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Abstract
The exponential growth of online content and increasingly diverse
user needs have underscored the necessity for ranking models
that go beyond traditional relevance assessments. Although several
open-source benchmarks have significantly advanced academic
research in Learning-to-Rank (LTR), these datasets predominantly
focus on either text-based relevance or user behavior (click-through
or dwell time) signals separately. This separation has inadvertently
burdened academic progress by limiting the exploration of multi-
faceted, satisfaction-oriented ranking models. In contrast, industry
research has begun to delve into integrated approaches that fuse
prior (relevance, authority, recency, and quality) with posterior
(user interaction such as clicks and dwell time) signals, thereby
better capturing true user satisfaction. In this paper, we introduce
FULTR–a large-scale, prior-posterior FUsion LTR dataset. FULTR
comprises over 224M queries and 683M documents from Baidu
Search, combining both: (1) a rich prior-attribute set with detailed
textual relevance, authority, recency, and quality features, and (2) a
comprehensive posterior-attribute set enriched by user click data,
dwell time, and positional information. By unifying these dual per-
spectives, FULTR establishes a robust, reproducible benchmark
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for satisfaction-oriented ranking, enabling researchers to develop
models that better capture real-world search behaviors and user sat-
isfaction. In addition, we propose a strong LTR baseline that merges
a satisfaction ranker that leverages pre-trained language models
to integrate diverse satisfaction signals, with a behavior ranker
that captures user interactions using a dual-tower approach. Their
outputs are combined via a fusion layer, yielding significant perfor-
mance gains in multiple evaluation metrics, as confirmed by exten-
sive experiments and ablation studies. We are confident that our
contribution not only democratizes access to industrial-grade fusion
data for the research community but also paves the way for more
effective and holistic LTR model design. FULTR is available to the
research community at https://github.com/zhanghao731/FULTR.
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1 Introduction
Web search has evolved into an indispensable tool for information
retrieval, and the challenge of ranking search results to maximize
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user satisfaction has gained increasing attention [40]. Traditional
learning-to-rank (LTR) methods predominantly focus on assessing
the textual relevance between queries and webpages using mod-
els such as RankNet [3] and LambdaMART [37]. More recently,
approaches leveraging pre-trained language models (PLMs) and
attention mechanisms like BERT [9] and ERNIE [34] have enriched
the field by capturing complex semantic nuances and cross-item
interactions. In addition to developing advanced LTR models and
algorithms [18–24], pioneering researchers have generously made
a diverse array of LTR datasets publicly accessible to the research
community.While open-source benchmarks such as ORCAS [7] and
MS-MARCO [29] have provided a foundation for evaluating rank-
ing performance, they typically focus on either human-annotated
relevance judgments or user behavior signals–not both.

In standard LTR formulations, the goal is to produce an order-
ing of documents that maximizes relevance to a query. However,
text-based relevance alone does not capture the full spectrum of
user satisfaction. To address the need to fuse prior and posterior
information for LTR, recent advances have begun incorporating
user feedback such as click-through rates, dwell time, and other
behavioral signals into ranking systems [4, 27, 41]. Although in-
dustry researchers have begun to explore this field, large-scale
benchmarks and datasets that are publicly available to societies still
treat human-annotated relevance and user behavior as separate
streams [17, 43, 45, 46]. Such separation restricts the ability of the
academic research community to simulate the multifaceted nature of
search satisfaction with prior (i.e., relevance) and posterior (i.e., user
behavior) information.

Specifically, existing efforts in open-source datasets and bench-
marks could be categorized into three folders: (1) relevance-based
retrieval, such as MS-MARCO [29], consisting of a large collection
of user-generated queries and texts extracted from webpages or
documents, (2) click-through prediction, such as ORCAS [7], usu-
ally containing records of user interactions with search results, and
(3) LTR, such as Microsoft LETOR [30], including synthetic features
of query-webpage pairs and human-annotated scores. To the best
of our knowledge, no large-scale dataset currently offers a unified
view of search-related data within LTR formulations by integrating
webpage and query texts for relevance evaluation, user behavioral
data, comprehensive satisfaction features, and well-annotated sat-
isfaction scores. A closer examination of existing datasets reveals
three key technical challenges that hinder the development of truly
effective satisfaction-oriented ranking models:

• Integrating Heterogeneous Signals: Existing works typically
consider textual relevance and user behavior independently. Al-
though attention-based architectures and multivariate scoring
functions have recently demonstrated the potential of integrating
such diverse signals [11, 17], many models still lack a unified
framework that seamlessly fuses prior (i.e., human-annotated)
and posterior (i.e., user interaction-derived) information.

• Data Fusion and Annotation Quality: While curated datasets
like LETOR deliver fine-grained relevance annotations, they are
expensive and may not reflect the full variability of actual search
behavior. Conversely, datasets based on click logs often contain
noise and bias [6, 36]. The challenge lies in combining these

two sources in a manner that leverages the high quality of ex-
pert labels alongside the richness of real-world user behavior, a
problem that has been partially addressed by recent algorithms
introducing pre-training techniques [17, 25, 26].

• Robustness Across Real-World Scenarios: Many benchmark-
ing datasets fail to capture the diverse and dynamic nature of
user interactions found in live search engines. Recent work has
shown that addressing factors such as position bias and tempo-
ral dynamics is essential for building robust ranking models [1].
The lack of integrated datasets capable of accommodating these
real-world variances hampers progress in this domain.

To overcome these challenges, we introduce FULTR, a large-
scale prior-posterior FUsion LTR dataset designed explicitly for
satisfaction-oriented web search. Our proposal addresses the in-
tegration of heterogeneous signals by constructing two comple-
mentary data components. The prior component captures detailed
textual relevance, authority, recency, and quality features with high-
quality human annotations. In contrast, the posterior component
leverages massive user interaction logs encompassing click-through
rates, dwell time, and additional behavior features. Furthermore,
we propose a fusion ranker that contains a satisfaction ranker to
model the prior signals, a behavior ranker to harness the posterior
data, and a fusion layer to integrate both perspectives effectively.
This design builds on recent advances in bivariate scoring functions
that capture pairwise document relationships and attention-based
models that successfully aggregate cross-item interactions. In com-
parison to existing open-source LTR datasets, FULTR provides a
unique novelty that lies in its integrated prior-posterior fusion
strategy. While many of these datasets provide valuable insights
into either relevance or user behavior, they often do so in isolation.
FULTR uniquely bridges this gap by providing a comprehensive
benchmark that supports both perspectives—enabling researchers
to develop and evaluate LTR models that more accurately capture
user satisfaction in real-world search settings. In summary, our
work makes several key technical contributions as follows:

• We present a large-scale dataset that fuses high-quality human-
annotated relevance information with rich, real-world user in-
teraction data, providing a dual perspective essential for bench-
marking satisfaction-oriented ranking.

• We develop a strong LTR baseline with a three-component rank-
ing framework that separately models and subsequently inte-
grates prior and posterior signals, thereby addressing the chal-
lenges of heterogeneous information integration, data fusion
quality, and real-world robustness.

• We enhance the current corpus of open-source resources by of-
fering exhaustive documentation, comprehensive statistical anal-
yses, and reproducible evaluation protocols that leverage state-
of-the-art algorithms and datasets, fostering further research in
this critical area.

By offering a comprehensive, open-source resource that com-
bines both prior (i.e., diverse satisfaction) and posterior (i.e., user
behavior) information, FULTR democratizes academic research in
web search with industrial-grade state-of-the-art LTR. The pro-
posed dataset empowers researchers and practitioners to bench-
mark novel ranking models that not only produce topically relevant
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Table 1: Comparison of FULTR to other publicly available relevance-oriented LTR datasets. This table shows the number of
queries (#Q), documents (#D), language of search results (Lang.), and text attribute (Text) for each dataset. Relevance, Quality,
Authority, and Recency are four types of prior-attribute features. Click, Dwell time (Dwell), and Position (Pos.) are three types
of posterior-attribute features. Ann. represents the type of annotations. †datasets do not release user feedback and hide the
original text of queries and documents, so researchers have to simulate click data.

Dataset #Q #D Lang. Text Relevance Quality Authority Recency Click Dwell Pos. Ann.

MS-MARCO [29] 516K 8.8M EN Token ✓ - - - - - - Binary
TREC CAR [10] 2M 30M EN Raw ✓ - - - - - - Binary
TriviaQA [15] 95K 650K EN Raw ✓ - - - - - - Binary
T2Ranking [39] 307K 2.3M CN Raw ✓ - - - - - - Fine-grained
CWRCzech [35] 2.7M 8.4M CZ Raw ✓ - - - ✓ ✓ ✓ Fine-grained
Yahoo! LETOR [5] 21K 508K EN Token ✓ - - - ✓† - - Fine-grained
Microsoft LETOR [30] 19K 2.3M EN Token ✓ - - - ✓† - - Fine-grained
Istella LETOR [8] 23K 7.3M EN Token ✓ - - - ✓† - - Fine-grained
TripClick [32] 1.6M 2.3M EN Raw ✓ - - - ✓ - ✓ Fine-grained
ORCAS [7] 10.4M 1.4M EN Raw ✓ - - - ✓ - - Binary
Yandex-WSCD [33] 21.1M 70.3M RUS Token ✓ - - - ✓ - ✓ Click Labels
Sougou-QCL [44] 0.5M 9.0M CN Raw ✓ - - - - - - Click Labels
TianGong-PDR [38] 70 11K CN Raw ✓ - - - - - - Fine-grained
Baidu-ULTR [46] 383.4M 1.3B CN Token ✓ - - - ✓ ✓ ✓ Fine-grained
Sogou-SRR [42] 6K 63K CN Raw ✓ - - - - - ✓ Fine-grained
mMarco-Chinese [2] 516K 8.8M CN Raw ✓ - - - - - ✓ Binary
DuReader [31] 97K 8.9M CN Raw ✓ - - - - - - Binary
Multi-CPR [28] 303K 303K CN Raw ✓ - - - - - - Binary
FULTR 224M 683M CN Raw ✓ ✓ ✓ ✓ ✓ ✓ ✓ Fine-grained

results but also closely align with true user satisfaction in dynamic
search environments.

2 Related Work
Recent advancements in modern LTR methodologies heavily de-
pend on the availability of large-scale, high-quality datasets, as
state-of-the-art improvements are predominantly driven by the
systematic development of such benchmarks. Existing available
datasets in the LTR community primarily target relevance-oriented
ranking tasks, with their construction methodologies bifurcated
by the underlying approaches to relevance signal acquisition: (1)
human-annotated relevance judgments (via human annotation), (2)
user behavior signal mining (via leveraging user behavior data col-
lected during the company’s services).

Microsoft’s MS-MARCO [29] is a widely adopted large-scale
benchmark containing 516K user-generated question-based queries
from Bing search logs and 8.8 million query-document pairs ex-
tracted from web documents, with human editors generating an-
swers to establish binary relevance annotations. The TREC CAR
dataset [10] utilizes topics, outlines, and paragraphs sourced from
Wikipedia, which comprises 2 million queries and 30 million query-
document pairs with binary relevance annotations. Moreover, the
TriviaQA dataset [15] collects question-document pairs from sev-
eral trivia and quiz-league websites and includes passages from
Wikipedia and other web documents, which contains 95K queries
and 650K query-document pairs with binary annotations. The Chi-
nese dataset, T2Ranking [39], contains 307K queries and over 2M
fine-grained annotated query-document pairs. CWRCzech [35] pro-
poses a Czech set for the relevance task, which comprises about 50k
raw query-document pairs with fine-grained annotations.Moreover,

Yahoo! LETOR [5], Microsoft LETOR [30], and Istella LETOR [8]
are three commonly used datasets with synthetic features of query-
webpage pairs and human-annotated relevance scores.

The compilation of large-scale click datasets predominantly re-
lies on search engine logs, exemplified by established English re-
sources supplemented with domain-specific collections, such as
TripClick [32], which contains 1.3 million health search pairs. Re-
cent contributions like Microsoft’s ORCAS [7] expand this para-
digm with 18.8 million query-document pairs. Non-English datasets
exhibit distinct characteristics across linguistic and technical di-
mensions: Yandex-WSCD [33] captures 35 million Russian search
sessions with query anonymization through proprietary encryp-
tion, while Chinese counterparts demonstrate tiered approaches:
Sogou-QCL [44] leverages click-through signals across 537K queries
and 9M web pages, TianGong-PDR [38] implements four-grade
human evaluations on Sina News-derived passages, and Baidu-
ULTR [46] achieves industrial-scale coverage with 1.2 billion query-
document pairs anonymized via dictionary masking. However,
Chinese datasets face scalability and quality challenges: Sogou-
SRR [42] contains merely 6K queries despite rich metadata in-
cluding screenshots and parse trees, while machine-translated re-
sources like mMarco-Chinese [2] inherit MS-MARCO’s limitations
through automated conversion. Emerging solutions attempt miti-
gation: DuReader [31] from Baidu adopts MS-MARCO’s question-
based human answer paradigm, and Multi-CPR [28] focuses on
multi-domain vertical search with binary relevance labels on result
titles rather than full documents.

Discussion. Existing datasets mentioned above predominantly fo-
cus on relevance-oriented ranking tasks. However, with the ex-
ponential growth of web content, search users’ demands have
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Query What is search engine?

TITLE Search Engine — baike.baidu.com URL … Relevance … …Quality …Authority …Recency 1Click Dwell Time 122

CONTENT A search engine is a software system that provides hyperlinks to web pages and other relevant information on the Web in response to a users’ query. The query …

0Position1221……………Search Engine — baike.baidu.com

TITLE Search Engine — baike.baidu.com URL … Relevance … …Quality …Authority …Recency 1Click Dwell Time 122

CONTENT A search engine is a software program that helps people find the information they are looking for online using keywords or phrases. Search engines are able to ...

1Position00……………What is a search engine

TITLE Search Engine — baike.baidu.com URL … Relevance … …Quality …Authority …Recency 1Click Dwell Time 122

CONTENT Search engine is a software system that provides hyperlinks to web pages and other relevant information on the Web in response to a users’ query. The query …

3Position00……………What’s search engine? Definition, example …

TITLE Search Engine — baike.baidu.com URL … Relevance … …Quality …Authority …Recency 1Click Dwell Time 122

CONTENT A search engine is a tool that consists of a web crawler, an index, and a search mechanism, allowing users to find information on the internet based on relevant … 

5Position00……………How do search engines work? – CCTV News

Figure 1: Visualization of a query in FULTR, where each query-document pair is represented with textual, prior and posterior
features. Queries and documents are translated into English for better understanding.

diversified significantly; they now require not only high query-
webpage relevance but also demand satisfactory results across
multi-dimensional criteria, including authority, quality, and recency
from search engines. Furthermore, the current practice of solely
optimizing ranking outcomes through relevance-oriented prior
attributes (from annotated datasets) or exclusively leveraging pos-
terior attributes derived (from user behavior data) to enhance satis-
faction proves inadequate. To address these limitations, we propose
a large-scale dataset integrating both prior- and posterior-attribute,
structured into two dedicated subsets. Concurrently, we design
a fusion ranking architecture that synergistically combines prior
knowledge and posterior signals to advance research in satisfaction-
driven search ranking. Table 1 presents statistics summarizing the
proposed dataset in comparison with the above LTR datasets.

3 FULTR
In this section, we formally introduce the proposed dataset FULTR,
which consists of two components: a prior-attribute dataset and a
posterior-attribute dataset. We first introduce the data collection
process from the perspective of collection, encompassing sampling
and anonymization. Then, we detail two subsets in FULTR: the prior-
attribute dataset and the posterior-attribute dataset, and describe
their feature construction and data distribution.

3.1 Data Collection
The raw data in FULTR is collected from Baidu Search1, which has
become the largest Chinese search engine globally by user popu-
lation, archived documents, and queries served. Currently, Baidu
Search orchestrates trillions of webpages archived and indexed for
search, serves over three hundred million daily active users, and
handles billions of queries per day.

Scenarios.We collect raw data across two distinct scenarios within
the Baidu Search app on the PC and mobile sides. Given an input
query, Baidu Search first needs to extract keywords or phrases from
the query and recognize the user’s intention, and then assess the
similarity and relevance between the query and webpages, retriev-
ing a number of relevant webpages from a database of trillions.
Then, the search engine sorts the retrieved webpages through the

1https://www.baidu.com

ranking and re-ranking stage. Next, the search engine tops the most
relevant webpages in the response to the query.
Data Sampling. Regarding the sampling process of the prior data,
we conducted batch sampling and manual annotation over a two-
year period. This sampling strategy was implemented because (1)
the costs associated with human resources and annotation are sub-
stantial, and (2) it allows us to progressively cover a wider range
of user search demands over time. For the sampling process of
the posterior data, we collected samples over a one-month period,
covering the previously mentioned two scenarios. In particular,
frequent queries might be sampled multiple times, and each occur-
rence receives a distinct identifier, which ensures that the query
distribution in FULTR reflects the same distribution as the online
system, giving greater weight to frequent queries. For the candidate
documents of each query in the posterior data, we only record the
displayed ones to reduce the cost of storing logs. Documents not
displayed are typically less informative, as users cannot provide
feedback on them. Consequently, a logged search session usually
contains only 10 documents per query, the number of results shown
on a single page.
DataDesensitization.When constructing the dataset, our primary
aim was to safeguard user privacy and prevent any disclosure of
sensitive or personally identifiable information. To achieve this, we
implemented a strict protocol: (1) Queries flagged as pornographic,
obscene, or generated by bots were removed; (2) Only queries con-
taining alphabetical characters were selected to avoid the accidental
exposure of numerical data (e.g., credit card numbers); (3) Sessions
were not merged by user IDs, and each query was included only if
it appeared in at least five unique requests within the specified time
frame, ensuring robust anonymization. In addition, all data collected
in FULTR has been thoroughly desensitized and encrypted, and
comprehensive data protection measures were adopted throughout
the experiment to minimize any risk of data leakage. It is important
to emphasize that the dataset is intended exclusively for academic
research and is not meant for any commercial purposes.

3.2 Prior-attribute Subset in FULTR
According to the variance in task-processing modalities and the
structural divergence of feature-space representations, FULTR can
be categorized into a prior-attribute subset and a posterior-attribute
subset through systematic decoupling. In this section, we detail
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the description of the prior-attribute dataset in FULTR from the
perspective of features, labels and data distribution.

Prior Features. The prior-attribute dataset contains 54,587 queries
and 1,877,103 documents, where each query-document pair is repre-
sented with a series of textual and numerical features. Specifically,
the columns of one sample in the prior-attribute dataset can be
described as follows:

• Query refers to a textual feature, which undergoes processing
operations such as correction of errors, completion of partial
inputs, rewriting, and other query optimization steps.

• URL refers to the URL of the corresponding document.
• Title refers to the title of the document, which is classified terms
or text segments from the document identified by Baidu Search.

• Summary refers to the content summary of the document, which
is processed by Baidu search engine using a query-weighted sum-
mary extraction algorithm. In particular, content fields appear
empty when webpages restrict search engine indexing.

• Relevance features consists of seven-dimensional discrete numer-
ical features, such as the longest ordered non-contiguous subse-
quence, entity matching, et al., to comprehensively capture full-
document relevance information.

• Quality features contain four discrete numerical features, which
include the document quality score (serving as a direct quality
indicator), predicted dwell time (capturing granular quality signals
from document content), et al.

• Authority features can be represented by query-agnostic features,
which contain two textual features and five discrete numerical
features, such as site name, rate of the producer, et al.

• Recency features comprises a textual feature and two discrete
numerical features, such as the difference between the document’s
creation date and the current search date, fresh of the query, et al.

• Click features contains a 39-dimensional feature vector compris-
ing normalized continuous numerical attributes, such as the av-
erage dwelling time, average scroll speed, number of long-click,
click-through rate, et al., to enhance user satisfaction modeling
for ranking models.

More detailed descriptions of the above prior features can be found
in Appendix A. Figure 1 illustrates an example of a ranking results
record for a user query, where each displayed document is described
with the aforementioned diverse types of features.

Prior Labels. Conventional web relevance search relies on ranking
models trained and evaluated with query-document pairs annotated
by professional annotators assigning relevance scores. Relevance
labels are scaled from 0 to 4 to represent varying levels of rele-
vance [30]. However, relying solely on relevance annotations is
insufficient for satisfaction-driven ranking tasks. To address this
limitation, FULTR employs professional annotators to assign satis-
faction scores to chosen query-document pairs, thereby construct-
ing a satisfaction dataset for training the ranking model. Therefore,
following the settings of [17], grade satisfaction is labeled on a 0-4
scale to reflect different degrees of user satisfaction as (i.e., {0-bad,
1-fair, 2-good, 3-excellent, 4-perfect}). Moreover, FULTR is split into
the training set (including 45,727 queries and 1,493,673 documents)
and the test set (including 8,860 queries and 383,430 documents).
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Figure 2: The distribution of query length in words of the
prior-attribute dataset.
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Figure 3: The distribution of numbers of documents per
query in the prior-attribute dataset.
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Figure 4: Pie chart of the annotation distribution of the prior-
attribute dataset in FULTR.

Data Distribution and Analysis for Prior-Attribute Dataset.
In this section, we present some data analysis of the prior-attribute
dataset in FULTR. Figure 2 illustrates the distribution of query
length in words of FULTR. We tokenize the queries at the word
level using the predefined vocabulary. According to the distribution,
we could find that queries with lengths of 5 and 6 words are the
most frequent, each accounting for approximately 14% of the total
queries in the prior-attribute dataset. Moreover, we compute the
number of documents per query in the prior-attribute dataset. As
shown in Figure 3, the number of documents per query peaks at 1.
Additionally, a non-negligible portion of queries lacks associated
documents, a pattern consistent with real-world observations in
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large-scale commercial search engines. Based on the annotation
rules for satisfaction labels outlined in Section 3.2 and the division of
the training and test sets, we separately calculate the proportion of
diverse labels within both the training set and the test set. Figure 4
shows the distribution of the 5-level satisfaction annotation in
the training set (a) and test set (b). Specifically, according to the
statistical results, we could observe that samples labeled 2-good and
0-bad collectively accounted for over 70% in the training and test
set, respectively. However, those with the highest satisfaction rating
4-perfect constituted the smallest proportion. This is because our
sampling process is conducted based on specific rules: it includes
positive samples that rank high and negative samples that rank low.
Moreover, negative samples and those with average scores (i.e., 1 or
2) comprise the majority of the overall dataset. Incorporating a large
number of negative and average-score samples into the training
data enhances the model’s discriminative ability more effectively.

3.3 Posterior-attribute Subset in FULTR
Since complex feature constructions and costly professional anno-
tations, necessary for a posterior-attribute dataset, are not required,
labels for posterior data can be generated by checking the search
log. Consequently, the posterior-attribute subset can be constructed
on a significantly larger scale compared to the prior-attribute subset.
In this section, we detail the posterior-attribute subset in FULTR,
focusing on its features, labels, and data distribution.
Posterior Features.The prior-attribute dataset contains 224,427,699
queries and 681,416,004 documents, where a set of textual and
numerical features characterizes each query-document pair. The
posterior-attribute dataset comprises the following columns:
• Query, URL, Title and Summary are textual features, which are
similar to the prior-attribute dataset, which represents the user
query, the displayed URL, the displayed title of the document
and the displayed summary of the document content.

• Position features refer to a discrete numerical feature, which is
the displayed position of a document on the search result page.

• User Behavior features consist of 38-dimensional discrete numeri-
cal features and a continuous number feature. The click behavior
of users and reading duration on candidate documents can reflect
the degree of user satisfaction. Therefore, FULTR analyzes the
search logs and designs a comprehensive set of user behavior
features, including users’ query reformulations, the skip, the click,
the first click, the last click, dwelling time, the display time on the
screen, the displayed count on the screen, the slip-off count, et al.

More detailed descriptions of the posterior features can be found
in Appendix A.
Posterior Labels. User behaviors generally provide explicit indica-
tions of user satisfaction. For the posterior-attribute dataset, FULTR
focuses on user behavior in terms of clicks and dwell time to design
the posterior labels. Specifically, FULTR assigns a binary label for
user click behaviour, where a document that the user clicks is 1
and 0 otherwise. Moreover, for the label of user dwell time, FULTR
directly uses the duration of webpage browsing as the final score.
DataDistribution andAnalysis for Posterior-AttributeDataset.
In this section, we present some data analysis of the posterior-
attribute dataset in FULTR. Figure 5 shows the distribution of the
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Figure 5: The distribution of numbers of documents per
query in the posterior-attribute dataset.
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Figure 6: The distribution of numbers of clicks per search
request in the posterior-attribute dataset.
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Figure 7: Kernel density estimation plot of dwell time for
clicked documents in the posterior-attribute dataset.

number of documents per query in the prior-attribute dataset. Sim-
ilarly to the prior-attribute dataset, the number of documents per
query peaks at 1. Figure 6 shows the distribution of the number of
clicks per search request. We could observe that over 70% of search
requests exhibit singular click-through behavior, suggesting that
a statistically significant majority of users achieve query resolu-
tion through a single interaction with search engine results pages.
This phenomenon demonstrates optimal system performance in
fulfilling information needs during initial engagement. Moreover,
users’ post-click behaviors (i.e., dwell time) are equally significant.
Furthermore, Figure 7 shows the kernel density estimation plot of
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Figure 8: The distribution of ranks for clicked documents in
the posterior dataset.

dwell time for clicked documents in the posterior-attribute dataset.
We found that most clicked documents have relatively short dwell
times, while a smaller proportion have much longer dwell times.
Figure 8 shows the distribution of ranks for clicked documents in
the posterior dataset. We observe that the probability of a click
generally decreases with increasing rank, and more than half of the
clicks occur in the top three results.

3.4 FULTR License
The dataset can be non-commercially used with a custom CC BY-
NC 4.0 license2. In addition to the existing tasks in the dataset
directory, users are permitted to create their own tasks under the
license.

4 Methodology
In this section, we first formulate the satisfaction ranking task,
and then propose a fusion ranker to demonstrate the potential
contribution of FULTR for web satisfaction ranking tasks.

4.1 Satisfaction Ranking Task
The task of ranking aims to measure the relative order among a
set of candidate documents D = {𝑑𝑖 } |D |

𝑖=1 under the constraint of
a query 𝑞 ∈ Q, where D ⊂ D is the set of 𝑞-related documents
retrieved from indexed documents, and 𝑑𝑖 is the 𝑖𝑡ℎ document re-
trieved for 𝑞. Q is the set of all given queries. For each document
𝑑𝑖 , we assign a label 𝑦𝑖 ∈ Y to indicate its satisfaction degree with
respect to a query 𝑞, where Y is the set of all labels. The ranking
model aims to learn a scoring function 𝑓 : Q×D → [0, 4] that max-
imizes the utility function: max𝑓 E{𝑞,D,Y}𝜗 (Y, 𝐹 (𝑞,D)), where
𝐹 (𝑞,D) = {𝑓 (𝑞, 𝑑𝑖 )} |D |

𝑖=1 represents the predicted ranking scores,
and 𝜗 denotes evaluation metrics like NDCG [14] and PNR. Accord-
ingly, we train the ranking model by minimizing the empirical loss
over the labeled set:

L =
1
|T |

∑︁
𝑞∈Q

ℓ (Y, 𝐹 (𝑞,D)), (1)

where ℓ represents the loss function comparing the predictions of
the model for all retrieved documents in D for query 𝑞 against the
ground truth labels.
2https://creativecommons.org/licenses/by-nc/4.0/
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Figure 9: The overall framework of Fusion Ranker and train-
ing paradigm using FULTR.

4.2 Model Architecture
To empirically validate the efficacy of FULTR in user satisfaction-
oriented ranking and to assess the distinct contributions of its
two subsets, one tailored for the satisfaction-diverse ranking task
and the other for the user behavior-based ranking task, we design
three modular ranking architectures: satisfaction ranker, behavior
ranker, and fusion ranker, to enable a systematic and multifaceted
experimental evaluation.

Satisfaction Ranker. To model textual and diverse satisfaction
features in FULTR simultaneously, we propose a hybrid model
named satisfaction ranker, which consists of an ERNIE-based rele-
vance extractor and an MLP-based satisfaction extractor. Specifi-
cally, to model the relevance among the textual input, given query-
document pair (𝑞, 𝑑𝑖 ), satisfaction ranker first transforms 𝑞, the title
and the content summary of 𝑑𝑖 into embeddings. Then, satisfaction
ranker leverages an ERNIE-based encoder to learn the semantic
relevance among the above textual inputs and generates a semantic
representation. Next, given the learned representation, satisfaction
ranker predicts the relevance score through an MLP. In the mean-
while, satisfaction ranker converts the numerical items (in relevance,
quality, authority, and recency features) into embeddings and feeds
textual items into a Transformer encoder to generate the textual
representations. Next, satisfaction ranker concatenates generated
embeddings and representations and feeds the combination into
an MLP to compute a satisfaction score. Eventually, satisfaction
ranker computes the summarization of the relevance score and
the satisfaction score. In this way, the semantic relevance and di-
verse satisfaction are separately learned in satisfaction ranker. For
the training phase, satisfaction ranker is optimized using the prior-
attribute dataset in FULTR and minimizing a hybrid loss function
combining pairwise and pointwise objective terms as

ℓ (Y, 𝐹 (𝑞,D)) =
∑︁
𝑦𝑖<𝑦 𝑗

max
(
0, 𝑓 (𝑞, 𝑑𝑖 ) − 𝑓

(
𝑞, 𝑑 𝑗

)
+ 𝜖

)
+ 𝜆

(
𝜇 (𝑓 (𝑞, 𝑑𝑖 ) , 𝑦𝑖 ) + 𝜇

(
𝑓
(
𝑞, 𝑑 𝑗

)
, 𝑦 𝑗

) )
,

(2)

where 𝜇 (𝑓 (𝑞, 𝑑𝑖 ) , 𝑦𝑖 ) = max
{
0,
[
𝑓 (𝑞, 𝑑𝑖 ) −

(
𝑦𝑖
5 + 0.1

)]2
− 𝛿

}
refers

to the pointwise loss function, and 𝜖 refers to the manual margin
enforced between positive and negative pairs. Furthermore, 𝜆 and
𝛿 represent two hyper-parameters.
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Behavior Ranker. As illustrated in Figure 9, to model textual and
user behavior features in the posterior-attribute dataset of FULTR,
we leverage a two-tower model named behavior ranker. Concretely,
given a query-document pair (𝑞, 𝑑𝑖 ), behavior ranker first converts
numerical features of posterior features into embeddings. Mean-
while, behavior ranker uses an ERNIE-based encoder to learn the
semantic relevance among the above textual inputs and generates
a semantic representation. Then, behavior ranker concatenates the
embedding and representation and feeds the combination into a
two-tower structure, which consists of a click tower and a dwell
time tower to model click and reading duration, respectively. Next,
behavior ranker feeds the outputs generated from two experts into
two MLPs, and separately computes the predicted click score and
dwell time score as 𝑝𝑐𝑙𝑖𝑐𝑘

𝑖
and 𝑡𝑑𝑤𝑒𝑙𝑙

𝑖
. In this way, behavior ranker

is trained using the posterior-attribute dataset and models the user
behavior by minimizing the following loss function as

L𝑐𝑙𝑖𝑐𝑘 = −
|D |∑︁
𝑖=1

𝑧𝑖 log𝑝𝑐𝑙𝑖𝑐𝑘𝑖 + (1 − 𝑧𝑖 ) log
(
1 − 𝑝𝑐𝑙𝑖𝑐𝑘𝑖

)
, (3)

where 𝑧𝑖 is the label of the click task. Furthermore, behavior ranker
models the dwell time by minimizing the duration loss function as

L𝑑𝑤𝑒𝑙𝑙 =
1
|D|

|D |∑︁
𝑖=1

(𝑝𝑐𝑙𝑖𝑐𝑘𝑖 𝑡𝑑𝑤𝑒𝑙𝑙𝑖 − 𝑡𝑖 )2, (4)

where 𝑡𝑖 is the actual dwell time of 𝑑𝑖 . Eventually, FULTR computes
the sum of L𝑑𝑤𝑒𝑙𝑙 and L𝑐𝑙𝑖𝑐𝑘 as the final posterior loss L𝑝𝑜𝑠𝑡 :
L𝑝𝑜𝑠𝑡 = 𝛼L𝑑𝑤𝑒𝑙𝑙 + 𝛽L𝑐𝑙𝑖𝑐𝑘 , where 𝛼 and 𝛽 are hyper-parameters
to balance two loss functions.
Fusion Ranker. As shown in Figure 9, fusion ranker consists of a
satisfaction ranker, a behavior ranker, and a fusion layer. Specifically,
given the pre-trained satisfaction ranker and behavior ranker, fusion
ranker combines their outputs and leverages a simple yet effec-
tive fusion layer (i.e., an MLP) to fuse the output from satisfaction
ranker and behavior ranker and estimate the final satisfaction score.
In particular, during the training phase, fusion ranker is trained
using the prior-attribute dataset with the frozen parameters in sat-
isfaction ranker and behavior ranker. In this way, fusion ranker is
optimized by minimizing a hybrid loss function combining pairwise
and pointwise objective terms as Eq. (2).

5 Experiment
In this section, we conduct an empirical study of our proposed
method and several baselines on FULTR.

5.1 Baselines
To fully demonstrate the potential contribution of FULTR for satis-
faction ranking tasks, we select the following representative PLM-
based ranking models as the baseline:
• ERNIE-based Ranker [34] is a vanilla ERNIE-based ranking
model (i.e., a 12-layer ERNIEwith a pairwise loss), which is widely
implemented and achieves advanced performance.

• BERT-basedRanker [12] is a vanilla BERT-based rankingmodel
with a pairwise loss, which has been extensively employed in
the LTR research community.

• Fusion Ranker refers to our proposed method, which sepa-
rately models diverse satisfaction (prior) signals features and
user behavior (posterior) features, and fuses the predicted results
generated from two models.

Due to prior experience and the high costs associated with deploy-
ing suboptimal models, combined with our main contribution of
being the first to propose a large-scale prior-posterior fusion LTR
dataset, we only compare the aforementioned PLM-based rankers.

5.2 Evaluation Metrics
Normalized Discounted Cumulative Gain (NDCG@K) [14] is a
standard listwise accuracy metric, which is widely used to evaluate
the ranking model performance in the LTR community. Given a
query and its corresponding documents, the ranking model usually
estimates a score for each document and ranks them in descending
order. The NDCG score for the query could be calculated as

NDCG@𝐾 =
1
𝐼

𝐾∑︁
𝑖=1

2𝑦𝑖 − 1
log2 (1 + 𝑖)

, (5)

where 𝐼 is a normalization factor for ideal Discounted Cumulative
Gain (DCG) [13], and 𝑦𝑖 is the ranking score of the 𝑖𝑡ℎ document.
Positive-Negative Ratio (PNR) is a commonly deployed pairwise
metric to consider the partial order between labels in LTR research.
For a query 𝑞 and its ranked documents D, PNR can be calculated
as the ratio of concordant pairs to discordant pairs as

𝑃𝑁𝑅 =

∑
𝑑𝑖 ,𝑑 𝑗 ∈D 1

{
𝑦𝑖 > 𝑦 𝑗

}
· 1

{
𝑓 (𝑞, 𝑑𝑖 ) > 𝑓

(
𝑞, 𝑑 𝑗

)}∑
𝑑𝑚,𝑑𝑛∈D 1 {𝑦𝑚 > 𝑦𝑛} · 1 {𝑓 (𝑞, 𝑑𝑚) < 𝑓 (𝑞, 𝑑𝑛)}

, (6)

where 1 {·} is an indicator that equals 1 if (𝑥 > 𝑦), and 0 otherwise.
PNR measures the alignment between the ground truth and the
predicted ranking score.

5.3 Implementation Details
All the offline experiments are implemented on PaddlePaddle Cloud
platform with 8 NVIDIA A100 GPUs. We adopt ERNIE-Lite as
the backbone network and warm-initialize it for all ERNIE-based
rankers. We set the number of layers, heads, and hidden dimen-
sions of the PLMs to 12, 12 and 768. We configure the MLP layers
in fusion ranker to 3 (i.e., hidden layer of 512-256-128) and optimize
the rankers with Adam [16].

5.4 Experimental Results
Overall Comparison. As illustrated in Table 2, we report the
comparative results on PNR, NDCG@5 and NDCG@10 of selected
PLM-based ranking models on FULTR. To conduct a fair compari-
son, ERNIE-based Ranker and BERT-based first convert the textual
input and numerical features of both prior- and posterior-attribute
features into embeddings. Then, two vanilla PLM-based ranking
models concatenate these embeddings to construct the input for
ranking tasks. According to the comparative results, we could find
several phenomena as follows. First, Fusion Ranker consistently
achieves the highest performance across all threemetrics on our pro-
posed dataset, which demonstrates its robustness on the real dataset.
Concretely, Fusion Ranker achieves 3.623, 0.6567 and 0.7028 on PNR,
NDCG@5 and NDCG@10, respectively. Compared to two vanilla
PLM-based ranking models, it gains significant improvements on
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Table 2: Comparative results of PLM-based ranking models
on FULTR. The best performance is highlighted in boldface.

Model PNR NDCG@5 NDCG@10

ERNIE-based Ranker 3.362 ± 0.042 0.5847 ± 0.0026 0.6224 ± 0.0065
BERT-based Ranker 3.388 ± 0.039 0.5904 ± 0.0037 0.6371 ± 0.0023
Fusion Ranker 3.623 ± 0.015 0.6567 ± 0.0044 0.7028 ± 0.0028

Table 3: Ablation study results of Fusion Ranker on FULTR.

Model PNR NDCG@5

Fusion Ranker 3.623 ± 0.045 0.7028 ± 0.0018
Satisfaction Ranker (w/o posterior module) 3.319 ± 0.024 0.6314 ± 0.0021
Behavior Ranker (w/o prior module) 3.260 ± 0.018 0.6219 ± 0.0039

FULTR. This phenomenon demonstrates that our proposed decou-
pled architecture achieves significant accuracy improvements on
real-world data, compared to simultaneously modeling diverse sat-
isfaction (i.e., prior) signals and user behavior (i.e., posterior) signals.
Moreover, two vanilla PLM-based rankingmodels (i.e., ERNIE-based
Ranker and BERT-based Ranker) obtain strong performance on our
proposed dataset, validating the effectiveness of FULTR for repre-
sentative PLM-based ranking models and highlighting its potential
contributions to satisfaction-oriented ranking tasks.
Ablation Study of Model Structure. To investigate the effective-
ness of the key components in our proposed method, we carry
out extensive ablation studies in this section. We consider the fol-
lowing variants: Fusion Ranker w/o posterior module (i.e., Satisfac-
tion Ranker) directly utilizes the hybrid model to learn the textual
and numerical inputs, respectively. Moreover, Fusion Ranker w/o
posterior module (i.e., Behavior Ranker) concatenates the diverse
satisfaction features with posterior features to construct the input
for the two-tower model, and then leverages the click tower and
the duration tower to model user click and duration behavior, re-
spectively. Table 3 illustrates the ablation study results of removing
two key components of Fusion Ranker on FULTR. According to the
results, we could observe that two components benefit the proposed
model, respectively. Particularly, removing the Behavior Ranker
causes the sharpest drop on both metrics.

6 Conclusion
In this work, we propose a large-scale prior-posterior fusion LTR
dataset FULTR, containing over 224M queries and 683M documents
collected from Baidu Search. FULTR combines a rich prior-attribute
set with diverse satisfaction features and a comprehensive posterior-
attribute set enriched by user behavior information. By synthesiz-
ing these dual perspectives, FULTR establishes a robust and re-
producible benchmark for satisfaction-oriented ranking, thereby
enabling researchers to develop models that more accurately cap-
ture real-world search behaviors and user satisfaction. We propose
a fusion ranker that combines a satisfaction ranker leveraging PLMs
to integrate diverse satisfaction signals, a behavior ranker capturing
user interactions via a dual-tower approach, and a fusion layer to
integrate the output from two rankers. Extensive experiments and
ablation studies show the effectiveness of our proposed model and
the great potential to develop new algorithms with FULTR.
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A Detailed Feature Description
In this section, we provide a detailed description of the features
of the prior-attribute dataset and the posterior-attribute dataset
mentioned in Section 3.2 and 3.3. Table 4 presents the specific
feature representation of samples in the prior-attribute dataset.
Specifically, each query-document pair in the prior-attribute dataset
is represented with 68-dimensional features and a label, which
contains rich text features and diverse satisfaction features (i.e.,
authority, recency, quality, and relevance). As the prior-attribute
dataset is used to train the whole fusion ranker, it has click features
the same as the click features in the posterior-attribute dataset.
Moreover, Table 5 details the specific feature representation of
samples in the posterior-attribute dataset. Due to restrictions on
commercial disclosure and to prevent exposing user privacy, we
have processed all original data in a privacy-preserving manner.
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Table 4: The description of features of the prior-attribute dataset in FULTR.

Attribute No. Feature Symbol Feature Type Explanation

Label 1 Label Discrete Number [0-4]

Text
Features

2 qid Uint64 A search request is uniquely identified.
3 query Text The search query.
4 url Text The URL of the document.
5 title Text The title of the document.
6 click_query Text The set of search queries that have clicked on the URL.
7 summary Text The summary of the document content.
8 requirement Text The intent of the query.
9 domain Text The industry classification of the query.

Authority
Features

10 site_name_affiliated_organization Text The name of the website’s affiliated organization.
11 site_name_website Text The name of the website.
12 producer_rate Discrete Number The level of the producer.
13 domain_pr Discrete Number The level of the domain.
14 doc_auth Discrete Number The author of the document.
15 author_fans Discrete Number The number of fans of the author.
16 is_official_website_site Discrete Number Whether it is an official website.

Recency
Features

17 query_search_time Text The time of the search request.
18 fresh_day Discrete Number The time gap between the search time and the document generation time.
19 query_fresh Discrete Number The freshness level of the search query.

Quality
Features

20 doc_len Discrete Number The length of the document.
21 qual_score Discrete Number The quality level of the document.
22 qual_label Discrete Number The quality label of the document.
23 dt_pred Discrete Number The predicted dwell time.

Relevance
Features

24 bhs_global_sum_term_qimp Discrete Number The sum of qimp values for all matches in the document.

25 bhs_content_max_sequence_in_order_ratio Discrete Number The longest ordered (but non-consecutive) subsequence.
26 bhs_content_most_important_concept_hit_num Discrete Number The number of matches in the content field for the largest fragment obtained by

concatenating basic-level segments that have a tightness greater than 0.75.
27 bhs_global_most_important_concept_hit_num Discrete Number The sum of qimp values for all matches in the document.
28 bhs_global_query_perfect_hit Discrete Number Whether all the query terms appear consecutively and in order in the document

(in either the title or content field).
29 entity_match Discrete Number For the core entity in the query, a value of 1 is assigned if it is completely matched

in the document, otherwise 0.
30 bhs_content_window_6_max_sum_qimp Discrete Number In the content field, the qimp value of query terms hit within a window whose size

is 32 times the query length.

Click
Features

31 query_search Discrete Number The search frequency of the query.

32 Hourly click through rate Continuous Number Percentage of clicks per impression for the given hour (clicks/impressions).
33 Hourly normalized impression count Continuous Number Total impressions (times shown) in the hour, scaled to a standardized range (e.g.,

0-1).
34 Hourly click-review rate Continuous Number Ratio of clicks that underwent human or automated review (e.g., fraud detection)

within the hour.
35 Hourly normalized review count Continuous Number Number of reviewed clicks (after quality checks) in the hour.
36 Hourly in-platform click-review rate Continuous Number Percentage of clicks that were both triggered and reviewed within the platform’s

ecosystem (e.g., app/internal pages).
37 Hourly normalized average click-to-view duration Continuous Number Average time (normalized) between a user clicking and starting to actively view

content (e.g., page load delay).
38 Hourly normalized average click duration Continuous Number Average time (normalized) a user stays engaged after a click (e.g., reading time).
39 Hourly normalized in-platform impression Continuous Number Number of impressions served within the platform (e.g., app/browser) during the

hour.
40 Daily click-through Continuous Number Daily aggregated CTR (clicks/impressions over 24 hours).
41 Daily normalized impression count Continuous Number Total daily impressions, normalized for comparability across days.
42 Daily click-review rate Continuous Number Daily ratio of clicks reviewed for quality/validity.
43 Daily normalized review count Continuous Number Daily count of reviewed clicks.
44 Daily in-platform click-review rate Continuous Number Daily proportion of in-platform clicks that were reviewed.
45 Daily normalized average click-to-view duration Continuous Number Daily average delay between click and active viewing.
46 Daily normalized average click duration Continuous Number Daily average time spent post-click.
47 Daily normalized in-platform impression count Continuous Number Daily in-platform impressions.
48 Weekly in-platform click-to-impression rate Continuous Number Ratio of in-platform clicks to impressions over the week.
49 Weekly normalized average click-to-view duration Continuous Number Weekly average delay (click-to-view).
50 Weekly normalized average click duration Continuous Number Weekly average post-click engagement time.
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Table 4: The description of features of the prior-attribute dataset in FULTR (Continued).

Attribute No. Feature Symbol Feature Type Explanation

Click
Features

51 Weekly normalized average view duration Continuous Number Weekly average time users actively viewed content (post-click).
52 Weekly normalized impression count Continuous Number Weekly total impressions.
53 Weekly normalized average logarithmic click duration Continuous Number Logarithmic transformation of weekly average click durations (compresses out-

liers).
54 Weekly normalized average logarithmic view duration Continuous Number Logarithmic transformation of weekly average view durations.
55 Weekly normalized average squared view duration Continuous Number Squared weekly average view durations.
56 Weekly normalized average squared click duration Continuous Number Squared weekly average click durations (emphasizes longer durations).
57 Weekly normalized standard deviation of click duration Continuous Number Weekly variability (spread) in click durations.
58 Weekly normalized standard deviation of view duration Continuous Number Weekly variability in view durations.
59 Monthly in-platform click-to-impression rate Continuous Number Monthly ratio of in-platform clicks to impressions.
60 Monthly normalized average click-to-view duration Continuous Number Monthly average delay (click-to-view).
61 Monthly normalized average click duration Continuous Number Monthly average post-click engagement time.
62 Monthly normalized average view duration Continuous Number Monthly average view duration.
63 Monthly normalized impression count Continuous Number Monthly impressions.
64 Monthly normalized average logarithmic click duration Continuous Number Logarithmic monthly average click duration.
65 Monthly normalized average logarithmic view duration Continuous Number Logarithmic monthly average view duration.
66 Monthly normalized average squared click duration Continuous Number Squared monthly average click duration.
67 Monthly normalized average squared view duration Continuous Number Squared monthly average view duration.
68 Monthly normalized standard deviation of click duration Continuous Number Monthly variability in click durations.
69 Monthly normalized standard deviation of view duration Continuous Number Monthly variability in view durations.

Table 5: The description of features of the posterior-attribute dataset in FULTR.

Attribute No. Feature Symbol Feature Type Explanation

Label 1 Label Discrete Number 0/1

2 qid Uint64 A search request is uniquely identified.
3 ranking position Discrete Number The document’s displaying order on the screen.
4 query Text The search query.
5 url Text The URL of the document.
6 title Text The title of the document.
7 summary Text The summary of the document content.

Click Features 8-45 The same as Feature No.32∼No.69 in Table 4

46 dwell time Continuous Number The length of time a user spends looking at a document after they’ve clicked a link
on a SERP page, but before clicking back to the SERP results.
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