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ABSTRACT
Document ranking is a central problem in many areas, including
information retrieval and recommendation. �e goal of learning
to rank is to automatically create ranking models from training
data. �e performance of ranking models is strongly a�ected by the
quality and quantity of training data. Collecting large scale training
samples with relevance labels involves human labor which is time-
consuming and expensive. Selective sampling and active learning
techniques have been developed and proven e�ective in addressing
this problem. However, most active methods do not scale well and
need to rebuild the model a�er selected samples are added to the
previous training set. We propose a sampling method which selects
a set of instances and labels the full set only once before training the
ranking model. Our method is based on hierarchical agglomerative
clustering (average linkage) and we also report the performance
of other linkage criteria that measure the distance between two
clusters of query-document pairs. Another di�erence from previous
hierarchical clustering is that we cluster the instances belonging to
the same query, which usually outperforms the baselines.
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1 INTRODUCTION
Document ranking is an essential feature in many information
retrieval applications. How to sort the returned results according to
their degree of relevance has given birth to the area of learning to
rank [6], which aims to automatically create ranking models from
a training dataset; the learned models are then used to rank the
results of new queries. Many learning to rank algorithms have been
proposed; they can be categorized into three types of approach:
pointwise [2], pairwise [5] and listwise [1].
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Like other supervised machine learning methods, the perfor-
mance of a ranking model highly depends on the quantity and
quality of training datasets. To create training datasets, experts are
hired to manually provide relevance labels for training data, which
is expensive and time-consuming. Human labeling, whether by
experts or crowds, can be noisy and biased [11]. Active learning
is a paradigm to reduce the labeling e�ort [12]; it has mostly been
studied in the context of classi�cation tasks [9, 10, 14].

In this paper, we present an active learning method to select the
most informative query-document pairs to be labeled for learning
to rank. Our method relies on hierarchical clustering. Unlike tra-
ditional active learning methods, our method is unsupervised and
the selected training sets can be used to train di�erent learning
to rank models. We build on the hypothesis that the information
contained in an instance is highly correlated to the instance posi-
tion in the feature space. Hierarchical clustering has the ability to
group instances with similar information into the same cluster and
each cluster can be represented by its centroid. While most active
learning methods need to rebuild the training models each time
new labeled documents are added to the training set, our method
labels the instances only once before the training process. We �rst
evaluate our method on three datasets from Letor 3.0 and �nd that
the performance of our method is similar or superior to the base-
lines while we can achieve full training performance with fewer
instances. We also analyze the limitations of our method and �nd
that the e�ectiveness of our sampling method is closely related to
the features and structures each dataset has.

2 RELATEDWORK
In order to address the lack of labeled data, active learning has
proven to be a promising direction that aims to achieve high ac-
curacy using as few labeled instances as possible [12]. A number
of active learning methods have been proposed for classi�cation.
Most methods start with only a small set of labeled instances and
sequentially select the most informative instances to be labeled by
an oracle. �e trained model will be updated when new labeled
instances are added to the training set. Di�erent strategies are pro-
posed to choose the most informative instances that can maximize
the information value to the current model [9, 10, 14].

It is not straightforward to extend these methods to ranking
problems. On the one hand, these methods try to minimize the
classi�cation error and do not take into account the rank order
while position-based measures are usually non-continuous and
non-di�erentiable. On the other, each instance in most supervised
classi�cation tasks can be treated as independent of each other
while the instances in learning to rank are conditionally indepen-
dent. Compared with traditional classi�cation problems, there is
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limited work about active learning in ranking. Long et al. [8] adopt
a two-stage active learning strategy schema to integrate query level
and document level data selection. �ey select samples minimizing
the expected loss as the most informative ones and achieves good
results in the case of web search ranking. But this method requires
a relative big seed set and the ranking models are restricted to
pointwise models. Donmez and Carbonell [3] select the documents
that woluld impart the greatest change to the current model. While
all these methods sequentially select instances to be labeled, Silva
et al. [13] adopt hierarchical clustering to “compress” the original
training set, which is the state-of-the-art selection method in over-
all performance and e�ciency. �e method we propose can be
viewed as an extension of [13]. �e di�erence are that we cluster
the query-document pairs belonging to the same query separately
and average linkage is used, which achieves be�er performance.

3 METHOD
3.1 Hierarchical agglomerative clustering
In hierarchical agglomerative clustering, each instance is regarded
as a singleton cluster and then merged based on the distance or sim-
ilarity between clusters until there is only one cluster that contains
all instances. �e structure of the �nal cluster is a tree or dendro-
gram and each level of the resulting tree is a segmentation of the
data. For two given clusters, C1 and C2, and a non-negative real
value λ, if distance f (C1,C2) < λ, then C1 and C2 will be merged.

According to the merging rule, the number of clusters is associ-
ated with the value of λ, which is the indistinguishability thresh-
old [13]. Di�erent linkage criterions have been proposed to measure
the distance or dissimilarity between two clusters. We use average
as our linkage criterion and we also report the performance of
minimum linkage, maximum linkage and ward linkage.

3.1.1 Minimum linkage clustering. In minimum linkage clus-
tering (also called single linkage clustering), one of the simplest
agglomerative hierarchical clustering methods, the value of the
shortest link from any member of one cluster to the member of
another cluster denotes the distance of these two clusters. For two
clusters C1 and C2, the distance between C1 and C2 is:

f (C1,C2) = min
u ∈C1,v ∈C2

d(u,v),

In this paper, d is the Euclidean distance. �is method is also known
as the nearest technique and used in [13]. In this case, minimum
linkage clustering can group the instances in “stringy” clusters and
be converted to �nd the Minimum Spanning Tree (MST) of query-
document pairs [4]. By deleting all edges longer than a speci�ed
indistinguishability threshold in the MST, the remaining connected
instances form a hierarchical cluster.

3.1.2 Average linkage clustering. Average linkage clustering uses
the average of distances between all pairs of instances, where each
pair consists of two points from two di�erent clusters, as the dis-
tance between two clusters:

f (C1,C2) =
1

N1 ∗ N2

∑
u ∈C1,v ∈C2

d(u,v),

where N1 and N2 are the sizes of clusters C1 and C2, respectively.
We use average linkage as our linkage criterion to measure the

cluster distance and we perform clustering on each subset which
contains all the query-document pairs belonging to the same query.

3.1.3 Maximum linkage clustering. Di�erent from single link-
age clustering, the distance of two clusters in maximum linkage
clustering is the value of the largest link from one cluster to another
cluster. For two clusters C1 and C2, the distance is computed as
follows:

f (C1,C2) = max
u ∈C1,v ∈C2

d(u,v),

where d is the Euclidean distance.

3.1.4 Ward linkage clustering. In Ward’s linkage method, the
distance between two clusters is the sum of the squares of the
distances between all objects in the cluster and the centroid of the
cluster. For two clusters C1 and C2, the distance is computed as
follows:

f (C1,C2) =
∑

x ∈C1∪C2

d(x , µC1∪C2 )
2,

where µ is the centroid of the new cluster merged from C1 and C2.

3.2 Hierarchical clustering for learning to rank
In this paper, we apply di�erent linkage criteria to hierarchical
clustering. As shown in Algorithm 1, we �rst cut all the query-
documents pairs into di�erent subsets which have di�erent query
ids and then adopt hierarchical clustering on each subset. A�er
the last two steps, we can get the clusters on each subset. In our
sampling strategy, we use the instance closest to the geometric
centroid of each cluster to represent all the query-document pairs
in this cluster. In fact, the clustering distribution shows that there
is only one single point in most clusters. �e �nal dataset to be
labeled is made up of all the selected instances.

Algorithm 1 Hierarchical Clustering on Each �ery (HCEQ)
Require: Unlabeled dataset D with m queries, desired sampling

size n, linkage criterion linkaдe
Ensure: �e subset S to be labeled

1: D1,D2, . . . ,Di , . . . ,Dm ← DividinдDataset(D).
2: S ← ∅
3: for all i ∈ {1, 2, . . . ,m} do
4: ni ← n ∗ |Di |

|D |
5: C1,C2, . . . ,Cj , . . . ,Cni ← AддClusterinд(Di ,ni , linkaдe)
6: for all j ∈ {1, 2, . . . ,ni } do
7: дj ← GeometricCentroid(Cj )

8: pj ← NearestNeiдhbour (Cj ,дj )
9: S ← S ∪ {pj }

10: end for
11: end for
12: return S

4 EXPERIMENTAL SETUP
4.1 Data Sets and Evaluation Measure
To compare the performance of di�erent linkage criteria, we ap-
ply hierarchical clustering to a well-known L2R benchmarking
collection, Letor 3.0 [7]. In Letor 3.0, there are 7 datasets, based
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on two document collections: Gov and OHSUMED. We focus on
topic distillation (TD2003, TD2004) from GOV and OHSUMED from
OHSUMED. In the sets from GOV, each instance is represented by
64 features extracted from the corresponding query-document pairs
and has a label indicating its relevance level. �e datasets from
GOV have binary relevance labels (relevant, not relevant) while
OHSUMED has 3 levels (de�nitely relevant, possibly relevant, not rel-
evant) and each instance is represented by a 45-dimensional feature
vector. Di�erent datasets have di�erent numbers of instances; there
are 50, 75 and 106 queries, each with 50K, 74K and 16K instances in
TD2003, TD2004 and OHSUMED, respectively.

�e metric we use is Normalized Discounted Cumulative Gain
(NDCG). We run 5-fold cross-validation on all datasets which are
query-level normalized and report the average NDCG@10 on 5
folds as �nal performance.

4.2 Baselines
We compare the results obtained using our methods with the ap-
proach in [13], which is also based on hierarchical clustering; the
results of random sampling and the full training set are also reported
for reference:

Cover. �e method proposed in [13] is an unsupervised and com-
pression-based selection mechanism that tries to create a small and
highly informative set to represent the original training dataset.
Hierarchical clustering (single linkage) is employed to group query-
document pairs into di�erent clusters with required number of
clusters. �e authors also use the instance closest to the geometric
centroid of each cluster to represent all the query-document pairs in
this cluster and form the �nal training set to be labeled. Unlike our
method, they perform clustering globally and instances belonging
to di�erent queries could be grouped into the same cluster.

Random. �e instances to be labeled are selected randomly and
no active learning methods are used here. For the same dataset, we
run random sampling 10 times and report the average performance.

Full Training. We use the labeled original training datasets to
train the learning to rank models.

To be able to show the di�erence between our methods and [13], we
select SVMRank and Random Forests as our ranking models which
are also used in [13]. �e parameters of SVMRank and Random
Forests are tuned using a small validation set.

We run all sampling methods until the fraction of selected in-
stances reaches 50% of the original set.

5 RESULTS AND ANALYSIS
5.1 Experimental Results
Fig. 1 shows the NDCG@10 of di�erent linkage criteria and base-
lines (denoted by Average, Max, Min, Ward, Cover, Random and Full
respectively) on the TD2003, TD2004 and OHSUMED datasets. As
we use the instance closest to the centroid to represent the corre-
sponding cluster, the instance selected before may not be selected
in later sampling rounds; accuracy is not monotonically increasing.

On TD2003, in terms of SVMRank (Fig. 1(a)), the accuracy of
Average �rst exceeds the accuracy of Full at size 2%. Before 24% of
the original training set have been selected, all the curves �uctuate

around 0.35 except Random and Ward. When more and more in-
stances are added to the training set, the performance of Cover goes
down and becomes worse than Full. For Random Forests (Fig. 1(d)),
Average achieves the highest accuracy before 4% of the original
training set has been selected and is the �rst one to reach the same
accuracy as Full. �e accuracies of Ward, Max and Cover start from
relatively low points. All methods achieve the performance of Full
at around 12% except Random. A�er 18%, Cover stays below Full
(close to 0.36) and �uctuates around 0.35.

Fig. 1(b) and 1(e) describe the performance of di�erent methods
on the TD2004 dataset. In Fig. 1(b) we see that Average has the
highest starting point when 2% of the original training set have
been selected. However, a�er one more percent has been added to
the training set, all methods have a very similar performance at
around 0.295. Average and Cover reach the performance of Full with
about 5% and continue to rise before they reach their peaks with
13% and 8%, respectively. Except Random, all methods reach the
performance of Full with about 11% selected; their accuracy stays
higher than that of Full. In terms of Random Forests (Fig. 1(e)), Aver-
age still has the highest starting accuracy and a�er the �uctuations
before 11% of the training set has been selected, Average always
performs be�er than Full and peaks around 19% of the training
set, which is also the highest accuracy in all methods. Cover has a
relatively high accuracy when the selected size is 7– 11%.

�e OHSUMED dataset is based on another document collection,
di�erent from TD2003 and TD2004. �e performance of SVMRank
and Random Forests on OHSUMED are shown in Fig. 1(c) and 1(f),
respectively. In terms of SVMRank, an interesting thing is that
Random has similar performance as hierarchical clustering, which
means that hierarchical clustering plays a small role when selecting
informative instances in this case. With respect to Random Forests,
Average, Min, Ward and Max have very similar performance a�er
16% of the training data has been selected and they reach the accu-
racy of Full at around 30%. Although Cover is the �rst method to
achieve full training set performance with around 7% and reaches
the peak at the same time, its accuracy is not stable and dramatically
decreases until 17% of the training set has been selected. A�er 30%
of the original training set has been selected, all methods achieve
the same performance as Full.

5.2 Analysis
As we can see from the results presented above, most of the time,
Average outperforms other methods on the TD2003 and TD2004
datasets. Although Min and Cover both use the shortest link to
measure the distance between two clusters, they have di�erent per-
formance and Min performs be�er. One possible reason is that our
selection mechanism can guarantee that the proportions of selected
instances from each query are same and every query contributes
to the �nal performance. Another reason might be Cover clusters
query-document pairs globally, which causes that query-document
pairs from di�erent queries will be represented by the instances
from one speci�c query. And this will limit the number of applicable
instance pairs for pairwise ranking models.

On OHSUMED, Average, Min and Max have similar and stable
performance while Cover �uctuates dramatically when relatively
few instances are selected, especially with the Random Forests
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(a) SVMRank on TD2003
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(b) SVMRank on TD2004
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(c) SVMRank on OHSUMED
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(d) Random Forests on TD2003
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(e) Random Forests on TD2004
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

%selected

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

0.43

0.45

N
D
C
G
@

1
0

Average

Cover

Max

Min

Ward

Random

Full

(f) Random Forests on OHSUMED

Figure 1: Performance on TD2003, TD2004, and OHSUMED. �e x-axis displays the percentage of selected instances.

learner. �e di�erence between the proposed methods and Random
is not signi�cant. How datasets are constructed and what struc-
tures datasets have will in�uence the performance of clustering-
based active learning methods. For example, an instance from the
OHSUMED dataset is represented by 45 features which is fewer
than for TD2003 and 2004, and some speci�c features could have
greater impact on the clustering results. In addition, a query has
only about 152 associated documents in OHSUMED. When we clus-
ter query-document pairs with respect to each query, the number
of selected instances from each query is small and every individual
query will have very few associated documents which can in�uence
the performance of ranking models.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we adopt hierarchical clustering to select the most
informative instances for learning to rank and report the perfor-
mance of di�erent linkage criteria and baselines. On the Letor 3.0
dataset, the performance of average linkage is similar or superior
to the baselines while fewer instances are needed. In the future, we
will investigate how to make our method more stronger and robust
on di�erent datasets. One possible direction is to detect correla-
tions between speci�c features and clustering performance. How
to choose an optimal fraction of instances for each query while
the total number of selected instances is �xed is another future
direction worth exploring.
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