Information Processing and Management 51 (2015) 89-113

Contents lists available at ScienceDireect [=

A0 Intevnasional Jouensl

Information Processing and Management

journal homepage: www.elsevier.com/locate/infoproman

Burst-aware data fusion for microblog search @CmssMark

Shangsong Liang *, Maarten de Rijke

University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

ARTICLE INFO ABSTRACT
Article history: We consider the problem of searching posts in microblog environments. We frame this
Received 26 March 2014 microblog post search problem as a late data fusion problem. Previous work on data fusion

Received in revised form 31 October 2014

has mainly focused on aggregating document lists based on retrieval status values or ranks
Accepted 31 October 2014

of documents without fully utilizing temporal features of the set of documents being fused.
Additionally, previous work on data fusion has often worked on the assumption that only
documents that are highly ranked in many of the lists are likely to be of relevance. We pro-
pose BurstFuseX, a fusion model that not only utilizes a microblog post’s ranking informa-
Microblog search tion but also exploits its publication time. BurstFuseX builds on an existing fusion method
Rank aggregation and rewards posts that are published in or near a burst of posts that are highly ranked in
Burst detection many of the lists being aggregated. We experimentally verify the effectiveness of the pro-
Temporal information retrieval posed late data fusion algorithm, and demonstrate that in terms of mean average precision
it significantly outperforms the standard, state-of-the-art fusion approaches as well as
burst or time-sensitive retrieval methods.

Keywords:
Information retrieval

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Microblogging platforms, such as Twitter,' have become indispensable communication channels through which hundreds
of millions of users around the world witness breaking news events. The characteristics of the posts, such as their limited length,
along with easy access on many platforms, facilitate regular status updates by large numbers of people (Zhao & Rosson, 2009).
Microblogging platforms display fast paced dynamics as reflected by rapidly evolving topics (Yang & Leskovec, 2011). Searching
posts in such rapidly changing environments is a challenge (Ounis, Macdonald, Lin, & Soboroff, 2011). To tackle this problem,
much previous work has focused on content-based criteria for ranking posts in response to a query, in combination with a broad
range of other ranking criteria, including, e.g., existence of hyperlinks, hashtags and retweets.

Fusion is a popular method for generating result lists based on multiple ranking criteria. Previous research has found that
data fusion can enhance the retrieval performance in many cases (Dong & Srivastava, 2013; Shaw, Fox, Shaw, & Fox, 1994;
Wu, 2012). In this paper, we look at the problem of searching microblog posts as a late data fusion task (Shaw et al., 1994):
we fuse ranked lists of posts produced by a diverse set of microblog post rankers into a single final ranked list of posts. In the
following, we consider the case where only ranks and publication times are available and no other additional information is
provided such as the retrieval status values or the contents of the posts. We focus on a particular microblog search scenario,
one that was studied at the Text REtrieval Conference (TREC) 2011 and 2012 Microblog tracks (Ounis et al., 2011; Soboroff,

* Corresponding author.
E-mail addresses: s.liang@uva.nl (S. Liang), derijke@uva.nl (M. de Rijke).
1 http://www.twitter.com.

http://dx.doi.org/10.1016/j.ipm.2014.10.008
0306-4573/© 2014 Elsevier Ltd. All rights reserved.

90 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

Ounis, Macdonald, & Lin, 2012). The task uses Twitter data and is defined as follows: given a query with a timestamp, return
relevant and interesting tweets.

Fusing multiple document lists that have been retrieved from a corpus in response to a query so as to compile a single
result list, has a long history (Kozorovitsky & Kurland, 2011; Shaw et al., 1994; Tsai, Wang, & Chen, 2008), with the Comb-
SUM family (CombMax, CombMin, CombSUM, CombANZ, CombMNX, CombMN?Z, etc. Lee, 1995) of fusion methods being the
oldest and one of the most successful ones for many IR tasks (He & Wu, 2008; Sheldon, Shokouhi, Szummer, & Craswell,
2011; Tsagkias, de Rijke, & Weerkamp, 2011; Tsai et al., 2008). The lists are often produced by multiple ranking functions,
e.g., query representations or document representations (Croft, 2000). Many effective fusion methods are based on the
assumption that only documents that are highly ranked in many of the lists are likely to be relevant (Aslam & Montague,
2001; Croft, 2000; Dwork, Kumar, Naor, & Sivakumar, 2001; Kozorovitsky & Kurland, 2011; Lee, 1995; Montague &
Aslam, 2002; Shaw et al., 1994; Tsagkias et al., 2011). As a consequence, a relevant document will be ranked low in the final
fused list if it appears only in a single list and is ranked low in this list.

The characteristics of microblog environments suggest a different perspective. In such environments news events trigger
people to talk about the topics related to an event mostly during specific short time intervals (Chen, Chen, Zhang, Wang, &
Bu, 2010; Hoonlor, Szymanski, Zaki, & Chaoji, 2012; Lappas, Arai, Platakis, Kotsakos, & Gunopulos, 2009; Mathioudakis,
Bansal, & Koudas, 2010; Peetz, Meij, de Rijke, & Weerkamp, 2012; Vlachos, Meek, & Vagena, 2004). For instance, people
talked about the “2014 Eastern Synchronized Skating Sectional Championship” mainly between January 30 and February
1, 2014, which is when the championship was held. Posts created before the beginning or after the ending of the event
are less likely to discuss the championship competitions and, hence, are less likely to be relevant. This observation leads
to the following intuition about fusing ranked lists of microblog posts. If a post d and (other) relevant posts di, ..., d, were
published within the same narrow time window, and the relevant posts di, . .., d; are ranked highly in many of the lists to be
merged, then post d should be “rewarded” by boosting its rank, even if, in the extreme case, it appears in only one list where
it is ranked low. Fig. 1 illustrates this intuition; there, post d, is ranked low in list L; but our intuition suggests that it should
be rewarded as it was published in the same narrow time window in which a large number of posts occur that are ranked
high in many lists; in contrast, dg, while ranked high in L,,;, receives no such bonus as it was published outside the narrow
window.

To tackle the problem of microblog post search, we propose BurstFuseX, a novel probabilistic model that not only
utilizes information traditionally used when merging ranked lists, such as ranks, but also exploits temporal information,
i.e., the publication timestamps of microblog posts. In our fusion model, we focus on the case where only ranks and pub-
lication timestamps are available and no additional information is provided—such as the content of the posts, the post’s
RSVs (Relevance Status Values), and the resources the posts link to. In fact, accessing the contents of posts may be inef-
ficient and hence inappropriate in dynamic environments such as microblog search. In addition, the content may not be
available in all scenarios (Salakhutdinov & Mnih, 2008). Briefly, BurstFuseX first calls a standard document fusion
method X to merge a set of ranked lists of microblog posts for a given query. Subsequently, as illustrated in Fig. 1, based
on the fused scores produced by method X, we detect windows of timestamps of high-scoring posts. These windows give
rise to bursts of posts. We then reward posts that are published in the temporal vicinity of a burst that contains high-
scoring posts.

In our experiments aimed at assessing the performance of BurstFuseX, we sample runs that have been submitted to the
TREC 2011 and 2012 Microblog tracks and fuse them using BurstFuseX, respectively. For the underlying fusion method X (on
top of which BurstFuseX builds), we consider three alternatives: two unsupervised fusion methods, CombSUM (Shaw et al.,

[

5 A
Ly Ly Ly, 5

(5]

£
d dg dy 5
ds ds . dy 8
d, ds dy
: : :
d, d, dy

9 & 7 m

|<— window —>| time

Fig. 1. Rewarding posts that are published in the same narrow time frame as a large number of (supposedly) relevant posts. On the left, we display m
ranked lists of posts that were produced in response to a given query; these lists need to be fused. Post d> only occurs in list L and it is ranked low in L,; dg
also occurs in a single list, L, but it is ranked very high. On the right, we show the distribution of the publication timestamps of the documents in the lists to
be combined. The vertical axis indicates the combined scores of posts with the same timestamps based on a baseline fusion method, e.g., CombSUM.
According to its publication timestamp, d, was published in a “good” period for the query: many posts published around the same time as d, are highly
ranked in many lists; because of this, BurstFuseX will “reward” d,. In contrast, dg does not have a publication time around which many highly ranked posts
were published, hence it should not receive a reward.

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 91

1994), CombMNZ (Lee, 1995), and one state-of-the-art supervised fusion methods: A-Merge (Sheldon et al., 2011). For fur-
ther comparisons, we consider a number of burst or time-sensitive microblog retrieval baselines. As BurstFuseX detects
bursts based on the output of a standard fusion method rather than on the contents of microblogs, we also consider a base-
line that detects bursts based on the contents. As we will see below, BurstFuseX significantly outperforms most fusion
approaches and burst or time-sensitive retrieval methods.

Our contributions in this paper can be summarized as follows.

i. We propose a novel and effective probabilistic data fusion model to microblog post search, BurstFuseX, which not only
takes traditional information such as document rank into account, but also exploits the temporal characteristics of
microblog environments.

ii. To the best of our knowledge, this is the first attempt to frame the problem of searching microblog posts as a data
fusion problem and also the first attempt to integrate temporal characteristics of result sets into data fusion.

iii. We provide a detailed analysis of the performance of BurstFuseX and offer a number of examples where we observe
the effect hypothesized in Fig. 1, i.e., of posts in a burst having their rank boosted.

In Section 2 we discuss related work; in Section 3 we detail BurstFuseX; we follow with a description of our experimental
setup in Section 4 and report on our experimental results and perform topic-level and run-time analyses in Section 5. Finally,
Section 6 concludes the paper.

2. Related work

In this section, we first review data fusion approaches in the information retrieval literature, briefly discuss previous ways
of performing burst detection in information retrieval, and finally we survey state-of-the-art approaches of searching
microblogs since the TREC 2011 Microblog track ran.

2.1. Data fusion

The task of fusing document lists that have been retrieved in response to a given query so as to compile a single more
effective result list has been widely studied in the information retrieval literature (Beitzel et al., 2003; Dong & Srivastava,
2013; He & Wu, 2008; Kozorovitsky & Kurland, 2011; Montague & Aslam, 2002; Shaw et al., 1994; Sheldon et al., 2011;
Shokouhi & Si, 2011; Tsai et al., 2008; Wu, 2012). Data fusion have a large number of applications, e.g., in multilingual infor-
mation retrieval (Sheldon et al., 2011; Si, Callan, Cetintas, & Yuan, 2008), federated search (He, Hong, & Si, 2011; Hong & Si,
2012; Shokouhi & Si, 2011) also known as distributed retrieval (Crestani & Markov, 2013), resource selection (Hong & Si,
2013; Markov, Azzopardi, & Crestani, 2013b; Markov & Crestani, 2014), etc. We divide these existing data fusion approaches
into supervised and unsupervised methods.

Supervised data fusion approaches first extract a large number of features, either from documents or lists, and then
utilize a machine learning algorithm to train the fusion model (Croft, 2000; Efron, 2011; Sheldon et al., 2011; Tsai et al.,
2008; Wu, 2012). Supervised data fusion approaches become feasible when we can leverage the use of information exist-
ing in labeled training data. Adopting a supervised learning approach to data fusion has some advantages. For instance,
we can apply existing optimization techniques to the data fusion problem, and the approaches become more easily ame-
nable to specific domains or user groups (Liu, Liu, Qin, Ma, & Li, 2007). Liu et al. (2007) set up a general framework for
conducting supervised data fusion, in which learning is formalized as an optimization problem in which one minimizes
disagreements between ranking results and the labeled data. Tsai et al. (2008) propose a learning approach for the merg-
ing process in multilingual information retrieval. To conduct the learning data fusion approach, they extract a number of
features from the given query, the documents to be retrieved and the translation, and then use an existing learning to
rank algorithm to construct a merge model from a large number of labeled data. Qin, Geng, and Liu (2010) propose a
supervised probabilistic data fusion model, which is based on coset-permutation distance and defined in a stage-wise
manner. To fuse result lists generated by different query reformulations, the state-of-the-art data fusion method /-Merge
proposed by Sheldon et al. (2011) first extracts features from both the lists and the documents appearing in any of the
lists, and then uses a learning to rank method to optimize a given metric, like NDCG, MAP, to fuse the lists into a final
merging list in response to a given query. We use i-Merge as a representative example of supervised fusion methods.
Recently, Hong and Si (2012) propose a novel supervised fusion model for result merging by utilizing multiple central-
ized retrieval algorithms. However, the fact that a large amount of labeled data has to be available, together with other
supervised problems (for instance over-fitting noted above in A-Merge), makes supervised data fusion less useful when
labeled data is hard to come by. Our experimental results show that in many cases, even a traditional unsupervised data
fusion can beat a state-of-the-art supervised data fusion method.

In contrast, unsupervised data fusion methods mainly utilize either retrieval scores or ranks of documents in the lists to be
merged (Bruno & Marchand-Maillet, 2009; Croft, 2000; Khalaman & Kurland, 2012; Shaw et al., 1994; Wu, 2012). Methods
utilizing retrieval scores take score information from the result lists to be fused as input, while those utilizing rank informa-
tion only use order information of the documents appearing in any of the lists to be fused as input. Data fusion methods

92 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

utilizing rank information have many uses and applications in information retrieval, including, e.g., meta-search (Aslam &
Montague, 2001; Shaw et al., 1994) where only order information from the result lists tends to be available. Our burst-aware
data fusion algorithm only uses rank and time information of the posts in the result lists, which makes it usable in cases
where only order information is available.

Unsupervised data fusion has a long history with the CombSUM family of fusion methods being the oldest and one of the
most successful ones in many information retrieval tasks (Croft, 2000; Kozorovitsky & Kurland, 2011; Shaw et al., 1994;
Tsagkias et al., 2011). Other unsupervised data fusion approaches include, for instance, Borda Count (Aslam & Montague,
2001; Dwork et al., 2001; Erp & Schomaker, 2000), median data fusion (Fagin, Kumar, & Sivakumar, 2003), genetic algorithm
(Beg, 2004), fuzzy logic based data fusion (Ahmad & Beg, 2002), Markov Chain based data fusion (Dwork et al., 2001), the
outranking model for fusion (Farah & Vanderpooten, 2007), data fusion in clustering microarray data (Kustra & Zagdanski,
2010), data fusion for the management of multimedia documents (Deloule, Lambert, Beauchene, & lonescu, 2007) and a dis-
tance-based model (Klementiev, Roth, & Small, 2008). In addition, Markov and Crestani (2014) and Markov, Arampatzis, and
Crestani (2012, 2013a) provide theoretical arguments on why some traditional unsupervised fusion methods work, and
based on these insights, they propose other unsupervised fusion methods. Through the use of unsupervised data fusion,
Loia, Pedrycz, and Senatore (2007) offer a new way of organizing web documents that emphasizes a direct separation
between syntactic and semantic facets.

Khalaman and Kurland (2012) utilize the content of documents appearing in any of the result lists to be fused to get an
additional source of rich information, i.e., document similarities, and then integrate information induced from the clusters of
similar documents created across the result lists to be merged with the output of a fusion method that relies on retrieval
scores. This fusion model makes strong assumptions: the content of documents is assumed available and it is very easy
to compute document similarities and get clusters for documents. However, in the case of microblog retrieval, some of these
assumptions are somewhat unrealistic. For instance, some posts with only links but without any words are still labeled as
relevant ones in response to the query, and creating clusters of similar posts may be very challenging as the length of posts is
at most 140 characters, while many posts are ambiguous (Liang, Ren, & de Rijke, 2014a, 2014b; Zhao & Rosson, 2009). Instead
of computing document similarities and creating clusters, we make full use of the characteristics of microblog environments
where people tend to talk about a specific topic within specific time intervals. Our data fusion method utilizes the timestamp
of posts. We detect bursts—sets of documents that are generated in specific time windows—, and use posts within a burst to
boost the scores of “nearby” posts. To our knowledge, this is the first attempt to integrate the temporal characteristics of
posts into data fusion.

2.2. Burst detection

Our framework for detecting bursts is similar to that in (Chen et al., 2010; Hoonlor et al., 2012; Lappas et al., 2009;
Mathioudakis et al., 2010; Peetz et al., 2012; Vlachos et al., 2004; Zhu & Shasha, 2003), but the input information we use
and our purpose in detecting bursts differs strongly. Much prior work detects bursts mainly based on document frequency
or/and query term frequency in the whole corpus (Hoonlor et al., 2012; Peetz et al., 2012; Zhu & Shasha, 2003). In contrast,
the information in our burst detection method is the score of documents generated by standard data fusion algorithm from
documents in the lists to be merged. Our purpose in detecting bursts is also different to the aims in (Chen et al., 2010;
Hoonlor et al., 2012; Lappas et al., 2009; Peetz et al., 2012; Vlachos et al., 2004). For instance, work in (Chen et al., 2010)
detects bursts for generating events and their evolution in new streams, while we detect bursts to help improve the effec-
tiveness of fusing methods. Unlike most of the past work on detecting bursts (Chen et al., 2010; Hoonlor et al., 2012; Lappas
et al., 2009; Miyanishi, Seki, & Uehara, 2013a; Peetz et al., 2012; Vlachos et al., 2004), we do not make any assumption that
the content of documents is available and the distribution of documents is known. In contrast, we only utilize the rank infor-
mation of posts appearing in the result lists to be fused to detect bursts, and our experimental results show that using stan-
dard fusion scores to detect bursts outperforms using the content of posts to detects bursts.

2.3. Microblog retrieval

Microblog retrieval has become an active research topic in IR, especially following the launch of the Microblog track at
TREC in 2011 (Ounis et al., 2011). Earlier work, however, already explored the task of retrieving microblog posts.
O’Connor, Krieger, and Ahn (2010) present TweetMotif, an exploratory search application for Twitter. Unlike traditional
approaches to information retrieval, which present a simple list of messages, TweetMotif groups messages by frequent sig-
nificant terms, a result set’s subtopics, which facilitate navigation and drilldown through a faceted microblog search inter-
face. Efron (2010) proposes a language model for hashtag retrieval in a microblog environment, where retrieved hashtags on
a topic of interest for query expansion are utilized to improve the performance of microblog search. Duan, Jiang, Qin, Zhou,
and Shum (2010) show that learning to rank methods work well on the task of microblog retrieval and that account authority
and URL presence are very strong features.

Following the launch of the Microblog track at TREC in 2011, many approaches have been proposed. At TREC in 2011,
for instance, some approaches (Amati et al., 2011; Cao, Gao, Yu, Liu, & Cheng, 2011; Horn, Pimas, Granitzer, & Lex, 2011;

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 93

Metzler & Cai, 2011; Wei, Gao, Zhou, Li, & Wong, 2011) exploit the idea that microblog queries are distinguished from web
queries with many unique characteristics, and utilize the temporal information to help searching posts. The method pro-
posed by Metzler and Cai (2011) combines a Markov random field model with a learning to rank model for searching
posts, which achieves the best p@30 performance at TREC in 2011. A combination strategy is also used by Zhang, Hui,
He, and Luo (2011) to search posts in 2011, where they combine a field-based model that takes the frequency of a query
term in different document fields into account with query expansion. In contrast, work present in (Bandyopadhyay, Mitra,
& Majumder, 2011) uses query expansion only for searching posts, but the way their query expansion method works is
different; they use the Google Search API to retrieve pages from the web, and use the titles to expand the queries.

At the TREC 2012 Microblog track, Luo, Osborne, Petrovic, and Wang (2012) consider a microblog post to be a structured
document, consisting not only of the text, but also of other blocks, like hashtags, links, and mentions. Using these blocks as
features in a learning to rank method, they show good retrieval performances. At TREC 2012, the best performing run also
uses learning to rank model (Han et al., 2012). Wei, Zhang, Li, and Wang (2012) propose a ranking algorithm with temporal
information based on a language model. Kim, Yeniterzi, and Callan (2012) present two approaches to address the problem of
the limited vocabulary of each posts due to their short length. The first is query expansion through pseudo-relevance feed-
back and the other is document expansion of tweets using web documents linked from the body of a tweet. Jabeur et al.
(2012) experiment with a bayesian network retrieval model for posts search and a feature learning model for relevance
classification.

Beside the approaches presented at TREC 2011 and 2012, many microblog post retrieval approaches have been proposed
outside TREC since the launch of the TREC 2011 Microblog track. For instance, Massoudi, Tsagkias, de Rijke, and Weerkamp
(2011) and Miyanishi et al. (2013a) propose a method for query expansion in the microblog domain and find that this is
highly effective. Naveed, Gottron, Kunegis, and Che Alhadi (2011) explore the impact of document length normalization
on retrieval performance and find that this has a negative effect. They also introduce interestingness as a measure for microb-
log posts and show that using this measure leads to better retrieval effectiveness. Choi, Croft, and Kim (2012) suggest a qual-
ity model using surrogate judgments based on retweets that can be collected automatically to train a microblog search
model. Chang et al. (2013) propose a method to utilize Twitter TinyURL (shortened URL links) to detect fresh and high-
quality documents, and leverage Twitter data to generate novel and effective features for ranking documents. The work
by Miyanishi, Seki, and Uehara (2013b), Dakka, Gravano, and Ipeirotis (2012), Choi and Croft (2012) and Massoudi et al.
(2011) utilizes burst (time) information to boost the performance of searching posts.

Another related line of work concerns retrieval score regularization for improving the performance of ad hoc search
(Diaz, 2005, 2007). Specifically, Diaz (2005, 2007) present a framework for improving document retrieval scores under a
regularization framework, where retrieval scores of documents are adjusted to respect inter-document consistency. Our
microblog search algorithm, BurstFuseX, builds on the same intuitions as the algorithms proposed in (Diaz, 2005, 2007):
in (Diaz, 2005, 2007) the regularization algorithms for ad hoc search build on the cluster hypothesis, according to which
closely related documents should have similar retrieval scores, given the same information request; in our algorithm, we
assume that posts published within the same time intervals are more likely to be talking about the same topic. There
are several dissimilarities, though, between the algorithms in (Diaz, 2005, 2007) and our algorithm. For instance, the
algorithms in (Diaz, 2005, 2007) utilize (expensive) inter-document similarities for retrieval score regularization; in con-
trast, our algorithm utilizes time information for data fusion score regularization. The input of the former algorithms
consists of the retrieval scores of documents generated by a single retrieval model and the documents’ content; in con-
trast, the input of our algorithm is a number of result lists generated by multiple retrieval models plus the timestamps
of the posts.

In sum, the work that we present in this paper differs in important ways from the related work just discussed. We observe
that people tend to talk about topics within specific time intervals. We first detect set of bursts where the majority of posts
appear in many of the lists and are likely to be relevant. Then we let posts published in or near the burst boost each others’
scores. To our knowledge, this is the attempt to frame the problem of searching microblog posts as a data fusion problem and
the first attempt to integrate temporal characteristics of result sets into data fusion techniques.

3. Fusion approach

In this section, we first provide the main research question we address. Then we briefly describe standard unsupervised
and supervised data fusion methods that will be integrated in our proposed data fusion methods and taken as baselines in
our experiments. We define what bursts are and detail how to detect bursts in data fusion scenarios in Section 3.2. After that,
we detail our proposed data fusion methods for microblog search in Section 3.3.

The task we address in this paper is the following: Given a query and a set of ranked lists of posts returned in response to the
query, fuse the lists into a single ranked list of posts to be returned in response to the query. Hence, the input of our burst-aware
data fusion method BurstFuseX consists of a query and a set of ranked lists of posts; the output is a single fused list.
Algorithm 1 gives a high level overview of BurstFuseX.

94 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

Algorithm 1. BurstFuseX: Burst-aware data fusion for microblog post search

Input: A query g
A number of ranked lists of posts to be fused, Ly,L;,...,Ln
The combined set of posts C; = UL
A standard fusion method X.
Output: A final fused list of posts.
1 Calculate the (standard) fusion score Fx(d;q) according to X for each post d € C,; see Section 3.1;
2 Detect bursts based on the timestamps and Fx(d;q) scores; see Section 3.2;
3 Calculate the BurstFuseX fusion score for each d € C using the bursts and the standard fusion score; see Section 3.3;
4 Construct the final fused list based on the BurstFuseX score of d € C, obtained in step 3.

In the remainder of this section we detail the steps that make up BurstFuseX. In Table 1 we list the notation that we use.
The fusion methods we consider as building blocks for BurstFuseX all assign a non-negative fusion score Fx(d; q) to every
postd € C.. We set Fx(d;q) := Oford ¢ C., following (Bruno & Marchand-Maillet, 2009; Kozorovitsky & Kurland, 2011; Lee,
1995; Shaw et al., 1994; Wu, 2012). The higher Fx(d; q) is, the more likely d is assumed to be an appropriate response to q.

3.1. Standard fusion methods

To be able to define the final fusion score Fpyrusex (d; q) we integrate and make use of an existing standard fusion method
(step 1 of Algorithm 1). BurstFuseX is independent of the particular choice of the standard fusion method that it integrates:
any fusion method can be integrated into our model. Below, we briefly review the three standard fusion methods that we
consider in this paper: two unsupervised ones and a supervised method.

3.1.1. Unsupervised fusion

Classical unsupervised methods include the so-called CombSUM family. Methods in this family assume that documents
that are ranked highly in many of the lists to be merged are highly relevant (Shaw et al., 1994): typically, a fusion score
Fx(d; q) for document d, given query g, is defined based on the rank of d in the lists to be merged and on the number of lists
in which d appears.

Let Ry, (d) denote d’s score based on the rank of d in list L;; by default, R, = 0 if d ¢ L;. In both CombSUM and CombMN?Z,
R, (d) is often defined as:

Table 1
Notation used in the paper.
Notation Gloss
[Corpus of microblog posts
q Query
d Microblog post
L; Ranked list of microblog posts

L Set of ranked lists

Ce Set of posts that appear in the lists in £

X Standard fusion method

Fx(d;q) Score of post d for query q according to standard fusion
method X

Ry, (d) Rank-based score of d in list L;

rank(d, L;) Rank of d in list L;

ki, Length of list L;

Om Weight of a list; used in the definition of i-Merge
g(d;q) Scoring function used in the definition of /-Merge
f(x;0) Linear scoring function used in the definition of /-Merge
t; Timestamp

d, Post with timestamp t;

S, (Cr) Burst-time score at time t;

te, Number of different timestamps of posts in C.

3(Cr) Sequence of burst-time scores

b(C,)[ti : t;] Burst with start timestamp ¢; and end timestamp ¢; (given
query q), abbreviated by b

B(Cr) Set of all bursts in C. (given query q)

u Free parameter that governs burst information

o) Standard deviation of timestamps belonging to the burst b

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 95

R, (d) = (1+kg,) _k;ank(d’Li) | :

where rank(d, L;) € {1,...,k;} is the rank of d in L;. The well-known CombSUM fusion method (Shaw et al., 1994; Wu, 2012),
for instance, scores d by the sum of its rank scores in the lists:

FCombSUM(d§ q) = ZRLi (d)7
Li

while CombMNZ (Shaw et al., 1994; Wu, 2012) rewards documents d that rank high in many lists:
Feombmnz(d; q) := |{Li : d € Li}| - Feompsum(d; q)-

3.1.2. Supervised fusion

Recently, several supervised methods for merging ranked lists have been proposed, one of which is 2-Merge (Sheldon
et al, 2011). In this paper, we view i-Merge as a typical representative of the supervised standard fusion methods that
are currently available.?

Given a query, A-Merge can directly optimize a retrieval metric (e.g.,, MAP) to enhance retrieval effectiveness under the
assumption that query reformulation candidates are available. In particular, /-Merge learns a scoring function to rank doc-
uments from multiple reformulations of the given query by combining features that indicate document quality (such as
retrieval score) with features that indicate the quality of the reformulation and its results lists (called gating features in
Sheldon et al., 2011). In our setting, we do not assume that query reformulation candidates are easily available, i.e., no fea-
tures about the quality of the reformulation (gating features) are used in our data fusion method.

Our settings for 2.-Merge are detailed in an appendix to the paper (see Appendix A).

3.2. Bursts and burst detection

To ground our intuitions about utilizing burst information to boost the performance of microblog search, we choose four
test queries as examples and examine plots of the number of relevant documents distributed over their document ages
(measured by days) in Fig. 2.2 The figure confirms that people tend to talk about topics within specific time windows. It is,
therefore, worthwhile to detect such time windows (“bursts”) and to use such burst information, which is what our proposed
data fusion method for microblog search aims to do.

Next, we move on to the next step (step 2) of Algorithm 1 and detail how we detect bursts. Let ¢; be a timestamp. Let d,
(e C.) denote a post d with timestamp t;. We regard posts published during the same hour as having the same timestamp.
Although it is possible to define “the same timestamp” in many different ways, we found that this is a suitable level of gran-
ularity for the fusion effectiveness of searching posts; the same setting is also used in (Metzler, Cai, & Hovy, 2012). Now,
before we detect bursts, we need to define S,(C;), the burst-time score at time t; of C, the set of posts occurring in the lists
under consideration. Let Fx(d;,; q) be the score of d;, given q under the standard fusion method X. Then:

Zr_ FX(qu)
Syl = ——t=ee XD L cic, (2)

t,)
Zjicl Zd[}.ecLFX(dtﬁ q) e

where 1 <j < te, and t., is the total number of different timestamps belonging to posts in C.. Notice that the burst-time
score S, (C.) > 0 if it is above the average score (i.e., 1/tc,), otherwise S, (C.) < 0.

We compute a burst-time score S, (C) at each time point t; € {ty,t,,...,tc,} in C.. In this manner we generate a burst-
time score sequence 3(C) = {St, (Cc), S, (Cr), - - -, St (C)}-

Following (Ruzzo & Tompa, 1999), a segment 3(C;)[t; : t;j] = {S;,(Cc), St,,, (Ce), -, Sy (Ce)}, where 1 < i <j < te,, is a max-
imal segment in 3(C.) if:

i. All proper subsequences of 3(C.)[t; : t;] have a lower score.”
ii. No proper super-segments of 3(C.)[t; : tj] in 3(C.) satisfy item i.

We adapt a linear-time algorithm proposed in (Ruzzo & Tompa, 1999) to find all maximal segments in the sequence J3(C;).
As an example, consider the input sequence 3(C;) = {2,-2,4,3,-3,—-4,-1,-3,5,—1,3, -2}. The maximal segments in this
sequence are {2}, {4,3} and {5, —1,3}. The segment {2, —2,4, 3} is not maximal, since it has a nonempty zero-scoring prefix
{2, -2} appending to the left of {4,3}; {5} is not a maximal segment, since {5, —1,3} has a total higher score of 7. Each max-
imal segment 3(C.)[t; : t;] gives rise to a burst of posts b(C.)|[t; : t;] with start timestamp ¢; and end timestamp ¢;: it contains

2 To be able to define /-Merge, we need to assume that we can access the content of posts.
3 The topics are selected from test collections detailed in Section 4.2.
4 The score of a subsequence is the sum of the burst-time scores of the elements in the subsequence.

96 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

40 60
[2]
g ——MBO001 % —+—MB017
()
g 30 g
40
3 3
; 20 o
C
g S 20
2 10 2
[} [}
T o
0 ** 0 — . S
0 5 10 15 0 5 10
Document age (days) Document age (days)
(a) (b)
» 50
£ ——MB024 g 20 ——MB042
g 40 o
g
3 5 15
S 30 8
o S
g 20 g 10
> ©
kS 3
o 10 < 0
< i
** *
0 0
0 5 10 15 0 5 10 15
Document age (days) Document age (days)

(c) (d)

Fig. 2. Distribution of the number of relevant documents over days for four test queries. In each subfigure, the x-axis indicates document ages from query
time to the document timestamps, and the y-axis indicates the number of relevant documents according to the ground-truth in the Tweets 2011 dataset
(detailed in Section 4.2). Subfigure (a) plots the relevant documents over time for query MB0O1 - BBC World Service staff cuts, (b) is for MBO17 — White Stripes
breakup, (c) is for MB024 - Super Bowl, seats, and (d) is for MB042 - Holland Iran envoy recall.

any post d € C; whose timestamp is between t; and ¢; is within this segment. We write B(C;) = [Jb(C,)[t; : t;] to denote the
set of all bursts in response to q.

We let b be short for b(C,)[t; : ¢;] in the following. As it does not access the contents of posts, the source of complexity in
our burst detection method is in the problem of finding all maximal segments: this problem can be solved in linear time
(Ruzzo & Tompa, 1999), so that the computational complexity of our burst detection method is O(|C,|).

3.3. Burst-aware fusion

We turn to the key steps 3 and 4 of Algorithm 1 and define our burst-aware fusion algorithm. Motivated by the fact that
people tend to talk about a topic within specific short time intervals (Lappas et al., 2009; Mathioudakis et al., 2010; Peetz
et al., 2012), we devise a method that allows posts in the same burst to boost the scores of other posts such that posts that
are ranked low in a small number of lists can be promoted by posts in the same burst that are ranked highly in many lists.
After detecting a set of bursts, B(C.), we integrate burst information with scores of posts in the lists, scores that were gen-
erated by a standard fusion method X, to estimate P(d|q)—the final probability that d (€ C.) is relevant to query q.

3.3.1. The model
We use a set of bursts B(C.) as proxies for d in estimating its relevance in response to q. Specifically, we can rewrite the
probability of a post d being about q, P(d|q), as:

P(dlq) = > p(dib,q) - p(blq), (3)
beB(Cy)

where the probability, p(b|q), indicates how likely a set of posts in b produced within the same time interval are relevant to g,
and p(d|b, q) indicates how likely d is talking about q and belongs to b. To estimate p(d|b, q), a linear mixture governed by a
free parameter u is used (Kurland & Lee, 2004; Markovits, Shtok, & Kurland, 2012) such that:

po(dlb,q) == (1 —p)-p(diq) + p- p(d|b), (4)

where p(d|q) measures the relevance of d to g and p(d|b) indicates how likely d belongs to b. We substitute Eq. (4) into Eq. (3),
and define our BurstFuseX model as:

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 97

Frusirusex(d; @) = > {(1 =) - p(d|q) + - p(d|b)} - p(blq) = (1 — p) - p(dlq) + - > p(dlb) - p(b|q). (5)

beB(Cr) beB(C,)

That is, to obtain a score for post d in response to g, BurstFuseX uses three types of probability. If posts in a burst are talking
about gq,b will be rewarded as p(b|q) indicates. If d is strongly associated with b, then as indicated by p(d|b),d will be
rewarded. Finally, if each burst b in B(C.) talks about q, d itself discusses q and is strongly associated with a burst, then d
will be ranked high in the final fused list.

Notice how BurstFuseX can boost the score of posts: if post d ranks low in a single list (i.e., p(d|q) is small) but is contained
in a burst, as indicated by p(d|b), then the final fused score of d, Fpyrsrusex (d;), may still be relatively high, which may boost
the final ranking of d.

3.3.2. Estimating the key components
Our next task is to derive estimates for the following key components in Eq. (5):

e p(d|q): post-level relevance—how likely d is talking about q.
e p(b|q): burst-level relevance—how likely a set of posts as a whole are talking about q.
e p(d|b): post-burst association strength—how likely d belongs to b.

Post-level relevance. To obtain p(d|q) in Eq. (5), we apply Bayes’ Theorem, such that p(d|q) :%, where we let
p(q) x Zdrecﬂp(q|d’)p(d’). Here, d' is a post in the set of posts C. to be fused. A uniform prior distribution is assumed for each
post d € C.. So p(d|q) can be rewritten as:

p(qld)
Saee,P(qld)

We use an estimate p,(q|d) « Fx(d;q) (Khalaman & Kurland, 2012), where Fx(d; q) is the score of a standard fusion method
X for d given q:

p(d|q) o

Fx(d;q)
dg) = ——"1"~-— 6
Pda) = == (6)
which is the normalized standard fusion score reflecting d’s relevance to q. Notice that our burst-aware fusion model will
reduce to the standard fusion method X if we let i =0 in Eq. (5), as Fpurstrusex(d; @) = (1 —) - p(d|q) < Fx(d|q) in Eq. (5) in
this case. In other words, the effect of merging result lists according to Fpyrstrusex (d;) will then be the same as that of merging
result lists according to Fx(d;q).

Burst-level relevance. Next, to obtain p(b|q) in Eq. (5), we apply Bayes’ Theorem again, such that p(b|q) = %, where we
use the probability rule, and have p(q) Zb/eB(cl)p(mb’)p(b'). Here, b’ is a burst in the set of bursts B detected by our burst
detection method. Assuming a uniform prior for each burst in C, for a given g, the probability that a burst b contains infor-
mation pertaining to q can be represented as:

p(qlb)
PvenenPdlb)
A burst may contain posts that have multiple appearances in the lists to be fused. Prior work on representing sets of posts

has shown that product-based representations somewhat outperform sum-based representations (Khalaman & Kurland,
2012; Liu & Croft, 2008; Seo & Croft, 2010). Accordingly, we let:

p(blq) o

po(alb) = [[p(aid).

deb

As we use an estimate p,(q|d) « Fx(d;q) (see above), p(b|q) can be estimated as:

pblg) = — Mawfx(@a” @)

Zb’eB(Cﬁ)Hd’eb/FX(dIQ q)"

where |b| and |b'| are the number of posts in b and b’, respectively.

Post-burst association strength. To obtain p(d|b) in Eq. (5), we apply Bayes’ Theorem again, such that p(d|b) = ‘%. We
observe that p(b) « Zd/eccp(b\d’)p(d') and assume a uniform prior for the probability of a post, so that p(d|b) can be repre-
sented as:

=

pbld)
Srec P(bId)

Here, p(b|d) is the probability of d belonging to b.

p(d|b) o<

98 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

Next, we need to estimate p(b|d). Again, we use the product of scores of posts in a burst with the index of 1/|b| rather than
the average of the sum of the score.” We set:

py(bld) == [p(d1d)", (8)
d"eb

to estimate p(b|d), where d” ¢ C, is a post in b.
Three factors affect the association strength between d and b: the temporal relationship between d and posts d’ € b, the
relevance of d given q and the relevance of d” given q. We estimate the time relationship between d and d” as:

v (ty — ta)?
pt(d,d)exp{ T2 [

Here, t; and t, are the timestamps of post d and d’, respectively, o, is the standard deviation of the timestamps in b:

2 2
_ ”b“ my 2 my 2 +1 n3+2n2+n 2
o {k } _ k:1{1< k(ny +1) + 12— } _ 2T S P (1, + 1)k
b ny np ny
31202
B n+ Zb+nb + nb(nb+1é(2nb+l) (+ 1) nb+1 B ni _ .l 9
a ny 12)

where n, = j — i+ 1 is the total number of different timestamps of posts in the burst b.°If j = i, we let ;, = 0.5 to avoid ¢}, = 0.
The bigger the temporal distance between t, and t, is, the smaller p,(d”, d) will be, which means that compared to other posts in
burst b, d is rewarded less by post d".

Now, to estimate p(d”|d) (Eq. (8)) we build on the following intuition. If d” is ranked highly, based on a relatively large
value of p(d’|q), and d" and d are produced at almost the same points in time, based on a relatively high value of p,(d", d),
then d” should be able to boost d's score. Hence, we estimate p(d’|d) by putting p,(d’|d) := p(d"|q) - p,(d",d) :=
p,(d"|q) - p,(d",d). When we substitute this term in (8) we obtain:

po(bld) = [{po(d’lq) - pe(d’, d)}P.
d’eb

Putting everything together, we can now estimate the post-burst association strength, p(d|b), as:

[Toe{po(d’lq) - p(d",d)}" '
>dec L laren {p/,(cl”|q) p(d’,d) }T‘

According to (10), if d is in b and the scores of posts surrounding d (including d itself) in b are high, the association strength
between d and b increases. In this case, d’s scores will be boosted. Note, by the way, that d (€ C;) does not have to be in b; any
d in C; can have a non-zero association strength to any b in B(C,).

py(d|b) = (10)

4. Experimental setup

In this section, we describe our experimental setup; Section 4.1 lists our specific research questions; Section 4.2 describes
the data set; Section 4.4 details the evaluation metrics and the significance testing used in the experiments. Finally, Sections
4.5 and 4.6 detail how BurstFuseX is trained and optimized, and the settings of the experiments.

4.1. Research questions
The research questions guiding the remainder of the paper are:

i Does BurstFuseX outperform the standard data fusion method that it integrates? (See Section 5.1).
ii Does BurstFusei-Merge outperform BurstFuseCombSUM or BurstFuseCombMNZ? (See Section 5.1).
iii Does BurstFuseX outperform the best run to be fused? (See Section 5.1).
iv. What is the effect of using burst information in BurstFuseX? l.e., what is the impact of the free parameter u in Eq. (5)?
(See Section 5.2).
v What is the effect of the number of lists to be fused in BurstFuseX? (See Section 5.3).
vi Can we observe the hypothesized effect sketched in Fig. 1 (See Section 5.4).
vii How fast is BurstFuseX compared to other data fusion methods? (See Section 5.5).

5 Experimental results show that using products is not statistically significantly different from using sums with a two-tailed paired t-test at a 95% confidence
level.
6 Alternative definitions of g, are possible, but we found that this has little effect on the overall retrieval performance.

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 929

Table 2

Description of the data set used in our experiments.
Number of tweets 15,137,399
Number of users 4,670,516
Median tweet length 8.66
Median English tweet length 10.76
Number of English tweets 9,318,772
Number of English retweets 1,069,006
Number of hyperlinks 1,135,720
Number of hashtags 1,005,343

viii Can BurstFuseX beat burst or time-sensitive microblog search algorithms? (See Sections 5.6 and 5.7).
ix Can BurstFuseX aid a single run that does not take time into account? (See Section 5.8).

4.2. Data set

In order to answer our research questions we work with the Tweets 2011 corpus (Macdonald, Ounis, Lin, Choudhury, &
Soboroff, 2011), called Tweet11, provided by the TREC 2011 Microblog track. The collection is comprised of approximately 16
million tweets collected over a period of 2 weeks (23th January until 8th February 2011, inclusive) sampled courtesy of
Twitter. Different types of tweets in this data set are present, including replies and retweets. Each tweet has its own
timestamp. Descriptive statistics about the collection are provided in Table 2.

The task studied at the TREC 2011 Microblog track was: given a query with a timestamp, return relevant and interesting
tweets in reverse chronological order. This task is akin to adhoc search on Twitter, where a user’s information need is rep-
resented by a query at a specific time. For 2012, the setting of the TREC was almost the same as that in 2011 except that the
topics were different and the result lists were required to be ordered by relevance instead of chronologically (Soboroff et al.,
2012). In our experiments, we rank tweets by relevance.’

We use two sets of test topics (queries) in our experiments, the 2011 test set and the 2012 test set. In total, NIST (the
National Institute of Standards and Technology) created 50 test topics for TREC 2011 Microblog track, each representing
an information need at a specific point in time when the topics were issued. Fig. 3 shows an example topic. 49 test topics
were used in the TREC and 2965 tweets were deemed relevant; some topics have just two relevant tweets while some have
more than 100 relevant tweets. Indeed, one of the 50 topics originally created, MB050, did not have any relevant tweets in
the pool, and it was therefore dropped from the evaluation. To assess the tweets, the assessors judged the relevance of a
tweet after reading it. Tweets in the Tweet11 corpus were judged on the basis of the defined information need using a
three-point scale: Not Relevant, Minimally Relevant and Highly Relevant (Macdonald et al., 2011).

A total of 59 groups participated in the TREC 2011 Microblog track, with each team submitting at most four runs, which
resulted in 184 runs® (Macdonald et al., 2011; Ounis et al., 2011). The official evaluation metric was precision at 30 (p@30)
(Macdonald et al., 2011). The p@30 scores of these 184 runs varied dramatically, with the best run achieving a p@30 score
of 0.4551 and the worst run achieving 0.000. In our experiments below, we do not use any runs whose p@30 scores are below
0.10, leaving us with 174 runs from the TREC 2011 Microblog track. Details about the implementation of each run from the TREC
2011 Microblog track can be found in (Macdonald et al., 2011; Ounis et al., 2011).

The Microblog search track continued in 2012 using the same corpus, Tweet11 (Soboroff et al., 2012). NIST created 60
new test topics representing information needs at specific points in time in TREC 2012 and labeled 6286 tweets as minimally
or highly relevant. The TREC 2012 Microblog track received 121 runs® from 33 participating groups. The best run in TREC
2012 Microblog track is hitURLrun3 (Han et al., 2012), with its p@30 score being 0.4695. Once again, in our experiments,
we only use the runs whose p@30 scores are no less than 0.10, leaving us with 117 runs from the TREC 2012 Microblog track.
For details about the implementation of the runs from the TREC 2012 Microblog track we refer to (Soboroff et al., 2012). The
track continued in 2013, but with a different experimental setup, where participants used a shared API to retrieve documents
that were subsequently re-ranked.

4.3. Baselines

We compare BurstFuseX to 3 data fusion baselines: 2 traditional unsupervised methods, i.e., CombSUM, CombMNZ, and a
start-of-the-art supervised method, /-Merge (Sheldon et al., 2011). As BurstFuseX utilizes burst information to boost the per-
formance, we also compare BurstFuseX to 4 state-of-the-art burst-sensitive microblog search algorithms: time-based lan-
guage model (TBLM) (Li & Croft, 2003), textual quality factor model with temporal query expansion (LM-T(qe)) (Massoudi
et al., 2011), direct time-sensitive BM25 retrieval model (DIRECT-BM25 (mean)) (Dakka et al., 2012) and temporal tweet
selection feedback method (TSF + QDRM) (Miyanishi et al., 2013b). All of these burst-sensitive algorithms first detect bursts

7 We reorder all 2011 runs by retrieval score before fusing them.
8 These 2011 and 2012 runs can be downloaded from http://trec.nist.gov.

100 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

<top>

<num> Number: MB023 < /num>

<title> Amtrak train service </title>

< querytime> Tue Feb 08 20:04:25 +0000 2011 </querytime>
< querytweettime> 35066441501900800 < /querytweettime>
< /top>

Fig. 3. Example topic, MB023, in the TREC 2011 Microblog track.

(or time-spans) based on the content (words) of the posts and then utilize the burst information to boost the retrieval per-
formance. Our BurstFuseX detect bursts based on the fusion scores of posts rather than directly based on the content of the
posts.

To illustrate the merits of detecting bursts from fusion scores, we implement an alternative algorithm, BurstFuseX,ss
(BurstFuseCombSUM),ss and BurstFuseCombMNZ,,s5), which detects bursts using the burst detection approach presented
in (Lappas et al., 2009), using the content of posts, and then fuses the input rank lists using our fusion framework. In
other words, the only difference between BurstFuseX and BurstFuseX, s is in the way they detecte bursts. To build the
index of the dataset that some of our baselines require, we apply Porter stemming, tokenization, and stopword removal
(using INQUERY lists) to posts using the Lemur toolkit.” The features and settings used for i-Merge are briefly described in
Appendix A.

4.4. Metrics and significance testing

For performance evaluation in our experiments we consider both minimally relevant and highly relevant posts relevant
and use the official metric, p@30 (precision at rank 30). We also report on p@5, p@10, p@15 and MAP (mean average pre-
cision) scores. Given a query q, the precision at rank k metrics p@k (k = 5,10, 15,30 in our experiments) for this query can be
simply calculated by:

> arel(d)

pQk = ==

where rel(d) is a binary function that indicates whether the document d; at rank i is relevant to the query g:

rel(d;) - { 1 if d; is relevant to q,

0 otherwise.

The p@k score for a test collection is the average p@k score of all test queries in the collection. Mean average precision
(MAP) is a commonly used recall-oriented metric. For each relevant document in the result list we take the precision at
the rank of the document. We sum over these precision values and divide it by the total number of relevant documents. This
gives us the average precision (AP) for a query, which can be formulated as:

Zﬁ’:lp@k x rel(dy)

AP = :
IR

where R is the set of relevant documents for a given query, and N is the number of returned documents. Then, the MAP score
for a test collection is obtained by taking the mean of AP scores over a set of test queries.

We use trec_eval'® to compute the performance scores. We expect BurstFuseX to have a recall-enhancing effect. This may
negatively impact very early precision, which is why we include p@5. But we hypothesize that we will see an increase in pre-
cision scores at lower ranks because of the expected boost in recall and the limited length of the lists being scored (only 30
items). For this reason we consider precision scores at multiple cut-offs (5, 10, 15, 30) as well as MAP. Statistical significance
of observed differences between the performance of two runs is tested using a two-tailed paired t-test; we use a (or v) to
denote significant differences for o = .01, or » (and v) for oo = .05.

4.5. Training and optimization

Our BurstFuseX fusion method incorporates a single free parameter, p in Eq. (5). The value of u (€ {0,0.1,...,1}) is set
using 10-fold cross validation performed over the entire set of queries in the TREC 2011 Microblog track. In the learning
phase, the performance of BurstFuseX is optimized with respect to MAP. In other words, the set of 49 queries is randomly
partitioned into 10 equal size subsamples; the performance for a single test subsample (5 queries) is that attained using a
value of u that maximizes MAP performance over the remaining subsamples (44 queries). We repeat the experiment 10
times and report the average scores on the metrics. In each time, the subsamples are permuted until all the 49 queries were

9 http://www.lemurproject.org.
10 Like the runs, the evaluation script can be obtained from http://trec.nist.gov.

S. Liang, M. de Rijke/ Information Processing and Management 51 (2015) 89-113 101

chosen once for the test set. The setting of BurstFuseX over the entire set of queries in the TREC 2012 Microblog track is the
same as that in TREC 2011 Microblog track. Our baseline fusion methods, i.e., CombSUM, CombMNZ and /-Merge, do not
incorporate free parameters.

4.6. Experiments

We report on 8 main experiments in this paper. First, to understand the overall performance of BurstFuseX, we sample
about 10% from the ranked lists produced by the participants in the TREC 2011 and 2012 Microblog tracks based on the lists’
p@30 distribution, respectively: 18 out of the 174 runs in TREC 2011 and 18 out of the 117 runs in TREC 2012, 6 each with
p@30 scores between 0.20 and 0.30 (Class 3), between 0.30 and 0.40 (Class 2), and over 0.40 (Class 1). We also randomly
choose two runs from each class to construct Class 4. See Tables 3 and 4 for details of our sample runs from the TREC
2011 and 2012 Microblog track, respectively. Note that in our experiments, the runs in Class 1 in Tables 3 and 4 are actually
the six best ones in the TREC 2011 and 2012 Microblog tracks, respectively. In every class, we use runl, run2, run3, run4,
run5 and run6 to refer to the runs in descending order of p@30 score.

To understand the influence of bursts and see whether burst information is helpful to boost fusion performance and to
which extent, we change the parameter u in Eq. (5) from 0.0 to 1.0, which alters the degree to which burst-based and stan-
dard fusion information are to be mixed. Then, to understand the effect of the number of lists to be merged, we randomly
choose k (€ {2,4,6,...,38}) lists from the 174 TREC 2011 Microblog lists and fuse them by BurstFuseX and the standard
fusion methods. We repeat the experiments 20 times and report the average results as well as the corresponding standard
deviation scores.

In order to understand the topic-level performance of BurstFuseX, we provide an analysis of topic-level performance
against the standard fusion method it cooperates. Next, to determine how fast BurstFuseX can merge result lists, we again
fuse k (e {2,4,...,30}) lists, and report and compare the average computing time required by BurstFuseX against that of the
standard fusion methods. To understand whether BurstFuseX can improve over microblog search approaches that already
incorporate time-sensitive search algorithms, we compare the performance of BurstFuseX, the standard fusion method it
builds on and 5 time-sensitive baselines of searching microblogs.

To understand whether detecting bursts based on standard fusion scores works better than detecting based on the textual
content of posts, we make a comparison between our fusion methods and those detecting bursts based on the textual con-
tents of posts. We also compare burst-sensitive component lists to be fused and the fusion methods to see whether fusion
can help to boost the retrieval performance. Finally, to understand whether BurstFuseX requires multiple result lists or if it
can aid single runs that may not have taken time into account, we fuse only a single result list using BurstFuseX and compare
the single result list and the output of BurstFuseX on that list.

As described in Section 3, in our experiments we use two unsupervised data fusion methods, CombSUM and CombMNZ,
and one supervised method, i-Merge, as representatives of the standard methods that can be integrated by BurstFuseX.

5. Results and analysis

In this section, we present our experimental results and perform an analysis. We follow the order of the research ques-
tions listed in Section 4.1. In particular, in Section 5.1 we examine the effectiveness of BurstFuseX on fusing the sample lists;
in Section 5.2 we study the effect of using burst information and in Section 5.3 the effect of the number of lists on the overall
performance; Section 5.4 reports on a topic level analysis; Section 5.5 is devoted to look at the runtime performance of

Table 3
Summary of sampled runs from the TREC 2011 Microblog track.
Class Sampled runs Performance
Class 1 Clarity1, waterlooa3, FASILKOMO2, isiFDL, DFReeKLIM30, PRISrun1 0.40 < p@30
Class 2 KAUSTRerank, ciirRun1, gut, dutirMixFb, normal, UDMicroIDF 0.30 < p@30<0.40
Class 3 WESTfilext, LThresh, qRefLThresh, run3a, Nestor, uogTrLqea 0.20 < p@30<0.30
Class 4 FASILKOMO2, waterlooa3, gut, UDMicrolDF, run3a, qRefLThresh 0.20 < p@30
Table 4
Summary of sampled runs from the TREC 2012 Microblog track.
Class Sampled runs Performance
Class 1 hitURLrun3, kobeMHC2, kobeMHC, uwatgclrman, hitQryFBrun4, kobeL2R 0.40 < p@30
Class 2 QEWeDbFB, indri, KLIMLL, UNCRQE, gucasGenReg, KLIMLPLL 0.30 < p@30<0.40
Class 3 FASILKOMOT1, IIEIR03, RUN2, expansion, IRSIISI, uwatgclrbase 0.20 < p@30<0.30

Class 4 hitQryFBrun4, kobeL2R, KLIMLL, UNCRQE, IIEIR03, IRSIISI 0.20 < p@30

102 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

BurstFuseX and in Section 5.6 we examine whether BurstFuseX is able to add anything in terms of performance on top of
result lists produced by retrieval methods that already use temporal information; Section 5.7 provides a further analysis
of the use of burst information in data fusion for microblog search; finally, Section 5.8 shows the performance of BurstFuseX
on single result list.

5.1. Fusing the sample lists

We begin by addressing research questions i-iii. The performance of BurstFuseX and of the standard fusion methods X
that it incorporates is detailed in Table 5, with scores based on the 10% sample runs from the TREC 2011 Microblog track,
as mentioned in Section 4.6. It is clear from Table 5 that the performance of unsupervised data fusion and the corresponding
burst-aware fusion methods, i.e., CombSUM, CombMNZ, BurstFuseCombSUM and BurstFuseCombMNZ, is better than that of
the best result list that is used in the merging process (run1) for all classes and on almost all metrics. Many of these improve-
ments are statistically significant. More importantly, in class 1 all of these methods beat the best recorded run (isiFDL) in the
TREC 2011 Microblog track (e.g., the p@30 score for BurstFuseCombSUM is 0.5578 while that of the best run in the track is
0.4551), and even the standard fusion method it integrates, i.e., CombSUM, outperforms the best recorded run. Meanwhile, in
class 1, the supervised data fusion methods i-Merge and BurstFusei-Merge can also beat the best recorded run in terms of
the official metric p@30. All of this demonstrates that data fusion strategies can help improve effectiveness in searching
microblogs. One of the main reasons behind this is that various retrieval approaches often return very different irrelevant
posts, but many of the same relevant posts.

It is worth noting that in most cases BurstFuseX outperforms the standard fusion method X that it incorporates for all
classes and on nearly all metrics (MAP, p@10, p@15, p@30). Almost all of these improvements are substantial and statistically
significant. For instance, when fusing the runs in class 4, the MAP and p@30 metrics of BurstFuseCombMNZ are 0.2883 and
0.4387, respectively, compared to only 0.2794 and 0.4048, respectively, for CombMNZ. This finding attests to the merits of
incorporating burst information into data fusion and shows that using burst information can improve the performance of
existing data fusion methods in terms of MAP and p@30.

Table 5

Retrieval performance on the 10% sample lists from the TREC 2011 Microblog track. Boldface marks the better performance between BurstFustX and the
standard fusion method X that it incorporates; a statistically significant difference between the two is marked in the upper right hand corner as a (or v) for
o =.01,0r o (and v)for o = .05; a statistically significant difference with run1 is marked in the upper left hand corner using the same symbols; the best result
per column is underlined.

Class 1 Class 2

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30
runl 2210 .5918 .5673 .5347 4551 1457 4612 4143 3714 3571
run2 .2690 .5959 .5796 5442 4537 .1886 4776 4347 3878 3463
run3 2318 .5755 .5367 .5034 4401 1525 4041 4143 3878 .3408
run4 2058 5714 .5367 4939 4211 1376 3959 3939 3796 3218
run5 2575 .5673 4980 4721 4211 .1688 3878 3633 3605 3136
run6 .2098 .5469 .5102 4694 4095 .1820 4122 .3796 3619 3027
CombSUM .3404 4.6245 .5816 5524 4.4966 4.2625 4.5306 4.4531 4.4286 4.3735
BurstFuseCombSUM , 3563, 4.6163 4.5959 A 4.5878. 4.5578 4 4.26514 14898 v 44694 4 44553, 44344,
CombMNZ 4.3385 4.6245 .5755 5524 4.5020 4.2581 4.5347 4.4592 44354 4.3789
BurstFuseCombMNZ 4.3528. , 6286 4.5959. a.5918. A-5517a 4.2587a4 a.5061v , 4735, ..4567, A-4242,
/-Merge 2548 v.5641 v.5631 .5496 4611 .1898 v.4641 4.4608 4.4307 4.3668
BurstFusei-Merge 4.2920, v.5655 5812, 4.5701, A.5011, 4.21614 v.4384y 4.4651 4.4558 4 44195,

Class 3 Class 4
runl 1661 4041 .3408 .2898 2122 2058 5714 .5367 14939 4211
run2 .0997 .3429 .3000 2653 2095 .2098 .5469 5102 4694 4095
run3 .1636 .3959 3122 2571 2041 1376 3959 3939 3796 3218
run4 .0753 3265 2735 2585 2034 .1820 4122 .3796 3619 3027
run5 .0571 .2980 2551 .2408 .2020 .1636 3959 3122 2571 2041
run6 .0994 3510 2735 .2408 2016 .0753 3265 2735 2585 2034
CombSUM 4.2150 4.4857 4.4327 4.3837 4.2952 2795 4.6122 A4.5327 44721 v.3918
BurstFuseCombSUM A.2283 4.4408 v A.4184v A4.3973 1 A.3388.4 4.2863 4 A.5633y A.5449 » A.50114 A4.4380.4
CombMNZ 4.2187 4.4898 4.4327 4.3932 4.2973 2794 4.6000 4.5449 14830 4048
BurstFuseCombMNZ , 2313, a4531v ,.4327 4.4122 43442, 42883, A-5796v 4 .5469 £.5043 4 4387,
/-Merge v.1450 v.3757 4.3709 A.3431 4.2801 v.1950 v.4816 v.4708 4.4628 4038

BurstFusei-Merge v.1513, v.3547v 4.3810, A4.3572, 43217, A.2212, v.4609 v v.4811, 44937, 44303,

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 103

Interestingly, in Table 5 when we consider the p@5 scores, we see that BurstFuseX always outperforms the best single run
but that it loses against the standard fusion method X on which it builds in most cases. One reason is that some relevant
posts ranked very high in the lists being merged but not near any of the bursts are forced down the ranking. Another reason
is that a very small number of irrelevant posts in the bursts are promoted to slightly higher ranks in the fused list. In contrast,
the gain obtained from relevant posts that are ranked at the bottom of the runs but near bursts are clearly observed at bigger
cut-offs, resulting in the improvements of p@10, p@15 and p@30 scores.

Additionally, from Table 5 we see that, in terms of MAP, BurstFuseCombSUM outperforms BurstFuseCombMNZ, and both
of them outperform BurstFuse.-Merge in Class 2 (0.2651, 0.2587, 0.2161, respectively). In other words, BurstFuseCombSUM
outperforms BurstFuseCombMNZ, followed by BurstFusei-Merge. This is quite obvious in Class 1, Class 2 and Class 4 for
instance. In terms of the standard fusion methods, CombSUM performs almost the same as CombMNZ without statistically
significant differences. Both CombSUM and CombMNZ easily beat the supervised standard fusion method i-Merge; in same
cases, /-Merge becomes worse than the best result list (run1) to be fused in the corresponding class. This may be due to over-
fitting of A-Merge.

As a sanity check, so as to confirm our observations about the performance of BurstFuseX, we also test BurstFuseX on the
10% sample runs from TREC 2012 Microblog track. We present the experimental results of BurstFuseX and the standard
fusion method X it incorporates in Table 6. Clearly, our observations about the performance of BurstFuseX and the standard
fusion methods when fusing the runs from TREC 2011 Microblog track are confirmed by the 2012 data. For instance, in
Table 6 we see that all data fusion methods, both BurstFuseX and other ones, when fusing runs in Class 1, outperform the
best result run of the TREC 2012 Microblog track, and almost all of these improvements are statistically significant in terms
of the metrics listed in the table. Below, we only report experimental results for the TREC 2011 Microblog track test collec-
tion: the 2012 collection consistently yields the same overall results and trends.

5.2. The use of burst information

Next we address research question iv and examine the effect of using different amounts of burst information in our
burst-aware fusion method. Put differently, we examine the impact of the free parameter y in Eq. (5). Fig. 4 depicts the

Table 6

Retrieval performance on the 10% sample lists from the TREC 2012 Microblog track. Boldface marks the better performance between BurstFustX and the
standard fusion method X that it incorporates; a statistically significant difference between the two is marked in the upper right hand corner as a (or v) for
o =.01,0r » (and v) for « = .05; a statistically significant difference with run1 is marked in the upper left hand corner using the same symbols; the best result
per column is underlined.

Class 1 Class 2

MAP p@5 p@10 p@15 p@30 MAP p@5 p@10 p@15 p@30
runl 1685 .6102 .5729 .5254 4695 1078 4508 4475 4305 .3655
run2 1582 .5898 5627 .5424 4684 1136 4881 4492 4271 .3638
run3 1526 .5729 .5407 5322 4610 .1010 4712 4322 4023 .3599
run4 1563 .6000 .5763 .5480 4571 1095 4576 4017 3842 .3463
run5 1566 .5831 .5390 4949 4435 1079 4136 .3966 .3706 .3390
run6 1385 .5525 .5237 .5028 4429 .0744 .3898 .3678 .3605 .3209
CombSUM 1785 4.6271 5814 4.5559 4.5028 4.1263 4.5322 4.4898 4.4520 ».3797
BurstFuseCombSUM , 2028, v.5797v .5763 45842, , 5797, a.14734 414983y 4.4898 44734, 44548,
CombMNZ 1776 4.6339 .5831 4.5582 A.5011 A.1319 4.5492 4.5085 4.4610 4.3944
BurstFuseCombMNZ 4.20194 .6000v 5847 A4.5887. 456784 , 1516, 4-5186v 4.4949 448594 4.4651a
J-Merge .1700 .6134 .5673 A.5462 4718 1131 A.5124 14583 4367 .3698
BurstFuse-Merge A-1843, v.5734y 5730 A-5675, A.5184, A.13264 A.4878y a.4766, A.4638. 44281,

Class 3 Class 4
runl .0694 3322 .3102 .2983 2712 1566 5831 5390 4949 4435
run2 .0661 .3356 .3390 .3062 .2678 1385 .5525 .5237 .5028 4429
run3 .0724 .3390 .3390 3073 .2542 1010 A712 4322 4023 .3599
run4 .0658 3017 .2864 2938 .2480 1095 4576 4017 .3842 .3463
run5 .0626 .2949 .2661 2520 .2282 .0661 3356 .3390 .3062 .2678
run6 .0343 1831 .2068 2147 .2367 .0343 1831 .2068 2147 .2367
CombSUM 4.1082 4.5051 44576 4.4158 4.3249 v.1360 v.5559 v.5288 4949 v.3955
BurstFuseCombSUM 4.1228. 4.4508v 4.4424v 44260, 4.3904, 15844 v.5220v v.5102y¢ .4938 44774,
CombMNZ 4.1163 4.5186 4.4746 4.4362 4.3508 v.1456 v.5593 .5356 .5062 v.4260

BurstFuseCombMNZ , 1326, 4-4780v , 4797 24554, 44147, 21661, Vv.-5254v v.5300 4.5153 44842,

J-Merge 4.1075 4.4983 4.4458 4.4037 4.3352 v.1301 v.5416 v.5119 4863 v.3847
BurstFuse/-Merge 41104y 4 .4684v 4.4482 442674 a.3982, 1488, v.5362 v.5107 4954 4477 a

104 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

0.62 T T 0.46
-8~ BurstFuseCombSUM
0.6 |---CombSUM 1 045
=0~ BurstFuseCombMNZ
0.58 .. CombMNZ - 0.44 |
=6~ BurstFuseA-Merge
0.56 ..o —Merge 043 1
8 0.54 8 042
® ose © a1}
0.5 0.4
0.48 0.39
0.46 | 1 0.38 ¢
44 : : ‘ : 37 2
0 0 0.2 0.4 0.6 0.8 1 0.3
n I8
(a) Class 1 (b) Class 2
0.36 T T T T 0.46
0.35 045
0.34
0.44 |
0.33
043
g 0.32 8
o 0.31 e 0.42 |
0.3
Y 0.41
0.29
0.28 04
0.27 0.39
n n
(c) Class 3 (d) Class 4

Fig. 4. Effect of varying the value of 1 on the P@30 performance of BurstFuseX when merging lists in (a) Class 1, (b) Class 2, (c) Class 3 and (d) Class 4. When
1 =0, BurstFuseX amounts to the standard fusion method X that it integrates. More weight is put on burst information with higher value of u. Note: figures
are not to the same scale.

p@30 performance curves for BurstFuseX and the corresponding standard fusion methods it integrates when fusing result
lists in Class 1, Class 2, Class 3 and Class 4, respectively. For u = 0, BurstFuseX amounts to the standard fusion method X that
it integrates; more weight is put on burst information with higher values of y; for 0 < p < 1, the standard fusion scores of
posts (according to method X) as well as the burst information are utilized for fusing the lists.

It is worth noting in Fig. 4 that when fusing lists in different quality classes, the official metric p@30 scores of BurstFuseX
(u > 0) are usually higher than those of the standard fusion method X it incorporates (¢ = 0), especially when y = 0.6, 0.7.
For instance, in Class 4 the p@30 performance of BurstFuseCombSUM peaks at i = 0.7 with the score of 0.4451, while that of
the standard fusion method it integrates, CombSUM achieves only 0.3918. As we observed before, BurstFuseX works better
when it integrates one of the unsupervised standard fusion methods than the supervised fusion method i-Merge.

In addition, it is clear from Fig. 4 that when the quality of the result lists as a whole is higher, it will be more useful to
utilize burst information. Fig. 4 shows that even if u = 1.0, BurstFuseX still outperforms the standard fusion method it incor-
porates in high quality classes, like Class 1 and Class 2. But when the quality of the result lists as a whole becomes lower, the
positive impact of BurstFuseX is reduced. We provide a further analysis of the use of burst information in data fusion and
single retrieval microblog search algorithms in Sections 5.7 and 5.8.

5.3. Effect of the number of lists to be merged
We have already seen that BurstFuseX outperforms the standard fusion methods it incorporates when fusing 6 lists in

different quality classes. We now address research question v and explore the effect on the performance of BurstFuseX of
varying the number of lists being merged, in terms of MAP, p@5, p@15 and p@30. In Fig. 5, we randomly choose

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 105

035
0.6} ,
03f
e 7o}
<
= © os5¢ |
0.25 |
04}
L ===BurstFuseCombSUM | —=— BurstFuseCombSUM
02 0= CombSUM <> CombSUM
0 16 26 36 40 0 10 20 30 40
Number of runs to be fused Number of runs to be fused
(a) MAP (b) p@5
0.6 ‘ ; ‘ 0.5
0.45 |
05f
Yo} o 04r
- [e2]
® ®
o 2 035f
0.4f
—=—BurstFuseCombSUM 03T —=—BurstFuseCombSUM
=o--CombSUM == CombSUM
0.3 ‘ ‘ ‘ 0.25 ‘ : :
0 10 20 30 40 0 10 20 30 40
Number of runs to be fused Number of runs to be fused
(c) p@15 (d) p@30

Fig. 5. Effect of the number of lists to be merged, k, on (a) MAP (b) p@5 (c) p@15 and (d) p@30. The scores of performance are with the corresponding
standard deviation. Note: figures are not to the same scale.

ke{2,4,6,...,38} lists from the 174 lists made available by the TREC 2011 Microblog track and then fuse them. For each k,
we repeat the experiment 20 times and report on the average scores as well as the standard deviation. We use CombSUM and
BurstFuseCombSUM as a representative example; for the other combinations with a standard fusion method X qualitatively
similar results can be observed.

As can be seen in Fig. 5, with fewer than 12 lists to be merged by either BurstFuseX or the standard fusion method it
builds on, the addition of one more list tends to lead to performance increases across all metrics. Beyond 12 lists, the per-
formance gains of additional lists tend to level off. This is because despite the fact that with more lists, on average we may
see more high quality lists, more low quality lists may show up as well. Unlike the MAP, p@15 and p@30 performance of
BurstFuseCombSUM where it always enhances that of CombSUM, the early precision p@5 performance of BurstCombSUM
is worse than that of CombSUM especially when fewer lists are merged. This observation is consistent with those in both
Tables 5 and 6. Performance gains in terms of p@15 of BurstFuseCombSUM and CombSUM continue even when more than
16 lists are being fused. In contrast, in terms of p@30, when the number of lists to be merged increases, the gain of Burst-
FuseCombSUM over CombSUM decreases. As more lists are being fused, more noise is being brought in, especially with posts
ranked lower.

5.4. Topic-level analysis

Next, we take a closer look at per query improvements of BurstFuseX over the underlying standard fusion method X,
thereby addressing research question vi. For brevity, we only consider BurstFuseCombSUM as a representative to report
all the queries (topics) performance differences against that of the standard fusion method it incorporates, and we only con-
sider runs in Class 1, Class 2, Class 3 and Class 4, respectively. The results for other instances of BurstFuseX are qualitatively
similar.

Fig. 6 shows the per query performance differences in terms of AP, p@5, p@15 and p@30, respectively, between BurstFuse-
CombSUM and CombSUM. Overall, gains by BurstFuseCombSUM over CombSUM outnumber losses for p@15 and p@30 as
well as MAP, but not for very early precision, i.e., p@5. Gains by BurstFuseCombSUM over CombSUM are due mainly to topics
that are discussed only in very specific time intervals. Examples include topics MB0O10 (Egyptian protesters attack museum),
MBO011 (Kubica crash) and MB015 (William and Kate fax save-the-date). Invariably, for such topics we found evidence of the
intuition depicted in Fig. 1: posts that are ranked low in a small number lists but that are pushed into the final merged list by

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

106
AAP Ap@5 Ap@15 Ap@30
ol o1 — —~
s s 8 g
%) » 8 8
(a) class 1
AAP Ap@15 Ap@30
N o . A . A o . A o o
g 5 5 5 £
5. . S S H
(9] (o] (9] (9] =
(2] w (2] (2} _:
(b) class 2
AAP Ap@5 Ap@15 Ap@30
N o - 4 o - 4 o o A o N
[} s} [} [}
=3 . =3 T.
9] (9] (9] (9]
[} w (2]} [}
(c) class 3
AAP Ap@5 Ap@15 Ap@30
N o - A o o A o - A o -
g 5 g 5 H
S . S T H
(9] (o] (9] (9] H
(2] w (2] (72} E
(d) class 4

Fig. 6. Per topic performance differences of BurstFuseCombSUM against CombSUM. The figures shown are for the 2011 Microblog track sampled runs in
Class 1, Class 2, Class 3 and Class 4, for AP, p@5, p@15 and p@30 difference. A bar extending to the right of the center of a plot indicates that

BurstFuseCombSUM outperforms CombSUM, and vice versa for bars extending to the left of the center.

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 107

BurstFuseX because they are central to a burst. For instance, in response to topic MB0O10 (Egyptian protesters attack
museum), post #30354903104749568 is ranked near the bottom in only two lists (at ranks 26 and 27 in runs clarity1
and DFReekLIM30, respectively). Because many posts for the topic were generated around the same time interval (January
26-29, 2011, when the event happened) and are ranked highly in many lists to be fused, post #30354903104749568 is
rewarded and ranked as high as top 6 in the merged list.

Topics for which BurstFuseCombSUM cannot beat ComSUM tend to be quite general and unrelated to any specific time
windows. Examples include topics MB023 (Amtrak train service) and MB027 (reduce energy consumption). For a very small
number of queries, BurstFuseCombSUM'’s performance, in terms of MAP or p@30 is worse than that of CombSUM. One reason
that we observed for this phenomenon is that a very small number of posts are not relevant to the topics even if they are
central to the bursts according to their timestamps, and hence they should not be rewarded. An example here is topic
MBO031 (Special Olympics athletes). In response to this topic, result lists to be fused ranked some irrelevant posts highly,
but these posts are still in the bursts, which results in promoting these posts to high ranks, which hurts the performance.

5.5. Run-time analysis

We now turn to research question vii and examine the run-times of BurstFuseX. In particular, we explore what the added
costs in terms of run-time of BurstFuseX is on top of the standard fusion methods that it incorporates. Our implementation of
BurstFuseX is developed in C++ and the experiments are run on a 10.6.8 MacBook Pro computer with 4 GB memory and a
2.3 GHz Intel core i5 processor. In Table 7, we randomly choose k € {2,4,6,8,12,18,24,30} lists from the 174 lists available
from the TREC 2011 Microblog track. For each k, we repeat the following experiment 20 times: sample a query from the TREC
2011 Microblog track test set, run fuse k result lists for the query (using CombSUM, CombMNZ, i-Merge as well as BurstFuse-
CombSUM, BurstFuseCombMNZ and BurstFusei-Merge), record the wall clock time. The results are recorded in Table 7 and
plotted in Fig. 7.

As can be seen in Table 7 and Fig. 7, the overhead of running BurstFuseX over simply running the standard fusion method
X is very limited, but increases with the number of lists to be merged, especially when BurstFuseX incorporates with Comb-
SUM and CombMNZ. BurstFuseCombSUM and BurstFuseCombMNZ merge the lists within 0.01 s when given 30 result lists
and within 0.001 s when fusing two lists. In contrast, however, compared to any of the fusion methods, BurstFuse/-Merge
has to spend more time, which is almost the same as that of the fusion method it builds on. In addition, it is worth noting
in Fig. 7 that in many cases, as the number of lists to be fused increases, the time spent on fusing is almost linear for Burst-
FuseX and the standard fusion method as well. For instance, the time needed to fuse 8 lists by BurstFuseCombSUM is nearly
double the time needed for fusing 4 lists (2.96e—3 s and 1.50e-3 s, respectively).

5.6. Effect of fusing time-sensitive result lists

BurstFuseX uses temporal information in an essential way. Research question viii asks what happens when BurstFuseX
fuses result lists that have been generated using temporal information themselves? That is, is there anything left to gain
by using BurstFuseX? To answer this question, we explore the performance of BurstFuseX using five result lists that them-
selves consider temporal information: isiFDRML (Metzler & Cai, 2011; Metzler et al., 2012), DFReeKLIM30 (Horn et al., 2011),
Wise2ndRun (Wei et al., 2011), ICTNET11MBR3 (Cao et al., 2011) and UDMicroIDFD (Amati et al., 2011). We use BurstFuseX
as well as the standard fusion methods, CombSUM, CombMNZ and i-Merge to fuse those result lists, and report the compar-
ison results.

Table 7
Time spent on fusing lists by different aggregation methods. Recorded in seconds with standard deviations (std).

Number of lists

2 4 6 8 12 18 24 30

CombSUM 3.06e—4 5.01e-4 5.76e—4 9.33e-4 1.03e-3 1.98e-3 2.77e-3 3.37e-3
std 1.13e-5 1.27e-5 2.57e-5 3.61e-5 6.93e-5 6.49e-5 7.02e-5 7.50e-5
CombMNZ 3.06e—4 5.0le-4 5.76e—4 9.33e—4 1.03e-3 1.99e-3 2.79e-3 3.38e-3
std 1.13e-5 1.27e-5 2.57e-5 3.61e-5 6.93e-5 6.52e-5 6.98e-5 7.01e-5
/-Merge 1.15 2.55 3.82 5.24 7.78 12.03 16.32 20.74
std 1.22e-1 2.3e-1 5.82e-1 6.74e—1 8.03e-1 1.09 1.13 1.18
BurstFuseCombSUM 9.12e—4 1.50e-3 1.84e-3 2.96e-3 3.43e-3 6.69e—3 9.52e-3 1.38e-2
std 3.42e-5 3.94e-5 7.91e-5 7.41e-5 8.72e-5 1.88e—4 2.66e—4 2.84e—-4
BurstFuseCombMNZ 9.12e-4 1.50e-3 1.84e-3 2.96e-3 3.43e-3 6.69e—3 9.52e-3 1.38e-2
std 3.42e-5 3.94e-5 7.91e-5 7.41e-5 8.72e-5 1.88e—4 2.66e—4 2.84e—4
BurstFusei-Merge 1.16 2.56 3.85 5.25 7.79 12.04 16.34 20.77

std 1.37e-1 2.57e-1 5.11e-1 6.30e—1 7.78e—1 1.10 1.02 241

108 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

0.015 0.015
—=—BurstFuseCombSUM —=—BurstFuseCombMNZ

=~ CombSUM =0--CombMNZ

0.01 0.01

Second
Second

0.005 0.005

.o-- "
O_Q‘e-e 0 |_e-©-
0 10 20 30 0 10 20 30

Number of runs to be fused Number of runs to be fused

(a) (b)

o-®- -

25

—-=—BurstFuseA-Merge

~o-A-Merge
20

15

Second

10

0 10 20 30
Number of runs to be fused

()

Fig. 7. Run-times of BurstFuseX against the standard fusion method it builds on with standard deviation. From left to right: (a) BurstFuseCombSUM against
CombSUM, (b) BurstFuseCombMNZ against CombMNZ, and (c) BurstFusei-Merge against i-Merge. Note: figures are not to the same scale.

Table 8 shows the result of the comparisons between BurstFuseX and the five time-sensitive result lists. Obviously, Comb-
SUM and CombMNZ perform on a par with the best result list (isiFDRML). For all metrics but p@5, BurstFuseCombSUM and
BurstFuseCombMNZ outperform the best result run as well as the standard fusion method they incorporate; many of the
improvements are statistically significant. This illustrates that exploring time information in data fusion has a different effect
than utilizing time information in an individual ranking function, an effect that can lead to performance increases. One of the
main reasons behind this is that posts within intervals in which many relevant posts appear can only be confirmed to be

Table 8
Retrieval performance on 5 time-sensitive result lists. Boldface marks the better performance between BurstFustX and the standard fusion method X that it
incorporates; a statistically significant difference between the two is marked in the upper right hand corner as o (or v)for = .01, 0or » (and v) for « = .05; a

statistically significant difference with the best single run (isiFDRML) is marked in the upper left hand corner using the same symbols; the best result per
column is underlined.

MAP p@5 p@10 p@15 p@30
isiFDRML 2326 6286 .5633 .5374 4442
DFReeKLIM30 2318 .5755 .5367 .5034 4401
Wise2ndRun 1971 4980 4612 4231 3639
ICTNET11MBR3 .1863 4490 3735 3619 3054
UDMicrolDFD .1428 3224 3143 3075 2687
CombSUM 2397 .6280 5673 .5401 4469
BurstFuseCombSUM 4.3053, v.5837v A.5714 4.5701 4 4.4966 o
CombMNZ A.2421 .6284 .5780 v.5048 74578
BurstFuseCombMNZ 4.3204 5 .6245 4.5878 4.57554 4.5116,
/-Merge v.2148 v.5539 v.5144 v.4873 v.3894

BurstFusei-Merge v.2271a v.5501 v.5257 2 v.51874 v.4335a

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 109

relevant by gathering data from multiple lists, time-sensitive or not. Finally, neither /-Merge nor BurstFuse/-Merge can beat
the best time-sensitive result list; as before, BurstFuse/-Merge does improve over i-Merge.

5.7. Further analysis of using burst information

We continue with research question viii and provide a further analysis of the use of burst information in the setting of
microblog search. More specifically, the component lists that we consider next are generated using a temporal model for
microblogs (TMM) (Choi & Croft, 2012), a textual quality factor model with temporal query expansion (LM-T(qge))
(Massoudi et al., 2011), a direct time-sensitive BM25 retrieval model (DIRECT-BM25 (mean)) (Dakka et al., 2012) and a tem-
poral tweet selection feedback method (TSF + QDRM) (Miyanishi et al., 2013b).

Table 9 shows a comparison between fusion methods and the component lists that are burst-sensitive. As can be seen in
the table, except for the performance of i-Merge, which is slightly worse than that of the best component list, all other fusion
methods can boost retrieval performance, especially for the fusion methods that we propose in this paper. This finding again
underlines the merit of fusion for searching microblog posts and of using bursts information in the fusion step.

In Table 9 we also compare our BurstFuseX with CombSUM, CombMNZ, 2-Merge, and BurstFuseXp,ss, where BurstFu-
seXposts 1S the fusion method that detects bursts based on the content of posts by the detection approached in (Lappas
et al., 2009) and then integrates burst information into the fusion process. Clearly, BurstFuseX can still significantly enhance
the retrieval performance in all cases and outperforms all standard fusion methods and the best component run, in contrast
with BurstFuseX,qss. We also see that detecting bursts based on one of the standard fusion methods, CombSUM or Comb-
MNZ, works better than detecting bursts based on the content of posts.

Table 9

Performance on 4 burst-sensitive result lists. Boldface marks the best result per metric; the best score of component lists per metric is underline; a statistically
significant difference between a fusion method and the best component list is marked in the upper left hand corner of the fusion score; a statistically significant
difference between BurstFuseX,os:s and BurstFuseX is marked in the upper right hand corner of the BurstFuseX score.

MAP p@5 p@10 p@15 p@30
TSF + QDRM 2834 6220 6856 6279 .5368
DIRECT-BM25 (mean) 2798 .6187 6725 6320 5133
LM-T (qe) 2346 .5836 .5648 5178 4471
TBLM 2231 5742 .5433 5017 4395
CombSUM £.2962 1.6395 4.6973 4.6482 A4.5513
BurstFuseCombSUMpogs £.3027 £.6398 4.6979 4.6487 4.5557
BurstFuseCombSUM ».3047 ,.6408 4.6983 4.6497 4.5613 1
CombMNZ ».2948 ».6350 ».6918 ».6347 ».5420
BurstFuseCombMNZ,oss ».3015 £.6373 2.6950 1.6447 ».5433
BurstFuseCombMNZ ».3027 ».6398 4.6972 4.6443 4.5524 4
/-Merge .2806 .6212 v.6768 v.6178 v.5243
BurstFuseA-Mergeposts .2854 .6275 .6825 .6233 5314
BurstFuse-Merge 2942 .6387 .6894 .6326 v.5428

Table 10
Performance of BurstFuseX on individual result lists in Class 1. None of the differences between BurstFuseX and the corresponding single input result list is
statistically significant.

MAP p@5 p@10 p@15 p@30
runl .2590 .5959 .5796 5442 4537
BurstFuse applied to run1 .2593 .5959 .5837 5442 4537
run2 2575 5673 4980 4721 4211
BurstFuse applied to run2 2577 5673 .5000 4721 4211
run3 2318 .5755 .5367 .5034 4401
BurstFuse applied to run3 2319 .5755 .5367 .5048 4401
run4 2210 5918 5673 .5347 4551
BurstFuse applied to run4 2210 5918 5673 .5347 4551
run5 .2098 .5469 .5102 4694 4095
BurstFuse applied to run5 2098 .5469 5102 4707 4095
run6 2058 5714 5367 4939 4211

BurstFuse applied to run6 2062 5755 .5367 4952 4211

110 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113
5.8. Performance of BurstFuseX on single result list

Finally, to address our final research question, ix, and understand whether BurstFuseX requires multiple result lists or
whether it can aid single runs that may not have taken time into consideration, we feed BurstFuseX single result lists and
compare the output against the single input list.

Table 10 shows the results on the result lists in class 1; results on other result lists are qualitatively similar. As can be seen
in the table, the retrieval performance of BurstFuseX is almost the same as that of the input result list and the difference
between them is not statistically significant for any of the metrics. The main reason why BurstFuseX cannot significantly beat
the input result list is that detecting bursts within a small set of documents (i.e., those contained in a single result list) is
challenging.

6. Conclusion

Various features of microblog posts make searching such posts a real challenge: their limited length, their dynamic nat-
ure, the creative language usage and their highly contextualized nature. However, the special nature of microblog posts also
offers unique opportunities. In this paper, we have focused on utilizing one such special feature for boosting the performance
of search algorithms for microblog posts. We have proposed a data fusion approach, BurstFuseX, that fuses result lists based
in part on the bursty nature of many discussions on microblog platforms. Our approach is based on integrating information
generated by a standard fusion method, such as CombSUM, CombMNZ or /-Merge, detecting bursts of posts across the lists
being fused, and rewarding posts that are published in or near a burst containing highly ranked posts. Our experimental
results show that detecting bursts and then using burst information into a standard fusion method can enhance the retrieval
performance compared to the standard fusion method it integrates, in terms of mean average precision as well as precision-
oriented measures. Our new fusion method has a strong recall-enhancing effect; compared to the standard fusion method it
incorporates, this comes at a small price in terms of a small drop in very early precision measures such as p@5. Our exper-
imental results also show that our BurstFuseX method can significantly outperform burst or time-sensitive retrieval models
and models that detect bursts based on the content of posts.

As to future work, we have only explored data fusion techniques in microblog search. But data fusion can be, and has
been, applied in a variety of areas in IR, like federated search (Crestani & Markov, 2013; Shokouhi & Si, 2011), cross-lingual
search (Si et al., 2008), and finding groups of knowledgeable experts (Liang & de Rijke, 2013). How to apply our burst-aware
data fusion in these other areas is an open research question. One other avenue for future work is to integrate temporal infor-
mation into web search—for so-called fresh results (Lefortier, Serdyukov, & de Rijke, 2014).

Acknowledgements

We would like to thank our reviewers for valuable comments and suggestions that helped to improve the paper.

This research was partially supported by the China Scholarship Council, the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreements nr 288024 (LiMoSINe) and nr 312827 (VOX-Pol), the Netherlands
Organisation for Scientific Research (NWO) under project nrs 727.011.005, 612.001.116, HOR-11-10, 640.006.013, the Center
for Creation, Content and Technology (CCCT), the QuaMerdes project funded by the CLARIN-nl program, the TROVe project
funded by the CLARIAH program, the Dutch national program COMMIT, the ESF Research Network Program ELIAS, the Elite
Network Shifts project funded by the Royal Dutch Academy of Sciences (KNAW), the Netherlands eScience Center under pro-
ject number 027.012.105 the Yahoo! Faculty Research and Engagement Program, the Microsoft Research PhD program, and
the HPC Fund.

Appendix A. Detailing i-Merge

In this appendix we detail one of the standard fusion methods we use, i-Merge. To be able to define the fusion score for
document d in response to query q according to i-Merge, we need to consider the sum of weighting the individual document
scores in each list by the weight of the corresponding list:

Zocm f(xs0 (A1)

where o, is the weight of list L,, f(x5"; 0) is the scoring function for d in L, with parameters 0. We adapt a linear function for
f(xfim;), due to its widespread use (Atrey, Hossain, Saddik, & Kankanhalli, 2010), such that:

f(xm;0 Zen X,

where 0, the n-th dimension of vector 6, is the weight of the n-th feature, and me the n-th dimension of x; Ln is the value of
the n-th feature of d in L,,.

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 111

Table A.11
Features used for i-Merge.

Feature Gloss

Query-post level

Rank Inverse of the rank of a post over the number of returned documents
Rankers Percentage of rankers a post appears in

IsTop-N If a post is within the top-N results

Post level

Link If a post has links

Hashtag If a post has hashtags

Retweet If a post has retweets

Density A post’s content quality

Capitalization A post’s textual quality

Length A post’s length deviation from the median length

Post-burstiness A post’s score associated with bursts (The definition of bursts can be found in Section 3.2)

Now, writing C to denote the smoothed objective, according to A-Merge the parameters o, and 0, can be updated based
on the gradients 9C/dom = Y_4(9C/0g(d; q)) - (0g(d; q)/dotm) and C/80, = >~ 4(0C/dg(d; q)) - (9g(d; q)/d0n), respectively. Then,
0C/0g(d;q) is defined as:

9C/og(d;q) = > | Ael{lae — 1/(1 + exp(g(e; q) — &(d; q)))},

where |A4| is the absolute change in the performance metric if document d and e were swapped in the current ranking, and
the indicator lg4, . is 1 when d is judged more relevant than e, 0 otherwise. As explained in the main text, MAP is the metric on
which we focus; hence, we optimize /-Merge for MAP.

Let ry and r, denote the rank positions of d and e in L,,. Assume that d and e are misranked by current function g, i.e.,
ra > 1. but the relevance level of d, I(d), is larger than that of e, [(e), then

1 d ld U /
|Ade| = (Zl(k)P@k =Y I(kP @k) .

k=re k=re

Here, R is the number of relevant documents for that query, I(k) is the relevance level of the document at rank position k, PQk
is the precision at rank k, and I'(k) is the relevance value after the documents at positions r; and r. being swapped. Mathe-
matically, the remaining derivatives can be presented as: 9g(d; q) /90 = f(x";), and 9g(d; q) /000 = 3,,0m -x;n. After train-
ing, the parameters 6 and the weight o, of each list are obtained. Then we employ max-min normalization to g(d;q), such
that:

g(d;q) — min(g,)
max(g,) — min(gq) ’

F}L—Merge(d§ Q) = (Az)
where min(g,) and max(g,) are the minimum and maximum value of g in response to q. For further details about 1-Merge we
refer to (Donmez, Svore, & Burges, 2008; Sheldon et al., 2011).

Before training /-Merge, a number of features have to be extracted for d € C.. Table A.11 lists the features used to con-
struct our version of i-Merge. We identify ten features, extracted from two levels: query-post level and post level; all fea-
tures are represented by either binary or real numbers. At the query-post level, following Tsai et al. (2008), we use three
features: Rank, Rankers and IsTop-N. Rank is defined in Eq. (1). Rankers is the number of ranked lists in which the post appears
divided by the total number of lists to be merged. IsTop-N is a binary feature to indicate if this document is within the top-N
results in the list. At the post level, we extract features capable of indicating the quality of a post (Macdonald et al., 2011;
Ounis et al., 2011); the post features include Link, Hashtag, Retweet to indicate if the document contains links, hashtags, and
retweets. The post-level features also consist of content quality indicators of a post (Density, Capitalization and Length) (Lee
et al., 2001; Weerkamp & de Rijke, 2012). We also extract a feature that we call “post-burstiness” based on bursts. Density of
a post is defined as the sum of tf - idf values of non-stopwords, divided by the number of stopwords they are apart, squared
(Lee et al., 2001). As in Eq. (A.2) we use max-min normalization to normalize the scores. The Capitalization score of d is
obtained by determining the fraction of sentences in d that have a leading capital, seeing to which degree this deviates from
the median and then applying max-min normalization (Weerkamp & de Rijke, 2012). The Length score of d is obtained by
considering the deviation from the median length of posts in the collection. The Post-burstiness score of d is obtained by uti-
lizing burst information.

References

Ahmad, N., & Beg, M. M. S. (2002). Fuzzy logic based rank aggregation methods for the world wide web. In Proceedings of the international conference on
artificial intelligence in engineering and technology (pp. 363-368).

Amati, G., Amodeo, G., Bianchi, M., Celi, A., Nicola, C. D., Flammini, M., et al. (2011). FUB, IASI-CNR, UNIVAQ at TREC 2011 microblog track. In Proceedings of
the text retrieval conference.

112 S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113

Aslam, J. A., & Montague, M. (2001). Models for metasearch. In SIGIR'01 (pp. 276-284).

Atrey, P., Hossain, M., Saddik, A. E., & Kankanhalli, M. (2010). Multimodal fusion for multimedia analysis: a survey. Multimedia Systems, 16(6), 345-379.

Bandyopadhyay, A., Mitra, M., & Majumder, P. (2011). Query expansion for microblog retrieval. In TREC'11.

Beg, M. M. S. (2004). Parallel rank aggregation for the world wide web. In Proceedings of the intelligent sensing and information processing (pp. 385-390).

Beitzel, S. M., Jensen, E. C., Chowdhury, A., Frieder, O., Grossman, D. A., & Goharian, N. (2003). Disproving the fusion hypothesis: An analysis of data fusion via
effective information retrieval strategies. In SAC'03 (pp. 823-827).

Bruno, E., & Marchand-Maillet, S. (2009). Multiview clustering: A late fusion approach using latent models. In SIGIR’09 (pp. 736-737).

Cao, P, Gao, J,, Yu, Y., Liu, Y., & Cheng, X. (2011). ICTNET at microblog track TREC 2011. In Proceedings of the text retrieval conference.

Chang, Y., Dong, A., Kolari, P., Zhang, R., Inagaki, Y., Diaz, F., et al (2013). Improving recency ranking using twitter data. ACM Transactions on Intelligent
Systems and Technology, 4(1), 4:1-4:24.

Chen, W., Chen, C., Zhang, L.-j.,, Wang, C., & Bu,].-j. (2010). Online detection of bursty events and their evolution in news streams. Journal of Zhejiang
University, 11, 340-355.

Choi, J., & Croft, W. B. (2012). Temporal models for microblogs. In CIKM 12 (pp. 2491-2494). New York, NY, USA: ACM.

Choi, J., Croft, W. B., & Kim,]. Y. (2012). Quality models for microblog retrieval. In CIKM "12 (pp. 1834-1838). New York, NY, USA: ACM.

Crestani, F., & Markov, I. (2013). Distributed information retrieval and applications. In ECIR (pp. 865-868). Berlin, Heidelberg: Springer.

Croft, W. B. (2000). Advances in information retrieval: Recent research from the center for intelligent information retrieval. Kluwer.

Dakka, W., Gravano, L., & Ipeirotis, P. (2012). Answering general time-sensitive queries. I[EEE Transactions on Knowledge and Data Engineering, 24(2), 220-235.

Deloule, F., Lambert, P., Beauchene, D., & Ionescu, B. (2007). Data fusion for the management of multimedia documents. In 10th International conference on
information fusion, 2007 (pp. 1-7).

Diaz, F. (2005). Regularizing ad hoc retrieval scores. In CIKM'05 (pp. 672-679).

Diaz, F. (2007). Regularizing query-based retrieval scores. Information Retrieval, 10(6), 531-562.

Dong, X. L., & Srivastava, D. (2013). Compact explanation of data fusion decisions, In WWW’13 (pp. 379-390).

Donmez, P., Svore, K. M., & Burges, C.]. C. (2008). On the local optimality of lambdarank. Microsoft research technical report.

Duan, Y., Jiang, L., Qin, T., Zhou, M., & Shum, H. (2010). An empirical study on learning to rank tweets. In COLING '10 (pp. 295-303).

Dwork, C., Kumar, R., Naor, M., & Sivakumar, D. (2001). Rank aggregation methods for the web. In WWW’01 (pp. 613-622).

Efron, M. (2010). Hashtag retrieval in a microblogging environment. In SIGIR’10 (pp. 787-788).

Efron, M. (2011). Information search and retrieval in microblogs. Journal of the American Society for Information Science and Technology, 62(6), 996-1008.

Erp, M. v., & Schomaker, L. (2000). Variants of the borda count method for combining ranked classifier hypotheses. In Proceedings of the 7th international
workshop on frontiers in handwriting recognition (pp. 443-452).

Fagin, R., Kumar, R., & Sivakumar, D. (2003). Efficient similarity search and classification via rank aggregation. In SIGMOD '03 (pp. 301-312). New York, NY,
USA: ACM.

Farah, M., & Vanderpooten, D. (2007). An outranking approach for rank aggregation in information retrieval. In SIGIR'07 (pp. 591-598).

Han, Z., Li, X, Yang, M., Qi, H,, Li, S., & Zhao, T. (2012). Hit at TREC 2012 microblog track. In TREC '12 working notes.

He, D., & Wu, D. (2008). Toward a robust data fusion for document retrieval. In [EEE NLP-KE'08 (pp. 1-8).

He, C,, Hong, D., & Si, L. (2011). A weighted curve fitting method for result merging in federated search. In SIGIR '11 (pp. 1177-1178). New York, NY, USA:
ACM.

Hong, D., & Si, L. (2012). Mixture model with multiple centralized retrieval algorithms for result merging in federated search. In SIGIR '12 (pp. 821-830).
New York, NY, USA: ACM.

Hong, D., & Si, L. (2013). Search result diversification in resource selection for federated search. In SIGIR '13 (pp. 613-622). New York, NY, USA: ACM.

Hoonlor, A., Szymanski, B. K., Zaki, M.]., & Chaoji, V. (2012). Document clustering with bursty. Computing and Informatics, 31, 1533-1555.

Horn, C., Pimas, O., Granitzer, M., & Lex, E. (2011). Realtime ad hoc search in twitter: Know-center at TREC microblog track 2011. In Proceedings of the text
retrieval conference.

Jabeur, L. B., Damak, F., Tamine, L., Pinel-Sauvagnat, K., Cabanac, G., & Boughanem, M. (2012). IRIT at TREC microblog 2012: Adhoc task. In TREC'12.

Khalaman, S., & Kurland, O. (2012). Utilizing inter-document similarities in federated search. In SIGIR’12 (pp. 1169-1170).

Kim, Y., Yeniterzi, R., & Callan,]. (2012). Overcoming vocabulary limitations in twitter microblogs. In TREC'12.

Klementiev, A., Roth, D., & Small, K. (2008). Unsupervised rank aggregation with distance-based models. In ICML’08 (pp. 472-479).

Kozorovitsky, A.K., & Kurland, O. (2011). Cluster-based fusion of retrieved lists. In SIGIR’11 (pp. 893-902).

Kurland, O., & Lee, L. (2004). Corpus structure, language models, and ad hoc information retrieval. In SIGIR'04 (pp. 194-201).

Kustra, R., & Zagdanski, A. (2010). Data-fusion in clustering microarray data: Balancing discovery and interpretability. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 7(1), 50-63.

Lappas, T., Arai, B., Platakis, M., Kotsakos, D., & Gunopulos, D. (2009). On burstiness-aware search for document sequences. In SIGKDD’09 (pp. 477-486).

Lee, J. H. (1995). Combining multiple evidence from different properties of weighting schemes. In SIGIR’95 (pp. 180-188).

Lee, G., Seo, J., Lee, S., Jung, H., Cho, B., Lee C,, et al. (2001). SiteQ: Engineering high performance QA system using lexico-semantic pattern matching and
shallow NLP. In TREC'01.

Lefortier, D., Serdyukov, P., & de Rijke, M. (2014). Online exploration for detecting shifts in fresh intent. In CIKM 2014: 23rd ACM conference on information
and knowledge management. ACM.

Li, X., & Croft, W. B. (2003). Time-based language models. In CIKM (pp. 469-475).

Liang, S., & de Rijke, M. (2013). Finding knowledgeable groups in enterprise corpora. In SIGIR’13 (pp. 1005-1008).

Liang, S., Ren, S., & de Rijke, M. (2014a). Fusion helps diversification. In SIGIR '14, SIGIR '14 (pp. 303-312).

Liang, S., Ren, Z., & de Rijke, M. (2014b). Personalized search result diversification via structured learning. In KDD '14 (pp. 751-760).

Liu, X., & Croft, W. B. (2008). Evaluating text representations for retrieval of the best group of documents. In ECIR'08 (pp. 454-462).

Liu, Y.-T., Liu, T.-Y., Qin, T., Ma, Z.-M.,, & Li, H. (2007). Supervised rank aggregation. In WWW'07 (pp. 481-489).

Loia, V., Pedrycz, W., & Senatore, S. (2007). Semantic web content analysis: A study in proximity-based collaborative clustering. IEEE Transactions on Fuzzy
Systems, 15(6), 1294-1312.

Luo, Z., Osborne, M., Petrovic, S., & Wang, T. (2012). Improving twitter retrieval by exploiting structural information. In Proceedings of the twenty-sixth AAAI
conference on artificial intelligence (pp. 648-654).

Macdonald, C., Ounis, 1., Lin, J., Choudhury, A., & Soboroff, I. (2011). Track guidelines.

Markov, 1., Arampatzis, A., & Crestani, F. (2012). Unsupervised linear score normalization revisited. In SIGIR (pp. 1161-1162). ACM.

Markov, 1., Arampatzis, A., & Crestani, F. (2013a). On CORI result merging. In ECIR (pp. 752-755). Springer.

Markov, L., Azzopardi, L., & Crestani, F. (2013b). Reducing the uncertainty in resource selection. In ECIR (pp. 507-519). Berlin, Heidelberg: Springer.

Markov, I., & Crestani, F. (2014). Theoretical, qualitative and quantitative analyses of small-document approaches to resource selection. ACM Transactions on
Information Systems, 32(2), 9:1-9:37.

Markovits, G., Shtok, A., & Kurland, O. (2012). Predicting query performance for fusion-based retrieval. In CIKM’12 (pp. 813-822).

Massoudi, K., Tsagkias, M., de Rijke, M., & Weerkamp, W. (2011). Incorporating query expansion and quality indicators in searching microblog posts. In ECIR
‘11 (pp. 362-367).

Mathioudakis, M., Bansal, N., & Koudas, N. (2010). Identifying, attributing and describing spatial bursts. In VLDB’10 (pp. 1091-1102).

Metzler, D., & Cai, C. (2011). USC/ISI at TREC 2011: Microblog track. In Proceedings of the text retrieval conference.

Metzler, D., Cai, C., & Hovy, E. (2012). Structured event retrieval over microblog archives. In NAACL: HLT (pp. 646-655).

Miyanishi, T., Seki, K., & Uehara, K. (2013a). Combing recency and topic-dependent temporal variation for microblog search. In ECIR’13 (pp. 331-343).

S. Liang, M. de Rijke/Information Processing and Management 51 (2015) 89-113 113

Miyanishi, T., Seki, K., & Uehara, K. (2013b). Improving pseudo-relevance feedback via tweet selection. In CIKM '13 (pp. 439-448).

Montague, M., & Aslam,]. A. (2002). Condorcet fusion for improved retrieval. In CIKM’02 (pp. 538-548).

Naveed, N., Gottron, T., Kunegis,]., & Che Alhadi, A. (2011). Searching microblogs: Coping with sparsity and document quality. In CIKM'11 (pp. 183-188).
ACM.

O’Connor, B., Krieger, M., & Ahn, D. (2010). TweetMotif: Exploratory search and topic summarization for Twitter. In Proceedings of the fourth international
AAAI conference on weblogs and social media (pp. 384-385).

Ounis, I., Macdonald, C., Lin, J., & Soboroff, I. (2011). Overview of the TREC-2011 microblog track. In TREC 2011. NIST.

Peetz, M.-H., Meij, E., de Rijke, M., & Weerkamp, W. (2012). Adaptive temporal query modeling. In ECIR '12 (pp. 455-458).

Qin, T., Geng, X., & Liu, T.-Y. (2010). A new probabilistic model for rank aggregation. In NIPS’10 (pp. 1948-1956).

Ruzzo, W. L., & Tompa, M. (1999). A linear time algorithm for finding all maximal scoring subsequences. In Int. conf. intelligent systems for molecular biology
(pp. 234-241).

Salakhutdinov, R., & Mnih, A. (2008). Bayesian probabilistic matrix factorization using Markov chain Monte Carlo. In ICML (pp. 880-887).

Seo,]., & Croft, W. B. (2010). Geometric representations for multiple documents. In SIGIR’10 (pp. 251-258).

Shaw, J. A, Fox, E. A, Shaw, J. A,, & Fox, E. A. (1994). Combination of multiple searches. In The second text retrieval conference (TREC-2) (pp. 243-252).

Sheldon, D., Shokouhi, M., Szummer, M., & Craswell, N. (2011). LambdaMerge: Merging the results of query reformulations. In WSDM 11 (pp. 795-804).

Shokouhi, M., & Si, L. (2011). Federated search. Foundations and Trends in Information Retrieval, 5(1), 1-102.

Si, L., Callan, J., Cetintas, S., & Yuan, H. (2008). An effective and efficient results merging strategy for multilingual information retrieval in federated search
environments. Information Retrieval, 11(1), 1-24.

Soboroff, I., Ounis, I., Macdonald, C., & Lin, J. (2012). Overview of the TREC-2012 microblog track. In TREC 2012. NIST.

Tsagkias, M., de Rijke, M., & Weerkamp, W. (2011). Linking online news and social media. In WSDM '11 (pp. 565-574).

Tsai, M.-F., Wang, Y.-T., & Chen, H.-H. (2008). A study of learning a merge model for multilingual information retrieval. In SIGIR'08 (pp. 195-202).

Vlachos, M., Meek, C., & Vagena, Z. (2004). Identifying similarities, periodicities and bursts for online search queries. In SIGMOD’04 (pp. 131-142).

Weerkamp, W., & de Rijke, M. (2012). Credibility-inspired ranking for blog post retrieval. Information Retrieval Journal, 15(3-4), 243-277.

Wei, Z., Gao, W., Zhou, L., Li, B., & Wong, K.-F. (2011). Exploring tweets normalization and query time sensitivity for twitter search. In Proceedings of the text
retrieval conference.

Wei, B, Zhang, S., Li, R.,, & Wang, B. (2012). A time-aware language model for microblog retrieval. In TREC'12.

Wu, S. (2012). Data fusion in information retrieval. Adaptation, Learning and Optimization (Vol. 13). Springer.

Yang, J., & Leskovec, . (2011). Patterns of temporal variation in online media. In WSDM '11 (pp. 177-186). ACM.

Zhang, X., Hui, K., He, B., & Luo, T. (2011). Gucas at TREC-2011 microblog track. In TREC'11.

Zhao, D., & Rosson, M. B. (2009). How and why people twitter: the role that micro-blogging plays in informal communication at work. In GROUP "09 (pp.
243-252).

Zhuy, Y., & Shasha, D. (2003). Efficient elastic burst detection in data streams. In SIGKDD'03 (pp. 336-345).

