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Recommender systems have become an important instrument to connect people to information. Sparse, complex, and rapidly

growing data presents new challenges to traditional recommendation algorithms. To overcome these challenges, various

deep learning-based recommendation algorithms have been proposed. Among these, Variational AutoEncoder (VAE)-based

recommendation methods stand out. VAEs are based on a lexible probabilistic framework, which is robust for data sparsity

and compatible with other deep learning-based models for dealing with multimodal data. In addition, the deep generative

structure of VAEs helps to perform Bayesian inference in an eicient manner. VAE-based recommendation algorithms have

given rise to many novel graphical models and they have achieved promising performance. In this paper, we conduct a survey

to systematically summarize recent VAE-based recommendation algorithms. Four frequently used characteristics of VAE-based

recommendation algorithms are summarized, and a taxonomy of VAE-based recommendation algorithms is proposed. We also

identify future research directions for, advanced perspectives on, and the application of VAEs in recommendation algorithms,

to inspire future work on VAEs for recommender systems.

CCS Concepts: · Information systems → Data mining; · Human-centered computing → Collaborative and social

computing.

Additional Key Words and Phrases: variational autoencoder, recommender systems, deep learning, Bayesian network

1 INTRODUCTION

Recommender systems (RSs) help users to identify and connect valuable and interesting information and services.
At the same time, RSs help platforms, in e-commerce, entertainment, news, etc., to expose items and services
to potential users. Recommendation algorithms are designed to process multimodal data, such as item content,
interaction data, as well as side information, such as user proiles, reviews, popularity, to recommend a single
item or a ranked list of items to users [21, 140, 184].
Collaborative Filtering (CF)-based methods are frequently used in RS, since they are able to achieve good

recommendation performance and be implemented easily, e.g., by matrix factorization [89, 119]. The core idea
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behind CF is that users with similar preferences would like to consume similar items. However, these methods
usually sufer from cold-start and data sparsity problems [20]. To tackle these problems, side information such as
reviews, item content, user proiles, is combined with CF-based algorithms, forming hybrid recommendation meth-
ods. Examples include Collaborative Topic Regression [169], which uses Latent Dirichlet Allocation (LDA) [15]
to learn latent representations of texts and Probabilistic Matrix Factorization (PMF) [119] to model user-item
interaction data. These methods fail to cope with the increasingly multimodal nature of data associated with
items and services to be recommended, such as image, video, GPS coordinates, etc. [100]. Moreover, the latent
representations learned by LDA are not robust enough in scenarios where the data is extremely sparse [100, 171].
To tackle these problems, deep learning-based CF methods have been, and continue to be, explored for learning
robust and non-linear latent representations from sparse and multimodal data.

Deep learning-based CF recommendation methods can be grouped based on the underlying methods they use:

• Restricted Boltzmann Machines (RBMs) [51, 128, 143],
• Deep Belief Networks (DBNs) [73, 137, 176],
• Autoencoders [11, 63, 146, 166, 167] and variational autoencoders [17, 30, 86, 139],
• Recurrent Neural Networks (RNNs) [70, 158],
• Convolutional Neural Networks (CNNs) [53, 92, 164].
• Attention/self-attention deep learning models [46, 49, 61, 124, 205],
• Deep reinforcement learning models [3, 56, 69, 181, 213], and
• Graph neural networks [39, 66, 150, 175, 198, 216].

Speciic applications of these deep learning-based RSs can be found in recent surveys [10, 82, 185, 208].

1.1 Recommendation methods based on Variational AutoEncoders (VAEs)

Among the deep learning-based recommendation methods listed above, the ones based on VAEs [17, 30, 86,
139] stand out due to their unsupervised learning nature and their non-linear probabilistic latent-variable
approaches [44], as they are more efective and robust to infer users’ latent purchase preferences [218] and the
latent semantics of the items. The key characteristics of VAEs can be summarized as follows:

(1) A VAE consists of a lexible encoder and decoder. Both can incorporate other deep learning methods,
resulting in a lexible internal structure. Although many other designs have encoders, Gaussian priors, or
allow for Bayesian inference, VAEs can be considered as a generalization of classical matrix factorization,
PMF, factorization machines, SVD feature etc. In the framework of VAEs, the encoder can be implemented
using many alternative designs, such as multilayer perceptrons, hierarchical stochastic units, gated linear
units, etc. Moreover, by using multiple deep learning models as encoders, a VAE can integrate the learning
ability of other special deep learning models; we refer to this as the encoding capability of VAEs in this
paper.

(2) A VAE is a deep generative model that is able to learn implicit patterns in data and use Bayesian inference
for model optimization. Bayesian inference is also the main diference between VAEs and traditional
autoencoders [86, 146, 166]. Bayesian inference as used in VAEs is eicient because a VAE combines the
graphical model and deep learning, and uses back propagation [68] to learn parameters with the help of the
reparameterization trick [41, 86, 87]. Its Bayesian nature enables a VAE to design diverse graphical models
to capture the causal relations between diferent variables in a RS, e.g., variables denoting users, items, or
side information.

(3) A VAE consists of lexible priors and preference distributions. In addition to a Gaussian prior, the priors
of VAEs can be extended to user-dependent priors [80], the VampPrior [83], or composite prior [149]. In
classical matrix factorization models, their extensions and deep learning designs, it is usually assumed that
the user preference distribution on items follows a Gaussian distribution. With VAEs and their Bayesian
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nature, the user preference distribution can be assumed to be a multinomial distribution [102] or a Bernoulli
distribution [28].

To sum up, there are four main characteristics that make VAEs attractive in the context of RSs: (i) their encoding
capability (representation learning), (ii) their generative nature, (iii) their Bayesian nature, and (iv) their lexible
internal structure.

1.2 Emergence of VAEs for RSs

As early as in 2017, Li and She [100] used VAEs to learn latent representations of item content (including
multimedia items) to address the data sparsity and cold-start problem. In the subsequent year, Liang et al.
[102] used a VAE to model the generative process of user-item interaction data so that the user’s preference
can be inferred. Lee et al. [93] explored graphical models designed with VAEs for handling diferent causal
relations between variables in RSs. Meanwhile, VAEs can also facilitate explorations of other topics in RSs,
such as novel item generation [168], fairness in RSs [16], multi-criteria recommendation [99]. Compared with
[100], Liang et al. [102] demonstrated the practical utility of their VAE-based recommendation model by directly
extracting user representations from interactions. In 2021, Borges and Stefanidis [17] proposed a VAEs-based
recommendation method that penalizes scores given to items according to historical popularity for mitigating
the bias and promoting diversity in the recommendation results. Subsequently, by adopting autoencoders as the
base model, Choi et al. [30] proposed a Local Collaborative Autoencoders (LOCA) that aims at capturing latent
non-linear patterns representing meaningful user-item interactions within sub-communities of the users. Zhang
et al. [210] adapted the Wasserstein autoencoders [160] to address the CF problem. Hence, one can see that the
number of research publications that apply VAEs in RSs has been increasing dramatically in the past few years.
Given the advantages of using VAEs in RSs and given the proliferation of research that applies VAEs in this

context, the time is right to conduct a comprehensive survey to systematically summarize the recommendation
methods that apply VAEs and provide inspiration, in terms of model design and applications of VAEs, to other
researchers who are interested in recommendation algorithms.

1.3 Diferences between this survey and others

To the best of our knowledge, this paper is the irst survey on applications of VAEs in RSs. Although there
have been many publications that use VAEs to address speciic problems in RSs or that attempt to improve
recommendation performance, there is no in-depth summary of applications of VAEs in RSs.
Several surveys of traditional recommendation algorithms [20, 47, 81, 91, 155] and deep learning-based rec-

ommendation algorithms [10, 14, 82, 106, 204, 208] have been published in recent years. Surveys on traditional
recommendation algorithms and on deep learning-based recommendation algorithms [14, 82, 106] seldom men-
tion VAE-based recommendation methods. Zhang et al. [208], Batmaz et al. [10] and Khan et al. [82] reviewed
publications on deep learning for RSs, but they only introduce a limited number of recommendation methods that
use a VAE without providing further analysis. The most similar survey to ours may be the one by Zhang et al.
[204], who summarized autoencoder-based recommendation methods, including a small number of VAE-based
recommendation methods. Given the advantages of VAEs among deep learning-based recommendation methods
and given the lack of surveys on VAEs for RSs, we believe it is valuable to survey the applications of VAEs in RSs
from the aspect of research and applications.
Below, we summarize several characteristics of VAEs that make a VAE applicable to RSs. Based on these

characteristics we analyze current works on applying VAEs to RSs. We also describe several potential future
research directions for, and new perspectives on, VAEs for RSs.
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Fig. 1. Distributions of the reviewed papers of VAE-based recommendation methods over years (a) and over venues (b).

1.4 Contributions of this survey

The contributions of this survey can be summarized as follows:

(1) More than 100 research papers on VAEs and especially on applying VAEs for recommendation are collected.
In conducting our literature search, we use DBLP and Google Scholar as the primary search engines
with the keywords: variational + recommendation, variational autorencoder + recommendation, VAE +
recommendation, and generative + recommendation (noting that recommendation is also replaced with
collaborative iltering) in the title and the abstracts, to ilter the related papers from the top-tier data
mining/machine learning/recommendation system/artiicial intelligence conferences and journals including
but not limited to: KDD, ICDE, WWW, SIGIR, ICML, NeurPIS, AAAI, IJCAI, WSDM, CIKM, RecSys, TKDE,
TNNLS, TOIS and TKDD, ranging from 2003 to 2023 and mainly focus on the most recent 6 years. We
then traverse the citation graph of the identiied papers and incorporate pertinent studies. In addition to
reviewing published papers, we screen preprints on arXiv and identify those with novel and intriguing
ideas for a more comprehensive picture. Four characteristics of VAEs used in current RSs are summarized,
based on which an in-depth analysis of the surveyed work is given to help researchers understand the
speciic application and beneits of VAEs in RS;

(2) A taxonomy of the work that we survey to help recognize trends in applications of VAEs in RS; and
(3) Future research directions are pointed out, based on our discussion as well as some other advanced

perspectives of VAE in RS, aiming to attract more researchers to engage in this research ield.

The remainder of this survey is organized as follows. Preliminaries are introduced in Section 2. Section 3 presents
our analysis of traditional recommendation methods (e.g., CF) that apply VAEs and our taxonomy for them, and
discusses how VAEs are applied to other topics in the context of RSs. Section 4 describes possible future research
directions and new perspectives. Finally, Section 5 concludes the survey.

2 PRELIMINARIES

To aid in the presentation of the surveyed papers, we irst deine the notation and basic concepts that we use in
the paper.

ACM Comput. Surv.
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Table 1. Main notation used in the paper.

Symbols Descriptions

�, � number of users, items
r�� , r

�
� user �’s, item � ’s interaction vector

x�� , x
�
� user �’s, item � ’s side information (features)

z�� latent variable of user �’s interaction vector r��
z�� latent variable of item � ’s interaction vector r��
h�� latent variable of user �’s side information x��
h�� latent variable of item � ’s side information x��
u� ,U latent variable of user � , and corresponding matrix
v� ,V latent variable of item � , and corresponding matrix

v†� collaborative latent variable of item �

R rating matrix or interaction matrix
R� � �, �-th element of feedback matrix R
g� social factor of user �
S�� �, �-th element of social matrix
�,W��� parameters of the encoder of a VAE
� ,W��� parameters of the decoder of a VAE
�, �2 mean, variance of Gaussian distribution
� random variable drawn from N(0, � )
�, � hyper parameter for regularization in a VAE
��, ��, ��, �� weights for corresponding vector regularization
��� (·∥·) KL divergence between two distributions

o(� ) hidden state in RNN at time �

v(� ) user’s interaction item at time �

z(� ) latent variable of v(� )

2.1 Notations

We use � and � to denote the number of users and items, respectively. We use � ∈ {1, 2, . . . , �} and � ∈

{1, 2, . . . , � } to denote the �-th user and the �-th item. User-item interaction/rating data is denoted using R ∈

R
�×� , whereR� � denotes the preference

1 of user � to item � . For latent factor models, letU ∈ R�×� andV ∈ R�×�

represent the user latent factor matrix and item latent factor matrix, respectively, where � is the dimension of the
latent factors. Side information of users/items is denoted by X, with the row vector x describing an arbitrary
user’s/item’s side information. Further notation will be introduced when necessary in the corresponding sections;
notation used throughout the paper is summarized in Table 1.

2.2 Basics of VAEs

To better understand VAEs and their applications in recommender systems, in this subsection, we irst introduce
vanilla VAEs and some related concepts based on the recommendation scenario, and then detail the characteristics
of VAEs.

2.2.1 The vanilla VAE. The vanilla VAE is a generative model that can generate samples similar to those in
the training datasets. It is called an łautoencoderž because it has an encoder (inference module) and a decoder

1Preferences can be measured by rating scores for items from users.
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Fig. 2. (a) A vanilla VAE implemented by a feedforward neural network; inside the red dashed rectangle is an illustration of
the reparameterization trick when the latent distribution is Gaussian. (b) Graphical model of a vanilla VAE for modeling
user-item interaction data.

(generative module). The inal training objective consists of an encoder and a decoder, which resembles traditional
autoencoders [41]. During training, unlike traditional autoencoders, the encoder of a VAE produces the distribution
of the latent variable for the input data, while the decoder reconstructs the input data from the dedicated latent
representation sampled from the distribution. An illustration of the worklow of a vanilla VAE can be found in
Figure 2(a).

For brevity and without causing confusion, we use r to represent an arbitrary user’s interaction vector r�� . We
take modeling r as an example; the graphical model is shown in Figure 2(b); the encoder, decoder, objective and
some related concepts are detailed below.

Encoder. The encoder of a VAE encodes the interaction data r into the approximate posterior distribution
�� (z | r) (we refer to it as the łlatent distributionž for convenience and as we will explain later, this distribution
is used to approximate the true posterior distribution �� (z | r) of the latent variable z). Speciically, taking r

as input, a neural network with parameters � is used to parameterize the distribution of latent variable z. For
instance, if we use a Gaussian distribution to represent �� (z | r), then the encoder should output the mean and
variance of �� (z | r). By using this encoder, for every r, we can learn the dedicated latent distribution for it.
Applying amortized inference [52] and neural networks to approximate the true distributions of latent variables
are the cores of the encoder of a VAE and foundations for eicient Bayesian inference.

Decoder. The decoder, also known as the generative module, is used to generate data that is as close to the
input data (of the encoder) as possible, i.e., to reconstruct the input data. With the samples of z generated from
the latent distribution �� (z | r), the decoder can reconstruct the interaction data r. Similar to the encoder, the
decoder can also use a neural network with parameters � to do this reconstruction. Speciically, the output of the
decoder, i.e., the preference probabilities over all items, is used to parameterize the distribution �� (r | z), from
which the reconstructed r is sampled. In practice, we use the output probabilities over all the items to generate
recommendations.

Objective. As is introduced in the decoder above, the interaction data r is generated from a latent variable z
using the decoder. Then, modeling the generative process of r is equivalent to maximizing the following marginal
probability of r:

�� (r) =

∫

�� (r, z)�z =

∫

�� (r | z)�� (z)�z. (1)

The above integral for computing the marginal likelihood �� (r) does not have an analytic solution. Considering
the Bayes’ theorem �� (z | r) = �� (r, z)/�� (r) and the intractability of �� (r), the true posterior distribution
�� (z | r) is also intractable. To solve the problem, the latent distribution �� (z | r), parameterized by the encoder
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neural network, is used to approximate the intractable �� (z | r) and the Evidence Lower BOund (ELBO) is derived
from Eq. (1) as:

log�� (r) = ��� (�� (z | r)∥�� (z | r)) + L(� , �; r). (2)

The irst term in the right hand side of Eq. (2) is the KL divergence2 between the true posterior �� (z | r) and
�� (z | r) and the second term is the ELBO on the marginal likelihood of r. Since the KL divergence is non-negative,
we have:

log�� (r) ≥ L(� , �; r) = E�� (z |r)
[

− log�� (z | r) + log�� (r, z)
]

, (3)

where the ELBO L(� , �; r) can be rewritten as:

L(� , �; r) = E�� (z |r) [log�� (r | z)] − ��� (�� (z | r)∥�� (z)). (4)

As in other variational methods, the ELBO is the optimization objective of the vanilla VAE. The complete
derivation process of the ELBO is provided in [87]. The irst term at the right hand side of Eq. (4) is the expectation
of reconstructing r in terms of the latent distribution �� (z | r), often called negative reconstruction error. The
second term is the KL divergence between �� (z | r) and the prior of the latent variable, i.e., �� (z).

Reparameterization trick. For the moment, we want to diferentiate and optimize the ELBO w.r.t. both the
parameters � and � in the encoder and decoder, respectively. Since the KL divergence term can often be calculated
analytically, only the expectation w.r.t. �� (z | r) in Eq. (4) requires estimation by sampling, i.e., the Monte
Carlo estimate of this term should be made. However, the sampling of z from �� (z | r) is a non-continuous
operation and has no gradient, so the backpropagation can not be applied to update the parameters. To solve
this problem, while training a VAE, we use the reparameterization trick to sample the latent variable z from the
latent distribution �� (z | r). The reparameterization trick makes the Monte Carlo estimate of the expectation
w.r.t. �� (z | r) in Eq. (4) diferentiable by introducing an extra auxiliary variable. The VAE assumes that the
latent distribution takes the form of a Gaussian distribution, whose parameters are learned from an encoder, i.e.,
�� (z | r) = N(� (r), �2 (r)), where

� (r) = �1 (r), � (r) = �2 (r).

Here, �1 and �2 are two neural networks, e.g., MultiLayer Perceptrons (MLPs). Then, sampling from the latent
distribution is equal to irst sampling � ∼ N(0, � ), and then generating the sample of z by computing z =

� (r) + �� (r). The reparameterization trick allows the VAE to be trained in an end-to-end manner using neural
networks, since z is deterministic and can propagate the error from the decoder to the encoder after exploiting
the reparameterization trick. An illustration of the reparameterization trick can be found in Figure 2(a).

SGVB estimator. The Stochastic Gradient Variational Bayes (SGVB) estimator is the result of applying the
reparameterization trick and Monte Carlo estimate to the objective, the ELBO. The SGVB estimator is computable
and diferentiable, so usually it is used to optimize the model, simply by applying Stochastic Gradient Descent
(SGD) or Adam [85] to it.

2.2.2 Characteristics of VAEs in recommender systems. Recall the four key characteristics of VAEs that are used in
applications in recommender systems: (i) their encoding capability, (ii) their generative nature, (iii) their Bayesian
nature, and (iv) their lexible internal structure. Before describing the application of VAEs to recommender systems
in details, we summarize the intuitions why these characteristics beneit recommendation performance and
provide detailed discussions of the advantages of applying VAEs to recommender systems.

2The Kullback-Leibler (KL) divergence is usually used to measure the łdistancež between two distributions. The KL divergence can often be

calculated analytically.
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Encoding capability. The encoding capability refers to the fact that VAEs can learn latent representations of
data. The encoder part of a VAE has a strong capability for encoding data, without additional manipulation, e.g.,
noise corruption in denoising autoencoders [17, 103, 166, 167]. This facilitates that data in recommender systems
can be encoded by a VAE. Side information (such as item content, user proiles, etc.) and user-item interaction
data are two main types of data that could be encoded by a VAE. Moreover, the data is usually encoded into a
distribution of the latent variable, which to some degree retains uncertainty.

Generative nature. The counterpart of the encoding capability of a VAE is its generative nature. This means
that a VAE is inherently a generative model, and can simulate how the data are generated in the real world by
learning a joint distribution over all variables. The generative nature of VAE lies in two aspects: (i) the learned
continuous latent space3 (distribution), and (ii) the generative network. Diferent from traditional autoencoders
that learn a ixed low-dimensional vector, a VAE learns a continuous latent distribution over the possible latent
representations through the encoder. Moreover, the learned distribution is data-dependent, i.e., for each datapoint,
a VAE can generate a distribution over some possible values of the latent variable that are likely to reproduce
the input data. Apart from reconstructing the input data, with its generative nature, we can also generate other
previously unseen data by exploring the learned latent distribution [168]. The generative network can be lexible,
i.e., can be chosen to correspond to the encoder or other more expressive deep neural networks.

Bayesian nature. Thanks to its Bayesian nature, a VAE can eiciently use Bayesian inference to optimize the
graphical models, which stimulates diverse designs of graphical models for recommender systems. With eicient
Bayesian inference, VAE can handle sparse and complex data more appropriately, e.g., user-item interaction data,
because uncertainties are considered in Bayesian inference.

Flexible internal structures. The idea of lexible internal structures refers to the internal structures that can be
replaced lexibly. Firstly, one can replace the encoder and decoder with other deep learning networks according
to the data type. Secondly, exploring more powerful prior and reformulating the ELBO are another two choices
for making a VAE more suitable for speciic recommendation tasks. To sum up, the lexible internal structures of
a VAE are its encoder, decoder, prior, and the ELBO.

Advantages of applying VAEs to recommender systems. VAEs infer embeddings of entities, e.g., embeddings
of users and items in the setting of recommender systems, via a variational EM (Expectation-Maximization)
algorithm on large datasets. Although they consist of an encoder and a decoder, whose structures are similar to
traditional deep learning-based autoencoder algorithms and generative models, they work diferently and serve a
large range of purposes. It is well-known that VAEs are able to infer representations of entities with disentangled
factors. This is because isotropic priors such as Gaussians are adopted on the latent variables in VAEs. Modeling
them as isotropic priors enables each dimension of the inferred representations to push themselves as far as
possible from each other. In addition, a regularization coeicient can be applied to VAEs to control the inluence
of the priors over the inferred embeddings [71]. While isotropic priors are suicient for inferring embeddings
of entities in most cases, for speciic purposes, one may be interested in using other priors for the embedding
inference. For instance, to co-embed embeddings of both attributes and nodes for attributed networks, one may
want to deine the priors as hyperspherical ones [45]. One more advantage when applying VAEs to applications
such as recommender systems is that the priors in VAEs give signiicant control over how the latent embeddings
of entities are modeled. Such lexible control does not exist in many deep learning-based autoencoder algorithms
and generative models [32].

3In a VAE, we use the terms łlatent spacež and łlatent distributionž interchangeably since the learned latent distribution can be a small

(dedicated) part of the latent space.
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3 VAE-BASED RECOMMENDATION METHODS

In this section, we introduce VAE-based recommendation approaches. The approaches use either VAEs themselves
or optimization strategies of VAEs, so as to perform recommendation tasks. In order to gain better insights
into these approaches, they are divided into two categories: traditional recommendation approaches and others.
We refer to VAE-based recommendation methods that exploit traditional recommendation algorithms such as
CF as traditional recommendation approaches, and to VAE-based recommendation methods that use external
positive signals such as linking information among items and other machine learning techniques that are
mainly used in other domains such as disentanglement learning [115] as other approaches. For instance, VAE-
based CF methods [145] fall into the category of traditional recommendation approaches, while the VAE-based
recommendation methods using cross-domain knowledge to improve the performance of recommendation [4, 126]
fall into the category of other approaches. We discuss the traditional VAE-based recommendation approaches in
Secion 3.1 and other VAE-based methods in Section 3.2.

3.1 Traditional Recommendation with VAE-based methods

In this section, we introduce a number of recommendation systems, where VAEs are used to either model the
interaction data or side information in CF methods and hybrid methods (introduced in Section 1). We divide the
methods introduced in this section into three categories according to the ways how VAE techniques are used to
address challenges in the task of recommendation, as shown in Figure 3:

(1) Directly applying VAEs for recommendation. In this class of methods, VAEs are used to directly generate the
recommendation results for users. The speciic applications of VAEs in this class of methods are two-fold:
to learn user’s preference pattern from the user-item interaction history, and to further mine a user’s
preference with the latent representation of side information.

(2) Extracting side information for recommendation by VAEs. An alternative way of using VAEs for recom-
mendation purposes is to use a VAE or its variants to learn representations of side information, followed
by a step to integrate the learned representations into a recommendation model such as PMFs.

(3) Exploiting optimization strategies of VAEs for recommendation. Approaches that fall into this category
only exploit optimization strategies of VAEs. These optimization strategies include: the reparameterization
trick, the SGVB estimator, applying a neural network to approximate the true posterior distribution of the
latent variable, and amortized inference (input-dependent encoder). In contrast to directly exploiting a
VAE, these approaches may not be built based on VAEs; these approaches belong to the family of Bayesian
models, and VAEs may be adopted to conduct eicient Bayesian inference for them.

There are other taxonomies that can be used to categorize methods, e.g., categorizing them according to whether
there are temporal dependencies among items: static and dynamic recommendation methods. The most prominent
characteristic of static methods is that they usually use a matrix, which represents the relationships between
users and items, as the main training data. The matrix is called interaction matrix in the implicit feedback scenario,
or rating matrix in the explicit feedback scenario, respectively. The interaction matrix can be constructed as
follows: using rows to represent users and columns to represent items, and if a user has interacted with an
item, then the corresponding entry of the matrix will be denoted as ‘1’, otherwise ‘0’. The rating matrix can
be similarly constructed by treating ratings of the unrated items as ‘0’ and keeping the ratings of the items
unchanged. Some approaches binarize the rating matrix into an interaction matrix by converting the rating that
is equal to or more than a threshold to ‘1’ and others to ‘0’ [102, 183]. Besides adopting the interaction (rating)
matrix, some methods [36] additionally use side information to improve recommendation performance, e.g., item
content [64, 100, 177]. Unlike static methods, in dynamic methods the order of items is usually considered because
it will inluence the prediction results. In general, temporal dependencies among items are used to describe the
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Traditional recommendation 

with VAE method and its 

variants

Directly applying VAEs

Extracting side information by 

VAEs

VAE-based optimization 

strategies

Fig. 3. Taxonomy of VAE-based CF approaches, including those directly applying VAEs [6, 30, 91, 93, 93, 93, 102, 110, 162, 186,
194, 203, 211, 214], those extracting side information by VAEs [28, 33, 57, 75, 127, 196, 197, 217], and VAE-based optimization
strategies [7, 34, 74, 80, 83, 110, 114, 135, 149, 161, 162, 183, 201].
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Fig. 4. Example of using a GRU as the encoder and decoder of a VAE. The green doted line indicates that the condition is
optionally added. Image credits: [179].

order of items. Sequential recommendation and sequence-aware session-based recommendation4 are two types
of dynamic method. To model user-item interaction data with temporal dependencies, an RNN or variant (e.g.,
Long Short Term Memory (LSTM) or Gated Recurrent Unit (GRU)) usually serves as the encoder and decoder
of the VAE. Figure 4 shows an example of using GRUs for VAEs [179]. Next, top-� recommendation5 is usually
addressed using dynamic methods. Rating prediction at the next time step for user � and item � is also addressed
using dynamic methods [154].
In this section, we organize the presentation using the taxonomy in Figure 3, that is, according to the way

in which VAE-based techniques and their variants are used to address the challenges of RSs. However, when
appropriate, we distinguish between static and dynamic approaches within the categories of Figure 3.

3.1.1 Directly applying VAEs for recommendation. Firstly, VAEs are mainly used to model the generative process
of user-item interaction data, which is similar to Section 2.2.1. The decoder outputs the predicted probability
vector over all items, which can be interpreted as a user preference pattern, characterizing user’s preference

4Although general session-based recommendation methods are not all dynamic, the sequential context is an important source of information

for session-based recommendation. To prevent any ambiguity, henceforth in this paper, we will use the term łsession-based recommendationsž

to refer to łsequence-aware session-based recommendations.ž
5When � = 1, top-� recommendation is equivalent to the next clicked item prediction task considered in session-based recommendation.
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towards all the items. We can rank the unrated items according to their probability values in the predicted
probability vector, and recommend the top-� items to the user. The VAE uses amortized inference to learn the
parameters in the model. This is in line with the core of CF, which analyzes user preferences by exploiting
similar patterns inferred from past experiences [102]. The łcollaborativež aspect is relected by the common
encoder and decoder shared by all users. After the model has been learned, all the collaborative information
is obtained by the VAE, which can even unveil the preference pattern of a user whose history was not used
to train the VAE [102]. Note that this is diferent from the method [186] that uses denoising autoencoders for
recommendation, in which the input user interaction data is corrupted with Gaussian noise. In a VAE, the latent
representation of the encoder’s output is combined with stochastic noise, and input into the decoder. Moreover,
compared with models that use denoising autoencoders, the advantage of applying VAEs for recommendation
is that the latent representation is distributed. To some degree, the VAE retains the uncertainty of a user, i.e.,
the user’s preferences are uncertain when the user has few interactions with items, or has interactions with
diverse items. Moreover, Bayesian inference can be used to optimize the model, making the recommendation
performance robust even when the data is sparse.
Secondly, VAEs are used to improve a user’s representation with latent representations of side information,

which is mainly conducted by the encoder. The latent representation of side information can be further integrated
into the process of modeling the generative process of user-item data, so as to form a hybrid method [91, 93].
The generative nature and Bayesian nature (used to optimize the model’s parameters) of a VAE are relected

in these category of methods. The encoding capability of VAEs is relected in some methods in which a VAE
is used to learn the latent representation of side information. Table 2 summarizes VAE-based recommendation
methods that work with diferent internal structures of VAEs. Next, we will introduce methods that directly apply
VAEs for recommendation from 6 angles. First, vanilla VAE models for recommendation are introduced. Then
enhanced VAE models with side information, reasonable priors, powerful encoders, increasing uncertainty and
other strategies are introduced, respectively.

Vanilla VAEs for recommendation. Some methods use a vanilla VAE to directly model the user-item interaction
data [93, 102]. Lee et al. [93] propose a model called VAE-CF, which is a basic version of modifying a VAE
to accommodate CF for handling implicit feedback without side information. VAE-CF uses only the implicit
feedback data for CF. Speciically, a vanilla VAE is used to reconstruct the implicit feedback from which the user’s
preference pattern can be extracted, which is similar to the role introduced in Section 2.2.1. Liang et al. [102]
propose a model called partially regularized VAE with Multinomial likelihood (Mult-VAE), which is another kind
of implementation of the VAE-CF introduced in [93]. Firstly, they use multinomial likelihood for the distribution
of implicit feedback data, which is empirically shown to be more suitable for implicit feedback and a good proxy
for the top-� ranking loss. Secondly, a parameter � ∈ [0, 1] is introduced to the KL divergence term in the ELBO
to govern regularization, which improves the recommendation performance compared to only maximizing the
ELBO, and leads to a reformulated ELBO as follows:

LMult−VAE = E�� (z |r) [log�� (r|z)] − � · ��� (�� (z|r)∥� (z)) . (5)

To eiciently tune the parameter � , an annealing method is used by starting training with � = 0, and then
gradually increasing it to 1. In this process, � that achieves the best performance will be recorded. To tune � , a
scaling factor related to the number of observations of a user to serve as � is proposed [149]. The encoder and
decoder structures for Mult-VAE are adopted as 600 → 200 → 600. In other VAE-based methods, the encoder and
decoder structures could be set as a fully-connected layer (e.g., the latent embedding dimension is set to 100 in
MacridVAE [115]). In addition to these structural considerations, the other hyperparameters such as learning
rate, batch size, L2 regularization, optimizer are tuned with the TPE method [13], based on the dataset at hand.
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Mult-VAE indicates that a reformulated ELBO with additional � controlling the regularization, i.e., KL divergence
term, can improve the recommendation performance.
Similar to Mult-VAE, several publications use a VAE to directly generate recommendations without side

information [6, 30, 110, 162, 182, 194, 203, 211, 214]. The diference between these methods and Mult-VAE is that
diferent or additional manipulation is used, e.g., they may use diferent likelihood for the user-item interaction
data. Zhang et al. [211] propose a VAE-based model called exploitation-exploration motivated VAE (XploVAE)
for CF. They extend user-item interaction data to consider higher-order proximities between users and items.
Askari et al. [6] propose a Joint Variational Autoencoder (JoVA) model, an ensemble of two VAEs, that jointly
learns both user and item representations under uncertainty, and then collectively predicts user preferences
for recommendation. By doing so, JoVA is able to encapsulate user-to-user and item-to-item correlations at the
same time. Choi et al. [30] propose a local recommendation algorithm, called Local Collaborative Autoencoders
(LOCA), that provides a VAE-based generalized architecture for learning a variety of local models by identifying
various sub-communities for training and inference of the VAE model.

Enhanced VAEs with side information. To alleviate the data sparsity problem and improve the recommendation
performance, side information (e.g., social relationships [196, 197]) is fused into vanilla VAEs for recommendation.
Considering the way side information is fused with implicit feedback, augmented VAE models can be divided
into conditional-based VAE models and joint-based VAE models. Next, we introduce the augmented VAE models
in each category.

• Conditional VAE (CVAE-CF) and variants. Motivated by the Conditional VAE [41], Lee et al. [93]
propose CVAE-CF, which models a user’s implicit feedback given side information. Based on the traditional
Conditional Variational AutoEncoder (CVAE), the hybrid method CVAE-CF introduces an additional latent
variable h into the graphical model to extract the latent representations of side information, potentially
leading to better recommendation performance. The graphical model of CVAE-CF is shown in Figure 5
(a). Similar to VAE-CF, the CVAE-CF model also adds regularization in the form of KL divergence to avoid
overitting. It helps the models focus more on implicit feedback than side information, since the goal is to
achieve a better recommendation performance. The inal ELBO of CVAE-CF is deined in Eq. (6), where �1
and �2 are hyper parameters used to govern the KL divergence:

LCVAE-CF = E�� [log �� (r|z,h)] − ��� (�� (z|r)∥� (z))

− �1��� (�� (h|x)∥�� (h|x)) − �2��� (�� (h|x)∥�� (h|r)) .
(6)

Compared with the ELBO of vanilla VAEs in Eq. (4), the changes of the ELBO are: (i) An additional
latent variable h is used to reconstruct the implicit feedback in the negative reconstruction error term;
(ii) Side information is additionally used to infer the latent variable; (iii) An additional KL divergence term,
��� (�� (h|x)∥�� (h|r)), is added to force the model to uncover the latent representation related to implicit
feedback. These changes of the ELBO in LCVAE-CF, have been proven experimentally to achieve better
recommendation performance.
Some methods [28, 33, 57, 75, 127, 217] augment vanilla VAEs with extra side information, using similar
designs as CVAE-CF, but with diferent implementations and diverse side information. Their graphical
models can be seen as variants of that of CVAE-CF. Iqbal et al. [75], Polato et al. [131] and Pang et al. [127]
consider adopting CVAEs to fuse side information into VAEs. Diferent from CVAE-CF, they only used a
latent variable, i.e., a common latent variable is used for both implicit feedback data and side information.
In particular, Iqbal et al. [75] consider the user proile as the condition of the CVAE. The proile refers to the
genre of interest, e.g., Romance, Comedy and Horror in the context of movie recommendation. Polato et al.
[131] feed the item’s categories as the condition into the encoder to make recommendations that satisfy
certain constraints. Also based on CVAEs, Pang et al. [127] use the label of user or item as a condition.
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Assuming similar users have similar purchasing preferences, Pang et al. [127] use the labels of users to
enable the CVAE to represent users with the same labels with similar representations. While most of the
conditions used in a CVAE are static, Kim [84] considers time-varying item features learned by an LSTM as
the condition of a CVAE. Zhu and Chen [217] propose a collaborative variational bandwidth auto-encoder
(VBAE) for recommendation. VBAE models both the collaborative and user feature embeddings as Gaussian
random variables inferred via neural networks to capture non-linear semantic similarities among users
using their ratings and side information.

• Joint VAE (JVAE-CF) and variants. Inspired by the joint modalities VAE (JMVAE) [157], Lee et al. [93]
propose Joint Variational AutoEncoder (JVAE)-CF, which models a joint distribution of user’s implicit
feedback and side information. Similar to CVAE-CF, an additional latent variable h is introduced into the
graphical model of JVAE-CF (as shown in Figure 5(b)), to extract latent representations of side information.
Diferent fromCVAE-CF, which only reconstructs implicit feedback, JVAE-CF reconstructs implicit feedback
and side information simultaneously. The inal ELBO of JVAE-CF is deined in Eq. (7):

LJVAE-CF = E�� [log �� (x|h)] + E�� [log�� (r|z,h)] − ��� (�� (z|r)∥� (z))

− ��� (�� (h|x, r)∥� (h)) − �1��� (�� (h|x, r)∥�� (h|x))

− �2��� (�� (h|x, r)∥�� (h|r)) .

(7)

The model proposed by Chen and de Rijke [28] can be seen as a variant of JVAE-CF. Inspired by the
collective SLIM [125], where both the user rating and side information are collectively reproduced by the
same coeicient matrix through a linear matrix multiplication, Chen and de Rijke [28] use the same VAE to
encode the interactionmatrix and side information, and reconstruct them collectively. Since side information
will be irst put into a VAE to pretrain the network before implicit feedback, a larger hyper parameter �
(see Eq. (5)) is used to make the posterior comply more with the prior from side information. Gupta et al.
[57] and Cui et al. [33] use two VAEs to encode implicit feedback and side information, respectively. Gupta
et al. [57] use one VAE to learn the latent representation of movie reviews given by a user, which is used to
reshape implicit feedback data, and the reined implicit feedback data is passed to another VAE to generate
recommendations. Cui et al. [33] propose the Variational Collaborative Model (VCM), which uses two VAEs
to learn latent representations of implicit feedback and users’ reviews with a multinomial distribution,
respectively. The two VAEs guide each other to learn synchronously: the model pulls the two posteriors in
the two VAEs close to each other in terms of the KL divergence; by doing so, the latent representation in
one VAE actually helps the other VAE reconstruct the data.

To improve the structure of modeling h, [93] propose VAE-AR and Conditional Ladder Variational AutoEncoder
(CLVAE), which are built on Generative Adversarial Nets (GANs) [54] and Ladder Variational AutoEncoders
(LVAEs) [152], respectively. In VAE-AR, the learning trick of a GAN is used to force the latent representation
of implicit feedback to be similar to the latent representation of side information, ensuring a better fusion of
these two modalities. The graphical model is shown in Figure 5 (c). Given side information, a CLVAE models the
conditional distribution of the implicit feedback data with a ladder structured recognition model LVAE, to learn a
more expressive latent representations of implicit feedback data and side information. The graphical model is
shown in Figure 5 (d). The integration with a GAN and a LVAE show the lexibility of VAEs for incorporating
other deep learning methods. Some of the internal structure (e.g., regularization in the ELBO) of the models
introduced above can be found in Table 2.

Enhanced VAEs with reasonable priors. From Table 2, it is evident that in most approaches that use a VAE for
recommendation, the prior of the latent variable for each user is a standard Gaussian distribution as in a VAE [see,
e.g., 102]. This choice may limit the ability of a VAE to model more expressive representations. For instance, when
a VAE is employed to encode a user’s implicit feedback vector, it is commonly assumed that the encoded vector
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Table 2. Comparison of flexible internal structures of diferent models that directly use VAEs to generate recommendation
results. łRegul.ž is short for łRegularizationž. We use authors’ names to represent models that do not have model names.
łRž or łUž in the łELBOž column indicates whether the ELBO is reformulated or unchanged, respectively, compared to the
vanilla VAE. łAž (Adaptive) in the łRegularizationž column means that a hyper parameter is used to control the regularization
level and łNž otherwise. łLikelihoodž refers to the likelihood distribution used for the user-item interaction data.

Model Year Encoder Prior ELBO Regularization Likelihood

VAE-CF [93] 2017 MLP N(0, � ) U N Bernoulli

CVAE-CF [93] 2017 MLP N(0, � ) R A Bernoulli

JVAE-CF [93] 2017 MLP N(0, � ) R A Bernoulli

VAE-AR [93] 2017 MLP N(0, � ) U N Bernoulli

CLVAE [93] 2017 MLP N(0, � ) R N Bernoulli

Mult-VAE [102] 2018 MLP N(0, � ) R A multinomial

Iqbal et al. [75] 2019 MLP N(0, � ) R A multinomial

Zheng et al. [214] 2020 not mentioned N(0, � ) R A Bernoulli

Lobel et al. [110] 2019 MLP N(0, � ) R A multinomial

XploVAE [211] 2020 not mentioned N(0, � ) U N Bernoulli

Zhang et al. [203] 2018 MLP not mentioned R A multinomial

Tong et al. [162] 2019 MLP N(0, � ) U N not men-

tioned

Polato et al. [131] 2020 MLP N(0, � ) R A multinomial

Pang et al. [127] 2019 MLP N(0, � ) R A Bernoulli

Kim [84] 2019 not mentioned not mentioned R A multinomial

Chen and de Rijke

[28]

2018 MLP N(0, � ) R A Bernoulli

Gupta et al. [57] 2018 MLP N(0, � ) U N logistic

VCM [33] 2018 MLP N(0, � ) R A multinomial

Karamanolakis et al.

[80]

2018 MLP user-dependent

prior

R A multinomial

Kim and Suh [83] 2019
hierarchical stochastic

units, gated linear units
VampPrior R N multinomial

RecVAE [149] 2020 densely collected

layer

composite prior R A multinomial

VAEGAN [201] 2019 implicit inference

model

not mentioned R A not men-

tioned

p-VAE [114] 2018 partial inference net-

work

N(0, � ) U N not men-

tioned

Q-VAE [183] 2019 not mentioned N(0, � ) R N not men-

tioned

ACVAE [194] 2020 MLP N(0, � ) R A multinomial

VBAE [217] 2021 MLP N(0, � ) R A Bernoulli

JoVA [6] 2021 MLP N(0, � ) R A Bernoulli

LOCA [30] 2021 MLP N(0, � ) R A multinomial
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Fig. 5. Graphical models of (a) CVAE-CF, (b) JVAE-CF, (c) VAE-AR and (d) CLVAE. The dashed line refers to the inference
process and the solid line refers to the generative process. Image credits: [93].

adheres to a uniform Gaussian prior for all users. However, this uniform Gaussian prior can be overly simplistic
and may limit the model’s ability to represent the diverse preferences of users, particularly active users with a
wide range of interests. Consequently, the latent representations learned by the VAE may not align well with the
intricate and multifaceted preferences of these users. Ideally, the latent variable of each user has a dedicated prior,
which could model the user’s preferences better. As explained in Section 2.2.2, the prior could be replaced to
achieve better recommendations. Karamanolakis et al. [80], Kim and Suh [83] replace the widely used standard
Gaussian distribution with more reasonable priors, to improve the recommendation performance. Karamanolakis
et al. [80] propose a user-dependent Gaussian prior, whose parameters (i.e., mean, variance) are obtained by
encoding the user’s explicit text reviews with word embeddings or topic models [15]. The user-dependent prior
can avoid additional KL annealing strategies used in Mult-VAE [102]. Kim and Suh [83] use the lexible prior
called variational mixture of posterior prior [VampPrior, 161] to replace the original standard Gaussian prior.
Shenbin et al. [149] adopt a composite prior, i.e., a convex combination of a standard normal distribution and an
approximate posterior with ixed parameters from the previous training epoch.

Enhanced VAEs with powerful encoders. Table 2 presents several kinds of encoders for VAE-based recommenda-
tion methods. Increasingly complex interaction data and side information require a powerful encoder to extract
more knowledge from this type of data, so as to achieve better recommendation performance. Kim and Suh [83]
use the hierarchical stochastic unit [161] and gated linear units [34] to change the structure of the encoder of the
original VAE for enhancing the modeling capacity. In their Recommender VAE (RecVAE), Shenbin et al. [149]
present a more complex inference network, which is similar to the dense connected layers of dense CNNs [74],
and borrow ideas from swish activation functions [135] and layer normalization [7]. Combining GANs [54] and
VAEs, Yu et al. [201] propose VAEGAN, which reformulates the KL divergence term of the ELBO and derives an
arbitrarily lexible implicit inference model to approximate the true distribution of the latent variable.

Enhanced VAEs with increasing uncertainty. Uncertainty is important in RSs, since the user-item interaction
data is sparse and unbalanced. For instance, some users may have interacted with many diferent kinds of items,
but some users have only interacted with a limited number of items. Enhancing the uncertainty could, to some
degree, improve the recommendation performance. Ma et al. [114] propose Partial VAE (p-VAE), which only
exploits the observed ratings for inferring the user latent representation and adopts a partial inference network
called permutation invariant set function encoding to replace the inference network (encoder) of the original
VAE. They do not regard the missing entries in the rating matrix as ‘0’, which can capture the uncertainties in
missing data and slightly improve the recommendation performance. Wu et al. [183] propose a model called
Queryable-VAE (Q-VAE) to reformulate the ELBO to support arbitrary conditional queries over observed user
interactions, i.e., to maximize the joint probability of two arbitrarily selected partitions of the observed data. This
appropriately increases uncertainty in cases where a large number of user preferences may lead to an ambiguous
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Table 3. Performance improvements ater changing the internal structures of VAEs used in the recommendation models. We
use the authors’ names to represent models that do not have model names.

ML-20M Netlix

Model NDCG Recall NDCG Recall

Mult-VAE [102] 0.426 0.395 0.386 0.351

RecVAE [149] 0.442 0.414 0.394 0.361

Kim and Suh [83] 0.445 0.413 0.409 0.377

user representation and degrade the recommendation performance. The recommendation performance is also
improved accordingly. These methods show that changing the internal structures (encoder and ELBO) can help
handle the uncertainty problems in VAEs.

Enhanced VAEs with other strategies. Other strategies, such as GANs, are applied to VAEs to help better model
user-item interaction data. Like the VAE-AR [93], several methods use a GAN to improve the recommendation
performance. Zhang et al. [203] use a GAN to improve the latent representations of user interaction data, so
as to improve the recommendation performance. Tong et al. [162] combine a VAE with a GAN to improve the
recommendation performance. Speciically, a VAE is used to model the generative process of the user interaction
vector and a GAN is used to conduct adversarial training to improve the quality of the generation process in
order to improve the recommendation performance. Lobel et al. [110] use a VAE as the actor in the proposed
RaCT model, which is an actor-critic reinforcement learning [129]; a critic network is trained to approximate
ranking-based metrics to further improve the recommendation performance. By adding these strategies to
VAEs, VAEs are more adaptive to the recommendation scenarios, consequently improving the recommendation
performance in each scenario.

Discussion. Though some methods [see, e.g., 83, 102, 149] only use user-item interactions, changing the internal
structure of VAE can help to improve recommendation performance. Table 3 shows an example of the inluence
on performance when changing the internal structure of a VAE. The performance is evaluated on two datasets,
ML-20M [62] and Netlix Prize [12], and the evaluation metrics are NDCG@100 and Recall@20. Compared with
Mult-VAE, RecVAE and the model proposed by Kim and Suh [83] can improve the recommendation performance
signiicantly due to the changes of the internal structures of VAEs. Further, the model proposed by Kim and Suh
[83] achieves a better performance than RecVAE (on some metrics). The reason appears to be that the gated linear
units proposed by Kim and Suh allows information to propagate better in the network. Some methods, e.g., those
in [28, 33, 57, 93], use a VAE to encode side information into their latent representation, which is further used
to improve the recommendation performance. From Table 2, we can see that an MLP is most frequently used,
which indicates that the ield still lacks explorations of other types of side information such as, e.g., image data.
From the viewpoint of encoding capability and internal structures, the advantage of a VAE’s lexibility makes it
adapt to multimodal data, with MLP, the gated linear units, and GAN etc. From the perspective of generative
and Bayesian nature, the advantage of VAE helps it to capture the uncertainty of the user latent representation.
Meanwhile, due to the limitation of the sparse user-item interaction data, most of VAEs still use relatively shallow
encoders and decoders [174], unlike the deep networks applied in CV and NLP areas. It brings disadvantages and
also potentiality for improvement to the encoding capability and generative nature.
Next, we consider the application of VAEs in dynamic settings where they are used to directly produce the

prediction, e.g., next clicked item, next interacted session, or next interacted top-� items. This category of methods
belongs to the family of generative models, and Bayesian inference is used to optimize them; the generative and
Bayesian nature of VAEs are relected in these methods. The ELBOs of these methods are similar to Eq. (4), and a
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Table 4. Encoders of VAEs and their likelihood used to model the user-item interaction data.

Model Encoder Likelihood

VRM [179] GRUs not mentioned

VASER [215] GRUs, normalizing lows multinomial

Sachdeva et al. [142] RNN multinomial

multinomial distribution is usually used to model user-item interaction data. However, the encoders of these
methods models are diferent; see Table 4.

Session-based recommendation [76]. Current classical session-based recommendationmethods usually model the
generation of item sequences in a short session. The adoption of VAEs in session-based recommendation allows us
to model the generation of the session from a probabilistic perspective, which helps to understand the randomness
and uncertainties of the session generation. Wang et al. [179] propose a session-based recommendation model,
called Variational Recurrent Model (VRM), which uniies knowledge of frequent click patterns as the distribution
of a stochastic latent variable. The authors assume that the sequence of interactions in a session are generated
from the latent variable, and the next predicted item is obtained from the generated sequence. The VAE in this
approach serves as a generative model to simulate the generative process of session sequences of a user. The
encoder and decoder of the VAE are GRUs, for modeling sequential data (see the overall model in Figure 4).
The next clicked item is predicted using a probability distribution on each item, produced at each step of the
generating process. A model similar to VRM has been proposed by Zhong et al. [215], who present a generative
session-based recommendation framework, VAriational SEssion-based Recommendation (VASER). VASER uses a
multinomial distribution to model user-item interaction data, and adopts a normalizing low [138] to approximate
the posterior of the latent variable. Another diference between VRM and VASER is that, in VASER, a deterministic
attention mechanism [195] is used to enhance the GRU generative network, by dynamically selecting and linearly
combining diferent parts of the input sequence in the inference network.

Sequential recommendation. As with session-based recommendations, for sequential recommendations VAEs
are used to model the consumption sequence of each user. Sachdeva et al. [142] introduce a recurrent version
of a VAE, recurrent VAEs, to perform CF for sequential recommendation, using a subset of user consumption
with temporal dependencies. Multiple architectures of recurrent VAEs are proposed, using diferent latent
dependencies of the variables. These architectures reveal the lexibility of combining VAEs and RNNs. Compared
with Mult-VAE [102], the methods in this work additionally consider temporal dependencies among items, so as
to notably improve the recommendation performance. Xie et al. [194] propose a novel sequential recommendation
model to enhance the encoder in VAE, where contrastive learning is employed with a VAE by minimizing the
contrastive loss so as to achieve better generalization ability of the model. Zhao et al. [212] propose a novel
variational self-attention network (VSAN) for sequential recommendation. VSAN introduces variational inference
to self-attention networks to handle the uncertainty of user preferences by employing the VAE paradigm; two
self-attention networks serve as the encoder and decoder of the VAE framework. Defayet et al. [35] consider
a slate recommendation scenario, where a list of items is recommended at each interaction turn; to ensure
tractability, the authors encode slates in a continuous, low-dimensional latent space learned by a variational
auto-encoder. Then, a reinforcement learning agent selects continuous actions in this latent space, which are
ultimately decoded into the corresponding slates.

Discussion. The success of modeling sequential data by a VAE and RNNs (GRUs) in these methods indicates
that a VAE is a lexible model, i.e., other deep learning methods can be incorporated into the VAE framework. By
using a VAE to model the generative process of sequential data in RSs, Bayesian inference can be performed. And
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Fig. 6. Examples of diferent graphical models of recurrent VAEs. z(� ) denotes the latent variable at time � and v(� ) denotes

the user’s interaction item at time � . o(� ) refers to the hidden state of RNN at time � . (a) user consumption history (history
for short) and a single latent variable determine the next click item; (b) history and multiple latent variables determine the
next clicked item; (c) history determines a single latent variable and the latent variable determines the next clicked history;
(d) history and multiple latent variables determine the latent variable that is used to determine the next clicked item. Image
credits: [142]

the uncertainties of user-item interactions can be preserved, which is beneicial for dealing with data sparsity
and improving the model’s performance. Moreover, by modeling temporal dependencies among items, these
methods outperform methods that ignore temporal information.

3.1.2 Extracting side information for recommendation with VAEs. The VAE-based approaches discussed in Sec-
tion 3.1.1 use VAEs to directly generate recommendations. That is, they use a VAE to model user-item interaction
data and produce top-� recommendations by predicting preference scores for items that a user has not interacted
with. An alternative way of using VAEs for recommendation purposes is to use a VAE to learn latent representa-
tions of side information, followed by a step to integrate the learned representations into a recommendation model,
such as PMFs. Table 5 lists diferent recommendation models that VAEs have been combined with. To integrate
side information and rating information in a uniied model, the combined approaches listed in Table 5 modify the
ELBO used in vanilla VAEs in Eq. (4) to include additional latent variables to represent side information. Often,
these combined methods are Bayesian generative latent variable models, in which eicient Bayesian inference of
the VAE can be conducted.

The diference between the hybrid models in Section 3.1.2 and Section 3.1.1 is that VAEs in the hybrid models
in Section 3.1.2 are not used to generate recommendations. Instead, other recommendation models are used to
model the interactions between users and items and generate predictions of unrated items. Figure 7 illustrates
the main diference between the hybrid collaborative methods in Section 3.1.1 and Section 3.1.2.
Below, we will introduce models that combine VAEs with Probabilistic Matrix Factorization (PMF) and other

recommendation models, e.g., Neural Collaborative Filtering (NCF) [67].

Combining side information of items with PMF. Li and She [100] only use side information of items (item content).
The graphical model is shown in Figure 8. Besides exploiting PMF to factorize the interaction matrix, the authors
use a VAE to simultaneously learn the latent representation of item content in the proposed generative latent
variable model. They assume that the item content is generated from a content latent variable h�� .

6 Additionally,

for the item, they also use a collaborative latent variable v†� to represent the interaction information between user

and item.7 In other approaches, authors directly use a bias to replace the collaborative latent variable [37, 64, 190].

6We use ‘content latent variable’ here instead of ‘latent content variable’ as in [100] for better alignment with naming schemes for other

latent variables.
7The collaborative latent variable of an item refers to the latent variable of the item’s interaction vector with users.
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Table 5. Recommendation methods that combine other models (the third column) with VAEs.

Paper Year Other

model

Integration method Side information Dataset/Domain

CMVAE [9] 2019 PMF sharing latent variable title, abstract, link relation-

ship

CiteULike

CVDL [37] 2019 PMF linear combination user proile, the descrip-

tion of item, item tags

CiteULike, Healthcare

Dataset

CAVAE [64] 2019 PMF setting as a bias item contetn,tag CiteULike

CVAE [100] 2017 PMF linear combination title, abstract CiteULike

CML [123] 2019 PMF setting as an ofset vector title, description, category Amazon

DCBVN [170] 2020 PMF nonlinear transformation user proile Training course

BDCMF [190] 2019 PMF setting as bias and latent

ofset vector

social interaction, contents

of item

LastFM, Delicious

NVMF [191,

192]

2019 PMF sharing latent variable user attributes, item title

category

MovieLens, Bookcrossing

VDCMF [193] 2019 PMF setting as an ofset vector user social, item content LastFM, Epinions

NeuHash-

CF [60]

2020 MF Hamming distance review Yelp, Amazon

DSHRM [25] 2017 LFM setting as additional latent

variables

review Amazon

NVCF [38] 2019 MLP, GMF setting as latent variable di-

rectly

demographics, genres, cat-

egories, social relations

MovieLens, Yelp

VAE-based

CF [65]

2019 MLP/ NCF setting as latent variable di-

rectly

user attributes, item title

category

MovieLens

NVHCF [189] 2018 MLP conditional prior demographics, description MovieLens,LastfM

BiVAE [163] 2021 MLP dot product review MovieLens, Amazon

DAVE [199] 2021 MLP adversarial learning None MovieLens,Yelp, Digital

Music, Pinterest

LVSM [29] 2020 Item-based

CF

setting as latent variable di-

rectly

review Amazon

CVRank [77] 2018 Pairwise

ranking-

based CF

setting as latent variable di-

rectly

title, abstract CiteULike

RRGAN [26] 2019 GAN-based

model

adversarial learning review Amazon

ACVAE [194] 2021 Contrastive

learning

model

adversarial learning None MovieLens, Yelp

FLVAE [165] 2021 Augmentation

model

Hadamard product None MovieLens, Netlix

In the end, the item latent variable v� (take item � as an example) consists of the content latent variable h�� and
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Fig. 7. Illustration of the diferent schemes for incorporating side information in Section 3.1.1 and 3.1.2: (a) uses a VAE to learn
the latent representation of side information followed by incorporating it into another VAE to generate recommendations.
(b) incorporates the learned representation into other recommendation models (e.g., PMF) to generate recommendations
instead.
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Fig. 8. Graphical model by Li and She [100]. Inside the dashed line box is a VAE used to learn the latent representation of
item side information.Winf and Wgen are parameters of the network. �� and �� are hyper parameters.

the collaborative latent variable v†� , as below:

v� = v†� + h�� . (8)

With user �’s latent variable u� predeined, user-item interaction is thus generated by the item latent representation
and the user latent representation, as follows:

r� � ∼ N(u�� v� ,�
−1
� � ), (9)

where�� � is the conidence for r� � , similar to that in Collaborative Topic Regression [169] andN(·, ·) is a Gaussian

distribution. Note that v†� and h�� follows the standard Gaussian distribution. Without presenting the derivation
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process, we directly show the ELBO:

L = − ��� (�� (h
�
� |x

�
� )∥� (h

�
� )) + E�� (h�

� |x
�
�
) log�� (x

�
� |z

�
� )

+ E�� (h�
� |x

�
�
) log� (v� |h

�
� ) + �����,

(10)

where ����� refers to terms that are not related to h. Compared with the ELBO of a vanilla VAE in Eq. (4), the
ELBO above actually has a similar form, but with an additional term E�� (h�

� |x
�
�
) log� (v� |h

�
� ), which means the inal

item latent variable v� is formed partially by the item content latent variable h�� ). Notably, due to the lexibility

of the ELBO, the condition � can be also added to derive the ELBO of conditional VAE, e.g., altering �� (h
�
� |x

�
� ),

� (h�� ) and �� (x
�
� |h

�
� ) to �� (h

�
� |x

�
� , �), � (h

�
� |�) and �� (x

�
� |h

�
� , �) respectively. It means that we can incorporate

other information (e.g., tags) to learn more robust latent representations. Following Li and She [100] who combine
a VAE and PMF, other approaches enrich the item content for a better representation learning of the item. Bai
and Ban [9] use multiple VAEs to learn multiple types of side information of an item. These VAEs share one
latent variable for these side information. Besides item content, He et al. [64] also use item tags to assist VAEs to
learn more robust item representations, with a similar setting of JMVAE [157].

Integrating side information of users into PMF. Integrating side information of items can alleviate the item
cold-start problem, but it does not aid to combat the user cold-start problem. Using side information of an item can
enhance the expressivity of the item latent representation, the user’s latent representation cannot be improved
simultaneously. These issues stimulate researchers to incorporate side information of user to PMF. Xiao et al.
[190, 193] propose graphical models (see the example in Figure 10(a)) to additionally take social information of
users into consideration, where VAE is used to learn the representation of side information of items. Wang et
al. [151] employ a VAE with autoencoding variational inference to extract interpretable latent representations
of employees’ competencies from their skill proiles. Nguyen and Ishigaki [123] use two VAEs to learn latent
representations of the textual and categorical information of users, respectively. Unlike Nguyen and Ishigaki
[123], Xiao and Shen [191, 192] harness two VAEs to learn latent representations of users and items, and establish
a connection between the two VAEs and PMF using the user and item latent variables. Apart from the user and
item latent variables, four additional latent variables are used in the model: a user feature latent variable, an item
feature latent variable, a user interaction latent variable, and an item interaction latent variable. The user feature
and item feature latent variables are used to represent the user features and item features,8 respectively. The user
interaction and item interaction latent variables are used to represent the users’ interaction vectors over all items
and the items’ interaction vector over all users. Figure 9 shows a graphical model of this approaches [191, 192].
Treating patients as users and doctors as items, Deng and Huangfu [37] use a standard VAE to learn a user
content latent representation, and another VAE, the same as that proposed in [64], to learn an item content latent
representation with tags, to generate healthcare recommendations.

Integrating VAEs and other models. The methods listed above mainly consider combining VAEs and PMF. Xiao
et al. [189], Deng et al. [38], He et al. [65] and Yi et al. [199] use an MLP or NCF [67] to calculate the preferences
between users and items; these approaches consider the non-linear relationships between users and items, and
combines them with the latent representation learned from side information by VAEs. Chen et al. [29] learn latent
representations of the item contents with a VAE (speciically, item features extracted from the reviews), and then
use them for item-based CF (speciically, feature-based similarity models) so as to generate recommendations.
Chen et al. [25] use one VAE to extract user proiles and item representations from reviews, to ensure both of
them are in a consistent latent semantic space, followed by fusing the learned latent representations with the
Latent Factor Model (LFM) [89] to generate recommendations. Ji et al. [77] propose CVRank, which uses a VAE
to learn the latent representations of items and integrates the latent representations into pairwise ranking-based

8User features and item features can be regarded as the content of users and items.
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Fig. 9. A graphical model due to Xiao and Shen [191], in which four latent variables are used for inference. The shaded nodes
are observed variables while the transparent nodes are latent. Note that r�� , x

�
� , r

�
� , x

�
� are the user’s interaction vector, user’s

feature vector, item’s interaction vector, and the item’s feature vector, respectively. The corresponding latent variables are z�� ,
h�� , z

�
� , h

�
� , respectively. R� � is the rating or relevance between user � and item � .

CF for recommendation. Chen et al. [26] use a shared VAE to learn latent representations from reviews posted
by users and received by items, respectively. Then the learned latent representations of reviews, together with
the user and item latent representations, are sent to a GAN-based model to produce recommendations. Hansen
et al. [60] introduce an approach known as NeuHash-CF. Here, a VAE-like model is used to generate the hash
codes of users and items from learned embeddings and item contents. Hamming distance is used to estimate
user-item relevance with the hash codes of users and items. Truong et al. [163] propose a bilateral variational
autoencoder for CF (BiVAE), a lexible model that can use a MLP, dot product or any other diferentiable function
for estimating user-item relevance with the representations of user and item learned by VAEs.

Discussion. There are novel inference methods in some of the graphical models [e.g., 187, 189ś191]: the
interaction vector of user/item is sometimes used to infer the latent variable of side information. Xiao et al.
[190] use an item interaction vector to infer a latent variable of the item side information (see the example in
Figure 10(a)). Xiao and Shen [191, 192] and Xiao et al. [189] use the user and item interaction vector to infer
the latent variable of side information of user/item, respectively (see the examples in Figure 9 and Figure 10(b)).
Compared with the graphical model in [100] (Figure 8), the advantage of adding additional interaction information
for inference is that side information and interaction information can be coupled for better recommendation
performance. This novel inference method reveals that there are connections between side information and
interaction information. To enhance the efectiveness of encoded features fusion, mutual dependency between
latent variables learned from side information and interaction information, and contrastive learning could be
explored further upon VAEs [180].
Similar to the static methods above, some dynamic methods just use a VAE to learn latent representations of

side information instead of generating the recommendations. The encoding capability of VAEs is relected in
these methods.
Lin et al. [104] use a VAE to learn latent representations of image data (i.e., a cover image of each song’s

corresponding album) of a sequence of songs, which is fed into an RNN for next song recommendation. Sun and
Qian [156] use VAEs to learn latent representations of category sequences in their proposed Tripled Seq2seq
Translation Model (TSTM). Learned latent representations are used to infer the next recommended item. Song
et al. [153] present an enhanced approach where a VAE is integrated into an RNN at each timestep. This improved
RNN uses variational inference to capture the user’s latent factor variables through a timestep-wise variational
lower bound. It can capture the complex and hidden causal relationships in the current session so as to learn latent
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Fig. 10. Examples of graphical model using interaction vector to infer the latent variable. (a) uses only the item interaction
vector [190] while (b) uses both of the user and item interaction vector [189]. In (a), S�� is the ��-th element of the social
matrix and g� is social latent vector. In (b), x�� and x�� are item feature vector and user feature vector of side information. r��
and r�� denote the user’s and item’s interaction vector. The solid line refers to the generative process while the dashed line

refers to the inference process. The shaded nodes refer to the observed variables.

representation of the session, which are further combined with short-term and long-term interest representations
to predict the next top-� clicked items.

Discussion. When used for extracting side information, VAEs actually play the same role in dynamic models as
in static models. In dynamic methods, the models that VAEs combine with are mainly RNNs and their variants.

3.1.3 Exploiting optimization strategies of VAEs for recommendation. While the methods in Section 3.1.1 and 3.1.2
directly use VAEs to learn the user-item interaction data or side information, here we discuss the approaches
that only exploit optimization strategies of VAEs. Speciically, the optimization strategies of a VAE include: the
reparameterization trick, the SGVB estimator, applying a neural network to approximate the true posterior
distribution of the latent variable, and amortized inference (input-dependent encoder). In contrast to directly
exploiting a VAE, these approaches may not be built based on VAEs. These approaches belong to the family of
Bayesian models, and VAEs may be adopted to conduct eicient Bayesian inference for them.
To fuse side information and user-item interaction information, Shen et al. [148] propose a model named

Deep Variational Matrix Factorization (DVMF), which consists of three sub-models, to integrate any types of
side information of user/item, together with implicit feedback for recommendation. They irst embed all the
information into a user/item knowledge pool, then use two neural networks to encode user and item knowledge
into latent distributions, and lastly sample the latent representations of users/items from the distributions to
reconstruct the rating matrix for recommendation. When sampling latent representations of users/items, the
reparameterization trick known from VAEs is used. Also, the SGVB estimator is derived to optimize the variational
lower bound. Using a very similar model architecture as DVMF, Jin et al. [79] and Zhang et al. [209] use two
neural networks to encode user-centric ratings and item-centric ratings into latent distributions of the user
latent and item latent variables, respectively. The reparameterization trick is used to sample user/item latent
representations from the latent distributions.

9http://2016.recsyschallenge.com/
10https://ijcai-15.org/index.php/repeat-buyers-prediction-competition
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Table 6. Recommendation methods that exploit optimization strategies of VAEs. łRecommendationž is abbreviated as łRec.ž

Paper Year Task description Optimization strategies

of VAEs

Dataset/domain

DVMF [148] 2019 Rec. by fusing knowledge embedding

with U-I interaction

Reparameterization trick,

SGVB

MovieLens, Douban

VAE-BMF [79] 2020 General Rec., the user’s embeddings in-

ference dependent on both interactions

and the rated items embeddings

Reparameterization trick Movielens, Amazon

DVMF [209] 2019 Rec. on large scale sparse dataset Reparameterization trick MovieLens-10M,

Book-Crossing, Job

DGLGM [105] 2020 Rec. for users with diverse preference Reparameterization trick,

SGVB

MovieLens, Netlix,

Epinions, Yelp

LRMM [43] 2019 Rec. with Side Informationl Reparameterization trick,

SGVB, Bayesian Inference

MovieLens, Netlix,

Million Song dataset

(MSD)

FAWMF [23] 2020 Rec. with Implicit Feedback Variational posterior, ELBO MovieLens, Amazon,

Douban

LVM [141] 2019 Session-based Rec. ELBO YooChoose

HNVM [188] 2019 Sequential Recommendation with cap-

turing long-term preference

Dedicated ELBO, SGVB RecSys Challenge

2015,9 IJCAI-15 Com-

petition datasets10

VRNN-BPR [31] 2017 Session-based Rec. Reparameterization trick,

Bayesian inference

RecSys Challenge

2015

CVRCF [154] 2019 Steaming Rec. Reparameterization trick,

ELBO

MovieTweetings,

MovieLens, Netlix

Liu et al. [105] propose a Deep Global and Local Generative Model (DGLGM) to characterize both the global
and local structure among users. Speciically, under the Wasserstein auto-encoder framework, the Beta-Bernoulli
distribution is introduced to model user-item interaction data, and a Mixture Gaussian distribution serves as the
prior of the latent variable. The reparameterization trick of VAEs is used in this model to sample the implicit
feedback data from the Beta distribution, and sample the latent representations from the variational Gaussian
distributions parameterized by neural network for model optimization. Elahi et al. [43] propose a low rank
multinomial model, which is similar to that in Mult-VAE [102], but with the diference that a linear operation,
instead of a deep neural network, is used to reconstruct the interaction matrix. Likewise, the reparameterization
trick is used to derive the SGVB estimator of the ELBO of the model, so that the model can be optimized using
Bayesian inference.
While the above methods mainly use the reparameterization trick to derive a diferentiable SGVB estimator

from the ELBO, Chen et al. [23] apply amortized inference with a neural network to learn adaptive weights for
weighted matrix factorization, overcoming the ineiciency of exposure-based matrix factorization [101].

Discussion. As evidenced by the methods introduced above, the reparameterization trick is widely used to
optimize Bayesian models. Though the reparameterization trick is used to sample the latent representations for
the neural network (decoder) in vanilla VAEs, in practice it can also be used in linear models [43]. Interestingly, the
reparameterization trick is also applicable when sampling from other distributions than a Gaussian distribution.
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The reparameterization trick ensures eicient Bayesian inference for these models, which facilitates handling
sparse data.

Similarly, some dynamic methods do not directly use VAEs to model the generative process of item sequences
with temporary dependencies. Instead, they resort to the optimization strategies of VAEs to optimize the proposed
generative probabilistic model for item sequence generation. In what follows, these methods are introduced.
Rohde and Bonner [141] propose a session-based latent factor recommendation model that can model the

evolution of the latent representation of users, as the user interacts with more items. The interaction sequence
can be generated from a session-level latent variable, by multiplying an item embedding matrix and then adding
bias. In this work, a VAE is used to optimize the model with the reparameterization trick, as well as limiting the
number of parameters in the model.
Noticing that most session-based recommendation methods only consider the short session, for capturing

user’s short-term preference, but overlook long-term preferences, Xiao et al. [188] propose a hierarchical neural
variational model to simultaneously capture the general, long-term and short-term preferences of the user, so
as to address the next session items sequence prediction given the past set of sessions. Following a VAE, they
propose a dedicated ELBO for their proposed model, and the reparameterization trick is applied to derive the
SGVB estimator, so that SGD or Adam can be used to optimize the model (see Section 2.2.1). Christodoulou
et al. [31] propose the Variational Recurrent Neural Network for session-based recommendation using Bayesian
Personalized Ranking (VRNN-BPR) for session-based recommendation. They combine RNNs and pairwise ranking
to formulate their model with Bayesian inference; the reparameterization trick is used to make the objective
function of VRNN-BPR diferentiable.

Song et al. [154] address the streaming recommendation problem with deep Bayesian learning. They propose a
model called Coupled Variational Recurrent Collaborative Filtering (CVRCF), which is updated after setting time
intervals to handle data dynamics, i.e., the evolution of user preferences and item popularity. This work considers
sequential recommendation; CF is achieved by popular factorization-based approaches, and temporal dependencies
are encoded by the proposed coupled variational gated recurrent network. Following a VAE, the framework uses a
deep neural network to approximate the posterior of the latent variable lexibly, and a variant ELBO of the model
is derived, which is transformed to a diferentiable SGVB estimator through the reparameterization trick.

Discussion. The reparameterization trick is widely used in dynamic recommendation methods to help optimize
the designed generative models, though the data are sequential data. In addition, as with vanilla VAEs, a deep
neural network is applied to parameterize the latent distribution of the latent variable in sequential data.

Combining the application of VAEs in static methods and dynamic recommendation methods, we can conclude
that VAEs are applicable to diferent types of data in a range of recommendation scenarios. Moreover, VAEs
facilitate the combination of deep learning and graphical models, enhancing the model efectiveness and our
understanding of inference uncertainties [154].

3.2 Other VAE-based Recommendation Methods

In this section, we introduce other types of VAE-based recommendation methods in terms of the characteristics
of VAE that we summarized in Table 2. Note that these methods still use VAEs but focus on other types of
recommendations or facets of RSs, e.g., (un)fairness problems.

3.2.1 Recommendations based on the encoding capabilities of VAEs.

Multi-criteria recommendation. Multi-criteria recommendation considers using multi-criteria ratings, a vector
of ratings provided by users on several criteria, e.g., item attributes, to make recommendations [2]. Current
multi-criteria recommendation methods mainly explicitly collect the multi-criteria ratings for recommendation.
But they face several problems: (i) the collected multi-criteria ratings are predeined as low-dimensional criteria,
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which limits the ability to express the multiplicity of user experiences; and (ii) some multi-criteria ratings might be
missing. To tackle these problems, Li and Tuzhilin [99] use a VAE to project user reviews into a latent continuous
space, followed by using embedding compression techniques to compress the obtained embeddings from VAEs
into latent multi-criteria ratings. The latent multi-criteria ratings can overcome the aforementioned problems.
The use of VAEs for encoding the user reviews into latent representations is a key step of this work.

Item link prediction. In real-world recommendation scenarios, we should not only consider interactions between
users and items, but also the relationships between items. Rakesh et al. [134] address the link prediction task
between items. Speciically, they propose a model called Linked Variational Autoencoder (LVA), including two
VAEs and a connector neural network, taking the reviews of two items as input, to capture the substitute and
supplementary relationships between the input items. VAEs are used to learn the latent representations of the
item reviews, based on which the connector neural network can make prediction of the relationships between
two items.

Query-based recommendation. Altaf et al. [5] deal with query-based dataset recommendation: given the query
papers that describe the research interest of user, the RS should recommend to its user datasets that are semantically
relevant to the query papers. Unlike baseline methods that recommend datasets directly linked to the query
papers, they propose an extended VAE, Heterogeneous Variational Graph AutoEncoder (HVGAE) (see Figure 11),
to learn the representations of the papers and datasets. Query-based recommendations are produced based
on the learned representations. The advantage of applying the representations learned by a VAE to datasets
recommendation is that the semantics of datasets can be considered. Wang et al. [172] identify and study the
problem of gradient item recommendation and retrieval given an input query from a user. They deine the
problem as recommending a sequence of items with a gradual change on a certain attribute, given an input query
item and a modiication text. To address the problem, they propose a VAE-based weakly-supervised method that
can learn a disentangled item representation from user-item interaction data and ground the semantic meaning
of attributes to dimensions of the item representation for recommending items given the query, i.e., the input
item and a modiication of the item.

Disentanglement learning. VAEs are also used to learn disentangled representations from a user-item interaction
matrix, to bring enhanced robustness, interpretability, and controllability [115, 147]. Here, disentanglements
includes macro and micro disentanglements. Macro disentanglement aims to infer a user’s intent, e.g., whether
the user wants to buy shoes or clothes. Micro disentanglement aims to infer a user’s preference towards aspects of
items, e.g., shape and color. Macro disentanglement is achieved by carefully designing the latent representations
of users, i.e., using a matrix consisted of preference vectors towards diferent intents as the latent representation.
Micro disentanglement is realized by penalizing the KL divergence terms derived from the original KL divergence
term of the variational lower-bound. Surprisingly, disentanglement learning also improves the recommendation
performance at the same time. Ma et al. [115] use VAEs to learn the latent representation from the user-item
interaction data, and as a generative model to learn the user’s preference pattern. Also, reformulating the ELBO
improves the micro disentanglement.

Discussion. The advantage of applying VAEs to the tasks listed above lies in the robust representations, it can
learn and the fact that they can handle multiple types of data [90, 95, 111, 200]. For instance, VAEs are used to
learn representations of reviews/item content in [8, 99, 134], to deal with multi-criteria recommendation and
item link prediction, and to learn non-Euclidean distance representations of graphs in [5, 96ś98] to address
query-based recommendation [172].

3.2.2 Recommendations based on the generative nature of VAEs.
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Fig. 11. Illustration of HVGAE [5]. There are two VAEs and on the top is an extended VAE with GraphSAGE [59], a type of
graph neural network (GNN) as encoder. |� |, |� | and |� | are the number of papers, datasets and features, respectively. A, Y
and H are adjacency matrix of paper citation graph, paper content matrix with |� | features and matrix of paper-dataset
bipartite network, respectively.

Cross-domain recommendation methods. These methods use knowledge from diferent domains to deal with data
sparsity and cold start problems. The key to cross-domain recommendation is knowledge transfer from a source
domain to a target domain. Nguyen and Ishigaki [122] use two VAEs to model the generative processes of implicit
feedback data in the source domain and target domain, respectively, to simultaneously capture the homogeneous
and varying features from source domain and target domain, and construct a bi-directional mapping between
them. The VAEs share the weights of the last few layers of the encoders, and the irst few layers of the two
decoders. Weight sharing allows one to manipulate the generative process. Unlike [122], Ahangama and Poo [4]
assume that the source domain and target domain are asymmetric, i.e., knowledge from the source domain is
contributed to the target domain to obtain a better recommendation in the target domain (but not the other way
around). Two VAEs are used to model the generative process of implicit feedback data in the source domain and
target domain. Knowledge transfer from the source domain to the target domain is achieved by pulling the latent
representations in the two VAEs as close as possible.

For the approach in [151], VAEs serve a diferent role. Shi and Wang [151] propose a Cross-Domain Variational
AutoEncoder (CDVAE) for cross-domain recommendation. Matrix factorization is used to factorize the user-item
rating matrix into a user latent matrix and item latent matrix in both domains. A VAE acts as a mapping from
users’ latent representations in the source domain to the target domain. This is where the generative nature of
VAEs is used, as it generates the latent representations in the target domain. Similarly, Qian et al. [132] use VAEs
to generate preference embeddings from attribute embeddings (related to the attributes of an item) to address
the cold-start problem. The advantage of applying VAEs to cross-domain recommendation is that knowledge
transfer can naturally be easily implemented as a generative process.

Slate recommendation. Exploiting the generative nature of VAEs, Jiang et al. [78] address the slate recommenda-
tion problem. Here, subsets of items, each constituting an ordered list of items that is meant to best serve a user’s
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preferences, should be recommended. Diferent subsets of items may cover diferent perceived purposes or intents
of the user. The authors propose a generative model called List Conditional Variational AutoEncoders (List-CVAE)
to directly generate optimal slates for user, instead of ranking the items. By directly generating slates, the model
can reduce the computational complexity. The authors use a CVAE to model the distributions of all items in the
same slate, conditioned on the user responses. The positional, contextual information is encoded into the latent
space, and the optimal slate is generated by sending the combination of the condition (user’s responses) and a
sample from the latent space to the learned generative model (decoder).

Generating content for recommendation. Traditional recommendation methods recommend items that are
available in an item pool to users. Some organizations, such as mobile-phone manufacturers and online magazines,
are eager to receive the suggestions by RSs on what new items should be created to meet diverse preferences of
users. Vo and Soh [168] use a VAE to simultaneously project user-item rating data and item features to a common
latent space, where a greedy weighted maximum coverage method is adopted to select the latent representations
to be used to generate new items with high predicted probability. In addition to generating new items, a VAE
is also used to generate interactive text or explanations for recommended items. Zhang et al. [207] use VAEs
to act as a generator to generate text for text-based interactive recommendation. Luo et al. [113] use a VAE
framework to generate keyphrase-based explanations of recommendations; they allow users to critique the
generated explanations to reine their personalized recommendations.

Discussion. By exploiting the generative nature of VAEs, novel recommendation tasks can be addressed, such
as the slate recommendation and item generation. The key is to add diferent manipulations to the generative
process of the data, so that VAEs can be adapted to diferent tasks.

3.2.3 Recommendations based on other characteristics of VAE. RSs usually provide users with a list of items
that is ranked by the predicted user preferences [130]. However, many recommendation methods encounter a
ranking fairness issue [42, 133, 202], where łranking unfairnessž refers to a situation in which items of similar or
nearly identical relevance might be placed in varying positions within the ranking, potentially receiving vastly
diferent degrees of attention. This promotes unfair treatment and makes items with similar scores have unequal
opportunities of being presented to users. Borges and Stefanidis [16] address this unfairness problem using a
VAE-based recommendation approach, i.e., Mult-VAE [102]. The authors incorporate noise in the VAE during
testing, speciically when using the reparameterization trick to generate samples of the latent variable. This
enables the model to vary the output scores even when having the same data as input, so that some items will not
be always given the high indexes in sequential rounds of ranking. Borges and Stefanidis [17] aim at addressing
the popularity bias problem [1] that promotes unfair recommendation results. To address the problem, they
deine a metric for evaluating popularity bias in recommendation results that relect the presence of popular
products ranked within the top-� positions, and propose a recommendation method that is able to mitigate the
popularity bias in RSs based on VAEs, speciically, by modifying the ELBO of a VAE (one of the lexible internal
structure). Gupta et al. [58] follow an alternative strategy and introduce an inverse propensity scoring (IPS)
based unbiased training method for VAEs from implicit feedback data, VAE-IPS, which is provably unbiased w.r.t.
selection bias; their experimental results show that the proposed VAE-IPS model reaches signiicantly higher
performance than existing baselines. Adversarial training is further incorporated into VAEs, to remedy unfairness
and privacy concerns by removing demographic biases and speciic protected information of users from the
learned interaction representations [48].

Meng et al. [118] propose the Variational Bayesian Context-Aware Representation (VBCAR) model to learn user
and item latent representations by using basket context information from past user-item interactions to deal with
grocery recommendation. A VAE is used to optimize the proposed model, i.e., the reparameterization trick is used
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to make the ELBO diferentiable. Compared with traditional methods that deal with grocery recommendation,
such a Bayesian model can learn more expressive latent representations.

Discussion. Though some of the recommendation methods [5, 17, 115, 118] listed above do not explicitly work
with VAEs, they do modify the ELBO, use the reparameterization trick, and adopt a deep neural network to
approximate the intractable posterior of latent variables, which form the core of a VAE. The deep neural network
can be replaced depending on the data, which conirms the lexibility of VAEs.
Despite the merits of VAEs listed above, there are some disadvantages and limitations of VAEs in VAEs:

(i) Higher order interactions cannot be explicitly propagated as a graph neural network. To learn more complicated
relationship, some researchers turn to combinations of VAEs and GNNs [109]. (ii) Tuning � is challenging for
VAEs; � is used to make trade-ofs between posterior collapse and the hole problem, i.e., the mismatch between
the aggregated posterior distribution and the prior distribution. To solve this problem, some researchers [206]
proposed a novel regularization method. (iii) Setting priors is critical. To break the limitations of ixed priors, some
researchers have proposed non-parametric methods [107]. (iv) The number of parameters and the computational
costs of VAEs increase linearly with the large item space. To reduce the complexity of training, some researchers
employ a ield-aware model [44], dynamic hash tables, or an inner-product-based softmax function [22] to
improve the eiciency when facing high-dimensional data.

4 FUTURE DIRECTIONS AND NEW PERSPECTIVES

In this section, future directions and new perspectives of applying VAEs in RSs are given, to encourage further
research into using VAEs to solve problems in RSs. Speciically, we irst point out future directions based on the
characteristics of VAEs in RSs. Additionally, we provide novel perspectives on applying VAEs in explainable and
reliable RSs.

4.1 Future directions based on the characteristics of VAEs

Extending encoding capability for heterogeneous data. In real world scenarios, items and users are usually
related to diferent types of information available on the web. Thus, in future work, we can consider encoding
diverse types data, other than textual data in VAE-based recommendation models, e.g., images. How to take
advantage of the encoding capability to encode heterogeneous data, and fuse them seamlessly either in observed
space or latent space using a VAE so as to improve the recommendation performance, is a challenging but
promising direction.

Exploiting the generative nature for diversity and explainability. VAEs provide a natural way for extending
current RSs. The generative nature of VAEs could be used to generate some previously unseen items, to increase
diversity of recommendations. In addition to generating interaction data, in future work, the generative nature
could help to generate personalized explanations [94] of recommendations in the form of text for each user,
increasing trust in the RS. We will detail this in next subsection.

Exploring the Bayesian nature with sophisticated dependencies among variables. One can explore more dependen-
cies between diferent variables, since the architecture of the graphical model will inluence the recommendation
performance as stated by Lee et al. [93]. We suggest to consider adding more latent variables to the graphical
model, to improve the recommendation performance. Prior work [116, 136, 144, 185] has added more variables to
improve the model. After designing the model’s causal structure, devising the most appropriate implementation
for each type of graphical model is challenging, at the same time an exciting research direction.

Adjusting the lexible internal structure adaptively. Although the use of neural networks for approximating
the intractable posterior of latent variables has seen great improvements, in reducing the gap between the true
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posterior distribution and the latent distribution, there is always work to do. A reasonable encoder can improve
the quality of the learned representations, which is crucial for improving the recommendation performance.
Instead of simply deepening the encoder neural network, it would be better to determine the depth according
to the number of user’s interactions. To alleviate the so-called łposterior collapsež problem and learn better
latent representations, some methods listed in Section 3.1.1 propose to use more reasonable priors. One can
also resort to other priors such as autoregressive priors [27], Gaussian mixture priors [40], a nested Chinese
Restaurant Process prior [55], a stick-breaking prior [121], hierarchical priors [88], or the prior aggregated by
posteriors [120] like that in [83]. We suggest to add more user-speciic information into the priors, to make the
learned latent distributions of diferent users diverse.

4.2 Explainable and reliable RSs with VAEs

Based on the surveyed papers, we give some perspectives on how VAE can be used in explainable RSs.

Disentanglement for explainable RSs. In the surveyed papers, there is a work [115] that explores using VAEs
to learn disentangled representations for recommendation, including the macro and micro disentanglements
mentioned in Section 3.2.1. There is signiicant room for research into adopting disentangled learning in RSs, to
make the recommendation results explainable, whereas only the interaction behavior data is used in [115]. With
various side information (e.g., text, image, social relations, statistical histograms), VAEs could be extended to
extract features from the multimodal data, disentangle the multimodal features and align the disentangled features
cross diferent modalities. To disentangle the latent representation, i.e., to make latent representation meaningful
for explaining a user’s preference, intent and behavior are crucial for supporting users’ understanding of, and
trust in, RSs. Explainability is another important factor of the RSs. Providing interpretable output empowers RSs
to elucidate their suggestions and enhance algorithmic transparency. Yet, there are relatively few publications
that use disentanglement to make RSs explainable, though there is some work [e.g., 18, 19, 24, 72, 117] that adopts
VAEs for disentangled representation learning in other research areas, e.g., computer vision. Thus, we believe that
the use of VAEs to learn disentangled representations to make RSs explainable is a promising future direction.

Explainable textual suggestions. In RSs, it is a wise choice to generate textual suggestions to explain to the user
why the system makes such recommendations [159]. Cui et al. [33] generate bi-directional predictions (predicting
implicit feedback given review text or predicting review text given implicit feedback), which provides us with
a way of achieving an explainable RS with suggestions. Speciically, using the generative nature of VAEs, we
can train an additional VAE to generate suggestions for users, so as to make the RSs more convincing. We also
hypothesize that they may be used to generate counterfactual explanations, which can help users understand not
only why they received certain recommendations, but also how these recommendations can be changed [cf., e.g.,
112] if we modify user’s preferences or traits (e.g., demographics).

Denoising for reliable RSs. Modern RSs mainly rely on implicit feedback, which usually includes noisy inter-
actions. Speciically, it is a long-standing challenge for VAEs to encode user representation from the sparse
and lawed data. Though there is work revisiting the reliability of interactions from interactions from positive
and negative samples simultaneously [108], it leaves much space to explore from other perspectives, such as
cross-modal validation [178], addressing clickbait issue [173], self-guided learning [50], and so on.

5 CONCLUSIONS

In this survey, we provide a timely and systematical review of the research eforts on VAE-based recommendation.
Speciically, we investigated a large number of related papers and summarized existing research in terms of
the four key characteristics: their encoding capability, their generative nature, their Bayesian nature, and their
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lexible internal structure. We have grouped the related algorithms using our proposed taxonomy (Figure 3),
introducing how, speciically, VAEs are used in each of these recommendation methods. We have considered two
main recommendation scenarios, a static scenario and a dynamic scenario, and introduced the corresponding
VAE-based methods. In both scenario, we have summarized the ways in which VAEs are used in the respective
methods, i.e., directly applying VAEs to generate recommendation results, extracting side information using VAEs,
and exploiting optimization strategies that come with a VAE. In addition, we covered several recommendation
scenarios that have only recently been introduced and to which VAE-based methods have been applied. Lastly
and importantly, we have also pointed out promising directions for future research in the use of VAEs for
recommender systems.
We hope that this survey has helped to explain how VAEs can be used in recommender systems, and we

encourage future research aimed at using VAEs to tackle an even wider range of problems in recommender
systems.
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