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Abstract—This paper is concerned with the problem of personalized diversification of search results, with the goal of enhancing the

performance of both plain diversification and plain personalization algorithms. In previous work, the problem has mainly been tackled by

means of unsupervised learning. To further enhance the performance, we propose a supervised learning strategy. Specifically, we set

up a structured learning framework for conducting supervised personalized diversification, in which we add features extracted directly

from tokens of documents and those utilized by unsupervised personalized diversification algorithms, and, importantly, those generated

from our proposed user-interest latent Dirichlet topic model. We also define two constraints in our structured learning framework to

ensure that search results are both diversified and consistent with a user’s interest. To further boost the efficiency of training, we

propose a fast training framework for our proposed method by adding additional multiple highly violated but also diversified constraints

at every training iteration of the cutting-plane algorithm. We conduct experiments on an open dataset and find that our supervised

learning strategy outperforms unsupervised personalized diversification methods as well as other plain personalization and plain

diversification methods. Our fast training framework significantly saves training time while it maintains almost the same performance.

Index Terms—Personalization, diversity, structured SVMs, ad hoc retrieval

Ç

1 INTRODUCTION

SEARCH result diversification has gained attention as a
method to tackle query ambiguity. In search result

diversification one typically considers the relevance of a
document in light of the other retrieved documents. The
goal is to identify the probable “aspects” of the ambiguous
query, retrieve documents for each of these aspects and
make the search results more diverse [2]. By doing so, in the
absence of any knowledge of users’ context or preferences,
the chance that users who issue an ambiguous query will
find at least one of these results to be relevant to their under-
lying information need is maximized [3].

In both search result diversification and personalized
web search, an issued query is often viewed as an incom-
plete expression of a user’s underlying need [4]. Unlike
search result diversification, where the system accepts and
adapts its behavior to a situation of uncertainty, personal-
ized web search strives to address this situation by enhanc-
ing the system’s knowledge about users’ information needs.
Rather than aiming to satisfy as many users as possible,

personalization aims to build a sense of who the user is, and
maximize the satisfaction of a specific user [5].

Although different, diversification and personalization
are not incompatible and do not have mutually exclusive
goals [6]. Search results generated by diversification techni-
ques should be more diverse when a user’s preferences are
unrelated to the query. Likewise, personalization can
improve the effectiveness of aspect weighting in diversifica-
tion, by favoring query interpretations that are predicted to
be more related to each specific user [5].

We study the problem of personalized diversification of
search results, with the goal of enhancing both diversification
and personalization performances. As an example, consider
a case where a query has three aspects, I, II and III, and a
user is only interested in aspects I and III. Diversification
algorithms may return a top-k of documents that covers all
aspects, including aspect II that the user is not interested in.
On the other hand, personalized algorithms may retrieve a
top-k of documents such that the first m (m < k) docu-
ments only covering aspect I but not III that the user is also
interested in, while the remaining k�m documents cover
other aspects that are not covered by the first m documents.
In contrast, personalized diversification algorithms try to
retrieve a top-k of documents that covers topics I and III,
one by one. (See Section 7.7 for a real example). The problem
has previously been investigated by Radlinski and
Dumais [7] and Vallet and Castells [5]. They have present a
number of effective unsupervised learning approaches that
combine both personalization and diversification compo-
nents to tackle the problem. To further improve the perfor-
mance we propose a supervised learning approach.

Accordingly, we formulate the task of personalized
search result diversification as a problem of predicting a
diverse set of documents given a specific user and query.
We formulate a discriminant based on maximizing search

� S. Liang is with the Department of Computer Science, University College
London, London WC1E 6BT, United Kingdom.
E-mail: shangsong.liang@ucl.ac.uk.

� F. Cai is with the Science and Technology on Information Systems
Engineering Laboratory, National University of Defense Technology,
Changsha, China, and the Informatics Institute, University of Amsterdam,
Amsterdam 1012, WX, The Netherlands. E-mail: f.cai@uva.nl.

� Z. Ren and M. de Rijke are with Informatics Institute, University of
Amsterdam, Amsterdam 1012, WX, The Netherlands.
E-mail: {z.ren, derijke}@uva.nl.

Manuscript received 5 Apr. 2015; revised 24 Mar. 2016; accepted 11 July
2016. Date of publication 26 July 2016; date of current version 3 Oct. 2016.
Recommended for acceptance by H. Zha.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TKDE.2016.2594064

2958 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 28, NO. 11, NOVEMBER 2016

1041-4347� 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:


result diversification, and perform training using the well-
known structured support vector machines (SSVMs) frame-
work [8]. The main idea is to use a user-interest LDA-style
[9, Latent Dirichlet Allocation] topic model, from which we
can infer a per-document multinomial distribution over
topics and determine whether a document can cater for a
specific user.

Like most previous learning algorithms based on SSVMs,
our framework for personalized search result diversification
is formulated as a constrained quadratic program with many
constraints, which can be solved by applying the cutting-
plane approach [8]. However, a large number of parameters
needs to be tuned during the training, at every iteration of the
cutting-plane procedure inference must be performed on the
entire training dataset, and a large quadratic program must
be solved, as a result of which training our proposedmodel is
time-consuming. To speed up convergence in our training
procedure, we propose to utilize multiple constraints that are
not only informative with regards to the current approxima-
tion, i.e., they are highly violated, but also havemarginal rele-
vance with regards to the constraints added at the current
iteration, i.e., they are diversified.

Then, during training we use features extracted directly
from the tokens’ statistical information in the documents
and those utilized by unsupervised personalized diversifi-
cation algorithms, and, more importantly, those generated
from our proposed topic model. Two types of constraint in
SSVMs are explicitly defined to enforce the search results to
be both diverse and relevant to a user’s personal interest.

We evaluate our approach on a publicly available per-
sonalized diversification dataset and compare it (1) to unsu-
pervised approaches that focus on either personalization or
diversification alone, (2) to combined approaches like those
in [5], [7] and (3) to two standard structured learning
approaches [10], [11]. We also evaluate our proposed
method in terms of training time and number of iterations.
The four main contributions of our work are:

(i) We tackle the problem of personalized diversifica-
tion of search results in a new way, using a super-
vised learning method.

(ii) We propose a user-interest latent topic model to cap-
ture a user’s interest and infer per-document multi-
nomial distributions over topics.

(iii) We explicitly enforce diversity and personalization
through two types of constraint in structured learn-
ing for personalized diversification.

(iv) We boost the efficiency of the training stage of our
approach by adding not only highly violated but also
diversified constraints during training iterations.

2 RELATED WORK

2.1 Personalized Search Result Diversification

Two main components, viz., personalized web search and
search result diversification, play important roles in tackling
the problem of personalized search result diversification.
The task of personalized web search aims at identifying the
most relevant search results for an individual by leveraging
their information. Many personalized web search methods
have been proposed, such as the one based on social tagging
profiles [12], ranking model adaption for personalized

search [13], search personalization by modeling the impact
of users’ behavior [14], and personalized search using inter-
action behaviors in search sessions [15]. Interestingly, after
analyzing large-scale query logs, Dou et al. [16], [17] reveal
that personalized search yields significant improvements
over common web search on some queries but has little
effect on others; they propose click entropy to measure
whether users have adverse information needs by issuing a
query and features to automatically predict whether the
results should be personalized.

In contrast, diversification aims to make the search results
diversified given an ambiguous query so that users can find
at least one of these results to be relevant to their underlying
information need [18]. Well-known diversification methods
include the maximal marginal relevance model [19], probabi-
listic model [20], subtopic retrieval model [21], xQuAD [22],
RxQuAD [23], IA-select [18], PM-2 [24], and more recently,
DSPApprox [2], text-based measures [25], term-level [2], and
fusion-based [26], [27]. All of the above methods focus on
either personalization or diversification only.

Only Radlinski and Dumais [7] and Vallet and Castells [5]
have studied the problem of combining both personaliza-
tion and diversification. Radlinski and Dumais [7] analyze a
large sample of individual users’ query logs from a web
search engine such that individual users’ query reformula-
tions can be obtained. Then they personalize web search by
reranking some top results using query reformulations to
introduce diversity into those results. Their evaluation sug-
gests that using diversification is a promising method to
improve personalized reranking of search results. Vallet
and Castells [5] present approaches that combine personali-
zation and diversification components. They investigate the
introduction of the user as an explicit variable in state-of-
the-art diversification models. Their algorithms achieve
competitive performance and improve over plain personali-
zation and diversification baselines.

All of the previous personalized diversification models
are unsupervised. However, we argue that to enhance the
performance, it is better to employ a supervised learning
approach, and our experiments show that supervised learn-
ing can indeed improve the performance of unsupervised
approaches. To the best of our knowledge, this is the first
attempt to tackle the problem of personalized diversifica-
tion using supervised learning methods.

2.2 Structured Learning

Structured learning has provided principled techniques for
learning structured-output models, with the structured sup-
port vector machines being one of the most important
ones [8]. In structured learning, a set of training pairs,
fðx; yÞ j x 2 X ; y 2 Yg, is assumed to be available to the
learning algorithm, and the goal is to learn a mapping
f : X ! Y from the input space X to the output space Y,
such that a regularized task-dependent loss function
D : Y � Y ! Rþ can be minimized, where Dðy; �yÞ denotes
the cost of predicting output �y when the correct prediction
is y. During the past few years, Structured SVMs have been
studied and applied in many areas, such as summariza-
tion [28], speech recognition [29], optimizing average preci-
sion of a ranking [11], and diversification [10]. For us, the
most interesting prior application of SSVMs is the one for
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predicting diverse subsets [10]. However, our personalized
search result diversification method differs from that pro-
posed in [10]: we work on personalized diversification
where we propose a user-interest LDA-style model to cap-
ture a user’s interest distribution over topics, whereas the
authors of [10] directly apply existing SSVMs algorithm to
tackle the problem of search result diversification but not
personalized diversification; our model makes results
diverse and consistent with the user’s interest by enforcing
both diversity and interest constraints, whereas the model
in [10] only directly diversifies the results by adopting stan-
dard SSVMs. The work in [28] is of interesting to us too, as
the authors also propose to utilize additional constraints in
SSVMs for their purpose: enhancing diversity, coverage and
balance for summarization. Compared to their model,
again, ours targets a different task, works with different
types of constraints, and moreover, utilizes a user topic
model to infer users’ personal interests for personalization
diversification and try to boost the training efficiency by
generating additional constraints. To the best of our knowl-
edge, ours is the first attempt to enforce diversity and
personalization through additional constraints in SSVMs.

Additionally, most previous SSVMs based algorithms,
including those aforementioned, utilize the well-known
cutting-plane technique for training, which involves many
constraints (in total jYj � ðjYj � 1Þ constraints). Unfortu-
nately, those algorithms also contain many parameters that
need to be tuned, require a large number of iterations due
to the large number of constraints, and at each iteration the
cutting-plane that they apply needs to solve a quadratic
program performing on the entire training dataset. Because
of this, training SSVMs based algorithms is time-consum-
ing and applying such algorithms to some real-time appli-
cations, e.g., those that need to rapidly update the model in
data streams, becomes unpractical. Guzman-Rivera
et al. [30] and Branson et al. [31] have proposed methods to
boost the efficiency of SSVMs cutting-plane training. Their
formulation for finding additional solutions in [30] cannot
be used directly in our setting, as their formulation aims at
maximizing a discrete Markov random field based func-
tion, whereas we need to find diversified solutions, all of
which should maximize both relevance and diversification
of the returned documents in our formulation. We cannot
directly apply the method in [31] either, as, again, the for-
mulation for finding additional solutions is not directly
applicable for our personalized diversification task.
Accordingly, we propose a formulation to generate addi-
tional constraints that are not only informative with regards
to the current approximation, i.e., should be highly vio-
lated, but also diversified, i.e., the potential solutions
involved in the set of constraints should be different from
each other to some extent. As far as we are aware, this is the
first proposal to boost the efficiency of training SSVM based
personalized diversification.

2.3 Topic Modeling

Topic modeling provides a suite of algorithms to discover
hidden thematic structure in a collection of documents. A
topicmodel takes a collection of documents as input, and dis-
covers a set of “latent topics”—recurring themes that are dis-
cussed in the collection—and the degree to which each

document exhibits those topics [9]. Latent dirichlet allocation
(LDA) [9] is one of the simplest topic models, and it decom-
poses a collection of documents into topics—biased probabil-
ity distributions over terms—and represents each document
with a subset of these topics. Many LDA-style models have
been proposed, such as the syntactic topic model [32], multi-
lingual topic model [33], topic over time model [34], and
more recently, themax-marginmodel [35], hierarchical senti-
ment-LDA model [36], fusion-based model [26], [27], [37],
user clustering topicmodel [38] and dynamic clustering topic
model [39]. We propose a user-interest LDA-style model to
capture a multinomial distribution of topics specific to a
user. From our model, we infer a per-document multinomial
distribution over topics so that we can easily identify
whether a document caters to a user’s interest. Accordingly,
we use the output of our user-interest LDA-style model, i.e.,
multinomial distributions over topics, as one of the three
types of features (see Section 5.2) to tune a weight vectorw in
training. The advantages of preprocessing the users’ distri-
butions rather than integrating the topic model into the
SSVMs are that the system can update users’ interest distri-
butions offline, while making its predictions online, so that
the response time given a user and a query can be signifi-
cantly shortened. A unified model that integrates user-inter-
est LDA-style model and SSVMswould be possible; we leave
it as futurework to explore this alternative. Our experimental
results show that the model can help to enhance the perfor-
mance of personalized search result diversification. To the
best of our knowledge, this is the first time that a topic model
is utilized to enhance the performance of personalized
diversification.

3 THE LEARNING PROBLEM

Let u ¼ fd1; . . . ; djujg 2 U be a set of documents of size juj
that a user u is interested in. For each query q, we assume
that we are given u and a set of candidate documents x ¼
fx1; . . . ; xjxjg 2 X , where X denotes the set of all possible

document sets. Our task is to select a subset y 2 Y of K
documents from x that maximizes the performance of per-
sonalized search result diversification given q and u, where
we let Y denote the space of predicted subsets y. Following
the standard machine learning setup, we formulate our task
as learning a hypothesis function h : X � U ! Y to predict a
y given x and u. To this end, we assume that a set of labeled
training data is available

fðxðiÞ;uðiÞ; yðiÞÞ 2 X � U � Y : i ¼ 1; . . . ; Ng;
where yðiÞ is the ground-truth subset of K documents from

xðiÞ, and uðiÞ is the set of documents that user ui is interested
in, and N is the size of the training data. We aim to find a
function h such that the empirical risk

RD
SðhÞ ¼

1

N

XN
i¼1

D yðiÞ; hðxðiÞ;uðiÞÞ
� �

;

can be minimized, where we quantify the quality of a pre-
diction by considering a loss function D : Y � Y ! Rþ that

measures the penalty of choosing �y ¼ hðxðiÞ;uðiÞÞ. Given the
ground-truth y, viz., the ground truth ranking of relevant
documents, and the prediction �y, viz., the ranking of
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predicted documents, we define the loss function by

Dðy; �yÞ � 1� Eðy; �yÞ; (1)

where Eðy; �yÞ is an evaluation metric that computes the
evaluation score for the predicted ranking �y given the
ground-truth ranking y. We focus on hypothesis functions
that are parameterized by a weight vector w, and thus wish

to find w to minimize the risk, RD
SðwÞ � RD

Sðhð�;wÞÞ. We let

a discriminant F : X � U � Y ! Rþ compute how well the
prediction �y fits for x and u. Then the hypothesis predicts
the �y that maximizes F

�y ¼ hðx;u;wÞ ¼ arg max
y2Y

Fðx;u; yÞ: (2)

We describe each ðx;u; yÞ through a feature vector
Cðx;u; yÞ; the extraction will be discussed later. The dis-
criminant function Fðx;u; yÞ is assumed to be linear in the
feature vectorCðx;u; yÞ such that

Fðx;u; yÞ ¼ wTCðx;u; yÞ; (3)

where w is a weight vector to be learned from training data
and with which y can be predicted, given u and x.

4 STRUCTURED LEARNING FOR PERSONALIZED

DIVERSIFICATION

In this section, we introduce the standard SSVMs learning
problem, propose constraints for our personalized diversifi-
cation model, describe our optimization problem, the way
we make predictions, and how we boost the efficiency of
training our proposed algorithm.

4.1 Standard Structured SVMs

Our personalized diversification model builds on a struc-
tured learning framework. In our setting, the structured
learning framework can be described as: given a training set

fðxðiÞ;uðiÞ; yðiÞÞ 2 X � U � Y : i ¼ 1; . . . ; Ng, structured SVMs
are employed to learn a weight vectorw for the discriminant
functionFðx;u; yÞ through the following quadratic program-
ing problem.

Optimization Problem 1. (Standard structured SVMs)

min
w;��0

1

2
jjwjj2 þ C

N

XN
i¼1

�i; (4)

subject to 8i; 8y 2 YnyðiÞ; �i � 0,

wTCðxðiÞ;uðiÞ; yðiÞÞ � wTCðxðiÞ;uðiÞ; yÞ þ DðyðiÞ; yÞ � �i:

In the objective function (4), the parameter C is a tradeoff

between model complexity, jjwjj2, and a hinge loss relaxation
of the training loss for each training example,

P
�i. These stan-

dard constraints enforce the requirement that given xðiÞ and
uðiÞ the ground-truth personalized diversity document set yðiÞ

should have a greater valueFðx;u; yÞ than alternative y 2 Y.

4.2 Additional Constraints

As discussed above, we aim at training a personalized
diversification model that can enforce both diversity and
consistency with the user’s interest. This can be achieved by

introducing additional constraints to the structured SVM
optimization problem defined in (4).

To start, diversity requires a set of retrieved documents
that should not discuss the same aspects of an ambiguous
query. In other words, aspects of documents returned by a
diversification model should have little overlap with one
another. Formally, we enforce diversity with the following
constraint.

Constraint for Diversity

wTCðxðiÞ;uðiÞ; yðiÞÞ �
X
y2yðiÞ

wTCðxðiÞ;uðiÞ; yÞ � �i: (5)

In (5), the sum of each document’s score,
P

wT

CðxðiÞ;uðiÞ; yÞ, should not be greater than the overall score

when documents in yðiÞ are considered as an ideal ranking
of the document sets. According to this constraint, com-
monly shared features are associated with relatively low
weights, and a document set with less redundancy will be
predicted as output given inputs x and u.

Additionally, personalization requires a set of returned
documents to match the user’s personal interest. Formally,
we enforce personalization with the following constraint.

Constraint for Consistency with User’s Interest

wTCðxðiÞ;uðiÞ; yðiÞÞ � wTCðxðiÞ;uðiÞ; yÞ þ
ð1� simðy;uðiÞÞÞ � m� �i;

(6)

where simðy;uðiÞÞ 2 ½0; 1� is a function (see (15)) that measures
subtopic distribution similarity between a set of documents y

and the documents user ui is interested in, i.e., uðiÞ,m is a slack
variable that tends to give slightly better performance, which

can be defined asm ¼ 1
N

PN
i¼1ð1� sim ðyðiÞ;uðiÞÞÞ.

In (6), ð1� simðy;uðiÞÞÞ quantifies how well a set of docu-
ments matches a user’s interest. If the topics discussed in a
set of documents y are not consistent with a user’s personal

interest, wTCðx;u; yÞ will result in a low score. During pre-
diction, documents consistent with a user’s interest will be
preferred.

4.3 Our Optimization Problem

A set of documents produced in response to an ambiguous
query should be diverse and consistent with the user’s per-
sonal interest. To this end we integrate the proposed addi-
tional constraints with standard structured SVMs. We
propose to train a personalized diversification model by
tackling the following optimization problem:

Optimization Problem 2. (Structured SVMs for personal-
ized diversification)

min
w;��0

1

2
jjwjj2 þ C

N

XN
i¼1

�i; (7)

subject to 8i; 8y 2 YnyðiÞ; �i � 0,

1) wTCðxðiÞ;uðiÞ; yðiÞÞ � wTCðxðiÞ;uðiÞ; yÞþ DðyðiÞ; yÞ � �i;
2) wTCðxðiÞ;uðiÞ; yðiÞÞ �Py2yðiÞ w

TCðxðiÞ;uðiÞ; yÞ � �i;

3) wTCðxðiÞ;uðiÞ; yðiÞÞ � wTCðxðiÞ;uðiÞ; yÞ
þðð1� simðy; uðiÞÞÞ � mÞ � �i:
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4.4 The Learning Algorithm

We can solve the optimization problem defined in (7) by
employing the cutting plane algorithm [8]. The learning
algorithm is shown in Algorithm 1. The algorithm itera-
tively adds constraints until we have solved the original
problem within a desired tolerance �. It starts with empty
working setsWi,W0i andW00i , for i ¼ 1; . . . ; N . Then it itera-
tively finds the most violated constraints �y, y0 and �y00 for
each ðxðiÞ;uðiÞ; yðiÞÞ in terms of the three constraints (i), (ii)
and (iii) in (7). If they are violated by more than �, we add
them into the corresponding working sets. We iteratively
update w by optimizing (7) over the updated working sets.
The outer loop in Algorithm 1 can halt within a polynomial
number of iterations for any desired precision � [8].

Algorithm 1. Cutting Plane Algorithm

Input: ðxð1Þ;uð1Þ; yð1ÞÞ; . . . ; ðxðNÞ;uðNÞ; yðNÞÞ; C; �
1 Wi  ;,W0i  ;,W00i  ; for all i ¼ 1; . . . ; N
2 m ¼ 1

N

PN
i¼1ð1� simðyðiÞ;uðiÞÞÞ

3 repeat
4 for i ¼ 1; . . . ; N do
5 Hðy;wÞ � DðyðiÞ; yÞ þwTCðxðiÞ;uðiÞ; yÞ�

wTCðxðiÞ;uðiÞ; yðiÞÞ
6 H 0ðy;wÞ �Py2yðiÞ w

TCðxðiÞ;uðiÞ; yÞ�
wTCðxðiÞ;uðiÞ; yðiÞÞ

7 H 00ðy;wÞ � wTCðxðiÞ;uðiÞ; yÞ +
8 ðð1� simðy;uðiÞÞÞ � mÞ �wTCðxðiÞ;uðiÞ; yðiÞÞ
9 compute �y ¼ argmaxyHðy;wÞ, �y0 ¼ argmaxyH

0ðy;wÞ
and �y00 ¼ argmaxyH

00ðy;wÞ
10 compute �i ¼ maxf0;maxy2Wi

Hðy;wÞ;
maxy2W0

i
H 0ðy;wÞ;maxy2W00

i
H 00ðy;wÞg

11 ifHð�y;wÞ > �i þ � orH 00ð�y0;wÞ > �i þ �
orH 00ð�y00;wÞ > �i þ � then

12 Add constraint to working setWi  Wi [ f�yg,
W0i  W0i [ fy0g,W00i  W00i [ fy00g

13 w optimize (7) over
S

ifWi;W0i;W00i g
14 until noWi,W0i andW00i have changed during iteration

4.5 Prediction

After w has been learned, given an ambiguous query, a set
of candidate documents x, and a set of documents u the
user u is interested in, we try to predict a set of documents �y
by tackling the following prediction problem:

�y ¼ arg max
y2Y

Fðx;u; yÞ ¼ wTCðx;u; yÞ: (8)

This is a special case of the Budgeted Max Coverage
problem, and can be efficiently solved by Algorithm 2.
Recall that the Budgeted Max Coverage problem [40] is
defined as follows. A collection of sets S ¼ fS1; S2; . . . ; Smg
with associated costs fcigmi¼1 is defined over a domain of ele-

ments X ¼ fx1; x2; . . . ; xng, with associated weights fwigni¼1.
The goal is to find a collection of sets S0 	 S, such that the

total cost of elements in S0 does not exceed a given budget L

while the sum of the weights of elements covered by S0 is
maximized. Following the definition of the Budgeted Max
Coverage problem, we can define our personalized diversi-
fication prediction problem as: A collection of documents
x ¼ fd1; d2; . . . ; dmg with uniform associated costs

fci ¼ 1gmi¼1 of being selected in response to a query and the
user’s interest in query aspects X ¼ fx1; x2; . . . ; xng are rep-
resented with aspect weights fwigni¼1. The goal is to find a
collection of documents y 	 x, such that the total cost (num-
ber) of documents in y does not exceed a given number K,
and the total weight of different aspects the user is inter-
ested in covered by y is maximized. Thus our problem is a
special case of the Budgeted Max Coverage problem.

Algorithm 2. Greedy Subset Selection for Prediction

Input:w, x, u
1 �y ;
2 for k ¼ 1; . . . ;K do
3 �x ¼ arg maxx:x2x;x =2 �y w

TCðx;u; �y [ fxgÞ
4 �y �y [ f�xg
5 return �y

4.6 Fast Training

UtilizingAlgorithm 1 to train our personalized diversification
model is time-consuming, as there is a large number of
parameters that need to be tuned inw and many iterations of
the training procedure in Algorithm 1 are required where at
each iteration inferencemust be performed on the entire train-
ing dataset and a large quadratic programmust be solved [8].
In caseswherewe need to apply structured learning to update
the model online, e.g., for online structured prediction [41],
such slow training and updating are bottlenecks.

To boost the efficiency of training our personalized diversi-
fication algorithm, we propose a fast training cutting plane
algorithm, which is shown in Algorithm 3. Algorithm 3 is
almost the same as the original cutting plane algorithm pre-
sented inAlgorithm 1 except that in the current iteration it not
only adds the most violated constraints �y, y0 and �y00 for each
ðxðiÞ;uðiÞ; yðiÞÞ but also constraints �y0001 ; . . . ; �y

000
M that are poten-

tially violated in later iterations (see lines 13-15 in Algo-
rithm 3). In other words, Algorithm 1 is a special case of
Algorithm 3 when no additional constraints are added
excepted the standard ones. Here, M is the number of addi-
tional constraints. According to [31], [30], to speed up conver-
gence in our fast cutting plane training procedure, these M
additional constraints should not only be informative, i.e.,
highly violated (as required by the standard cutting-plane
approach), but also diversified, i.e., these constraints should
be different from each other. Therefore, for the ground truth

ðxðiÞ;uðiÞ; yðiÞÞ in Algorithm 3, besides �y; �y0 and �y00 we propose
to find these additional constraints �y0001 ; . . . ; �y

000
j ; . . . ; �y

000
M by

�y000j ¼ arg max
y2YneWi

AðxðiÞ;uðiÞ; yÞ; (9)

subject to

min
y02eWi

Dðy0; yÞ � min
y002eWi; y

0002eWinfy00g
Dðy00; y000Þ:

Here,AðxðiÞ;uðiÞ; yÞ is an unsupervised personalized diversi-

fication algorithm that retrieves y given xðiÞ and uðiÞ; fWi is
the working set that contains existing constraints, i.e.,fWi � Wi [W0i [W00i [W000i [ f�y0001 ; . . . ; �y000j�1g; Dðy0; yÞ is a dis-

similarity function computed by (1) where all documents in
y0 are assumed to be relevant and other documents not in y0
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are assumed to be irrelevant (note that the assumption we
make here is only to compute the dissimilarity between two
rankings). The target function defined in (9) aims to find the
most violated additional constraints, whereas the condition
defined in (9) makes sure that the additional constraints are
different to each other in the working constraint set. The
maximum size of the working set in Algorithms 1 and 3 is
provide by the following theorem:

Theorem 1 (Theorem 18 in [8]). Let Di ¼ maxyfDðyðiÞ; yÞ;P
y2yðiÞ w

TCðxðiÞ; uðiÞ; yÞ �wTCðxðiÞ;uðiÞ; yÞ; ðð1� simðy;
uðiÞÞÞ � mÞg, and Ri ¼ maxyfjjCðxðiÞ; yðiÞÞ �CðxðiÞ; yÞjjg.
With �R ¼ maxi Ri, �D ¼ maxi Di and for a given � > 0, Algo-
rithms 1 and 3 terminate after incrementally adding at most

maxf2N �D
� ; 8C

�D �R2

�2
g constraints to the working set.

Algorithm 3. Fast Training for Cutting Plane Algorithm

Input: ðxð1Þ;uð1Þ; yð1ÞÞ; . . . ; ðxðNÞ;uðNÞ; yðNÞÞ; C; �;M
1 Wi  ;,W0i  ;,W00i  ;,W000i  ; for all i ¼ 1; . . . ; N
2 m ¼ 1

N

PN
i¼1ð1� simðyðiÞ;uðiÞÞÞ

3 repeat
4 for i ¼ 1; . . . ; N do
5 Hðy;wÞ � DðyðiÞ; yÞ þwTCðxðiÞ;uðiÞ; yÞ�

wTCðxðiÞ;uðiÞ; yðiÞÞ
6 H 0ðy;wÞ �Py2yðiÞ w

TCðxðiÞ;uðiÞ; yÞ�
wTCðxðiÞ;uðiÞ; yðiÞÞ

7 H 00ðy;wÞ � wTCðxðiÞ;uðiÞ; yÞ +
8 ðð1� simðy;uðiÞÞÞ � mÞ �wTCðxðiÞ;uðiÞ; yðiÞÞ
9 compute �y ¼ argmaxyHðy;wÞ, y0 ¼ argmaxyH

0ðy;wÞ
and y00 ¼ argmaxyH

00ðy;wÞ
10 compute �i ¼ maxf0;maxy2Wi

Hðy;wÞ;
maxy2W0

i
H 0ðy;wÞ;maxy2W00

i
H 00ðy;wÞg

11 ifHð�y;wÞ > �i þ �
orH 0ð�y0;wÞ > �i þ � orH 00ð�y00;wÞ > �i þ � then

12 Add constraint to working setWi  Wi [ f�yg,
W0i  W0i [ fy0g,W00i  W00i [ fy00g

13 for j ¼ 1; . . . ;M do
14 �y000j  optimize (9)
15 W000i  W000i [ f�y000j }
16 w optimize (7) over

S
ifWi;W0i;W00i ;W000i g

17 until noWi,W0i,W00i andW000i have changed during iteration

5 USER-INTEREST TOPIC MODEL AND FEATURE
SPACE

In this section, we first review the notation and terminology
used in our user-interest topic model, and then describe the
model and the features used in our structured learning
framework.

We summarize the main notation used in our user-inter-
est topic model (UIT) in Table 1. We distinguish between
queries, aspects and topics. A query is a user’s expression of
an information need. An aspect (sometimes called subtopic at
the TREC Web tracks [42]) is an interpretation of an infor-
mation need. We use topic to refer to latent topics as identi-
fied by a topic modeling method (LDA).

5.1 User-Interest Topic Model

To capture per-user and per-document multinomial distri-
butions over topics such that we can measure whether a
document caters for the user’s interest, we propose a user-
interest latent topic model (UIT). Topic discovery in UIT is
influenced not only by token co-occurrences, but also by the
relevance scores of documents evaluated by users. In our
UIT model, we use a Beta distribution over a (normalized)
document relevance span covering all the data, and thus
various skewed shapes of rising and falling topic promi-
nence can be flexibly represented.

The latent topic model used in UIT is a generative model
of relevance and tokens in the documents. The generative
process used in Gibbs sampling [43] for parameter estima-
tion, is:

i) Draw T multinomials fz from a Dirichlet prior b, one
for each topic z;

ii) For each user u, draw a multinomial #u from a
Dirichlet prior a; then for each token wdi in docu-
ment d 2 u:
a) Draw a topic zdi from multinomial #u;
b) Draw a token wdi from multinomial fzdi

;
c) Draw a relevance score rdi for wdi from Beta

ðbzdi1, bzdi2Þ.
Fig. 1 shows a graphical representation of our model. In

the generative process, the relevance scores of tokens
observed in the same document are the same and evaluated
by a user, although a relevance score is generated for each
token from the Beta distribution. In our experiments, there
is a fixed number of latent topics, T , although a non-
parametric Bayes version of UIT that automatically integra-
tes over the number of topics is possible. The posterior dis-
tribution of topics depends on information from two
modalities: tokens and document relevance scores.

TABLE 1
Main Notation Used in User-Interest Topic Model

Notation Gloss Notation Gloss

q query d document
u user z topic
T number of topics U number of users
D number of documents V number of tokens
Nd number of tokens in deu a set of users ew a set of tokens
bz Beta distribution parameter for z
a the parameter of user Dirichlet prior
b the parameter of token Dirichlet prior
ud multinomial distribution of topics specific to d
fz multinomial distribution of tokens specific to z
#u multinomial distribution of topics specific to u
zdi topic associated with the ith token in d
wdi the ith token in d
rdi relevance of the ith token in d

Fig. 1. Graphical representation of user-interest topic model.
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Inference is intractable in this model. Following [32], [33],
[34], [43], [44], we employ Gibbs sampling to perform
approximate inference. We adopt a conjugate prior (Dirich-
let) for the multinomial distributions, and thus we can easily
integrate out # and f, analytically capturing the uncertainty
associated with them. In this way we facilitate the sampling,
i.e., we need not sample # and f at all. Because we use the
continuous Beta distribution rather than discretizing docu-
ment relevance scores, sparsity is not a big concern in fitting
the model. For simplicity and speed we estimate these Beta
distributions ðbz1; bz2Þ by the method of moments, once per
iteration of Gibbs sampling. We find that the sensitivity of
the hyper-parameters a and b is not very strong. Thus, for
simplicity, we use fixed symmetric Dirichlet distributions
(a ¼ 50=T and b ¼ 0:1) in all our experiments.

In the Gibbs sampling procedure above, we need to cal-
culate the conditional distribution P ðzdijew; r; z�di; eu;a;b;b;
qÞ, where z�di represents the topic assignments for all tokens
except wdi. We begin with the joint probability of a dataset,
and using the chain rule, we can obtain the conditional
probability as

P ðzdijew; r; z�di; eu;a;b;b; qÞ /
nzdiwdi

þ bwdi
� 1PV

v¼1ðnzdiv þ bvÞ � 1
� nudizdi þ azdi � 1PT

z¼1ðnudiz þ azÞ � 1

� ð1� rdiÞbzdi1�1rbzdi2�1di

Bðbzdi1; bzdi2Þ
;

where nzv is the total number of tokens v that are assigned to
topic z, nuz represents the number of topics z that are
assigned to user u. See Appendix A for details.

After the Gibbs sampling procedure, we can easily infer a
user’s interest, i.e., multinomial distributions over topics for
user u as

#uz ¼ pðzjuÞ ¼ nuz þ azPT
z¼1ðnuz þ azÞ

; (10)

and easily infer multinomial distributions over tokens for
topic z

fzv ¼ pðvjzÞ ¼ nzv þ bvPV
v¼1ðnzv þ bvÞ

; (11)

where nzv is the number of tokens of word v that are assigned
to topic z. To obtain the multinomial distribution over topics
for document d, i.e., udz, we first apply the Bayes’ rule

udz ¼ pðzjdÞ ¼ pðdjzÞpðzÞ
pðdÞ ; (12)

where pðdjzÞ is the probability of d belonging to topic z, and
pðzÞ is the probability of topic z. According to (11), pðdjzÞ
can be obtained as pðdjzÞ ¼Qv2d pðvjzÞ ¼

Q
v2d fzv. Accord-

ing to (10), pðzÞ can be obtained as pðzÞ ¼PU
u¼1 pðzjuÞpðuÞ,

where U is the total number of users. Therefore, 12 can be
represented as

udz ¼
Q

v2d fzv

PU
u¼1 pðzjuÞpðuÞ
pðdÞ : (13)

As any d has the same chance to be considered to be
returned in response to q, we can assume that pðdÞ is a

constant, and likewise we also assume that pðuÞ is a con-
stant, such that (13) becomes

udz ¼ 1

E

Y
v2d

fzv

XU
u¼1

#uz; (14)

where E ¼PT
z¼1
Q

v2d fzv

PU
u¼1 #uz is a normalization con-

stant. Then, the topic distribution similarity simðy;uÞ
between a set of documents y and the documents u a user u
is interested in can be measured as

simðy;uÞ ¼ 1

jyj
X
d2y

cos ðud; #uÞ; (15)

where vectors ud ¼ ðud1; . . . ; udT Þ and #u ¼ ð#d1; . . . ; #dT Þ are
the multinomial distribution of topics specific to document d
anduser u, respectively.Weuse the cos function in (15); other
distance functions, e.g., based on euclidean distance, can be
employed but we found no significantly different results.

5.2 Feature Space

The feature representation C must enable meaningful dis-
crimination between high quality and low quality predic-
tions [10]. To predict a set of documents in the personalized
diversification task, we propose to consider three main
types of feature.

Tokens. Following [10], we define L token sets V1ðyÞ; . . . ;
VLðyÞ. Each token set VlðyÞ contains the set of tokens that
appear at least l times in some document in y. Then we use
thresholds on the ratio jDlðvÞj=juj (or jDlðvÞj=jxj) to define fea-
ture values of clðv;uÞ (or clðv; xÞ) that describe word v at l-th
importance level. Here, DlðvÞ is the set of documents that
have at least l copies of v in the whole set of documents u (or
x).We letL ¼ 20 in our experiments, as quite a few tokens can
appear more than 20 times in a document. Besides, we pro-
pose to directly utilize the tokens’ statistics to capture similar-
ity between a document x 2 y and a set of documents u that a
user u is interested in as features. We consider cosine, euclid-
ean and Kullback-Leibler (KL) divergence similarity metrics.
For each of these three metrics, we compute the minimal,
maximal, and average similarity scores of the document x 2 y
and the standard deviations to a set of documents u based on
the content of the documents and the standardLDAmodel [9].
In total, we have 49 features that fall in this feature category.

Interest. In addition, based on our UIT topic model, we
also compute the cosine, euclidean and KL similarity
between a document x 2 y and a set of documents u based
on a multinomial distribution over topics and the user’s
multinomial distribution over topics generated by UIT.
Again, for each of these three similarity metrics, we com-
pute the minimal, maximal, and average similarity scores
and the standard deviation scores. In total, we have S ¼ 36
features vsðx;uÞ that fall in this feature category.

Probability. The main probabilities used in state-of-the-art
unsupervised personalized diversification methods are uti-
lized in our learning model as features, i.e., gmðx; x;uÞ.
These probabilities include pðdjqÞ, the probability of d being
relevant to q, pðcjdÞ, the probability of d belonging to cate-
gory c, pðcjq; uÞ, the personalized query aspect distribution,
pðcjd; uÞ, the personalized aspect distribution over d, and
pðdjc; uÞ, the personalized aspect-dependent document
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distribution, where c is a category that d belongs to in the
Textwise Open Directory Project category service.1 For
pðdjqÞ, we obtain three versions, produced by BM25 [45],
Jelinek-Mercer and Dirichlet language models [46]. To get
the feature value of pðcjdÞ, we make use of the Textwise ser-
vice, which returns up to three possible categories for d,
ranked by a score in ½0; 1�, and we use the normalized scores
as features. We adopt five ways of computing pðcjq; uÞ as
feature values [5]; for details on how to compute pðcjq; uÞ,
pðcjd; uÞ and pðdjc; uÞ, see [5].

Then, we defineCðx;u; yÞ as follows:

Cðx;u; yÞ ¼

1
jyj
P

v2V1ðyÞ c1ðv;uÞ
1
jyj
P

v2V1ðyÞ c1ðv; xÞ
..
.

1
jyj
P

v2VLðyÞ cLðv;uÞ
1
jyj
P

v2VLðyÞ cLðv; xÞ
1
jyj
P

x2y v1ðx;uÞ
..
.

1
jyj
P

x2y vSðx;uÞ
1
jyj
P

x2y g1ðx; x;uÞ
..
.

1
jyj
P

x2y gMðx; x;uÞ

2666666666666666666666664

3777777777777777777777775

:

6 EXPERIMENTAL SETUP

In this section, we describe our experimental setup. We
begin by listing our research questions. We then describe
our dataset, and our baselines and evaluation metrics,
respectively. We conclude the section by detailing the set-
tings of our experiments.

The research questions guiding the remainder of the
paper are: (RQ1) Can supervised personalized diversifica-
tion methods outperform state-of-the-art unsupervised
methods? Can our method beat state-of-the-art supervised
methods? (RQ2) What is the contribution of the user-inter-
est topic model in our method? (RQ3) What is the effect of
the constraints for diversity and consistence with user’s
interest in our method? (RQ4) Does our method outperform
the best supervised baselines on each query? (RQ5) Can our
method retrieve a competitive number of subtopics per
query? (RQ6) What is the performance of our supervised
methods when the C parameter is varied? (RQ7) Do the
rankings generated by our supervised method and the base-
lines differ? (RQ8) Can additional highly violated and
diversified constraints help to boost the efficiency of train-
ing our personalized diversification algorithm?

6.1 Dataset

In order to answer our research questions we use a pub-

licly available personalized diversification dataset.2,3 It

contains private evaluation information from 35 users on
180 search queries. The queries are quite ambiguous, as
the length of each query is no more than two keywords. In
total, there are 751 subtopics for the queries, with most of
the queries having more than two subtopics. Over 3,800
relevance judgements are available, for at least the top five
results for each query. Each relevance judgement includes
three main assessments: assessment-I—a two-grade assess-
ment whether a specific subtopic is related to the evaluated
query (resulting in subjective subtopics related to the
search query); assessment-II—a four-grade scale assess-
ment on how relevant the result is to the user’s interests
(resulting in the user relevance ground truth and a set of
users’ interesting documents); and assessment-III—a four-
grade scale assessment on how relevant the result is to the
evaluated query (resulting in the topic relevance ground
truth being created). The format of the user and topic rele-
vance ground truth is the same as that in the diversifica-
tion task in the Web 2009-2014 Tracks [42] at TREC, viz.
hQueryID subtopicID DocumentID relevanceLeveli. Here,
the judgements for subtopicID are generated from assess-
ment-I for both types of ground truth, and the relevance
level judgements for a document given a query are gener-
ated from assessment-II and assessment-III for user and
topic relevance ground truth, respectively. See [5]. We
apply Porter stemming, tokenization, and stopword
removal (using the INQUERY list) to the documents using
the Lemur toolkit.4

6.2 Baselines

Let PSVMdiv denote our personalized diversification via
structured learning method. We compare PSVMdiv to 14
baselines: a traditional web search algorithm, BM25 [45];
three well-known plain (in the sense of “not personalized”)
search result diversification approaches, IA-Select [18],
xQuAD [22] and PM-2 [24]; two plain (in the sense of “not
diversified”) personalized search approaches, PersSL, which
combines the effect of long and short terms for personalized
search [14], and PersBM25, which is based on BM25 [12]; a
two-stage diversification and personalization approach,
xQuADBM25, as suggested by [7], which first applies the
xQuAD algorithm and then PersBM25; five state-of-the-art
unsupervised personalized diversification methods [5],
PIA-Select, PIA� SelectBM25, PxQuAD, PxQuADBM25 and
PPM-2, which is the personalization version of PM-2 using
the framework in [5]. As PSVMdiv builds on a standard
structured learning framework, we also consider two struc-
tured learning algorithms: SVMdiv [10] that directly tries to
retrieve relevant documents covering as many subtopics as
possible, and a standard structured learning method,
denoted as SVMrank [11] that directly ranks documents by
optimizing a relevance-biased evaluation metric.5

For the supervised methods, PSVMdiv, SVMdiv and
SVMrank, we use a 130/40/10 split for our training, valida-
tion and test sets, respectively. We train PSVMdiv, SVMdiv

and SVMrank using values of C (see (7)) that vary from 1e-4
to 1.0 and varying metric in (1). The best C value and metric

1. http://textwise.com
2. http://ir.ii.uam.es/
david/persdivers/
3. Two well-known corpora, ClueWeb09 and ClueWeb12 have been

proposed to be used in the diversification tasks at TRECWeb tracks [42].
However, they do not contain any user information or relevance judg-
ments provided by specific users, and thus do not fit our research
questions.

4. http://www.lemurproject.org
5. The source code for SVMrank [11] and SVMdiv [10] is available

at http://www.cs.cornell.edu/People/tj/
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in the loss function (1) are then chosen based on the valida-
tion set, and evaluated on the test queries. Similarly, we
train the efficient version of PSVMdiv by varying C, the
metric and the unsupervised personalized diversification

algorithm AðxðiÞ;uðiÞ; yÞ integrated in it. The training/
validation/test splits are permuted until all 180 queries
were chosen once for the test set. We repeat the experiments
10 times and report the average evaluation results. Other
baselines, such as xQuAD, PxQuAD, PM-2 and PPM-2,
attempt to obtain a set of diversified documents y that maxi-
mizes the function fðyjqÞ ¼ ð1� �ÞfrelðyjqÞ þ �fdivðyÞ, where
frelðyjqÞ estimates the relevance of the set of documents y
to q and fdivðyÞ estimates the dissimilarities between the
documents in y. For these baselines, we vary the parameter
� from 0 to 1.0.

6.3 Evaluation

We use the following diversity metrics for evaluation, most
of which are official evaluation metrics in the TREC Web
tracks [42]: a-nDCG@k [3], S-Recall@k [21], ERR-IA@k, Prec-
IA@k [18], MAP-IA@k [18] and D#-nDCG@k [47], which uti-
lizes multi-grade ratings.

For evaluating accuracy, we use nDCG [3], ERR, Prec@k
and MAP. Since users mainly evaluated the top five
returned results [5], we compute the scores at depth five for
all metrics. For evaluating efficiency, we use time in seconds
and the amount by which the most violated constraint is
violated at the current iteration to see how fast the proposed
algorithms can halt iterations.

Statistical significance of observed performance differen-
ces is tested using a two-tailed paired t-test and is deno-
ted using ~ (or !) for significant differences for a ¼ :01, or
4 (and 5) for a ¼ :05.

6.4 Experiments

We report on eight main experiments aimed at answering
the research questions listed above. Our first experiment
aims to understand whether supervised personalized diver-
sification methods outperform unsupervised ones and
whether PSVMdiv beats the supervised algorithms that
apply structured learning technique directly. We compare
PSVMdiv to two supervised baselines, SVMdiv and SVMrank,
and the nine unsupervised baselines with topic relevance
and user relevance ground truths, respectively.

To understand the contribution of the user-interest topic
model, we conduct two experiments; in one we perform
comparisons between PSVMdiv using all features (“token,”
“interest” and “probability,” see Section 5.2) including those
extracted from the topic model and PSVMdiv using basic
features (“token” and “probability” only, see Section 5.2); in
the other we also consider features extracted from LDA or
author topic model [48] for comparison. In our third experi-
ment, aimed at understanding the effect of our new con-
straints in PSVMdiv, we employ different sets of constraints
while training.

In order to understand how PSVMdiv compares to the best
baseline, our fourth and fifth experiment provide a query-
and subtopic-level analysis, respectively. To understand the
influence of the key parameter in our structured learning
framework, C, and the metric defined in (1), we train

PSVMdiv, SVMdiv and SVMrank by varying the metric used
in (1) between those listed in Section 6.3, andwe varyC from
1e-4 to 1.0 and report the performance. We provide a case
study to get an intuitive understanding of the algorithms. To
determine whether adding highly violated and diversified
constraints during iterations can boost the efficiency of train-
ing PSVMdiv, we add M ¼ f1; 2; . . . ; 8g constraints, respec-
tively, toPSVMdiv and compare training times.

7 RESULTS AND ANALYSIS

7.1 Supervised versus Unsupervised

Table 2 lists the diversity scores of the unsupervised baseline
methods. For all metrics, whether based on user relevance or
topic relevance, we see that none of the plain methods, viz.,
BM25, IA-Select, PersBM25, PersSL, xQuAD, xQuADBM25 and
PM-2, beats the best unsupervised personalized diversifica-
tion methods, viz., PIA� SelectBM25, PxQuADBM25 or PPM-
2. Moreover, in some cases the performance differences
between the best plain method and the best unsupervised
personalized diversification method are significant. This
indicates that diversity and personalization are complemen-
tary and can enhance each other. The same observation can
be found in Table 6 where performance is evaluated by rele-
vance-orientedmetrics.

Table 3 shows the diversity-oriented evaluation results of
three supervised methods using basic features (“token”,

TABLE 2
Performance of Unsupervised Methods

on Diversification Metrics

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

BM25 .6443 .4557 .2267 .1659 .1245 .4973

IA-Select .6099 .4282 .2241 .1624 .1177 .4642

PersBM25 .6427 .4541 .2318 .1639 .1206 .4951

PersSL .6487 .4673 .2342 .1650 .1267 .5075

xQuAD .6421 .4635 .2299 .1675 .1267 .4993

xQuADBM25 .6270 .4558 .2249 .1646 .1123 .4937

PM-2 .6501 .4674 .2347 .1655 .1278 .5061

PIA-Select .5766 .4407 .2006 .1480 .1085 .4623

PIA-SelectBM25 .6457 .4752 .2364 .1581 .1180 .5074

PxQuAD .6409 .4588 .2313 .1629 .1296 .4983

PxQuADBM25 .6497 .4713 .2367 .1676 .1296 .5113

PPM-2 .6512 ~.4775 .2352 .1675 .1342 .5154

Topic relevance

BM25 .7599 .4456 .2315 .1717 .1241 .5423

IA-Select .7685 .4425 .2365 .1767 .1212 .5326

PersBM25 .7746 .4555 .2330 .1794 .1219 .5413

PersSL .7752 .4587 .2375 .1771 .1223 .5512

xQuAD .7711 .4600 .2348 .1747 .1245 .5489

xQuADBM25 .7763 .4741 .2336 .1773 .1225 .5534

PM-2 .7791 .4633 .2382 .1783 .1275 .5546

PIA-Select .7410 .4641 .2227 .1650 .1206 .5343

PIA-SelectBM25 .7854 .4798 4.2415 .1740 .1300 .5587

PxQuAD .7744 .4543 .2350 .1747 .1278 .5493

PxQuADBM25 .7827 .4718 .2396 .1797 .1245 .5643

PPM-2 .7834 .4752 .2390 .1783 ~.1313 ~.5664

The best performance per metric is in boldface. The best plain retrieval method
(BM25, IA-Select, PersBM25, PersSL, xQuAD, xQuADBM25, and PM-2) is
underlined. Statistically significant differences between the best performance
per metric and the best plain retrieval method are marked in the upper left
hand corner of the best performance score.
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and “probability” features, see Section 5.2) in terms of both
ground truths. In terms of diversity-oriented evaluation
metrics all of the supervised methods significantly outper-
form the best unsupervised methods when making compar-
isons between the scores and the scores of unsupervised
methods in Table 2 in most cases. We include further com-
parisons in Tables 6 and 7 in terms of relevance-oriented
metrics, and find that supervised methods can statistically
significantly outperform unsupervised ones. These two
findings attest to the merits of taking supervised personal-
ized diversification methods for the task of personalized
search result diversification.

Next, we compare supervised strategies to each other.
Tables 3 and 5 show the diversity-oriented evaluation
resutls in terms of both grounth truths. It is clear from both
tables that our supervised method PSVMdiv statistically sig-
nificantly beats plain supervised methods, SVMrank and
SVMdiv. This is because PSVMdiv considers both personali-
zation and diversity factors, whereas the other two do not
take both two factors into account. SVMrank only tries to
return more relevant documents, and SVMdiv directly uti-
lizes standard structured learning for diversification.

Table 7 shows that, in terms of relevance-oriented met-
rics, PSVMdiv does not significantly outperform SVMrank

and SVMdiv. PSVMdiv returns the same number of relevant
documents that do, however, cover more subtopics than the
other supervised methods. Hence, PSVMdiv mainly outper-
forms the other two in terms of diversity-oriented metrics.
Sections 7.4 (query-level) and 7.5 (subtopic-level) have fur-
ther analysis.

To understand the performance enhancement of our pro-
posed algorithm compared to the baselines, we show the
effect sizes of the performance differences between
PSVMdiv and Other, between PSVMdiv and the best super-
vised learning algorithm SVMdiv. Here Other is the best
baseline except SVMrank and SVMdiv in Table 4. We use
Cohen’s d to compute the effect sizes. The effect sizes are
quite large (> 0.5) in all cases, which again illustrates that
PSVMdiv does outperform the baselines.

7.2 Effect of the Proposed UIT Model

Next, to understand the contribution of our UIT topic model,
we compare the performance of the supervised methods
using basic features, i.e., all other features but not the features
generated from the UIT model, with those using all the fea-
tures. See Tables 3 and 5, which list the results of the super-
vised methods in terms of diversity-oriented metrics when
using the basic features and all features, respectively. The use
of all features outperforms only using the basic features.

We also compare the performance of our learning algo-
rithmwith theUIT topicmodel against the other topicmodels.
In Table 8, we let PSVMdiv�LDA and PSVMdiv�ATM denote
the algorithm using the basic features plus those generated by
LDA, and the algorithm using the basic features plus those
generated by the author topic model [48]. As can be seen from
the table, PSVMdiv�All (which uses the basic features plus
those generated by UIT; see Table 10) statistically significantly
outperforms both PSVMdiv�LDA and PSVMdiv�ATM. UIT
integrates the relevance score in the topics’ inference.

TABLE 3
Performance of Supervised Methods Utilizing the Basic

Features on Diversification Metrics

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

SVMrank
~.6667 4.4837 .2396 .1683 ~.1856 4.5273

SVMdiv
~.6750 4.4887 .2412 4.1698 ~.1974 ~.5325

PSVMdiv
~.7234~ ~.5756~ ~.2514~ ~.17024 ~ .20374 ~.6134~

Topic relevance

SVMrank .7889 .4805 .2437 4.1812 ~.1848 ~.6254

SVMdiv
~.8003 4.4893 4.2479 4.1833 ~.2045 ~.6327

PSVMdiv
~.8533~ ~.5834~ ~.2649~ ~ .18464 ~.2113~ ~.6475~

The best performance per metric is in boldface. Statistically significant differ-
ences between supervised and the best unsupervised method (in Table 2) per
metric, between PSVMdiv and SVMdiv, are marked in the upper left hand cor-
ner of the supervised method’ score, in the right hand corner of the PSVMdiv

score, respectively.

TABLE 4
Effect Size of the Differences between PSVMdiv and Other, and between PSVMdiv and SVMdiv on the Two Ground Truth

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

PSVMdiv versus Other 2.832 3.425 1.543 1.475 3.458 3.126
PSVMdiv versus SVMdiv 2.136 3.278 1.249 0.754 0.642 2.437

Topic relevance

PSVMdiv versus Other 2.546 3.725 2.147 2.459 3.736 2.875
PSVMdiv versus SVMdiv 2.334 3.328 1.479 0.513 0.857 0.954

Here, Other is the baseline (excluding SVMrank and SVMdiv) that performs the best on the corresponding metrics.

TABLE 5
Performance of Supervised Methods Utilizing All Features

on Diversification Metrics

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

SVMrank
4.6782 4.4973 .2416 4.1710 ~.2887 ~.5537

SVMdiv
4.6867 4.4973 .2456 4.1729 ~.2911 ~.5745

PSVMdiv
~.7513~ ~.6140~ 4.2628~ 4.17424 ~.29794 ~.64244

Topic relevance

SVMrank
~.8422 ~.5068 ~.2554 4.1903 ~.3001 ~.6724

SVMdiv
4.8569 ~.5068 ~.2628 ~.1907 ~.3036 ~.6937

PSVMdiv
~.9549~ ~.6730~ ~.2849~ 4.19174 ~.30964 ~.7135

The best performance per metric is in boldface. All the scores here are statisti-
cally significant compared to those in Table 2. Statistically significant differen-
ces between the method here and the method in Table 3, between PSVMdiv and
SVMdiv, are marked in the upper left hand corner of the corresponding score,
in the right hand corner of the PSVMdiv score, respectively.
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These results illustrate that our proposed UIT model can
capture users’ interest distributions and that this kind of infor-
mation can be applied to improve performance. Due to space
limitations, we do not report the results in terms of relevance-
orientedmetrics; the findings there are qualitatively similar.

7.3 Effect of the Proposed Constraints

Next, to understand the effect of the newly proposed con-
straints, we conduct experiments by employing different
sets of constraints while training. The comparisons are again
divided into those using all features and those using basic
features. We write PSVMdiv-Ci, PSVMdiv-Ci;ii, PSVMdiv-Ci;iii,

and PSVMdiv-All to denote the methods trained with the
standard constraint (constraint i in (7)), standard and diver-
sity-biased constraints (constraints i and ii in (7)), standard
and interest-biased (constraints i and iii in (7)), and all con-
straints involved (constraints i, ii and iii in (7)), respectively.
Again, we only report results on diversity-orientedmetrics.

According to Tables 9 and 10, when employing one more
constraint, either diversity-biased or interest-biased, the
performance is significantly better than that of only employ-
ing the standard constraint. In terms of all metrics, the per-
formance of PSVMdiv employing all constraints statistically
significantly outperforms the performance of using at most
two constraints. Thus, combining diversification (the diver-
sity-biased constraint) and personalization (the interest-
biased constraint) boosts the performance.

7.4 Query-Level Analysis

In order to figure out why PSVMdiv enhances other super-
vised baselines, we take a closer look at per test query

TABLE 7
Performance of Supervised Methods Utilizing the Basic

Features on Relevance Metrics

User relevance

nDCG ERR Prec MAP

SVMrank
4.5805 4.9456 4.7345 4.2238

SVMdiv
4.5813 4.9467 4.7396 4.2240

PSVMdiv
4.5833 4.9485 4.7412 4.2281

Topic relevance
SVMrank

4.7864 .9478 ~.9763 4.2446
SVMdiv

4.7858 .9493 ~.9806 4.2482
PSVMdiv

4.79224 4.9521 ~.9834 4.2496

The best performance per metric is in boldface. Statistically significant differ-
ences between supervised and the best unsupervised method (in Table 6) per
metric, between PSVMdiv and SVMdiv, are marked in the upper left hand cor-
ner of the supervised method’ score, in the right hand corner of the PSVMdiv

score, respectively.

TABLE 8
Performance of PSVMdiv Using Basic Features and Features
Generated by Different Topic Models on Diversification Metrics

with User Relevance Ground Truth

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

PSVMdiv-LDA :7223! :5814! :25245 .1712 :2254! :6159!

PSVMdiv-ATM :7320! :59275 .2572 .1715 :2314! :6253!

Significant differences against PSVMdiv-All in Table 10 are marked in the
upper right hand corner of the corresponding scores.

TABLE 6
Performance of Unsupervised Methods on Relevance Metrics

User relevance

nDCG ERR Prec MAP

BM25 .5697 .9364 .7113 .2038
IA-Select .5126 .9389 .6796 .1813
PersBM25 .5713 .9276 .7183 .2076
PersSL .5724 .9314 .7213 .2142
xQuAD .5526 .9352 .6858 .1915
xQuADBM25 .5540 .9133 .6921 .1841
PM-2 .5643 .9357 .7042 .2013
PIA-Select .4783 .9034 .6417 .1774
PIA-SelectBM25 .5482 .9271 .6687 .1803
PxQuAD .5631 .9246 .7050 .2073
PxQuADBM25 .5764 .9374 .7258 .2145
PPM-2 .5780 .9378 .7253 .2152

Topic relevance
BM25 .7775 .9440 .9146 .2239
IA-Select .7340 .9452 .9250 .2299
PersBM25 .7741 .9374 .9298 .2316
PersSL .7725 .9473 .9345 .2374
xQuAD .7518 .9367 .9125 .2231
xQuADBM25 .7605 .9278 .9312 .2281
PM-2 .7623 .9367 .9350 .2293
PIA-Select .6709 .9062 .8667 .2043
PIA-SelectBM25 .7264 .9418 .9042 .2223
PxQuAD .7679 .9435 .9229 .2306
PxQuADBM25 .7793 .9466 .9396 .2355
PPM-2 .7763 .9472 .9396 .2372

Notational conventions are the same as in Table 2.

TABLE 9
Performance of PSVMdiv Involving Different Constraints

Using Basic Features on Diversification Metrics
with User Relevance Ground Truth

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

PSVMdiv-Ci .6713 .4842 .2403 .1673 .1969 .5325
PSVMdiv-Ci;ii :6973~ :5262~ .2437 .1681 .1977 :5437~

PSVMdiv-Ci;iii :6994~ :5275~ :2478~ :1687~ .1983 :5510~

PSVMdiv-All .7234~ .5756~ .2514~ .1702~ .20374 .6134~

The best performance per metric is in boldface. Statistically significant differ-
ences against PSVMdiv-Ci are marked in the upper right hand corner of the
corresponding scores.

TABLE 10
Performance of PSVMdiv Involving Different Constraints

Using All Features on Diversification Metrics
with User Relevance Ground Truth

User relevance

a-nDCG S-Recall ERR-IA Prec-IA MAP-IA D#-nDCG

PSVMdiv-Ci
~.6843 ~.4965 4.2434 4.1714 ~.2906 ~.5774

PSVMdiv-Ci;ii
~:7156~ ~:5334~ 4:2494~ 4:1720~ ~.2932 ~:5935~

PSVMdiv-Ci;iii
~:7194~ ~:5388~ 4:2501~ 4:1723~ ~:2937~ ~:6048~

PSVMdiv-All ~.7513~ ~.6140~ 4.2628~ 4.1742~ ~.29794 ~:6424~

Statistically significant differeneces between the score here and that in Table 9
are marked in the upper left hand corner of the scores. Other notational con-
ventions are the same as in Table 9.
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improvements of PSVMdiv over the best supervised baseline
method, viz., SVMdiv, which outperforms SVMrank in most
cases. Fig. 2 shows the per query performance differences in
terms of the diversify-oriented metrics of PSVMdiv against
SVMdiv when they use all the features. PSVMdiv achieves
performance improvements for many queries, especially in
terms of a-nDCG, S-Recall, ERR-IA. In a small number of
cases, SVMdiv outperforms PSVMdiv. This appears to be due
to the fact that PSVMdiv promotes some non-relevant docu-
ments when it tries to cover as many subtopics as possible
for a given query.

7.5 Subtopic-Level Analysis

Next, we zoom in on the number of different subtopics that
are returned by PSVMdiv and SVMdiv, respectively, to further
analyze why PSVMdiv beats SVMdiv. Here, again, we use
SVMdiv as a representative. Specifically, we report changes in
the number of subtopics for PSVMdiv against SVMdiv in Fig. 3
when they use all features. Red bars indicate the number of
subtopics that appear in the run ofPSVMdiv but not in the run
of SVMdiv, white bars indicate the number of subtopics in
both runs, whereas blue bars indicate the number of subtopics
that are not in PSVMdiv but in SVMdiv; queries are ordered
first by the size of the red bar, then the size of the white bar,
and finally the size of the blue bar.

Clearly, the differences between PSVMdiv and SVMdiv in
the top two and three are more limited than the differences
in the top four and five, but in all cases PSVMdiv outper-
forms SVMdiv. For example, in total there are 68 more sub-
topics in the top five of the run produced by PSVMdiv than
those in the SVMdiv run (in terms of all the 180 test queries,
68 subtopics in PSVMdiv but not in SVMdiv, seven subtopics
in SVMdiv but not in PSVMdiv).

7.6 Performance of Parameter Tuning

To understand the performance of the tradeoff parameter C
used in (4) and (7), we show the performance of PSVMdiv

and the two supervised baselines using all features. To save

space, we only report the performance on a-nDCG. Fig. 4
plots the results; it illustrates that PSVMdiv performs best
when C is small. This indicates the merit of our new con-
straints (as well as the standard constraint used in the base-
lines) focusing on weight modification rather than on low
training loss.

7.7 A Case Study

To gain an intuitive understanding of why our personalized
diversification algorithm works better than the baselines,
we provide a case study with the query “Apple” from the
dataset. This query has three aspects. They are “aspect I:
Apple fruit,” “aspect II: Apple product” and “aspect III:
Apple company.” The top six documents in the rankings in
response to a user’s query “Apple” generated by the plain
personalization algorithm PerSL, plain diversification algo-
rithm PM-2, unsupervised personalized diversification
algorithm PPM-2 (we take PerSL, PM-2, PPM-2 as represen-
tatives), and our personalized diversification algorithm
PSVMdiv are shown in Table 11.

According to the ground truth, the user is interested
in “Apple fruit” and “Apple product” but not “Apple
company,” as he submitted queries such as “Food” and
“iPhone.” The top three documents in the ranking of
PerSL are associated with the same Apple aspect, as the
user just recently submitted some queries such as “Food”
and PerSL utilizes the short term history for search; the

Fig. 3. How runs produced by PSVMdiv and SVMdiv differ. Red, white, and blue bars indicate the number of different subtopics that appear in PSVMdiv

but not in SVMdiv, in both runs and not in PSVMdiv but in SVMdiv, respectively, at corresponding depth k (for k=2, 3, 4, 5).

Fig. 2. Per query performance differences of PSVMdiv against SVMdiv. The figures shown are for a-nDCG, S-Recall, ERR-IA, Prec-IA, and MAP-IA,
respectively. A bar extending above the center of a plot indicates that PSVMdiv outperforms SVMdiv, and vice versa for bars extending below
the center.

Fig. 4. Performance of the supervised methods using all features when
varying the value of parameter C.
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documents ranked 4-6 by PerSL cover another aspect,
viz. “Apple product,” probably because the user submit-
ted some queries such as “iPhone” before and PerSL uti-
lizes the long term history for search too. The plain
diversification algorithm, PM-2, on the other hand, does
not take the user’s preference into account, diversifies
the search results and covers all three aspects, one by
one, including “Apple company” that the user is not
interested in. In contrast, PPM-2 and PSVMdiv try to
retrieve and diversify the documents covering the two
aspects amongst the top-k documents. Table 12 shows
the performance against the user ground truth for the
example query. PSVMdiv outperforms the other baselines
on all diversification metrics.

7.8 Fast Training Analysis

Finally, to understand the efficiency of the proposed fast
training framework for our personalized diversification
algorithm, we adapt the proposed Algorithm 3 to train
PSVMdiv with M ¼ f1; 2; . . . ; 8g additional highly violated
but also diversified constraints being added to the origi-
nal PSVMdiv algorithm. We compare the experimental
results with those of SVMdiv, SVMrank, and PSVMdiv that
is trained using the standard structured learning frame-
work (no additional constraints are added, i.e., M ¼ 0) as
shown in Algorithm 1. Figs. 5 and 6 show the compari-
son results.

In Fig. 5, d is the amount by which the most violated con-
straint is violated at that current iteration. The algorithm
stops when d � � ¼ 0:01. PSVMdiv needs most iterations to
converge, followed by the baselines SVMdiv and SVMrank.
Even when only one additional constraint is added to
PSVMdiv (i.e., M ¼ 1), PSVMdiv needs considerably fewer

iterations compared to those of the original PSVMdiv

(M ¼ 0), SVMdiv and SVMrank. When additional constraints
are added (M ¼ f1; 2; . . . ; 6g), fewer iterations are needed
by PSVMdiv. Including over six additional constraints (i.e.,
M ¼ 7; 8) does not lead to decreases in the number of itera-
tions for PSVMdiv. This may be due to the fact that more
constraints may become less informative for convergence.
Clearly, the first additional constraint is the most informa-
tive one for PSVMdiv, as the number of iterations drops
most forM ¼ 1.

In Fig. 6 we plot the training time in seconds versus the
number of iterations for a range of values ofM for PSVMdiv,
SVMdiv and SVMrank. Clearly, the baselines SVMdiv and
SVMrank consume the smallest amount of training time
although they are not the algorithms that need the smallest
number of iterations for convergence. The original training
framework for PSVMdiv needs the most training time
although its time versus iteration slope is just larger than
those of SVMdiv and SVMrank. The more additional con-
straints are added during iterations, i.e,. the larger the value
of M is, the larger the time versus iteration slopes are as
solving the quadratic programing problem with more addi-
tional constraints needs more time. What is interesting for
us in Fig. 6 is that for M ¼ 6 PSVMdiv needs almost the
same amount of training time as for M ¼ f1; 2; 3; 4g while
requiring fewer iterations for convergence. We do not show
the diversification performance of PSVMdiv when
M ¼ f1; 2; . . . ; 8g as it is the same (no statistically signifi-
cant) as for PSVMdiv when M ¼ 0 in most cases. In fact,

Fig. 6. Training time in seconds versus number of iterations to conver-
gence for SVMdiv, SVMrank, PSVMdiv (M ¼ 0), and its efficient versions
whereM ¼ f1; 2; . . . ; 8g additional multiple constraints are added.

TABLE 11
Rankings Generated by PerSL, PM-2, PPM-2, SVMdiv,

and PSVMdiv in Response to the Query “Apple”

PerSL PM-2 PPM-2 PSVMdiv

Ranking Aspect Ranking Aspect Ranking Aspect Ranking Aspect

Doc1 I Doc1 I Doc1 I Doc1 I
Doc2 I Doc4 II Doc4 II Doc4 II
Doc3 I Doc7 III Doc2 I Doc2 I
Doc4 II Doc2 I Doc3 I Doc5 II
Doc5 II Doc5 II Doc5 II Doc3 I
Doc6 II Doc8 III Doc6 II Doc6 II

Aspects “Apple fruit,” “Apple product” and “Apple company” are denoted as
“I,” “II” and “III,” respectively.

TABLE 12
Performance of PSVMdiv in Response to the Query “Apple”

Using the Basic Features and the Features Generated
by Different Topic Models on Diversification Metrics

with the User Relevance Ground Truth

User relevance

a-nDCG S-Recall ERR-IA Prec-IAMAP-IAD#-nDCG

PerSL .9414 1.000 .6112 .5000 .6277 1.000
PM-2 .9301 1.000 .6263 .4000 .4000 .9152
PPM-2 .9950 1.000 .6641 .5000 .6361 1.000
PSVMdiv 1.000 1.000 .6687 .5000 .6917 1.000

Fig. 5. Violation of the most violated constraint versus number of itera-
tions to convergence for SVMdiv, SVMrank, PSVMdiv (M ¼ 0), and its effi-
cient versions whereM ¼ f1; 2; . . . ; 8g additional multiple constraints are
added.
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adding additional constraints does not impact or just negli-
gibly impacts the final optimization.

Combining the findings in Figs. 5 and 6, we conclude that
PSVMdiv is able to maintain retrieval effectiveness, while
adding highly violated and diversified constraints not only
reduces the number of iterations but also the training time
for PSVMdiv.

8 CONCLUSION

Most previous work on personalized diversification of
search results produces a ranking using unsupervised
methods, either implicitly or explicitly. In this paper, we
have adopted a different perspective on the problem,
based on structured learning. We propose to boost the
diversity and match to users’ personal interests of search
results by introducing two additional constraints into the
standard structured learning framework. We also propose
a user-interest topic model to capture users’ multinomial
distribution of interest over topics and infer per-docu-
ment multinomial distributions over topics. Based on
this, a number of user interest features are extracted and
the similarity between a user and a document can be
effectively measured for our learning method. To further
boost the efficiency of training our proposed personalized
diversification algorithm, we propose to add highly vio-
lated but also diversified constraints into our structured
learning framework.

Our evaluation shows that supervised personalized
diversification approaches outperform state-of-the-art unsu-
pervised personalization diversification, plain personaliza-
tion and plain diversification algorithms. The two proposed
constraints are shown to play a significant role in the super-
vised method. We also find that the user-interest topic
model helps to improve performance. Our proposed learn-
ing method is able to return more subtopics. Adding more
informative constraints can help to make training faster,
needs fewer iterations and still keep almost the same
performance.

We aim to study other types of learning strategies for
personalized diversification of search results. We use an
unsupervised method to generate the additional highly
violated and diversified constraints for our training; look-
ing for other alternative ways to get more effective con-
straints is another follow-up research step. Finally, our
experimental results were only evaluated on a single data-
set. In future work we plan to pursue two alternatives: to
use simulations based on click models [49] and to invite
users to label the existing datasets, e.g., ClueWeb09, such
that they can also be used for evaluating personalized
diversification algorithms.
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APPENDIX A
GIBBS SAMPLING DERIVATION FOR UIT MODEL

We begin with the joint distribution P ðew; r; z; euja;b;b; qÞ.
We can take advantage of conjugate priors to simplify
the integrals. All symbols are defined in Sections 3, 4
and 5

P ðew; r; z; euja;b;b; qÞ ¼ P ðewjz;bÞpðrjb; z; qÞP ðzjeu;aÞ
¼
Z
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Applying the chain rule, we can obtain the conditional
probability
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P ðzdijew; r; z�di; eu;a;b;b; qÞ
¼ P ðzdi; wdi; rdi; udijew�di; r�di; z�di; eu�di;a;b;b; qÞ

P ðwdi; rdi; udijew�di; r�di; z�di; eu�di; a;b;b; qÞ
¼ P ðew; r; z; euja;b;b; qÞ

P ðew; r; z�di; euja;b;b; qÞ
because zdi depends only on wdi; rdi and udi

/ P ðew; r; z; euja;b;b; qÞ
P ðew�di; r�di; z�di; eu�dija;b;b; qÞ

/ nzdiwdi
þ bwdi

� 1PV
v¼1ðnzdiv þ bvÞ � 1

nudizdi þ azdi � 1PT
z¼1ðnudiz þ azÞ � 1

� ð1� rdiÞbzdi1�1rbzdi2�1di

Bðbzdi1; bzdi2Þ
:

As relevance is drawn from continuous Beta distribu-
tions, sparsity is not a big problem for parameter estimation
of b. For simplicity, we update b after each Gibbs sample by
the method of moments as

bz1 ¼ �tz
�tzð1� �tzÞ

s2z
� 1

� �
;

bz2 ¼ ð1� �tzÞ
�tzð1� �tzÞ

s2z
� 1

� �
;

where �tz and s2z are the sample mean and biased sample var-
iance of the relevance belonging to topic z, respectively.
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