 𝜆 𝑗

𝑜𝑙
= 𝑝 (𝑦 𝑗

𝑖
= 𝑙 | 𝑧𝑖 = 𝑜) for each
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Algorithm 1 Label generation process for GPLA models
Variable: 𝒀 , 𝒛, 𝒇 .
1: 𝒇 ∼ GP(𝑚(𝑿 ), 𝑘 (𝑿 ,𝑿 ))
2: for 𝑖 = 1, . . . , 𝑁 do
3: 𝑧𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Φ(𝑓𝑖 ))
4: for 𝑗 = 1, . . . , 𝑀𝑖 do
5: Sample 𝑦 𝑗

𝑖
based on the label generation assumption of

different LA models.
6: end for
7: end for

annotator 𝑗 , which can be interpreted as an annotator competence
matrix, 𝑙, 𝑜 ∈ {0, 1}. Formally, 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) can be written as:

𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 ) =

1∏
𝑜=0

1∏
𝑙=0

𝜆
𝑗

𝑜𝑙

I(𝑧𝑖=𝑜,𝑦 𝑗

𝑖
=𝑙 )
. (5)

We extend the vanilla DS model by adding a latent function 𝒇 as the
prior of 𝒛. We refer to the model as GP-DS. The label generation
process is formally summarized in Algorithm 1. In line 1, a set of
random variables [𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑁 ] are sampled from the Gaussian
distribution 𝑝 (𝒇 ) = (𝑚(𝑿 ), 𝑘 (𝑿 ,𝑿 )). In line 2–3, for each example
𝑖 , the latent true label 𝑧𝑖 is sampled from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (Φ(𝑓𝑖 )). In line
4–5, for each annotator 𝑗 , the observed label 𝑦 𝑗

𝑖
is sampled from

𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜆 𝑗
𝑧𝑖1). Note 𝜆

𝑗
𝑧𝑖 is in the 𝑧𝑖 -th row of𝚲𝑗 and 𝜆 𝑗

𝑧𝑖0+𝜆
𝑗

𝑧𝑖1 = 1.
For example, suppose we get a sample [𝑓1, . . . , 𝑓𝑖 , . . . , 𝑓𝑁 ]. Let

us focus on 𝑓1 and assume 𝑓1 = 1.96, thus Φ(𝑓1) = 0.97. Then we
sample 𝑧1 from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (0.97), let us assume 𝑧1 = 1 because it
has a chance of 97% to be 1. Finally, for annotator 𝑗 , we know the
annotator’s confusion matrix is 𝚲𝑗 . We will sample 𝑦 𝑗1 = 0 with a
probability of 𝜆 𝑗10 and 𝑦

𝑗

1 = 1 with a probability of 𝜆 𝑗11.

3.3.2 GP-ZC. The original ZC model [7] models 𝑝 (𝑧𝑖 ) by a cat-
egorical distribution 𝑝 (𝑧𝑖 = 𝑜) = 𝜏𝑜 . It models 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) by a

parameter 𝜂 𝑗 , which can be understood as annotator competence
similar with the confusion matrix of DS. But the parameters of ZC
are reduced to𝑀 (compared to𝑀×2×1 in DS). Formally, 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 )

can be written as:

𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 ) = 𝜂 𝑗

I
(
𝑧𝑖=𝑦

𝑗

𝑖

)
(1 − 𝜂 𝑗 )

I
(
𝑧𝑖≠𝑦

𝑗

𝑖

)
. (6)

Similar to GP-DS, we extend it by adding a latent function 𝒇 as the
prior of 𝒛. We name the model GP-ZC. In line 4–5 of Algorithm 1,
for each annotator 𝑗 , 𝑠 𝑗

𝑖
is sampled from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜂 𝑗 ). The variable

𝑠
𝑗
𝑖
= 1 indicates the annotator gives a correct label and 𝑠 𝑗

𝑖
= 0 a

wrong label.
As an example, suppose we already get a sample 𝑓1 = 1.96 and

𝑧1 = 1. For annotator 𝑗 , we know the annotator’s competence is
𝜂 𝑗 . We will get a correct label 𝑦 𝑗1 = 𝑧1 = 1 with probability 𝜂 𝑗 and a
wrong label 𝑦 𝑗1 = 0 with probability 1 − 𝜂 𝑗 .

3.3.3 GP-GLAD. The original GLAD model [38] is for bi-class
tasks. It models 𝑝 (𝑧𝑖 ) by a categorical distribution 𝑝 (𝑧𝑖 = 𝑜) = 𝜏𝑜 . It
assumes that both the difficulty of the example and the competence
of the annotator affect the observed crowd labels and models 𝑝 (𝑦 𝑗

𝑖
|

𝑧𝑖 ) by a logistic function 𝜎 𝑗
𝑖

= (1 + 𝑒−𝛼𝑖𝛽 𝑗 )−1, where 𝛼𝑖 is the
difficulty of example 𝑖 and 𝛽 𝑗 is the competence of annotator 𝑗 .
Model parameters are largely compressed to𝑀+𝑁 . Formally, 𝑝 (𝑦 𝑗

𝑖
|

𝑧𝑖 ) can be written as:

𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 ) = 𝜎 𝑗𝑖

I(𝑦 𝑗

𝑖
=𝑧𝑖 ) (1 − 𝜎 𝑗

𝑖
)I(𝑦

𝑗

𝑖
≠𝑧𝑖 ) . (7)

Similar to GP-DS, we extend GLAD by adding a latent function
𝒇 as the prior of 𝒛. We name the model GP-GLAD. In line 4–5 of
Algorithm 1, for each annotator 𝑗 , 𝑠 𝑗

𝑖
is sampled from Bernoulli(𝜎 𝑗

𝑖
).

The variable 𝑠 𝑗
𝑖
indicates whether the annotator gives the correct

label.
As an example, suppose we already get a sample 𝑓1 = 1.96 and

𝑧1 = 1. For annotator 𝑗 , we will get a correct label 𝑦 𝑗1 = 𝑧1 = 1 with
the probability of 𝜎 𝑗

𝑖
and we will get a wrong label 𝑦 𝑗1 = 0 with the

probability of 1 − 𝜎 𝑗
𝑖
.

3.3.4 GP-MACE. The original MACE model [15] is for multi-class
tasks. It models 𝑝 (𝑦 𝑗

𝑖
= 𝑙 | 𝑧𝑖 = 𝑜) using a confusion matrix similar

to the DS model but reducing the number of parameters to 2𝑀 .
Similar to GP-DS, we extend MACE by adding a latent function

𝒇 as the prior of 𝒛. We name the model GP-MACE. In line 4–5 of
Algorithm 1, for each annotator 𝑗 , 𝑠 𝑗

𝑖
is sampled from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝜖 𝑗 ).

The variable 𝑠 𝑗
𝑖
indicates whether the annotator is not spamming

on the example. When the annotator is not spamming on the ex-
ample (𝑠 𝑗

𝑖
= 1), he copies the true label to produce the annotation

𝑦
𝑗
𝑖
; when he is spamming on the example (𝑠 𝑗

𝑖
= 0), he produces the

annotation 𝑦 𝑗
𝑖
from Bernoulli(𝜉 𝑗 ). Note that 𝜉 𝑗 indicates annotator

𝑖’s label preference when he is spamming. Formally, 𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 ) can

be written as:

𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 ) =

(
𝑝 (𝑠 𝑗

𝑖
) + (1 − 𝑝 (𝑠 𝑗

𝑖
))𝑝 (𝑧𝑖 = 𝑦 𝑗𝑖 )

)I(𝑧𝑖=𝑦 𝑗

𝑖
)

(
(1 − 𝜖 𝑗 )𝑝 (𝑧𝑖 ≠ 𝑦 𝑗𝑖 )

)I(𝑧𝑖≠𝑦 𝑗

𝑖
)

=

(
𝜖 𝑗 + (1 − 𝜖 𝑗 )𝜉 𝑗

𝑧
𝑗

𝑖 (1 − 𝜉 𝑗 ) (1−𝑧
𝑗

𝑖
)
)I(𝑧𝑖=𝑦 𝑗

𝑖
)

(
(1 − 𝑝 (𝑠 𝑗

𝑖
))𝜉 𝑗 (1−𝑧

𝑗

𝑖
) (1 − 𝜉 𝑗 )𝑧

𝑗

𝑖

)I(𝑧𝑖≠𝑦 𝑗

𝑖
)
.

(8)

E.g., suppose we already get a sample 𝑓1 = 1.96 and 𝑧1 = 1. For
annotator 𝑗 , we first sample 𝑠 𝑗

𝑖
from Bernoulli(𝜖 𝑗 ) and assume 𝑠 𝑗

𝑖
= 0.

Thus the annotator is spamming and he will randomly label 𝑦 𝑗1 = 1
with probability 𝜉 𝑗 and 𝑦 𝑗1 = 0 with probability 1 − 𝜉 𝑗 .

3.4 Model optimization and label inference
The extended models GP-DS, GP-ZC, GP-GLAD, GP-MACE con-
tain parameters from the mean function and covariance function
of the GP prior 𝑝 (𝒇 ), and parameters from the corresponding like-
lihood 𝑝 (𝒀 | 𝒛). We use 𝜽 to denote all the parameters. In or-
der to learn the parameters and infer latent true labels, similar to
the vanilla GPC, we adopt a Bayesian view and maximize the log-
likelihood of the observed data plus the log of the parameter prior.
We formally write the optimization problem as:

argmax
𝜽

{log 𝑝 (𝒀 | 𝑿 , 𝜽 ) + log 𝑝 (𝜽 )} . (9)

As the first part log𝑝 (𝒀 | 𝑿 , 𝜽 ) =
∫
𝑝 (𝒀 | 𝒇 )𝑝 (𝒇 ) d𝒇 is intractable

due to the multiplication of a non-Gaussian likelihood and a Gauss-
ian prior, we instead maximize its ELBO, which is tractable. The
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derivation of ELBO is as follows:
log𝑝 (𝒀 |𝑿 , 𝜽 ) ≜ log𝑝 (𝒀 )

=

∫
𝑞(𝒇 ) log 𝑝 (𝒀 ,𝒇 )

𝑞 (𝒇 ) d𝒇 + KL (𝑞 (𝒇 ) ∥𝑝 (𝒇 | 𝒀 ))

⩾

∫
𝑞(𝒇 ) log 𝑝 (𝒀 ,𝒇 )

𝑞 (𝒇 ) d𝒇

= E𝑞 (𝒇 ) [log 𝑝 (𝒀 | 𝒇 )] − KL [𝑞 (𝒇 ) ∥𝑝 (𝒇 )]

= E𝑞 (𝒇 )

log ©­«
𝑁∏
𝑖=1

1∑︁
𝑧𝑖=0

𝑀∏
𝑗=1

𝑝 (𝑦 𝑗
𝑖
| 𝑧𝑖 )𝑝 (𝑧𝑖 | 𝑓𝑖 )ª®¬


− KL [𝑞 (𝒇 ) ∥𝑝 (𝒇 )] ,

(10)

where 𝑞(𝒇 ) ≜ 𝑞(𝒇 | 𝝍) ≜ N(𝝁𝜓 , 𝚺𝜓 ) is a parameterized multivari-
ate Gaussian distribution approximating 𝑝 (𝒇 | 𝒀 ); 𝑝 (𝒇 ) is the prior
Gaussian distribution; 𝑝 (𝑦 𝑗

𝑖
| 𝑧𝑖 ) is defined in Eq. (5), (6), (7), (8),

and 𝑝 (𝑧𝑖 | 𝑓𝑖 ) is defined in Eq. (3).
Finally, we apply the variational expectationmaximization (VEM)

algorithm [29] to maximize the objective function, which means
to 𝐸𝐿𝐵𝑂 (𝝍, 𝜽 ) + log𝑝 (𝜽 ). Both the E and M steps maximize the
same function, the difference is that the E step maximizes it with
respect to the parameters of 𝑞 (𝒇 ) while the M step maximizes it
with respect to the model parameters 𝜽 .

So far, we have found the Gaussian approximation 𝑞(𝒇 | 𝝁𝜓 , 𝚺𝜓 ).
We can infer the latent true label 𝑧∗ for a new point or an existing
point 𝒙∗. The derivation is similar to the vanilla GPC model:

𝑝 (𝑧∗ = 1 | 𝒙∗,𝑿 , 𝒀 ) = Φ (𝜇∗) . (11)

3.5 Model selection
We have introduced different GPLA models and their optimization.
A natural question left is how to choose between different GPLA
models. We propose to use the Bayes’ rule for model selection.
Suppose there is a set of different GPLAmodels under consideration,
denoted as {M𝑖 | 𝑖 = 1, 2, . . .}. The best model should be

argmax
𝑖

𝑝 (M𝑖 | 𝒀 ) . (12)

Using Bayes’ rule, we have

𝑝 (M𝑖 | 𝒀 ) =
𝑝 (𝒀 | M𝑖 ) 𝑝 (M𝑖 )

𝑝 (𝒀 ) (13)

Since we have no prior knowledge about the models, it is reason-
able to assume 𝑝 (M𝑖 ) is the same for each model. 𝑝 (𝒀 ) is the
marginalized likelihood and is the same for each model. Therefore,
optimizing Eq. (12) is equivalent to optimizing

argmax
𝑖

𝑝 (𝒀 | M𝑖 ) . (14)

Given the modelM𝑖 , note that 𝑝 (𝒀 | M𝑖 ) is Eq. (9), which is the
objective function for optimizing the model.

To sum up, model selection is to select the model that has the
highest likelihood value on the observed data, meaning to select
the model that most fits the observed data.

3.6 Complexity analysis
The model parameters are from the likelihood part and the GP
prior part. The number of parameter for the likelihood are 2𝑀 ,
𝑀 , 𝑁 +𝑀 , and 2𝑀 for GP-DS, GP-ZC, GP-GLAD, and GP-MACE,

Table 1: Statistics of the CS2010 and CS2011 datasets.

Data set CS2010 CS2011

# Examples 3,275 711
# Rel 1,775 589
# Nonrel 1,500 122
# Annotators 722 181
# Annotations 18,479 2,181

respectively. In addition, the GP prior contains 𝑁 (for 𝝁𝜓 ) and 𝑁 2

2
(for Σ𝜓 ) parameters for 𝑞(𝒇 ). It also contains 𝑁 parameters if a
linear mean function is used. For a constant zero mean function
and a pre-trained model as mean function, there is no parameter to
learn.

4 EXPERIMENTAL SETUP
4.1 Research questions
The overall question we want to answer is whether the introduction
of a Gaussian process (GP) prior can improve the performance of label
aggregation (LA) models in inferring latent true labels. Specifically,
we split the question into three aspects: (RQ1) Do the Gaussian
process-based label aggregation models outperform the underlying
LA models? (RQ2) What is the influence of label quality and the
number of labels per example on the performance of GPLAmodels?
(RQ3) How stable is the relative performance of GPLAmodels under
different crowd label generation assumptions?

4.2 Datasets
4.2.1 Real data. We evaluate our models on two real datasets.
They are from the TREC crowdsourcing track in 2010 (CS20102)
and 2011 (CS20113) and contain crowdsourcing relevance labels
between queries and documents. Each example is a tuple of query
ID, document ID, annotator ID, ground truth label, and crowd label.
We remove invalid examples that have broken document links, or
that have no ground truth labels, or that have no document texts
available. We also turn the original ternary scale into a binary scale
by mapping highly relevant or relevant labels to relevant labels
and the rest to non-relevant labels, i.e., we map label value 2 or 1
to 1 and keep 0 as the same. Consequently, 3,275 query-document
pairs with 18,479 crowd labels remain for CS2010 and 711 unique
query-document pairs with 2,181 crowd labels remain for CS2011.
The statistics of the two datasets after preprocessing are shown in
Table 1.

As the GPLA models require feature vectors from examples in
addition to their crowd labels, we augment each example in the
original data with a feature vector. We use the pre-trained BERT-
FirstP neural ranking model [5] because it uses the same document
collection as the two crowdsourcing datasets and thus can gen-
erate query-document feature vectors correlating well regarding
relevance labels. We input query [SEP] document and output the
vector of the [CLS] token as feature vectors.

4.2.2 Simulated data. We also evaluate our LA models on simu-
lated data. The benefits of simulated data are two-fold: (i) we have
ground truth values for all the parameters to estimate how accurate

2https://www.ischool.utexas.edu/~ml/data/trec-rf10-crowd.tgz
3https://sites.google.com/site/treccrowd/2011

https://www.ischool.utexas.edu/~ml/data/trec-rf10-crowd.tgz
https://sites.google.com/site/treccrowd/2011
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the models are in learning parameters; and (ii) we can control label
quality and the number of labels per example to study their impact
on model performance.

We propose a data simulation algorithm for each of the four
baseline LA models. See Algorithm 2 in the Appendix. First, for all
four LA models, we generate example features and example true
labels from two multi-dimensional Gaussian distributions, one as
positive and the other as negative. Second, we generate workers
and crowd labels based on the label generation process assumed
in DS, ZC, GLAD, and MACE, respectively. We adjust their corre-
sponding parameters to make sure around 10% annotators annotate
80% examples because it is empirically shown more than 80% of
the examples are annotated by only 10% of the workforce [17]. The
parameters are summarized in Table 6 in the Appendix.

4.3 Evaluation metric
The mainstream work on label aggregation uses standard classifica-
tion metrics like accuracy and F1. But we found it does not reflect
model performance well, the performance is not consistent among
different datasets. This is because a hard threshold, usually 0.5, is
used to discriminate between positive and negative predictions.
We claim that AUC is a better metric in such a case [10]. Instead
of the accuracy score or the F1 score which considers only one
threshold (e.g., 0.5), AUC provides an aggregate measure of perfor-
mance across all possible thresholds. Overall, AUC measures the
probability that the model ranks a random positive example more
highly than a random negative example. We report the AUC score
in our experiments.

4.4 Experiments
We conduct three experiments. (i) Our first experiment addresses
RQ1 by comparing the baseline LAmodels with their corresponding
GPLA extensions. In order to understand the impact of the input on
the performance of GPLA models, we also compare three variants:
(a) a zeromean function that uses crowd labels and example features
as input, (b) a linear mean function that uses crowd labels and
example features as input plus an extra parameter𝒘 that needs to
be learned, and (c) a pre-trained mean function that uses crowd
labels, example features, and a label prediction model as input. We
use two real crowd datasets, CS2010 and CS2011. (ii) Our second
experiment addresses RQ2 by comparing the performance of LA
and GPLA models on simulated datasets with varying label quality
and numbers of labels. We choose a data simulation algorithm
that has the same label generation assumptions as the model to be
evaluated, making sure that label quality and the number of labels
are the only changing factors. For example, we use the DS-sim
dataset to evaluate the DS and GP-DS models. For the number of
labels, we set 𝑃 = 1, 2, 3, 5; for label quality, we ensure that the
percentage of correct crowd labels per example is within the range
of [0.5, 0.55], [0.6, 0.65], [0.7, 0.75], or [0.8, 0.85] by controlling the
corresponding parameters of data simulation algorithms. We set
𝑁 = 1, 000 and 𝑀 = 10. We report the result of the GPLA models
with the zero function, where the main difference between a GPLA
model and the underlying LAmodel is whether example correlation
is modeled (using the covariance function of GP). (iii) Our third
experiment addresses RQ3 by comparing the performance of LA and

GPLA models under different crowd label generation assumptions.
There are four crowd label generation assumptions. For each, we
set 𝑃 = 3 and the label accuracy in [0.7, 0.75]. Thus, we have four
simulated datasets: DS-sim, ZC-sim, GLAD-sim, and MACE-sim.
We evaluate the LA and GPLA models on all the simulated datasets.
As in our second experiment, we use the zero function as the mean
function of the GP prior. Each experiment is repeated 5 times; we
report the average AUC scores over those repetitions.

4.5 Implementation
We use the implementation from Zheng et al. [43] for the four
baselines, DS, ZC, GLAD, MACE. We use GPflow [25] to imple-
ment our extensions with a GP prior, GP-DS, GP-ZC, GP-GLAD,
and GP-MACE. When optimizing the GPLA models, as we adopt a
Bayesian view, we need to specify the prior distributions for model
parameters, 𝑝 (𝜽 ). We use Gamma(1, 1) as the prior for all posi-
tive scalar parameters, N(0, 1) as the prior for all non-constrained
scalar parameters, and Beta(1, 1) as the prior for all distributional
parameters. The number of optimization epochs is set to 5 on simu-
lated data and 100 on real data to ensure model convergence. The
code that we used to produce our experimental results is publicly
available.4

5 RESULTS
5.1 Performance of label aggregation models

extended with a Gaussian process prior
Table 2 lists the mean AUC scores of the baseline LA models and
their extensions with a GP prior. GPLA models consistently outper-
form the underlying baseline models. The Gaussian process-based
label aggregation models are able to outperform the underlying
LA models by integrating example features and pre-trained label
prediction model.
Table 2: Mean AUC scores on real datasets of baseline LA
methods, their extensions with a GP prior.

Dataset

Model CS2010 CS2011

DS 0.7074 0.6451
ZC 0.5559 0.3917
GLAD 0.6307 0.5180
MACE 0.6919 0.5925

GP-DS 0.7368 ↑ 0.7522 ↑
GP-ZC 0.7368 ↑ 0.7522 ↑
GP-GLAD 0.7368 ↑ 0.7522 ↑
GP-MACE 0.7368 ↑ 0.7522 ↑

5.2 Quality of crowd labels
To answer RQ2, we study whether the extended LA models GP-X
perform better than the underlying LA models X on crowd sourced
data with different label quality (% of correct labels per example)
and different numbers of labels.

Table 3 shows the mean AUC scores of four groups of LA models,
where every group consists of one of the baseline LA models, DS,
4https://github.com/dli1/gp4la

https://github.com/dli1/gp4la
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ZC, GLAD, and MACE, plus its extension with a GP prior. We
discuss the results for DS and GP-DS. The results for GLAD, ZC,
and MACE are qualitatively similar. First, the performance of both
DS and GP-DS increases as the number of labels increases and
as label accuracy increases. Second, GP-DS performs better than
DS in most cases. When the label accuracy is within the range
of [0.5, 0.55], [0.6, 0.65], and [0.7, 0.75], GP-DS outperforms DS;
when the label accuracy is within the range of [0.8, 0.85], GP-DS
outperforms DS if the number of labels is 1 or 2, and slightly worse
than DS when the number of labels is 3 or 5. We believe that this is
due to the fact that when label quality is high, the likelihood part
𝑝 (𝒀 | 𝒛) plays a more important role than the prior 𝑝 (𝒇 )𝑝 (𝒛 | 𝒇 ).
Overall, the results indicate that modeling example correlation
through a GP prior can help improve the performance on label
aggregation in many settings.

Thus, the performance of the GPLA models and the LA models
increases when label accuracy increases and the number of labels
increases; the GPLA models outperform the LA models in most
cases and the improvement is especially large if there are only 1 or
2 labels per example or the example accuracy is less than 0.8.

5.3 Crowd data generation
Table 4 shows the AUC scores of LA and GPLA. First, the four
LA models do not generalize well across the four datasets. This
finding is similar to [24, 43]. For example, DS wins on the datasets
of DS-sim, ZC wins on the datasets of ZC-sim, GLAD-sim, and
MACE-sim. It also indicates that the assumption of label generation
process is a bottleneck that prevents these models generalizable
to different datasets. Second, the GPLA models generalize well to
the four datasets. On the four simulated datasets, the GPLA models
perform better than the corresponding LA models.

To sum up, the GP prior of the GPLA models makes them easy
to generalize to different datasets. This is a key capability of GPLA:
to introduce prior knowledge of true labels and model example
correlation; while the LA models do not have this capability, they
can only use the crowdsourcing labels to infer the true labels.

5.4 Discussion
5.4.1 Example feature. Example features play an important role
for GPLA. From the formula 𝜇∗ =𝑚(𝒙∗) + 𝐾∗𝐾−1 (𝝁𝜓 −𝑚(𝑿 )) in
Eq. (1), we know that the true label of a target example 𝒙∗ is roughly
determined by the weighted average of the of its neighbor example
labels, i.e., 𝝁𝜓 indicates the labels of neighbor examples and 𝐾∗𝐾−1

indicates the weights. Ideally, if the example features for the binary
classes have clearly separate clusters in their vector space, it will
be likely that the true label of the target example is the same with
its neighbors. However, if not clustered well, the target example
is surrounded with examples of different classes and the it is not
confident for the model to determine the true label.

Based on the discussion of example features, we can examine
the results on real data (Table 2) and simulated data (Table 3) again.
Figure 2 plots positive examples in blue and negative in yellow. It
shows that the example features for real data are not clustered well,
while the example features on simulated data are clustered well.
As a sequence, we observe that the performance improvement of
GPLA on real data is not as much as on simulated data.

Table 3: The impact of crowd label quality of simulated data;
mean AUC scores; ↑ indicates that the AUC score of an ex-
tension GP-X is higher than of the underlying model X.

Number % range of correct labels per example
Model of labels 0.5–0.55 0.6–0.65 0.7–0.75 0.8–0.85

D
S

1 0.5291 0.6259 0.7246 0.8283
2 0.5453 0.6832 0.8143 0.9197
3 0.5495 0.7176 0.8600 0.9560
5 0.5689 0.7831 0.9317 0.9890

G
P-
D
S

1 0.5481 ↑ 0.7932 ↑ 0.8870 ↑ 0.9229 ↑
2 0.6458 ↑ 0.8518 ↑ 0.9028 ↑ 0.9349 ↑
3 0.6040 ↑ 0.8723 ↑ 0.9215 ↑ 0.9434
5 0.6679 ↑ 0.8877 ↑ 0.9350 ↑ 0.9489

ZC

1 0.5211 0.6201 0.7189 0.8222
2 0.5263 0.6797 0.8144 0.9253
3 0.5479 0.7208 0.8711 0.9632
5 0.5627 0.7851 0.9309 0.9902

G
P-
ZC

1 0.6023 ↑ 0.8069 ↑ 0.8888 ↑ 0.9241 ↑
2 0.5863 ↑ 0.8501 ↑ 0.9071 ↑ 0.9325 ↑
3 0.6482 ↑ 0.8797 ↑ 0.9241 ↑ 0.9438
5 0.6409 ↑ 0.8907 ↑ 0.9328 ↑ 0.9472

G
LA

D
1 0.5066 0.6029 0.7074 0.8250
2 0.5190 0.6523 0.8159 0.9204
3 0.5026 0.6716 0.8898 0.9692
5 0.5215 0.7745 0.9618 0.9940

G
P-
G
LA

D 1 0.5552 ↑ 0.7875 ↑ 0.8763 ↑ 0.9192 ↑
2 0.5130 0.8189 ↑ 0.8939 ↑ 0.9298 ↑
3 0.5512 ↑ 0.8400 ↑ 0.9197 ↑ 0.9389
5 0.5494 ↑ 0.8739 ↑ 0.9310 0.9460

M
A
CE

1 0.5408 0.6489 0.7446 0.8560
2 0.5296 0.6533 0.7580 0.8441
3 0.5539 0.6970 0.8316 0.9330
5 0.5647 0.7389 0.8897 0.9732

G
P-
M
A
CE

1 0.6510 ↑ 0.8279 ↑ 0.8929 ↑ 0.9299 ↑
2 0.6476 ↑ 0.8714 ↑ 0.9151 ↑ 0.9375 ↑
3 0.6955 ↑ 0.8870 ↑ 0.9317 ↑ 0.9428 ↑
5 0.7394 ↑ 0.9074 ↑ 0.9377 ↑ 0.9486

An interesting future direction is to jointly optimize for both the
example features and the label aggregation model. A similar prob-
lem has been studied for node classification on graphs. For example,
Zhao et al. [42] proposed a variational expectation maximization
framework for text-attributed graphs which iteratively updates the
language model to generate better node representation and update
the graph neural network for better node classification. It will be
interesting to study its applicability in the label aggregation task.

5.4.2 Mean function. One advantage of a GPLA model over its
underlying LA model is that it has a mean function that can provide
prior knowledge of the true labels. Common options for a mean
function include the constant zero function, a linear function, and
any other functions such as a pre-trained label prediction model.
We compare three mean functions to understand their impact on
model performance.
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Table 4: The impact of the crowd label generation assump-
tions of simulated data; mean AUC scores; ↑ indicates that
the AUC score of an extension GP-X is higher than of the
underlying model X.

Dataset

DS- ZC- GLAD- MACE-
Model sim sim sim sim

DS 0.8600 0.8708 0.9023 0.8957
ZC 0.8593 0.8711 0.9053 0.8966
GLAD 0.8430 0.8615 0.8898 0.8889
MACE 0.8005 0.8046 0.8289 0.8316

GP-DS 0.9215 ↑ 0.9241 ↑ 0.9195 ↑ 0.9314 ↑
GP-ZC 0.9215 ↑ 0.9241 ↑ 0.9195 ↑ 0.9314 ↑
GP-GLAD 0.9214 ↑ 0.9241 ↑ 0.9197 ↑ 0.9314 ↑
GP-MACE 0.9215 ↑ 0.9243 ↑ 0.9199 ↑ 0.9317 ↑
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Figure 2: Visualization of example features from real data
(CS2010) and simulated data.

Results are shown in Table 5. First, GPLA models with a zero
mean function perform on par with their underlying LA models.
This indicates that example features may not correlate well with
true example labels. We leave the selection of example features
as future work. GPLA models with a linear mean function do not
perform better than LA. A possible reason is that the linear function
introduces extra parameters and thus makes the model under-fit to
the crowdsourcing data. To see this, the crowdsourcing labels used
for training are 𝑁 ×𝑀 , in practice, usually between 3N and 5N; the
GPLA models have 𝑁 + 𝑁 2

2 parameters for the GP prior part, plus
the number of parameters of the likelihood part, which is different
for each LAmodel. Finally, a pre-trained mean function consistently
outperforms other mean functions. Using a label prediction model
trained on existing data provides useful prior knowledge of true
labels and is important to learn an effective GPLA model.

5.4.3 Limitation of label aggregation. Throughout the paper, we
are assuming that the ground truth labels are always correct. How-
ever, in practical applications, the ground truth labels from experts
can also contain noise. Generally speaking, the experts are not nec-
essarily the experts on certain task by academic standards, but very
often simply the people the author of the annotation work knows.
The expert annotation becomes a matter of availability of human
resources to perform the annotation task. As a consequence, the
quality of the ground truth labels affects the training and evaluation
of the label aggregation models. We leave this issue for future work.

Furthermore, label aggregation models are helpful for relatively
objective tasks, but have limitations for subjective tasks requiring
human perception [2]. In these cases, a single ground truth label

Table 5: Impact of the mean function on GPLA; mean AUC
scores; ↑ indicates that the AUC score of an extension GP-X
is higher than of the underlying model X.

Dataset

Model Mean function CS2010 CS2011

GP-DS zero 0.6819 0.5646
GP-ZC zero 0.6819 ↑ 0.5646 ↑
GP-GLAD zero 0.6779 ↑ 0.5282 ↑
GP-MACE zero 0.5923 0.5424

GP-DS linear 0.5821 0.4751
GP-ZC linear 0.5959 ↑ 0.4749 ↑
GP-GLAD linear 0.5921 0.4755
GP-MACE linear 0.5923 0.4733

GP-DS pre-train 0.7368 ↑ 0.7522 ↑
GP-ZC pre-train 0.7368 ↑ 0.7522 ↑
GP-GLAD pre-train 0.7368 ↑ 0.7522 ↑
GP-MACE pre-train 0.7368 ↑ 0.7522 ↑

does not even exist. For example, in the annotation of offensive
language, the same message can be perceived as abusive by one
annotator and not abusive by another annotator. The labels are
inherently associated with each individual annotator. It may make
more sense to model the downstream task directly using the pre-
aggregated data.

6 CONCLUSION
In this work, we have addressed the label aggregation task. We have
proposed a way of extending LA models by integrating a GP prior,
which results in GPLA models that can take as input crowd labels,
example features, and existing label prediction models to infer the
true labels, while the original LA can only leverage crowd labels.
We have presented GP extensions of four baseline label aggregation
models, DS, ZC, GLAD, and MACE. GP extensions of other LA
models can be derived following these examples.

We have conducted experiments on both simulated and real data.
We find that with different label accuracy and numbers of labels,
the GPLA models perform better than the LA models in most cases;
the improvement is especially large for small numbers of labels or
low label accuracy. We also find that the GPLA models outperform
the original LA models on multiple datasets with different label
generation assumptions.

An important direction for future work is to adapt the GPLA
for multi-class labels. The key idea is to replace the single GP by
multiple GPs and replace the probit function by a softmax function.
Since we observed that example features plays an important role
for GPLA, another interesting direction is to jointly optimize for
both the example features and the label aggregation model.
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A SIMULATED DATA
In this appendix we describe the algorithm used to generate sim-
ulated data and the parameters used to generate the simulated
datasets in our experiments.
Algorithm 2 Simulated crowd label generation.
Input: Number of examples 𝑁 , number of workers𝑀 , number of
labels per example 𝑃 , example feature dimension 𝐷 .
Parameter: Union distribution parameters 𝑙, ℎ ∈ [0, 1], GLAD
parameter 𝜇.
Out: List of tuples (example id, example feature, worker id, true
label, crowd label).
1: # Generate 𝑁 examples.
2: for 𝑖 = 1 to N do
3: Sample a true label 𝑧𝑖 from 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (0.5).
4: Sample an example feature 𝒙𝑖 from N(𝐼 [𝑧𝑖 , :], 𝐼 ).
5: end for
6: // Generate𝑀 workers.
7: for 𝑗 = 1 to𝑀 do
8: if DS then
9: Sample 𝑝 𝑗 fromU(𝑙, ℎ) and set

𝚲
𝑗 = [[𝑝 𝑗 , 1 − 𝑝 𝑗 ], [1 − 𝑝 𝑗 , 𝑝 𝑗 ]] as the confusion matrix.

10: else if ZC then
11: Sample the worker competence value 𝜂 𝑗 fromU(𝑙, ℎ).
12: else if GLAD then
13: Sample the worker competence value 𝛽 𝑗 from N(𝜇, 1).
14: else if MACE then
15: Set the worker label preference 𝜉 𝑗 = 0.5.
16: end if
17: end for
18: // Generate 𝑁 × 𝑃 crowd labels.
19: for 𝑖 = 1 to 𝑁 do
20: Sample 𝑃 workers {𝑖1, . . . , 𝑖𝑃 } from 𝑝 ( 𝑗) = 𝑗−1.5∑𝑀

𝑗=1 𝑗
−1.5 .

21: for 𝑗 = 𝑖1 to 𝑖𝑃 do
22: if DS then
23: Sample a crowd label 𝑦 𝑗

𝑖
from Bernoulli(𝜆 𝑗

𝑧𝑖1).
24: else if ZC then
25: Sample 𝑠 𝑗

𝑖
from Bernoulli(𝜂 𝑗 ). If 𝑠 𝑗𝑖 = 1, the worker

gives a correct label, 𝑦 𝑗
𝑖
= 𝑧𝑖 ; else 𝑦

𝑗
𝑖
= 1 − 𝑧𝑖 .

26: else if GLAD then
27: Sample 𝑠 𝑗

𝑖
from Bernoulli( 1

1+𝑒−𝛼𝑖 𝛽𝑗
). If 𝑠 𝑗

𝑖
= 1, the

worker gives a correct label, 𝑦 𝑗
𝑖
= 𝑧𝑖 ; else 𝑦

𝑗
𝑖
= 1 − 𝑧𝑖 .

28: else if MACE then
29: Sample 𝑠 𝑗

𝑖
from Bernoulli(𝜖 𝑗 ). If 𝑠 𝑗𝑖 = 1, the worker

gives a correct label, 𝑦 𝑗
𝑖
= 𝑧𝑖 ; else, the worker guesses a

label 𝑦 𝑗
𝑖
from Bernoulli(𝜉 𝑗 ).

30: end if
31: end for
32: end for

Table 6: Parameters for generating the simulated data.

% range of correct labels per example
#labels 0.5–0.55 0.6–0.65 0.7–0.75 0.8–0.85

DS Parameters: (𝑙, ℎ)
1 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)
2 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)
3 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)
5 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)

% of correct labels per example

1 0.52 0.62 0.71 0.82
2 0.55 0.64 0.74 0.83
3 0.53 0.63 0.72 0.82
5 0.53 0.63 0.72 0.82

ZC Parameters: (𝑙, ℎ)
1 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)
2 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)
3 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)
5 (0.5, 0.55) (0.6, 0.65) (0.7, 0.75) (0.8, 0.85)

% of correct labels per example

1 0.55 0.65 0.74 0.83
2 0.55 0.64 0.73 0.83
3 0.52 0.63 0.72 0.82
5 0.53 0.64 0.73 0.82

GLAD Parameters: (𝑙, ℎ, 𝜇)
1 (0.2, 0.4, 0.2) (0.4, 1.0, 1.0) (1.0, 1.4, 1.0) (1.4, 2.0, 1.0)
2 (0.4, 1.0, 0.2) (0.4, 1.0, 1.0) (1.0, 1.4, 1.0) (1.4, 2.0, 1.2)
3 (1.0, 1.4, 0.2) (0.4, 1.0, 1.0) (1.0, 1.4, 1.0) (1.4, 2.0, 1.2)
5 (1.4, 2.0, 1.0) (0.4, 1.0, 1.0) (1.0, 1.4, 1.0) (1.4, 2.0, 1.2)

% of correct label per example

1 0.51 0.62 0.75 0.82
2 0.54 0.63 0.74 0.83
3 0.52 0.61 0.73 0.82
5 0.51 0.61 0.72 0.80

MACE Parameters: (𝑙, ℎ)
1 (0.85, 1.0) (0.6, 0.8) (0.4, 0.6) (0.2, 0.4)
2 (0.85, 1.0) (0.6, 0.8) (0.4, 0.6) (0.2, 0.4)
3 (0.85, 1.0) (0.6, 0.8) (0.4, 0.6) (0.2, 0.4)
5 (0.85, 1.0) (0.6, 0.8) (0.4, 0.6) (0.2, 0.4)

% of correct labels per example

1 0.53 0.64 0.72 0.86
2 0.52 0.64 0.73 0.83
3 0.53 0.64 0.73 0.82
5 0.54 0.62 0.73 0.83
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