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ABSTRACT
Next basket recommendation (NBR) is a special type of sequential
recommendation that is increasingly receiving attention. So far,
most NBR studies have focused on optimizing the accuracy of the
recommendation, whereas optimizing for beyond-accuracy metrics,
e.g., item fairness and diversity remains largely unexplored. Recent
studies into NBR have found a substantial performance difference
between recommending repeat items and explore items. Repeat
items contribute most of the users’ perceived accuracy compared
with explore items.

Informed by these findings, we identify a potential “short-cut”
to optimize for beyond-accuracy metrics while maintaining high
accuracy. To leverage and verify the existence of such short-cuts,
we propose a plug-and-play two-step repetition-exploration (TREx)
framework that treats repeat items and explores items separately,
where we design a simple yet highly effective repetition module
to ensure high accuracy, while two exploration modules target
optimizing only beyond-accuracy metrics.

Experiments are performed on two widely-used datasets w.r.t.
a range of beyond-accuracy metrics, viz. five fairness metrics and
three diversity metrics. Our experimental results show that: (i) we
can achieve state-of-the-art performance w.r.t. accuracy via the de-
signed repetition module in TREx; and (ii) the simple TREx frame-
work achieves “better” beyond-accuracy performance than existing
sophisticated methods. Prima facie, this appears to be good news:
we can achieve high accuracy and improved beyond-accuracy met-
rics at the same time. However, we argue that the real-world value
of our algorithmic solution, TREx, is likely to be limited and reflect
on the reasonableness of the evaluation setup. We end up challeng-
ing existing evaluation paradigms, particularly in the context of
beyond-accuracy metrics, and provide insights for researchers to
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navigate potential pitfalls and determine reasonable metrics to con-
sider when optimizing for accuracy and beyond-accuracy metrics.
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1 INTRODUCTION
Recommender systems have become an essential instrument for
connecting people to the content, services, and products they need.
In e-commerce, more andmore consumers purchase food and house-
hold products online instead of visiting physical retail stores [18].
The COVID-19 pandemic has only accelerated this shift [33]. In this
scenario, consumers usually purchase a set of items at the same time,
a so-called basket. Next basket recommendation (NBR) is a type of
sequential recommendation that caters to this scenario: baskets are
the target of recommendation and historical sequential data consists
of users’ interactions with baskets. NBR has increasingly been at-
tracting attention in recent years [2]. Manymethods, based on differ-
ent machine learning techniques, have been proposed for accurate
recommendations, e.g., Markov chain (MC)-based methods [37, 41],
frequency and nearest neighbor-basedmethods [12, 15], RNN-based
methods [14, 19, 34, 49], and self-attention methods [9, 39, 50].
Repetition vs. exploration in NBR. Recently, Li et al. [24] have
assessed the performance of state-of-the-art NBR in terms of repeat
and explore items: items that a user has interacted with before
and items that they have never interacted with before, respectively.
The authors distinguish between the task of repetition recommen-
dation (recommending repeat items) and the task of exploration
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Table 1: Comparison of the repetition and exploration tasks
in NBR.

Aspect Repetition Exploration

Task difficulty Easy Difficult

Number of items Dozens Thousands

Item interactions Previous None

Users’ interest With feedback Without feedback

Task type Re-consume Infer new

recommendation (recommending explore items). Repetition and ex-
ploration recommendations have different levels of difficulty, where
recommending items that are regularly present in a user’s baskets
is shown to be a far easier task [24]. Building on these findings,
repetition-only [1, 17] and exploration-only [21]methods have been
proposed to optimize the accuracy of next basket recommendation.
Accuracy and beyond-accuracy metrics. Even though accuracy
naturally serves as the most important objective of recommenda-
tions, it is widely recognized that it should not be the sole focus.
Beyond-accuracy metrics such as item fairness [11, 13, 46, 47] and
diversity [8, 52, 53] also play crucial roles in evaluating recom-
mendation services. Such beyond-accuracy metrics have gained
increasing attention and have been optimized in a range of rec-
ommendation scenarios [48, 53]. In the NBR scenario, however,
beyond-accuracy metrics have been far less studied than accuracy-
based metrics. In this paper, we help to address this knowledge
gap. Following the paradigm of multiple-objective recommender
systems [16], it is widely recognized that there is a trade-off be-
tween accuracy and beyond-accuracy metrics. E.g., diversity goals
are reckoned to stand in contrast with accuracy. Put differently,
a method achieving a better beyond-accuracy performance while
maintaining the same level of accuracy performance is considered
to be a success [48, 53]. And how can we achieve a reasonable
balance between accuracy and beyond-accuracy metrics in NBR?
Potential “short-cuts” to balancing accuracy and beyond-
accuracy metrics. Besides the imbalance between repetition and
exploration [22–25], Li et al. also found that repeat items contribute
most of the accuracy, whereas the explore items in the recom-
mended basket contribute very little to the user’s perceived utility.
As Table 1 summarizes, there are essential differences between
the repetition and exploration tasks, which explain the substantial
performance differences between the two tasks.

Inspired by these findings, we hypothesize that there may be
a “short-cut” strategy to optimize for both accuracy and beyond-
accuracy metrics, which contains two aspects: (i) accuracy: Predict
repeat items to achieve good accuracy: predicting repeat items is
much easier than predicting explore items [24], and (ii) beyond-ac-
curacy: Use explore items to improve beyond-accuracy metrics: it is
very difficult to recommend quality explore items. Thus, exchange
the low accuracy that is typically achieved on such items for be-
yond-accuracy metrics, i.e., trade accuracy for diversity and item
fairness. We call this NBR strategy a short-cut strategy because it
avoids making the fundamental trade-off between accuracy and
beyond-accuracy metrics.

TREx framework. To operationalize our short-cut idea, and check
whether the “short-cut” strategy can be made to work, we pro-
pose the two-step repetition-exploration (TREx) framework. TREx
decouples the prediction of repeat items and explore items. Specif-
ically, TREx uses separate models for predicting (a) repeat items,
and (b) explore items, and then combines the outcomes of the two
prediction models to generate the next basket. In contrast, existing
NBR methods usually output the scores/probabilities of all items
and then select the top-𝑘 items to fill up a basket to be recommended,
ignoring the differences between repeat and explore items.

For TREx’s repeat item prediction, we propose a simple yet ef-
fective probability-based method, which considers the item char-
acteristics and users’ repurchase frequency. For exploration rec-
ommendations, we design two strategies that cater to the different
beyond-accuracymetrics. The flexibility of TREx allows us to design
suitable models for repetition and exploration, with the possibility
of controlling the proportions of repetition and exploration to inves-
tigate the relations between accuracy and various beyond-accuracy
metrics.
Findings and reflections. We consider two types of widely-used
beyond-accuracy metrics, i.e., diversity and item fairness. Specif-
ically, we investigate five fairness metrics (i.e., logEUR, logRUR,
EEL, EED, and logDP) [28, 36] and three diversity metrics (i.e.,
ILD, Entropy, and DS) [48]. To provide an overall understanding
of these metrics, we group them according to different levels of
connection with accuracy as follows: (i) Strong connection: logRUR,
(ii) Weak connection: logEUR, EEL, EED (iii) No connection: logDP,
ILD, Entropy, DS. Briefly, the strong connection between logRUR
and accuracy stems from the fact that logRUR uses ground truth
relevance to discount the exposure, making sure that only correctly
predicted items contribute to effective exposure. The connection be-
tween logEUR, EEL, and accuracy is weak because they just ensure
the exposure distribution across groups of recommended results is
close to the group exposure distribution of ground truth, without
considering whether the exposure is contributed by correctly pre-
dicted items. Since the position weighting model of EED considers
ground truth, EED shows a weak connection. There is no connec-
tion between accuracy and logDP, ILD, Entropy, and DS because
their exposure distributions across groups are designed to reflect
a specific distribution. The strength of the connection between a
beyond-accuracy metric and accuracy determines whether there
is a short-cut towards optimizing both accuracy and the beyond-
accuracy metric.

We perform experiments on two brick-and-mortar retailers’ NBR
datasets, considering six NBR baselines and eight metrics. The
experimental results show that: (1) State-of-the-art accuracy can
be achieved by only recommending repeat items via the proposed
simple yet effective repetition model. (2) Leveraging the “short-cut”
using TREx achieves “better” beyond accuracy performance w.r.t.
seven out of eight beyond-accuracy metrics. (3) In terms of the
item fairness metric having a strong connection with the accuracy
(i.e., logRUR), it is more difficult to achieve better beyond-accuracy
metrics via the proposed strategy.
Stepping back. Instead of blindly claiming TREx with the designed
modules as a state-of-the-art method for optimizing both accuracy
and various beyond-accuracy metrics, we reflect and challenge our
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evaluation paradigm in the definition of success in this setting. The
core question is:

Are we really achieving better beyond-accuracy perfor-
mance in next basket recommendation?

Two perspectives offer different ways forward for researchers and
practitioners to address this question:
(1) If we are willing to sacrifice the accuracy of the exploration,

then superior beyond-accuracy performance can be achieved by
leveraging the “short-cut” strategy via TREx, which is straight-
forward and efficient. This “short-cut” strategy must be con-
sidered before developing more sophisticated and elaborate
approaches.

(2) Conversely, if we believe it is unreasonable to sacrifice the accu-
racy of exploration [45], the existence of the “short-cut” strategy
reveals flaws in our current evaluation paradigm to demon-
strate an NBR method’s superiority. A fine-grained analysis
(i.e., distinguishing between repetition and exploration) needs
to be performed to check whether “better” beyond-accuracy is
achieved by triggering the “short-cut” strategy, which would
hurt the exploration accuracy after all.

Our contributions. The main contributions of the paper are:

• We identify a “short-cut” strategy (i.e., sacrificing accuracy for
exploration and using explore items to optimize for beyond-
accuracy metrics), which could achieve “better” beyond-accuracy
metrics without degrading accuracy.
• We propose a simple repetition recommendation model consid-
ering item features and users’ repurchase frequency, which can
achieve the state-of-the-art NBR accuracy by only recommending
repeat items.
• Wepropose TREx, a flexible two-step repetition-exploration frame-
work for NBR, which allows us to control the trade-off between
accuracy and beyond-accuracy metrics w.r.t. the recommended
baskets.
• We conduct experiments on two datasets w.r.t. eight beyond-
accuracy metrics, and find that leveraging “short-cuts” via TREx
can achieve better performance on a wide range of metrics. We
also find that the stronger the connection with accuracy, the
more challenging it becomes to utilize a “short-cut” strategy to
enhance a beyond-accuracy metric.
• We reflect on, and challenge, existing evaluation paradigms, and
find that a fine-grained level analysis can provide a complemen-
tary view of a method’s performance.

2 RELATEDWORK
We summarize related research on next basket recommendation
and beyond-accuracy metrics.
Next basket recommendation. The NBR problem has been stud-
ied for many years. Factorizing personalized Markov chains (FPMC)
[37] leverages matrix factorization and Markov chains to model
users’ general interest and basket transition relations. HRM [41] ap-
plies aggregation operations to learn a hierarchical representation
of baskets. RNNs have been adapted to the NBR task to learn long-
term trends by modeling the whole basket sequence. E.g., Dream
[49] uses max/avg pooling to encode baskets. Sets2Sets [14] adapts

an attention mechanism and adds frequency information to im-
prove performance. Some methods [19, 44] consider the underlying
item relations to get a better representation. Yu et al. [50] argue
that item-item relations between baskets are important, and lever-
age GNNs to use these relations. Some methods [3, 20, 39, 42] ex-
ploit auxiliary information, including product categories, amounts,
prices, and explicit timestamps. TIFUKNN [15] and UP-CF@r [12],
frequency-neighbor-based methods, model temporal patterns, and
then combine these with neighbor information or user-wise collab-
orative filtering. Li et al. [24] provide several metrics to evaluate
repetition and exploration performance in the NBR task and find
that the repetition task is easier than the exploration task. Inspired
by this analysis, repetition-only [1, 17] and exploration-only [21]
models were proposed for next basket recommendation. Existing
NBR work mainly focuses on optimizing accuracy whereas this
paper extends to various beyond-accuracy metrics for NBR.
Beyond-accuracy metrics. In addition to accuracy, there are
various beyond-accuracy metrics (i.e., diversity, fairness, novelty,
serendipity, coverage) we need to consider when making recom-
mendations [11]. Diversity is a crucial factor in meeting the diverse
demands of users [7, 35, 43, 52]. Recently, empirical and revisita-
tion studies [29, 48] have been conducted to explore the trade-off
between accuracy and diversity. The concepts of fairness and item
exposure have emerged as crucial considerations since items and
producers play pivotal roles within a recommender system and
its ecosystem. Related metrics measure whether items receive a
fair share of exposure according to different definitions of fairness.
Current research on fairness primarily focuses on individual or
group fairness, either from the customer’s perspective, adopting
a user-centered approach [5], or from the provider’s viewpoint,
adopting an item-centered approach [30, 51], or a two-sided ap-
proach [31, 46, 47]. Recently, Liu et al. [28] evaluated item fairness
on existing NBR methods to investigate the robustness of different
fairness metrics. Unlike the work listed above, this paper is not
limited to optimizing a specific type of metric. It examines the pos-
sibility of leveraging a “short-cut” strategy to seemingly optimize
various beyond-accuracy metrics and provides insights w.r.t. evalu-
ation paradigms when extending NBR optimization and evaluation
to these beyond-accuracy metrics.

3 TASK FORMULATION AND DEFINITIONS
We describe the next basket recommendation problem and for-
malize the notions of repetition and exploration. Our notation is
summarized in Table 2.
Next basket recommendation. Given a set of users 𝑈 = {𝑢1,
𝑢2, . . . , 𝑢𝑛} and items 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑚}, 𝑆𝑢 = {𝐵1𝑢 , 𝐵2𝑢 , . . . , 𝐵𝑡𝑢 }
represents the historical interaction sequence for 𝑢, where 𝐵𝑡𝑢 is
the user’s basket at the time step 𝑡 . 𝐵𝑡𝑢 consists of a set of items
𝑖 ∈ 𝐼 , and the goal of the next basket recommendation task is to
predict 𝑃𝑢 = 𝐵𝑡+1𝑢 , the following basket of items that the user
would probably like, based on the user’s past interactions 𝑆𝑢 , i.e.,

𝑃𝑢 = �̂�𝑡+1𝑢 = 𝑓 (𝑆𝑢 ), (1)

where 𝑓 is our basket generation algorithm. We assume that the
user’s attention and screen space is limited; hence, like previous
studies [24, 28], we recommend fixed-size baskets of sizes 10 or 20.



SIGIR ’24, July 14–18, 2024, Washington, DC, USA Ming Li et al.

Table 2: Notation used in the paper; fairness related notation
is adapted from [28, 36].

Symbol Description

𝑢 ∈ 𝑈 Users
𝑖 ∈ 𝐼 Items
𝑆𝑢 Sequence of historical baskets for 𝑢
𝐵𝑡𝑢 𝑡-th basket in 𝑆𝑢 , a set of items 𝑖 ∈ 𝐼
𝐼
𝑟𝑒𝑝
𝑢,𝑡 Set of repeat items for 𝑢 up to timestamp 𝑡
𝐼
𝑒𝑥𝑝𝑙
𝑢,𝑡 Set of explore items for 𝑢 up to timestamp 𝑡
𝑇𝑢 Ground-truth basket for 𝑢 that we aim to predict
𝑇
rep
𝑢 Set of repeat items in the ground truth basket 𝑇𝑢 for 𝑢
𝑇
expl
𝑢 Set of explore items in the ground truth basket 𝑇𝑢 for 𝑢
𝑃𝑢 Predicted basket for 𝑢
𝑃
rep
𝑢 Set of repeat items in the predicted basket 𝑃𝑢 for 𝑢
𝑃
expl
𝑢 Set of explore items in the predicted basket 𝑃𝑢 for 𝑢

𝐺 (𝑃) Group alignment matrix for items in 𝑃

𝐺+ Popular group
𝐺− Unpopular group
a𝑃 Exposure vector for items in 𝑃

𝜖𝑃 The exposure of groups in 𝑃 (𝐺 (𝑃)𝑇 a𝑃 )

Repetition and exploration.We assume that the set of items is
fixed. Although this might not be the case in real-world settings,
modeling the addition and deletion of items in the set of items is
out of the scope of this paper. With this assumption in mind, the
addition of every new basket to the users’ history, may translate
into fewer items left to explore. To differentiate between the items
coming from the exploration and repeat consumption behavior, for
a user 𝑢 and timestamp 𝑡 , a set of items 𝐼 rep𝑢,𝑡 ⊂ 𝐼 are considered to

be the “repeat items.” The set of explore items 𝐼 expl𝑢,𝑡 is simply its
complement within the overall item set 𝐼 . We define 𝐼 rep𝑢,𝑡 as:

𝐼
rep
𝑢,𝑡 = 𝐼

𝑟𝑒𝑝

𝑢,𝑡−1 ∪ 𝐵
𝑡
𝑢 . (2)

This also means that 𝐼 rep
𝑢,1 ⊂ · · · ⊂ 𝐼

rep
𝑢,𝑡−1 ⊂ 𝐼

rep
𝑢,𝑡 . Conversely, we

have 𝐼 expl𝑢,𝑡 ⊂ 𝐼
expl
𝑢,𝑡−1 ⊂ · · · ⊂ 𝐼

expl
𝑢,1 .

The task of predicting the next basket for a user 𝑢 is equivalent
to predicting which items from 𝐼

𝑟𝑒𝑝
𝑢,𝑡 and 𝐼𝑒𝑥𝑝𝑙𝑢,𝑡 will appear in 𝐵𝑡+1𝑢 .

One way to solve this problem is to decouple it into two subtasks:
the repetition subtask that aims to predict which items from 𝐼

𝑟𝑒𝑝
𝑢,𝑡 to

recommend, and the exploration task that recommends items from
𝐼
𝑒𝑥𝑝𝑙
𝑢,𝑡 . Table 1 shows the different characteristics w.r.t. the repetition
and exploration tasks.

4 EVALUATION METRICS
Next, we describe the accuracy and beyond-accuracy metrics (i.e.,
fairness and diversity) considered in the paper.1

Accuracy. In terms of accuracy, we use threemetrics that are widely
used for the NBR task: 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 , 𝑁𝐷𝐶𝐺@𝑘 , and 𝑃𝐻𝑅@𝑘 . 𝑅𝑒𝑐𝑎𝑙𝑙
measures the ability to find all items that the user will purchase
in the next basket; NDCG is a ranking metric that also considers
the order of the items; PHR is a user level measurement which
1Due to space limitations, we only provide brief introductions of each metric; more
detailed information (e.g., function, responsibility, etc.) can be found in the original
papers and relevant survey papers [28, 36, 53].

represents the ratio of users whose recommended basket contains
the item in the ground-truth.
Fairness. Assume 𝜋 (𝑃 | 𝑢) is a user-dependent distribution and
𝜌 (𝑢) is a distribution over users; overall, the recommended item
rankings among all users follow the following distribution: 𝜌 (𝑢)𝜋 (𝑃 |
𝑢). 𝜖𝑃 = 𝐺 (𝑃)Ta𝑃 is the group exposure within a recommended
basket.2 Its expected value 𝜖𝜋 = 𝐸𝜋𝜌 [𝜖𝑃 ] is the group exposure
among all the recommended baskets. Following [28, 36], we select a
set of well-known fairness metrics and cover two types of fairness
considerations as follows:3

(1) Equal opportunity. Promote equal treatment based on merit
or utility, regardless of group membership [28, 36]. (i) Exposed
Utility Ratio (EUR) [38] quantifies the deviation from the objective
that the exposure of each group is proportional to its utility 𝑌 (𝐺).
(ii) Realized Utility Ratio (RUR) [38] models actual user engagement,
the click-through rates for the groups Γ (𝐺) are proportional to
their utility. (iii) Expected Exposure Loss (EEL) [10] is the distance
between expected exposure and target exposure 𝜖∗, which is the
exposure under the ideal policy.
(2) Statistical parity. Ensure comparable exposure among groups.
(i) Expected Exposure Disparity (EED) [10] measures the inequal-
ity in exposure distribution across groups. (ii) Demographic Parity
(DP) [38] measures the ratio of average exposure given to the two
groups. Following [36], we reformulate DP as logDP to tackle the is-
sue of empty-group scenarios and improve interpretability. Exposed
Utility Ratio (logEUR) and Realized Utility Ratio (logRUR) are de-
fined in a similar manner.
Diversity. Following [48], we consider the following widely-used
diversity metrics, which satisfy users’ diversified demands. (i) In-
tra-List Distance (ILD) [6, 7] measures the average distance between
every pair of items in the recommendation list (𝑃𝑢 ), where 𝑑𝑖 𝑗
is the Euclidean distance between the respective embeddings of
categories (ii) Entropy [43, 54] quantifies the dispersion of item cat-
egory distribution in the recommendation list 𝑃𝑢 ; a higher degree
of dispersion in the category distribution corresponds to increased
diversity. (iii) Diversity Score (DS) [27] is calculated as the num-
ber of interacted/recommended categories divided by the number
of interacted/recommended items. As shown in Table 3, we can
group beyond-accuracy metrics according to their connection with
accuracy.

5 A TWO-STEP REPETITION-EXPLORATION
FRAMEWORK

Given the differences depicted in Table 1, we propose a two-step
repetition-exploration (TREx) framework for NBR. TREx assembles
recommendations from a repetition and an exploration module.
TREx allows one to easily swap out the sub-algorithms used for
repetition and exploration. In the first step, we model the repetition
and exploration behavior separately to get candidates from both
sources. Then, we generate the recommended basket from those
candidates in the second step. The main architectural differences
between previous approaches to the NBR problem, which typically
2The formula to compute the exposure vector a𝑃 using different position weighting
models can be found in [28, 36].
3Item fairness metric Inequity of Amortized Attention [4] is not used in this paper
since some baselines do not have predicted relevance for items.
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Table 3: Summary of fairness and diversity metrics; fairness metrics are adapted from [36]. ↑ indicates that higher values are
better; ↓ indicates that lower values are better; ◦means that the closer the value is to 0, the better the performance.

Category Metrics Goal Better Accuracy connection

Equal
opportunity

logRUR Click-through rate proportional to relevance ◦ Strong
logEUR Exposure proportional to relevance ◦ Weak
EEL Exposure matches ideal (from relevance) ↓ Weak

Statistical
parity

EED Exposure well-distributed ↓ Weak
logDP Exposure equal across groups ◦ None

Diversity
ILD Average distance between categories for each pair of items in the list ↑ None
Entropy Entropy of item category distribution in the list ↑ None
DS Number of categories divided by the number of items in the list ↑ None

Algorithm 1: TREx Framework
Data: Basket sequence 𝑆 , basket size 𝑘 , repetition

confidence threshold 𝑣
Result: Recommended basket 𝐵𝑡+1𝑢 for each user 𝑢,

1 Calculate the repetition feature RepI (𝑖) for each item;
2 for each user 𝑢 do
3 Get repeat items 𝐼 rep𝑢,𝑡 , and explore items 𝐼 expl𝑢,𝑡 ;
4 Calculate the repetition score RepS𝑢 (𝑖) for each 𝑖 ∈ 𝐼 rep𝑢,𝑡 ;
5 Remove items 𝑖 from 𝐼

rep
𝑢,𝑡 , when RepS𝑢 (𝑖) < 𝑣 ;

6 Rank 𝐼 rep𝑢,𝑡 according to RepS𝑢 (𝑖) in descending order;
7 Initialize next basket 𝐵𝑡+1𝑢 ;
8 if |𝐼 rep𝑢,𝑡 | < 𝑘 then
9 Fill 𝐵𝑡+1𝑢 using 𝐼 rep𝑢,𝑡 ;

10 m← 𝑘 − |𝐼 rep𝑢,𝑡 |;
11 Fill m empty slots of 𝐵𝑡+1𝑢 using explore items via

exploration module;
12 else
13 Fill 𝐵𝑡+1𝑢 using top-𝑘 of 𝐼 rep𝑢,𝑡 ;
14 end
15 end

consists of a single treatment of all items, and TREx, which treats
repeat and explore items differently. The pseudo-code for TREx is
given in Algorithm 1. Next, we describe the three modules that
make up TREx.4

5.1 Repetition module
As the repetition task is a much simpler task than exploration, we
therefore design a repetition module targeted at improving the
accuracy. Intuitively, if a user consumed an item several times in
the past, they are likely to repurchase that item in the next bas-
ket. Thus, frequency information is a strong signal for repetition
prediction [40]. The personal item frequency (PIF) introduced in
TIFUKNN [15] and the recency window in UP-CF@r[12] both cap-
ture temporal dependencies by focusing more on recent behavior.
However, they do not capture the item characteristics w.r.t. repur-
chasing. For example, a purchase of a bottle of milk and a pan is
more likely to be followed by a repurchase of milk rather than a

4Theoretically, TREx allows us to choose or design the suitable repetition and explo-
ration modules both targeted at the accuracy to achieve state-of-the-art performance.
However, we aim to investigate the “short-cut” and relationship between accuracy
and various beyond-accuracy metrics.

pan, even if both currently have the same purchase frequency. To
consider both item features and user interest simultaneously, we
use the repetition score RepS𝑢 (𝑖) to represent the repurchase score
of item 𝑖 for user 𝑢. This score is decomposed into two parts, the
item-specific repurchase feature RepI (𝑖) and the user’s interest 𝐸𝑢

𝑖
in item 𝑖 . Formally:

RepS𝑢 (𝑖) = 𝐸𝑢𝑖 · RepI (𝑖) . (3)
This corresponds to line 4 in Algorithm 1. Given the items in the
dataset 𝐼 = {𝑖1, 𝑖2, . . . , 𝑖𝑚}, we need to derive the repurchase fea-
ture RepI (𝑖) for each item in the training set. First, the repurchase
frequency 𝑅𝑒𝑝𝐹 (𝑖) can be calculated by gathering the statistical
information across users. To mitigate the impact of abnormally
high values in some users, we introduce a hyperparameter 𝛼 to
discount the repurchase frequency of item 𝑖 .

Rep𝐹 (𝑖) =
∑
𝑈 (item 𝑖 repurchase frequency)𝛼

#users who bought item 𝑖 at least once
. (4)

In addition, some items might only have a few samples, which
might lead to low confidence about their repetition feature esti-
mation. We leverage the average estimate RepF across all items as
supplementary information to help items with a few samples. Then,
the final repetition feature is given by:

RepI (𝑖) = Rep𝐹 (𝑖) + RepF
𝑁𝑖

, (5)

where 𝑁𝑖 is the number of users who bought item 𝑖 . Thus, the
average RepF will have a small effect on RepI (𝑖) when we have
more samples to compute item-specific features. This corresponds
to line 1 in Algorithm 1.

The item frequency in a user’s historical baskets can partially
reflect the user’s interest. Yet, user interests can also be dynamic.
To model temporal dependencies, we introduce a time-decay factor
𝛽 , which makes the recent interactions have more impact on the
interest 𝐸𝑢

𝑖
. Assume that a specific item 𝑖 was purchased by the

user 𝑢 several times in their historical baskets {𝐵𝑙1𝑢 , 𝐵𝑙2𝑢 , . . . , 𝐵𝑙𝑚𝑢 };
the corresponding position set is denoted as 𝐿𝑖 = {𝑙1, 𝑙2, . . . , 𝑙𝑚};
then 𝐸𝑢

𝑖
is defined as:

𝐸𝑢
𝑖
=
∑𝑚

𝑗=1 𝛽
𝑇−𝑙 𝑗 , (6)

where 𝑇 represents the length of the user’s basket. TREx’s repeat
recommendation model takes item features, user interests, and the
temporal order of baskets into consideration. We treat the items in
baskets independently and calculate the repetition score RepS for
all items that appeared in the previous baskets for each user, which
will be used in the final basket generation process.
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Table 4: Statistics of the processed datasets.

Dataset #items #users
Avg.
basket
size

Avg.
#baskets
per user

Repeat
ratio

Explore
ratio

Instacart 29,399 19,210 10.06 15.91 0.60 0.40
Dunnhumby 37,162 2,482 10.07 43.17 0.43 0.57

5.2 Exploration module
As it is more challenging than repetition, exploration is also an
important aspect of NBR. To complement the repetition module,
we design different explorationmodules, targeting item fairness and
diversity, respectively. For each user 𝑢, the exploration candidates
𝐼
𝑒𝑥𝑝𝑙
𝑢,𝑡 are the set of items that the user never bought before.
Item fairness. According to [24], we find that NBR methods usu-
ally have varying degrees of popularity bias, which means they
recommend more popular items compared to the ground truth
and harm item fairness. Thus, we recommend unpopular items
𝑖 ∈ 𝐺−for the exploration module for the sake of approaching
the distribution of ground truth and decreasing the exposure gap
between the popular and the unpopular groups. Specifically, we ran-
domly sample explore items based on a sampling probability, which
is calculated from the purchase frequency of unpopular items.
Diversity. Diversity optimizes for more dispersed categories in the
predicted basket. For each user, we record categories of repetition
candidates, rank exploration candidates according to their popular-
ity, and select explore items to fill in the 𝐵𝑡+1𝑢 in turn. The category
of each explore item differs from the categories already in 𝐵𝑡+1𝑢 .

5.3 Basket generation module
To construct the final basket to be recommended by TREx for the
accuracy objective, we adopt a repetition greedy approach and first
consider the item candidates generated by the repetition module
and fill the remaining slots via the exploration module. TRExFairness
and TRExdiversity denote TREx with the exploration module tar-
geted at fairness and diversity, respectively. For a user 𝑢, we get
their repetition score RepSu (𝑖), where 𝑖 ∈ 𝐼 rep𝑢,𝑡 (Algorithm 1, lines 3–
4). First, we define a confidence threshold 𝑣 for the repetition score
and repetition items are removed from the 𝑖 ∈ 𝐼 rep𝑢,𝑡 when the cor-
responding RepSu (𝑖) < 𝑣 (line 5).5 Then, 𝐼 rep𝑢,𝑡 can be seen as the
repetition candidates set. If the number of repetition candidates ex-
ceeds the basket size, the items with a high score will have priority
to fill the basket (Algorithm 1, line 13). If the number of repetition
candidates is smaller than the basket size, the basket is first filled
with all items in the repetition candidates set 𝐼 rep𝑢,𝑡 . Then, we fill
up the basket using the explore items via the exploration module,
where𝑚 represents the number of empty slots (lines 9–11).

6 EXPERIMENTS
6.1 Experimental setup
Datasets.We conduct experiments on two widely-used datasets:
(i) Instacart,6 which includes a large number of grocery orders from

5The confidence threshold 𝑣 controls the proportion of repeat items and explore items
in the recommendation, as well as the accuracy and beyond-accuracy trade-off in this
paper. We sweep repetition confidence bound 𝑣 to get TREx variants with different
accuracy and beyond-accuracy metrics performance.
6https://www.kaggle.com/c/instacart-market-basket-analysis/data

users; following [28, 32], ∼20000 users are randomly selected to
conduct experiments; and (ii) Dunnhumby,7 which contains two
years’ household-level transactions of 2500 frequent shoppers at a
retailer. Following [1, 28], we sample users who have at least three
baskets and remove items that appeared less than five times. The
two datasets vary in the repeat ratio, i.e., the proportion of repeat
items in the ground-truth baskets [24]. We focus on the fixed size
(10 or 20) NBR problem. The statistics of the processed datasets are
shown in Table 4. In our experiments, each dataset is partitioned
according to [1, 12, 28, 32]. The training baskets encompass all
user baskets except the last one. In cases where users have over 50
baskets in the training data, only their last 50 baskets are considered
for inclusion in the training set. The final baskets of all users are
then divided equally between a 50% validation set and a 50% test
set. Figure 1 shows the distribution of users across repeat ratios,
which is the proportion of repeat items in the ground-truth basket.
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Figure 1: Distribution of users across different repeat ratios
for Instacart and Dunnhumby.

NBR baselines. We compare TREx with 8 representative base-
lines, which we select based on their characteristics in the analysis
performed in [24, 28], divided into three groups:
6.1.1 Simple baselines. (i) G-TopFreq uses the 𝑘 most popular
items in the dataset to form the recommended next basket. (ii) P–
TopFreq is a personalized TopFreq method, which treats the most
frequent 𝑘 items in historical records of the user as the next basket.
(iii) GP-TopFreq [24] is a simple combination of P-TopFreq and
G-TopFreq, which first use P-TopFreq to fill the basket, then use
G-TopFeq to fill the remaining slots.
6.1.2 Nearest neighbor-based methods. (i) TIFUKNN [15] is a
state-of-art method thatmodels the temporal dynamics of frequency
information of users’ past baskets to introduce Personalized Fre-
quency Information (PIF), then it uses KNN-based method on the
PIF. (ii)UP-CF@r [12] is a combination of recency aware user-wise
popularity and user-wise collaborative filtering.
6.1.3 Neural network-based methods. (i) Dream [49] models users’
global sequential basket behavior for NBR using recurrent neu-
ral network (RNN). (ii) DNNTSP [50] is a state-of-art method that
leverages a GNN and self-attention techniques. It encodes item-item
relations via a graph and employs a self-attention mechanism to
capture temporal dependencies of users’ basket sequences. (iii) Re-
CANet [1] is a repeat-only model for NBR, which uses user-item
representations with historical consumption patterns via RNN.
Configurations. To assess group fairness (Section 4), we follow
configurations from previous research [26, 28]; the group of items
is determined by their popularity (i.e., the number of purchases

7https://www.dunnhumby.com/source-files/

https://www.kaggle.com/c/instacart-market-basket-analysis/data
https://www.dunnhumby.com/source-files/
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Figure 2: Performance of TREx-Rep when we add a time-
decay factor 𝛽 (+T), add both 𝛽 and item-specific repetition
feature 𝑅𝑒𝑝𝐼 (𝑖) (+T+RF).

recorded in the historical baskets of the dataset). The top 20% of
items with the highest purchase frequency as the popular group
(𝐺+), while the remaining 80% of items are assigned to the un-
popular group (𝐺−). For the baseline methods, a grid search is
performed to find the optimal hyper-parameters via the valida-
tion set. For TIFUKNN, the number of neighbors 𝑘 is tuned on
{100, 300, 500, 900, 1100, 1300}, the number of groups𝑚 is tuned on
{3, 7, 11, 15, 19, 23}, the within-basket time-decayed ratio 𝑟𝑏 and the
group time-decayed ratio 𝑟𝑔 are selected from {0.1, 0.2, . . . , 0.9, 1},
and the fusion weight 𝛼 is selected from {0, 0.1, . . . , 0.9, 1}. For UP-
CF@r, recency window 𝑟 is tuned on {1, 5, 10, 25, 100,∞}, locality
𝑞 is tuned on [1, 5, 10, 50, 100, 1000], and asymmetry 𝛼 is tuned on
{0, 0.25, 0.5, 0.75, 1}. For Dream, DNNTSP, and ReCANet, the item
and user embedding size is tuned on {16, 32, 64, 128}. As to TREx,
for the repetition module, 𝛼 is selected from {0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, and the time-decay factor 𝛽 is selected
from {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}. To facilitate reproducibility,
we release the source code and all hyper-parameters in an online
repository: https://github.com/lynEcho/TREX.

6.2 Overall accuracy performance
By decoupling the repetition and exploration tasks, TREx-Rep opti-
mizes for the repeat items prediction and accounts for the accuracy
of the NBR performance. Table 5 shows the experimental results
for TREx-Rep and the baselines. We observe that TREx-Rep sur-
passes two complex deep learning-based methods (i.e., Dream and
DNNTSP) by a large margin on the Dunnhumby and Instacart
datasets, and TREx-Rep always achieves or matches the SOTA ac-
curacy on both datasets across different accuracy metrics. Note that,
TREx-Rep achieves a competitive accuracy performance by only
using part of the available slots in the basket.8 Compared to the
deep learning methods with complex architectures that try to learn
basket representations and model temporal relations, TREx-Rep is
very efficient due to its simplicity.

To investigate the effect of the repetition features and the im-
provement in repetition performance in NBR. We conduct experi-
ments on TREx-Rep by gradually adding the time-decay factor 𝛽 and
item-specific repetition feature RepI (𝑖). The results are shown in
Figure 2. The accuracy increases when we gradually integrate differ-
ent factors into TREx-Rep, which indicates that both the time-decay
factor 𝛽 and the item-specific repetition feature 𝑅𝑒𝑝𝐼 (𝑖) contribute

8As TREx-Rep only recommends repeat items, the basket could not be fulfilled when
the number of user’s repeat items (historical items) is smaller than the basket size.
ReCANet also only recommends repeat items, however, it is a complex neural-based
model, which is much slower than the proposed TREx-Rep module.
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Figure 3: The recall improvement of (+T+RF) over (+T) when
the training sample ratio changes from 0.2 to 1.
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Figure 4: Performance of TREx𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 at different 𝑣 values,
compared with different NBR methods in terms of different
diversity metrics. The red +marker indicates the direction
with both high accuracy and diversity.

to the accuracy performance of TREx-Rep. Significant improve-
ments over only using the time-decay factor 𝛽 can be observed on
the Dunnhumby dataset when the item-specific repetition feature
𝑅𝑒𝑝𝐼 (𝑖) is also adopted to compute the repetition score 𝑅𝑒𝑝𝑆𝑢 (𝑖).
Note that the improvement of adding 𝑅𝑒𝑝𝐼 (𝑖) to TREx-Rep on the
Instacart dataset is relatively small. We conjecture that items in
the Instacart dataset are more regular products, that have little
difference in repetition feature with each other. Figure 3 shows the
performance when using different amounts of training samples,
the improvement in recall resulting from adding 𝑅𝑒𝑝𝐼 (𝑖) increases
when we use more training data since we have more samples for
estimating the repetition feature 𝑅𝑒𝑝𝐼 (𝑖).

6.3 Beyond-accuracy performance
We conduct experiments to verify whether TREx with the designed
models (i.e., TREx𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 and TREx𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 ) could achieve better
performance on representative diversity and item fairness metrics.
Note that, the recommended basket remains fixed for a specific
user in existing baselines, resulting in fixed performance regarding
both accuracy and beyond-accuracy metrics on each dataset. In con-
trast, TREx provides the flexibility to adjust the trade-off between
accuracy and beyond-accuracy metrics by adjusting the repetition
confidence bound 𝑣 . This allows for a more nuanced control over
the recommendation process compared to traditional baselines.

https://github.com/lynEcho/TREX
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Table 5: Comparison of TREx-Rep (repetition-module only) against baselines and two types of state-of-art methods; boldface
indicates the maximum; underlining indicates the second best performing method. † indicates that TREx-Rep results achieve
the same level of performance as SOTA baselines (paired t-test).

Dataset Metric G-TopFreq P-TopFreq GP-TopFreq UP-CF@r TIFUKNN Dream DNNTSP ReCANet TREx-Rep

In
st
ac
ar
t

Recall@10 0.0704 0.3143 0.3150 0.3377 0.3456 0.0704 0.3295 0.3490 0.3476†
NDCG@10 0.0817 0.3339 0.3343 0.3582 0.3657 0.0817 0.3434 0.3699 0.3661†
PHR@10 0.4600 0.8447 0.8460 0.8586 0.8639 0.4600 0.8581 0.8668 0.8655†
Recall@20 0.0973 0.4138 0.4168 0.4405 0.4559 0.0979 0.4339 0.4562 0.4557†
NDCG@20 0.0962 0.3889 0.3902 0.4161 0.4271 0.0968 0.4018 0.4303 0.4269†
PHR@20 0.5302 0.8921 0.8959 0.9045 0.9098 0.5346 0.9033 0.9097 0.9092†

D
un

nh
um

by

Recall@10 0.0897 0.1628 0.1628 0.1699 0.1763 0.0896 0.0871 0.1730 0.1815†
NDCG@10 0.0798 0.1562 0.1562 0.1639 0.1683 0.0759 0.0792 0.1625 0.1689†
PHR@10 0.3795 0.5399 0.5399 0.5536 0.5729 0.3873 0.4303 0.5655 0.5761†
Recall@20 0.1046 0.2075 0.2075 0.2168 0.2227 0.1081 0.1442 0.2252 0.2257†
NDCG@20 0.0877 0.1787 0.1787 0.1885 0.1917 0.0853 0.1021 0.1879 0.1921†
PHR@20 0.4392 0.6116 0.6116 0.6326 0.6342 0.4558 0.5378 0.6377 0.6390†

Diversity. The experimental results w.r.t. the accuracy and different
diversity metrics (i.e., ILD, Entropy, and DS) are shown in Figure 4.9
We have the following observations: (1) Compared to methods (i.e.,
TIFUKNN and ReCANet) with the best accuracy, TRExDiversity can
achieve better performance in terms of all three diversity metrics
while preserving the same level of accuracy on both datasets. (2) In
contrast to other baseline methods (excluding TIFUKNN and Re-
CANet), TRExDiversity showcases the ability to recommend baskets
with enhanced accuracy and diversity simultaneously.
Item fairness. The experimental results regarding the accuracy
and five fairness metrics (LogRUR, logEUR, logDP, EEL, and EED)
are depicted in Figure 5. Based on our analysis, we make the fol-
lowing observations: (i) On the Dunnhumby dataset, TREx𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠
demonstrates superior fairness w.r.t. logDP and logEUR while main-
taining the same level of accuracy performance as the best-per-
forming baselines (i.e., TIFUKNN and ReCANet). Similarly, on
Dunnhumby, TREx𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 showcases enhanced fairness across
four fairness metrics (logDP, logEUR, EEL, and EED) while achiev-
ing accuracy performance comparable to the best-performing base-
lines. (ii) TRExFairness demonstrates its capability to recommend bas-
kets with improved accuracy and fairness w.r.t. logDP and logEUR
concurrently, when compared to complex baselines such as Dream,
UP-CF@r, and DNNTSP. (iii) In terms of logRUR, TRExFairness ex-
hibits inferior performance in fairness while maintaining similar
accuracy levels compared to several existing baselines. Moreover, as
both accuracy and fairness decrease simultaneously, a win-win and
lose-lose scenario is evident rather than a conventional trade-off
relationship in this fairness evaluation.
Connections with accuracy. To get a better understanding of
the possibility of leveraging the “short-cut” via TREx to improve
beyond-accuracy metrics, we conduct an analysis by categorizing
these beyond-accuracy metrics into different groups based on their
connections with accuracy (see Section 4 and Table 3).

We can observe that TREx can easily achieve better performance
w.r.t. beyond-accuracy metrics have no connections with the ac-
curacy (i.e., ILD, Entropy, DS, and logDP) on two datasets. When
9G-TopFreq and Dream exhibit low recall, fairness, and diversity, which prevents them
from being visible in Figures 4 and 5.

beyond-accuracy metrics (e.g., logEUR, EEL, and EED) exhibit weak
associations with accuracy, TREx outperforms alternative methods
in some instances (4 out of 6). However, in cases where beyond-
accuracy metrics are strongly correlated with accuracy (e.g., lo-
gRUR), TREx struggles to achieve superior performance. Since only
accurate predictions contribute to improvements in logRUR fair-
ness, leveraging the exploration module to optimize such beyond-
accuracy metrics is very challenging.

6.4 Reflections and discussions
The above results verify our hypothesis and demonstrate the ef-
fectiveness of leveraging a “short-cut” strategy to achieve better
beyond-accuracy under the current evaluation paradigms.

It is controversial to use this “short-cut” strategy in real-world
scenarios when NBR practitioners consider beyond-accuracy met-
rics. In scenarios where the accuracy of exploration is not important
to practitioners and only overall accuracy is of concern, the “short-
cut” strategy proves to be a straightforward and efficient means to
achieve better performance w.r.t. various beyond-accuracy metrics.
TREx must be considered or serve as a baseline before designing
more sophisticated methods, such as including multi-objective loss
functions [7, 20], integer programming [53], and so on.

However, in some scenarios, it is unreasonable to sacrifice the
exploration accuracy despite it being low. Therefore, the existence
of the “short-cut” strategy reveals the potential flaws of the existing
evaluation paradigms (i.e., using overall metrics to define success).
We look into the exploration accuracy [24] of TRExDiversity when
it outperforms several existing baselines in terms of both overall
accuracy and diversity (i.e., success according to existing evalua-
tion paradigm). Table 6 shows the huge decrease in the accuracy of
exploring items in the recommended basket of TRExDiversity , com-
pared to these baselines, since the designed module in TRExDiversity
is mainly designed for improving diversity and does not consider
accuracy. In this sense, we can not simply claim the superiority
of TRExDiversity compared to these baselines just depends on the
overall performance.

Note that, the fundamental reason for the existence of this “short-
cut” is that predicting accurate explore items is much more difficult
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Figure 5: Performance of TREx𝐹𝑎𝑖𝑟𝑛𝑒𝑠𝑠 at different 𝑣 values, compared with different NBRmethods in terms of different fairness
metrics. The red +marker indicates the direction with both high accuracy and fairness.

than predicting repeat items, and exploration prediction only ac-
counts for a limited user’s overall accuracy [22–25]. Given that
exploration prediction contributes only minimally to the overall accu-
racy of users, it becomes feasible to allocate resources toward optimiz-
ing other beyond-accuracy metrics instead of accuracy itself.

Therefore, beyond using the overall performance to measure
accuracy and beyond-accuracy metrics, a fine-grained level evalua-
tion could help to provide a more rigid identification of the success
when considering beyond-accuracy metrics.
Table 6: Exploration accuracy [24] of TREx𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 compared
with NBR methods that are inferior to it within existing
evaluation paradigms.
Dataset Metric TIFUKNN Dream DNNTSP TREx-Div

In
st
ac
ar
t Recall𝑒𝑥𝑝𝑙@10 0.0014 0.0322 0.0014 0.0002

PHR𝑒𝑥𝑝𝑙@10 0.0037 0.1431 0.0040 0.0009

Recall𝑒𝑥𝑝𝑙@20 0.0077 0.0526 0.0072 0.0008
PHR𝑒𝑥𝑝𝑙@20 0.0198 0.2120 0.0217 0.0031

D
un

nh
um

by Recall𝑒𝑥𝑝𝑙@10 0.0042 0.0111 0.0017 0.0000
PHR𝑒𝑥𝑝𝑙@10 0.0139 0.0521 0.0085 0.0019

Recall𝑒𝑥𝑝𝑙@20 0.0069 0.0214 0.0028 0.0016
PHR𝑒𝑥𝑝𝑙@20 0.0232 0.1045 0.0115 0.0065

7 CONCLUSION
We have expanded the research objectives of NBR to go beyond sole
accuracy to encompass both accuracy and beyond-accuracy metrics.
We have recognized a potential “short-cut” strategy to optimize
beyond-accuracy metrics while preserving high accuracy levels. To
capitalize on and validate the presence of such “short-cuts,” we have
introduced a plug-and-play framework called two-step repetition-
exploration (TREx) considering the differences between repetition
and exploration tasks. This framework treats repeat items and ex-
plore items as distinct entities, employing a straightforward yet
highly effective repetition module to uphold accuracy standards.

Concurrently, two exploration modules have been devised to target
the optimization of beyond-accuracy metrics. We have conducted
experiments on two publicly available datasets w.r.t. eight repre-
sentative beyond-accuracy metrics, including item fairness (i.e.,
logEUR, LogRUR, logDP, EEL, and EED) and diversity (i.e., ILD,
Entropy, and DS).

Our experimental results demonstrate the effectiveness of our
proposed “short-cut” strategy, which can achieve better beyond-
accuracy performancew.r.t. several fairness and diversitymetrics on
different datasets. Additionally, we group beyond-accuracy metrics
according to the strength of their connection with accuracy. Our
analysis reveals that the stronger the connection with accuracy,
the more difficult it becomes to employ a “short-cut” strategy to
optimize these beyond-accuracy metrics, favoring the metrics with
a stronger connection to avoid such short-cuts.

As to the broader implications of our work, we have discussed the
reasonableness of leveraging the “short-cut” strategy to trade the
accuracy of exploration for beyond-accuracy metrics in various sce-
narios. The presence of this “short-cut” highlights a potential flaw
in the definition of success within existing evaluation paradigms,
particularly in scenarios where exploration accuracy is important
despite being low [45]. A fine-grained level evaluation should be
performed in NBR to offer a more precise identification of achieving
“better” performance in such a scenario.

Despite the simplicity of the “short-cut” strategy and TREx, our
paper sheds light on the research direction of considering both accu-
racy and beyond-accuracy metrics in NBR. Rather than blindly em-
bracing sophisticated methods in NBR, follow-up research should
realize the existence of the “short-cut” and potential flaws of exist-
ing evaluation paradigms in this research direction.
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